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One of the major noise components in electrocardiogram (ECG) is the baseline wander (BW). Effective methods for suppressing
BW include the wavelet-based (WT) and the mathematical morphological filtering-based (MMF) algorithms. However, the T
waveform distortions introduced by the WTand the rectangular/trapezoidal distortions introduced by MMF degrade the quality
of the output signal. Hence, in this study, we introduce a method by combining the MMF andWT to overcome the shortcomings
of both existingmethods. To demonstrate the effectiveness of the proposedmethod, artificial ECG signals containing a clinical BW
are used for numerical simulation, and we also create a realistic model of baseline wander to compare the proposed method with
other state-of-the-art methods commonly used in the literature. /e results show that the BW suppression effect of the proposed
method is better than that of the others. Also, the new method is capable of preserving the outline of the BW and avoiding
waveform distortions caused by the morphology filter, thereby obtaining an enhanced quality of ECG.

1. Introduction

Electrocardiogram (ECG) is an important clinical tool for
heart disease diagnosis; hence, precision of ECG is a matter
of life and death. However, the quality of the ECG signal is
degraded during acquisition due to the interferences in-
cluding power line harmonics, motion artifact, and baseline
wander (BW), which makes it difficult to identify the factors
which reflect the characteristics of physiological activity. As
a consequence, interference suppression should be applied
before the analysis of ECG [1]. Notably, the most important
step is BW suppression which produces a stable signal for
subsequent processing and for reliable visual interpretation.

BW embedded in ECG is mainly caused by the move-
ment and respiration of the patient; consequently, it appears

as low-frequency artifacts [2]. Unfortunately, although the
high-pass filter is capable of suppressing BW, the ECG
waveform distortion is inevitable because of the frequency
variations of the ECG signal. Hence, a number of advanced
BW suppression algorithms including linear low-pass filters,
nonlinear filters, polynomial interpolation, wavelet filters,
and mathematical morphological filters (MMF) are pro-
posed [3–9].

Linear filters can effectively filter the high-frequency
signals but cannot remove the additive noise, which has a
frequency band similar to that of ECG signals. Polynomial
interpolation depends on the accurate determination of
knots and may be unreliable during knot separation [10].
As a nonlinear filtering technique, MMF can obtain local
shape features in signals by structuring the element

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2019, Article ID 7196156, 7 pages
https://doi.org/10.1155/2019/7196156

mailto:401103757@qq.com
http://orcid.org/0000-0002-0087-2680
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7196156


sequences [11, 12]. However, its applications may result in
“step-like” waveform distortions. Wavelet transform
(WT) has also been used in BW removal. In [3], BW is
estimated from the discrete WTcoefficients at level j and is
subtracted from the original ECG signals. WT method
exhibits relatively good effects for BW suppression.
However, this method causes T waveform distortions due
to the frequency overlaps between the high-scale ap-
proximate coefficients and T wave. /e ECG signal is
reconstructed by an inverse WT, and the high-scale ap-
proximate coefficients are set to zero, thereby causing the
T wave distortion [13].

/is study introduces a combined algorithm (CA) of
MMF- and WT-based filtering for BW suppression. /e CA
can effectively preserve the outline of the BW and avoid
waveform distortions caused by morphology filters, thereby
obtaining an enhanced ECG quality.

/e study is organized as follows. Section 2 describes the
combined filtering method, while the simulation results are
provided and quantitatively analyzed in Section 3. Finally,
summary and conclusions are drawn in Section 4.

2. The Combined Method

Considering that the main focus of this study is BW sup-
pression, we model the contaminated ECG as the super-
position of the real ECG and the BW and ignoring other
types of interferences, as follows:

fCECG(n) � fECG(n) + fBW(n), (1)

where fCECG, fECG, and fBW are the contaminated ECG-,
real ECG-, and BW-function with respect to time index n,
respectively. All of the time functions in this study are
discrete because the implementation of filtering is focused
on digital processing. /e BW suppression is commonly
implemented by cancellation, i.e.,

􏽢fECG(n) � fCECG(n)− 􏽢fBW(n), (2)

where the hat symbol 􏽢 denotes the estimation of the un-
derneath term. /e output error of this cancellation pro-
cedure is given by

e(n) � fECG(n)− 􏽢fECG(n) � 􏽢fBW(n)−fBW(n), (3)

which indicates that the performance of BW suppression is
determined by the estimator of fBW, i.e., 􏽢fBW. To refine the
estimator 􏽢fBW, we provide a staged framework which
combines N different filtering technology. /e expression of
this framework is shown as follows:

􏽢fBW(n) � fF1 · fF2 · . . . · fFN( 􏼁 fCECG(n)( 􏼁, (4)

where fFn is the nth filter and operator · denotes function
composition, defined as follows:

(f · g)(x) � f(g(x)). (5)

By choosing filters carefully, the framework is capable of
combining advantages of different filter implementations,
and in this study, we combine the MMF-based filter and
WT-based filter.

2.1. 7e Morphological Filtering. /e shortcomings of the
linear BW suppression methods are caused by the nonlinear
nature of the contaminated ECG. Hence, nonlinear pro-
cessing methods are preferred, and the MMF belongs to this
category, which is capable of maintaining the shape of the
input signal./e objects of the morphological operations are
sets and vectors; for the clarity of descriptions, hereafter
vectors are denoted by lower case boldface letters, and RN

denotes the real coordinate space of N dimensions. /e
reflection of a set comprised of vectors is defined as

A
r

� −a ∣ a ∈ A{ }, (6)

while the translation is given by
(A)z � a + z ∣ a ∈ A{ }, (7)

and hence the dilation and erosion can be expressed as
follows:

A⊕B � z ∣ B
r

( 􏼁z ∩A≠∅􏼈 􏼉,

A⊖B � z ∣(B)z ⊆A􏼈 􏼉.
(8)

/e morphological filter is comprised of opening and
closing operators, which can be expressed by dilation and
erosion, as follows:

A◯B � (A⊖B)⊕B, (9)

A •B � (A⊕B)⊖B. (10)

We can apply these morphological operators to a time
function by treating the n−f plane as a binary image, and
the value of the pixels underneath the curve equals one. /e
geometric interpretation of opening in equation (9) and
closing in equation (10) is sliding a given structuring element
along with the signal from beneath and above, respectively.
Specifically, the result of opening comprises the highest
points reached by any part of the structuring element, while
closing is comprised of the lowest ones. Consequently, the
semantic meaning of opening/closing is peak-suppression/
pit-filling. According to themodel shown in equation (1), the
spiky fECG can be seen as the noise for fBW estimation, and
intuitively the combination of opening and closing is capable
of smoothing the fluctuation introduced by the fECG. /e
expression of the estimator has the following form:

fMMF fCECG( 􏼁 �
1
2

fCECG◯ S • S( 􏼁 + fCECG • S◯ S( 􏼁􏼂 􏼃,

(11)

where S is the structuring element. Let the output of the filter
be the estimation of fBW, i.e.,

􏽢fBW � fMMF fCECG( 􏼁, (12)

the estimation of fECG can be obtained by cancellation:
􏽢fECG � fCECG − 􏽢fBW � I−fMMF( 􏼁 fCECG( 􏼁, (13)

where I denotes the identity operator, i.e.,
I(f) � f. (14)

We test the estimator and the cancellation procedure
using Massachusetts Institute of Technology-Boston’s Beth
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Israel Hospital (MIT-BIH) arrhythmia database [14] (record
number 109). Shape and size of the chosen structuring el-
ement are very important. /e shape of structuring element
should be as similar as the filtered signal waveform needed.
/e ECG baseline wander is a low-frequency signal, and its
shape is more approximate to the line segment. So the
morphological filters are with line segments as structuring
elements. And the height of linear structuring element has
little effect on the results of mathematical morphological
filtering. /e size of structuring element directly determines
whether the noise can be better removed and whether the
required signal can be better retained. /e width of struc-
tural element should be wider than the noise waveform
removed and narrower than the signal waveform needed to
be retained. If the width of the structural element is too
small, the noise component cannot be eliminated well; if the
width of the structural element is too large, some signals that
need to be retained will be filtered. /e time duration of
characteristic waves of ECG is listed in Table 1.

For ECG signals with BW, the frequency range of BW
noise is slightly smaller than that of Twave, that is, the time
width of baseline drift noise waveform is larger than that of
characteristic waveform of ECG signal. As mentioned above,
the time width of T wave is 0.05–0.20 s; when the sampling
rate is 360Hz, the sampling points are 360 × 0.2 � 72. So, the
width of structural elements selected by BW is 72 sampling
points in this paper. /e result is shown in Figure 1.

/eoretically, if morphological filtering with a large
width of the structuring element is used to process the signal
directly, the BW is obtained. Despite the high amplitude of
QRS wave, the peaks and pits of its adjacent regions are also
removed during the simulation, resulting in the distortion of
the QRS waves and P-R segments.

2.2. 7e Combination of WT-Based Filter. Although the
MMF can track the slow drifting of the baseline wandering,
step-like shape shown in Figure 1(c) demonstrates that the
estimated BW is still noisy. Considering various degrees of
distortions, we adopt WT-based filtering to smooth the
estimated BW.

Smoothing BW signal can be regarded as the elimi-
nation of high-frequency components and retention of
low-frequency ones, and WT-based filtering is suitable for
this kind of task. /e estimated BW can be decomposed
into multiple scales in the context of WT: considering the
BW frequency ranges from 0.05Hz to 2Hz, the compo-
nents below 2Hz are preserved; while the ones above 2Hz
are replaced with zero. Finally, the smoothened BW signal
can be obtained by reconstruction using the inverse
wavelet transform.

Here we choose coif3 as the wavelet function because
its regularity and symmetry properties are better com-
pared with other wavelets. Also, the coif3 is the most
widely used wavelet function for ECG process. For the
ECG signal of which the sampling frequency is 360Hz, the
BW signal is decomposed by the WT into seven scales.
After decomposition, the approximate frequency range for
each scale is shown in Table 2, where D represents the

detailed components (high-frequency components) of the
signal at the scale after wavelet decomposition and A
represents the approximate components (low-frequency
components) at the scale. /e seventh approximate
component is reserved.

We denote the WT-based filter as fWT and combine it
with fMMF according to the framework shown in equation
(4); hence, the expression of the combined filter (or BW
estimator) can be written as follows:

􏽢fBW � fWT · fMMF( 􏼁 fCECG( 􏼁, (15)

and the estimated ECG is given by the following
cancellation:

􏽢fECG � I−fWT · fMMF( 􏼁 fCECG( 􏼁. (16)

/e entire block diagram of the combined algorithm of
the MMF and WT is shown in Figure 2.

3. Numerical Simulation

In real ECG recordings, the exact ECG value and BW noise
are unknown which prevents one from analyzing algorithm
performance with precision. Hence, a simulated ECG signal
plus BW noise is used to evaluate the effectiveness of the CA
proposed in this study [15].

/e generation of the simulated contaminated ECG is
based on equation (1), while fBW used here is collected
clinically, and the simulated fECG is constructed by

fECG(n) � 􏽘
m

fSHB(n + mT), (17)

where fSHB(n) is the waveform of a single heartbeat of which
the duration is T and 􏽐mfSHB(n + mT) is the periodic
repetition of the heartbeat waveform representing a simu-
lated clean ECG signal where m ∈ Z+.

/e specific process of obtaining the artificial ECG
(i.e., S) is described as follows:

(1) One heartbeat of an ECG recording, which is from
the recording of number 119 in MIT-BIT ar-
rhythmia database sampled at 360Hz in resting
conditions, is selected. /e clean ECG is formed by
periodic repetitions of a single beat at 1000 times.
/e clean ECG segment used in the experiment is
subsequently obtained. An example is shown in
Figure 3.

(2) /e second channel of the BW data from the MIT-
BIH noise stress test database is selected as the BW
[16]. Figure 4 shows the chosen BW signal.

/e performance of the proposed method was evaluated
by themean square error (MSE) and the signal-to-noise ratio
(SNR), which are defined as formulas (18) and (19),
respectively.

Table 1: Time duration of characteristic waves of ECG signal.

Characteristic waves P wave QRS wave T wave
Time duration (s) 0.08∼0.11 0.06∼0.10 0.05∼0.20

Computational and Mathematical Methods in Medicine 3



MSE �
1
N

∑

N−1

n�0
fECG(n)− f̂ECG(n)( )

2
, (18)

SNR � 10 × lg
θ2

MSE
( ), (19)

where θ2 is the variance of the ECG, de�ned as

θ2 �
1
N

∑

N−1

n�0
fECG(n)−fECG( )

2
, (20)

where fECG is the mean of the ECG.�e calculated values of
the MSE and SNR for the arti�cial contaminated ECG signal
�ltered by the algorithms are listed in Table 3.

�e MSE value is small, indicating a smaller error be-
tween the �ltered ECG and the clean ECG. �e distortion
produced by the �lter is also small. Meanwhile, the SNR
value of the �ltered ECG is high, indicating that the algo-
rithm works for the BW interference suppression.

As can be seen from Table 2, the e�ect of MMF is
signi�cantly better than that of WT in the BW suppression.
�e reason is that the frequency range of the Twave in ECG
signal is partially overlapped with the frequency range of BW
noise. When the high-scale approximate components of
wavelet decomposition are set to zero, wavelet re-
construction could cause Twave distortion. �e CA gets the
smallest MSE and highest SNR, which demonstrates that the
performance of BW suppression is better.

4. Statistical Analysis

To further perform evaluation of CA, a statistical analysis
scheme is considered [17]. Other two baseline removal al-
gorithms used regularly in literatures, which are Butterworth

Table 2: Frequency ranges of the estimated BW signal de-
composition with seven scales.

Wavelet coe�cients Frequency ranges (Hz)
D1 90–180
D2 45–90
D3 22.5–45
D4 11.3–22.5
D5 5.6–11.3
D6 2.8–5.6
D7 1.4–2.8
A7 0–1.4

ECG without
BW∑

Estimated BW
by MMF

ECG contaminated
BW

Wavelet
decomposition

Reserving higher
scale components

Wavelet
reconstruction

Smoothed
BW

Smoothing BW by WT

–+

Figure 2: Block diagram of the CA.
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Figure 1: Example of removing BW using morphology �lter. (a) �e ECG contaminated by BW. (b) �e �ltered ECG signal by MMF. (c)
�e estimated BW.
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high-pass �lter [18] and wavelet-based high-pass �ltering
[19], are introduced and compared.

�e original arti�cial ECG signals for this experiment
are generated using the ECGSYM software [20] which
allows con�guring ECG parameters (such as heart rate,
sampling frequency, the morphology of the ECG waves,
amplitude and duration parameters, etc). For the experi-
ment, four segments of arti�cial ECG signals with di�erent
heart rates, which are 40 beats per minute (bpm) (bra-
dycardia), 70 bpm (normal), 90 bpm (tachycardia), and
120 bpm (exercise), are generated, respectively, and the
sampling frequency is set to 360Hz and duration of the
signal to 5min. Afterwards, the real baseline drifts from the
MIT-BIH Noise Stress Test Database [21] are added to the
arti�cial ECG.

�ree performance indexes are chosen to evaluate
the algorithms besides above MSE, which are described
below.

4.1. Correlation Coe�cient (CC). It is used to quantify im-
pairment in the morphology of the �ltered signals. It is
independent from scaling or o�setting the signals and fo-
cuses on the matching form of original and �ltered wave-
forms [17]. Mathematically, the correlation coe�cient
between the original signal x(t) and the �ltered one x̂(t) is
given by

CC x(t), x̂(t){ } �
E x(t)− μx( ) x̂(t)− μx̂( )[ ]

σxσx̂

, (21)

where E[·] denotes the expected value operator, μx is the
expected value of x(t), and σx is its standard deviation.

4.2. L_Operator (LO). It is a measurement of similarity that
is based on the Euclidian distance between the two signals
[21]. Mathematically, it is given by

LO x(t), x̂(t){ } � 1−
E (x(t)− x̂(t))2[ ]

E x2(t)[ ] + E x̂2(t)[ ]
. (22)

In contrast to the correlation coe�cient, the LO is sen-
sitive to o�setting and scaling of any of the two signals [17].

4.3. Absolute Maximum Distance (AMD). It is one of the
most commonly similarity metrics used to determine the
quality of ECG signals after performing a �ltering process
and can be de�ned by the following expression [22]:

AMD x(t), x̂(t){ } � max|x(t)− x̂(t)|, (1≤m≤ r),

(23)

where m is the number of the current sample of the signals
and r is the maximum number of samples of the x(t) and
x̂(t) signals.

It allows to measure the accumulated error and gives
di�erences in all their extension.

�e average results of the comparison study are pre-
sented in Table 4.

�e results demonstrated that even though there are
small di�erences among the methods, they were all good
performers in terms of CC, LO, AMD, and MSE. However,
we see that the method that best maintained the original
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Figure 3: Arti�cial ECG signal.
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Figure 4: �e chosen BW.

Table 3: Values of the MSE and SNR.

Signal MSE SNR
Arti�cial ECG 0.1170 3.0757
ECG �ltered by WT 0.0173 8.9145
ECG �ltered by MMF 0.0051 13.5224
ECG �ltered by CA 0.0024 16.7154
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ECG morphology is CA (highest CC and LO and lowest
AMD and MSE). /e reason for this is probably due to the
combination of MMF and WT whose features match pre-
cisely the time and frequency domain properties of the
artifact.

/e second best performance, according to the indexes,
is yielded by the WT method. It is probably due to the
properties of the chosen suited wavelet and the relatively
high decomposition level. Although wavelet-based high-pass
filtering method is very similar to the wavelet-based method,
a high-pass filtering (an infinite impulse response filter of
order one and a cutoff frequency of 0.5Hz) is used on the
approximation coefficients instead of setting them to zero.
/is is somewhat comparable to a soft threshold on the
approximation coefficients. And the Vaidyanathan-Hoang
wavelet, not coif3 used in WT, is used [17, 19].

According to the indexes, Butterworth (lowest CC and
highest MSE) andMMF (lowest LO and highest AMD) show
a similar worst performance. Even so, computationally
Butterworth can be approximated as a finite impulse re-
sponse filter, and MMF significantly reduces the amount of
computation by opening and closing operators. /ey both
have speedy computation and especially suit for medical
applications that require fast but still accurate signal pro-
cessing algorithms.

5. Conclusion

In presence of baseline wanders, there is a need to use a
promising technique for baseline drifts suppression. In this
paper, we have presented and validated a combined algo-
rithm of mathematical morphology filter and wavelet
transform for baseline wandered ECG signals. Compared
with the current state-of-the-art methods, the filtering effect
of the presented algorithm is better, and it can effectively
filter out the BW in the ECG signal meanwhile keeping the
distortion of the ECG signal minimized (the smallest MSE
and highest SNR). /is gives the opportunity to study very
low amplitude complexes, and therefore, it is suited for the
data preprocessing for precise ECG characteristic extraction.
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