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ABSTRACT 

 

Homogeneous charge compression ignition (HCCI) engines have been an active 

research area recently due to their advantages in reducing emissions levels. Regulatory 

bodies, such as those in Europe, the United States and Japan, are imposing stringent 

vehicle emissions quality standards. Most automotive manufacturers are moving 

towards fuel efficient vehicles by developing hybrid (combination of two or more 

power sources) vehicles or improving on any conventional engine technology that can 

reduce emissions levels. Hybrid vehicles are receiving increasing attention from most 

manufacturers because they offer advantages including reduced emissions and 

providing good mileage per fuel tank. The HCCI engine has the potential to replace 

the current conventional engine used in hybrid vehicles, which can reduce the 

emissions levels further. 

 

To improve the development work, simulations are undertaken to reduce research costs 

while maintaining good productivity because of their cost efficiency compared to 

experiments. For engine research, a zero-dimensional model is known for its 

advantage in reducing computational time compared with a multi-dimensional 

Computational Fluid Dynamics (CFD) approach. CFD yields more accurate results but 

requires greater computational resources and time, while a zero-dimensional model 

offers versatility in a reduced simulation time. However, the zero-dimensional model 

has the limitation of a shorter combustion duration and rapid pressure rise compared 

to the experiment. Also, the zero-dimensional model is incapable of using the actual 

intake air temperature and needs to be set higher than the actual. 

 

Conditional Moment Closure (CMC) is a model for the mixing in the combustion 

chamber at modest computational cost, which considers the turbulent-chemistry 

interactions. An implementation of CMC into a zero-dimensional model for an HCCI 

engine application is new in the literature; most of the CMC studies use the CFD 

approach. The combined model is expected to improve the zero-dimensional model 

limitation while still keeping the advantages of the latter of not using relatively modest 

computational resources and time. 



 

 

v 

 

The goals of the thesis are to write a new computer program that implements the 

combined model and develop a new experimental test rig for HCCI. The main focus 

of the thesis is to obtain an improved result for the combined model against the zero-

dimensional model, while the experimental results will be used for the purpose of 

validation. The thesis consists of nine chapters. The first two chapters after the 

introduction cover the HCCI engine background and performance irrespective of the 

fuel being used and a background to turbulence, which introduces some turbulent 

theories and conservation equations. Chapter 4 discusses the details of the numerical 

part, which consists of all the formulations being used in the combined model. Then 

Chapter 5 will validate the combined models against two experimental works from 

others, which use diesel and gasoline fuelled HCCI engines. Chapters 6 and 7 

introduce the experimental work setup and engine performance comparison between 

SI and HCCI modes. Chapter 8 continues the validation of the combined model based 

on the HCCI engine developed in the experimental work, followed by the Conclusion. 

 

The results show that the combined model has improved the zero-dimensional model 

limitation by using the actual intake air temperature instead of artificially increasing 

it. To some extent, the combined model has shown the ability to reduce the short burn 

duration in the zero-dimensional model, where the maximum in-cylinder pressure 

trace is slightly lower than with the zero-dimensional model, with a smooth profile in 

the vicinity of the peak. However, the combined model has a limitation in predicting 

the ignition point accurately when the air-to-fuel ratio varies. Besides these observed 

limitations, the combined model shows good agreement with the experiments. The 

experimental results that were obtained are consistent with the literature, including the 

limitation that the HCCI engine only operates with a low load operating condition. The 

emissions levels also agree with the literature, where the HCCI engine produces high 

unburned hydrocarbon and carbon monoxide in the exhaust. Therefore, future work is 

recommended to improve the combined model and also further develop the HCCI 

engine.  
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Chapter 1  

INTRODUCTION 

 

 

1.1 Background 

 

The greenhouse effect is a worldwide issue as more and more greenhouse gases are 

released into the atmosphere, leading to global climate change. The effects include an 

increase in temperature, unstable weather and an increase in ocean levels, resulting in 

ice melting in the North and South Poles (Bates et al. 2008; Graham, Turner & Dale 

1990; Houghton et al. 2001). This has become a global issue with the members of the 

Copenhagen Climate Conference in December 2009 (Bodansky 2010) unable to reach 

an agreement on climate change.  

 

The increase of the earth’s surface air temperature due to global warming has been 

simulated by Rob (2005) from NASA (see Figure 1.1), showing an increase in surface 

air temperature from 1960 to 2060. According to the report of the World Resources 

Institute (Jonathan 2006), transportation accounted for about 14% of the global 

greenhouse gases in 2000, making it a major contributor to global climate change and 

equivalent to 18% of global CO2 emissions. Thus, it is imperative to minimise the 

emissions level from the transportation sector. 
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Figure 1.1 Simulated earth surface air temperature increase by the year 2060 (Rob 2005). 

 

To counter this issue, many automotive manufacturers are developing electric, fuel-

cell or hybrid engines. An electric vehicle is driven by an electric motor, with the 

energy supplied by a high capacity battery stored in the car boot or under the car body. 

The operation of the fuel-cell engine is similar to the electric vehicle in that it uses an 

electric motor to drive the wheels. However, the difference is the electricity generation 

method. Most fuel-cell driven vehicles use hydrogen and oxygen to generate electricity 

(Ogden, Steinbugler & Kreutz 1999; Trimm & Onsan 2001). This electric energy is 

stored in a high capacity battery and is used to drive the electric motor. A hybrid 

vehicle uses a combination of the conventional internal combustion (IC) engine and 

an electric motor. The IC engine could be a Spark Ignition (SI) or Compression 

Ignition (CI) engine, which is connected to the electric motor either in parallel or in 

series to drive the wheels. A high capacity battery is again used to power the electric 

motor. Therefore, it can be summarised that the vehicle is driven by two or more power 

sources in hybrid configurations. 

 

Table 1.1 summarises the advantages and disadvantages of those technologies. The 

high implementation cost for each of them leads to a slow commercialisation rate. 

Thus, an interim solution is required to improve the current IC engines with relatively 

low development costs. 
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Table 1.1 Comparison of newly developed engine technology (Chan 2002) 

Engine Type Advantages Disadvantages 

Hydrogen Fuel Cell  compact design 

 relatively long operating life 

 high efficiency 

 low temperature operation 

 higher loads reduce efficiency 

considerably 

 high energy cost 

 high manufacturing cost 

 heavy auxiliary equipment 

 complex heat and water 

management 

 safety issues 

Electric  no fuel 

 100% emissions free at the 

vehicle (substantially reduced 

emissions overall) 

 fewer moving parts to wear 

out 

 limited battery operating 

ranges 

 long recharge time 

 battery size and weight issues 

 high battery replacement costs 

 limited charging facilities 

Hybrid   lower emissions level 

 better fuel economy over 

conventional engines 

 unachievable break-even 

point before replacing the 

battery 

 high and costly maintenance 

 battery size adds extra weight 

to the vehicle 

 

1.2 Introduction 

 

IC engines are widely used in numerous applications throughout the world: vehicle 

engines, power generation and ships. The emissions generated from these applications 

have a high impact on the environment, thus alternative solutions have been 

investigated to achieve low emissions levels (Chan 2002; Cho & He 2007; Jonathan 

2006; Taylor 2008). A new mode of combustion is being sought in order to reduce the 

emissions levels from these engines: a potential candidate is the Homogeneous Charge 

Compression Ignition (HCCI) engine. Figure 1.2 shows the differences between SI, CI 

and HCCI engines. SI engines have a spark plug to initiate the combustion with a flame 

front propagating across the combustion chamber. CI engines have a fuel injector to 

inject the diesel and the combustion takes place in a compressed hot air region. HCCI 
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engines have no spark plug or fuel injector and the combustion starts spontaneously in 

multiple locations. High engine efficiency can be achieved with low NOx and soot 

emissions. 

 

 

Figure 1.2 The differences between SI, CI and HCCI engines, reproduced from William and Charles (2011). 

 

In HCCI combustion, a homogeneous mixture of air and fuel is compressed until auto-

ignition occurs near the end of the compression stroke, followed by a combustion 

process that is significantly faster than either CI or SI combustion (Rattanapaibule & 

Aung 2005). Epping et al. (2002) and Christensen and Johansson (1998) reported that 

an HCCI engine using iso-octane as a fuel with a high compression ratio (18:1) has 

improved the engine efficiency to as much as 37% (typical SI engine efficiency is 

approximately 25%) and maintains low emissions levels. The efficiency and 

compression ratio obtained by Epping et al. (2002) and Christensen and Johansson 

(1998) are in the range of CI engines. The technology can be implemented by 

modifying either SI or CI engines using any fuel or combination of fuels. The air/fuel 

mixture quality in HCCI engines is normally lean, it auto-ignites in multiple locations 

and is then burned volumetrically without discernible flame propagation (Kong & 

Reitz 2002; Yao, Zheng & Liu 2009) . Combustion takes place when the homogeneous 

fuel mixture has reached the chemical activation energy and is fully controlled by 

chemical kinetics (Najt & Foster 1983) rather than spark or injection timing. 
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Since the mixture is lean and is fully controlled by chemical kinetics, there are new 

challenges in developing HCCI engines as it is difficult to control the auto-ignition of 

the mixture and the heat release rate at high load operation, achieve cold start, meet 

emission standards and control knock (Kong & Reitz 2003; Soylu 2005). The 

advantages of using HCCI technology in IC engines are:  

 

1. High efficiency relative to SI engines - approaching the efficiency of CI 

engines due to the ability of these engines to use high compression ratio (CR) 

and fast combustion (Killingsworth et al. 2006; Mack, Aceves & Dibble 2009). 

The HCCI engine has also no throttling losses, which improves the engine 

efficiency as well (Aceves et al. 2001; Haraldsson et al. 2004);  

2. The ability to operate on a wide range of fuels (Aceves & Flowers 2004; 

Christensen, Johansson & Einewall 1997; Mack, Aceves & Dibble 2009); and 

3. Low emissions levels of NOx relative to SI and CI engines and low particulate 

matter relative to CI engines (Nathan, Mallikarjuna & Ramesh 2010). 

 

HCCI engines have promising advantages and once the disadvantages have been 

resolved, the engine can then be commercialised. Thus, it is important to study the 

engine performance before implementing methods that resolve the current issues. 

Simulation techniques can be implemented to reduce the time in investigating the 

HCCI engine performance. Therefore, a combination of simulation and experiment 

will be useful in investigating HCCI engines. 

 

1.3 Research Focus 

 

The fuel mixture in an HCCI engine’s combustion chamber is not completely 

homogeneous and both turbulence and inhomogeneity will have effects on the mixing 

process. A study from Aceves et al. (2000) reported that turbulence has a minor direct 

effect on HCCI combustion, but may also have an indirect effect of changing the 

temperature distribution. Kong and Reitz (2002) showed that the use of detailed 

chemical kinetics with Computational Fluid Dynamics (CFD) models is able to predict 

the combustion phasing in three different HCCI engines. However, the use of detailed 

chemical kinetics alone was not sufficient to obtain accurate results. They also argued 
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that the mixture was completely homogeneous and turbulent mixing has no effect on 

the combustion. High degrees of mixture inhomogeneity result in significant changes 

in ignition timing and emissions levels (Bhave et al. 2006; Bisetti et al. 2008). Thus, 

the effect of turbulence on HCCI combustion still requires investigation. 

 

Bhave et al. (2006) found that a lower in-cylinder wall temperature results in higher 

CO and UHC emissions while a higher wall temperature leads to lower emissions of 

CO and UHC. They concluded that the incomplete oxidation is influenced by fluid-

wall interactions and mostly located within piston ring crevices (Aceves et al. 2000; 

Kong & Reitz 2003). 

 

Flowers et al. (2001) described the HCCI (fuelled with propane) ignition by H2O2 

decomposition, which accumulates due to low-temperature reactions in the 

compression stroke. Once the in-cylinder temperature reaches 1050-1100 K, H2O2 

decomposes rapidly into two OH radicals, forming a large pool of OH radicals, and 

these radicals will rapidly consume the fuel. Reduction in OH concentration in low 

temperature regions leads to incomplete combustion, which delays the high-

temperature oxidation (Shudo & Yamada 2007). This process is shown in Figure 1.3, 

where the concentration of H2O2 decreases while the concentration of OH increases 

rapidly during the combustion process. 

 

 

Figure 1.3 Concentration of radicals H, OH, H2O2 and HO2 for a pressure of 0.2 MPa (Aceves et al. 2000). 

Turbulence is capable of transporting heat, chemical species and particles in a rapid 

fashion (Tennekes & Lumley 1972). If a fully homogeneous mixture exists in HCCI 

engines, turbulence has a relatively minor direct effect on HCCI combustion, but this 
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may have an indirect effect of changing the temperature distribution (Aceves et al. 

2004; Aceves et al. 2001). The small temperature differences could significantly affect 

the combustion behaviour (Cabra et al. 2002).  

 

A zero-dimensional model assumes that the combustion chamber is homogeneous and 

the chemical kinetics mechanism can be used to study the combustion behaviour. 

However, the turbulence effect is not considered. To some extent, the zero-

dimensional model can be modified to include the turbulence effect by using different 

heat loss models (Agarwal et al. 1998; Fiveland & Assanis 2002), but no interactions 

between turbulence and chemistry. Due to its homogeneity assumptions, the zero-

dimensional single-zone model has limitations in short burn duration, high in-cylinder 

peak pressure and cannot use the actual intake air temperature (Guo et al. 2010; Morsy 

2007). The assumption ignores the spatial variations in the chamber, which treats the 

heat loss proportional to the temperature difference between average charge 

temperature and a time-averaged wall temperature (Aceves et al. 1998). In practice, 

the boundary layer is at a lower temperature than the bulk gas near TDC, which causes 

the boundary layer to always burn last and extend the heat release rate duration. Due 

to this assumption, the burn duration of a single-zone model is shorter than the 

experiment. 

 

To investigate the HCCI combustion behaviour with turbulence-chemistry effect, a 

Conditional Moment Closure (CMC) method will be used with a zero-dimensional 

model. Instead of using CMC with CFD, which is common in the literature (De Paola 

et al. 2008; Seo et al. 2010; Wright et al. 2009; Wright et al. 2005), a CMC with zero-

dimensional approach was chosen. This is because the CMC model has the ability to 

model the in-cylinder inhomogeneity in terms of the fuel concentration. Even though 

the HCCI engine is assumed to be homogenous, there is an argument stating that 

mixture inhomogeneities were present in HCCI engines even for effectively premixed 

charges (Richter et al. 2000).  Kong and Reitz (2002) also reported that there could be 

mixture inhomogeneity and the appearance of turbulent mixing, as discussed above. 

This has led to the use of CMC model in HCCI engines, which can model the mixture 

fluctuations in the combustion chamber. A zero-dimensional model was selected as 

the main ‘body’ of simulation because of its faster computation time. 
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Thus, a combination of CMC and zero-dimensional models would help in performing 

a detailed preliminary study. Currently the use of multi-dimensional models leads to 

high computation time and resources, as shown in Table 1.2, where CFD with detailed 

chemistry has the longest computation time. A zero-dimensional simulation would be 

an interim solution until the cost and time of running a multi-dimensional model is 

comparable with the current cost of the zero-dimensional model. Also, the 

implementation of CMC with a zero-dimensional model is relatively new in the 

literature. CMC accounts for the turbulence-chemistry mixing effects, while the zero-

dimensional model simulates the engine by assuming that the mixture in the cylinder 

is homogeneous. By combining with the CMC approach, it is expected to overcome 

the zero-dimensional model disadvantages. The use of chemical kinetics mechanisms 

also helps in investigating the combustion behaviour of an HCCI engine. 

 

Table 1.2 Comparison of simulation types ranging from zero-dimensional to multi-dimensional (Wang, G. et al. 
2006) 

 

1.4 Objectives 

 

The objectives of this research are to: 
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1. Investigate the combustion behaviour in an HCCI engine by using a combined 

CMC and zero-dimensional model, where the CMC model takes into 

consideration the turbulence-chemistry mixing effect. 

2. Evaluate the performance of a gasoline HCCI engine experimentally and 

compared with an SI engine. The experiment is also used to validate the 

combined model. 

 

1.5 Thesis Outline 

 

The thesis consists of nine chapters. Chapter 2 contains the literature review, which 

discusses HCCI engines in general, and also covers the experimental and numerical 

parts of the study. The first three sections of the chapter discuss the experimental part 

of the study, which consists of the performance comparison, injection methods to 

achieve HCCI mode and the ignition control for HCCI engines. The last two sections 

before the Conclusion give a general overview of the numerical study. 

 

Chapter 3 discusses the background of the turbulence modelling and all the equations 

involved in multi-dimensional modelling. The conservation equations are introduced 

first: mass, momentum, species and energy. Then the chemical reactions are discussed, 

followed by the discussion of the Probability Density Function (PDF) in addition to 

statistical descriptions. The turbulence modelling section before the Conclusion covers 

the averaging techniques, turbulence models, turbulent reacting flows and turbulent 

combustion models. 

 

Chapter 4 introduces the methodology of combining the zero-dimensional and CMC 

models. The equations used in the zero-dimensional model are discussed in Section 2 

of the chapter, followed by the CMC equations in the following sections. The 

technique to combine both models is discussed before the Conclusion. 

 

Chapter 5 will validate the combined model discussed in Chapter 4 against the 

experimental data from others. The chapter consists of two parts. Part 1 discusses the 

validation using a diesel fuelled HCCI engine, while Part 2 discusses the validation for 

a gasoline fuelled HCCI engine. The chemical reaction mechanisms used for both tests 
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are discussed in Section 1. The details of the experimental engine are discussed in 

Section 2. These are followed by the validation of the zero-dimensional model using 

diesel fuel and performance of the heat transfer models for HCCI engines. The 

validation and performance of the combined model for a diesel fuelled HCCI engine 

is discussed in Sections 4 and 5. Part 2 commences with the engine data used in the 

gasoline HCCI engine experiment. The validation and model behaviour is discussed 

in Section 7 before the chapter ends with the Conclusion. 

 

Chapter 6 discusses the experimental methodology in this study, which describes how 

to convert a commercially available single-cylinder SI engine to an HCCI engine. The 

experimental apparatus is discussed in Section 2 of the chapter and followed by the 

modification technique using the intake air heater. The electronic control unit (ECU) 

used as part of the modification work is also discussed. The last sections before the 

Conclusion discuss the experimental techniques needed in order to run the engine in 

HCCI mode. 

 

Chapter 7 will then discuss the experimental performance of the HCCI engine. The 

HCCI engine is directly compared with an SI engine using the same engine operating 

conditions at the same engine power. The engine performance comparison covers the 

in-cylinder pressure, engine power, fuel consumption, engine efficiency and emissions 

levels. The chapter then closes with the Conclusion. 

 

Chapter 8 will validate the combined model discussed in Chapter 4 against the 

experimental work in this thesis. The boundary condition and validation of the 

combined model is discussed in Section 2 of the chapter. Section 3 discusses the 

characteristic results from CMC. The parametric study (the effect of intake air 

temperature, air-to-fuel ratio and compression ratio) is discussed in Section 4. 

 

The thesis ends with the Conclusion and Recommendations. 
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Chapter 2  

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

The performance of an HCCI engine is strongly dependent on the fuel type, and this 

affects the emission levels as well. Since emission levels have become one of the 

factors driving engine technology today, HCCI development has moved to the next 

level. Due to the importance of HCCI technology, which potentially can replace 

conventional SI and CI engines, there is a need to report the recent developments in 

HCCI engines. This chapter discusses the current issues for this technology, where 

Section 2.2 contains the performance comparison of HCCI engines. Section 2.3 

presents the methods to create homogeneous mixtures, with ignition control of HCCI 

engines in Section 2.4. Sections 2.5 and 2.6 will discuss relevant numerical studies of 

zero-dimensional modelling and the Conditional Moment Closure (CMC) model, 

concluding with section 2.7. 

 

2.2 Performance Comparison 

 

2.2.1 State of the Art Current Internal Combustion Engines 

 

Producing homogeneous mixtures to achieve near-complete combustion is a common 

goal that will lead to the development of low polluting engines. Some technologies, 

including Fuel-Stratified Injection (FSI), Turbo-Stratified Injection (TSI) and HCCI, 

are used to improve the combustion efficiency. 

 

FSI and TSI are commercially used by the Volkswagen Aktiengesellschaft (AG), 

which consists of other child companies Audi, Skoda, Seat, Bugatti, Lamborghini, 
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Bentley and Scania (Volkswagen 2009). FSI uses directly injected fuel with a high 

injection pressure, where the evaporating fuel has a significant cooling effect on the 

cylinder charge (Audi 2012). This effect helps in reducing knocking and therefore a 

higher compression ratio can be used. The air enters the combustion chamber at a 

certain angle by using a moveable flap inside the intake manifold (Wurms, Grigo & 

Hatz 2003), while fuel is directly injected to the chamber, as shown in Figure 2.1. The 

fuel injector is located close to the intake valve in the cylinder head. With the help of 

the piston crown design, a tumbling effect is generated inside the chamber. This in turn 

will help the fuel mix with air homogeneously. 

 

 
Figure 2.1 Movable flap is used inside the intake manifold (left) to generate tumble effects (right) in the combustion 

chamber with specially designed piston crown (Wurms, Grigo & Hatz 2003) 

 

TSI engines, on the other hand, use a high intake pressure (using multipoint injectors) 

on an FSI engine (Böhme et al. 2006). The pressurised intake air will assist the 

combustion and therefore produce better efficiency, allowing smaller engines to be 

built with power and torque similar to that of bigger engines. The first engine to use 

direct injection technology to stratified charge engine was the Texaco combustion 

process (Barber, Reynolds & Tierney 1955), as reported by Takagi (1998).  

 

HCCI engines can be considered new technology (Yao, Zheng & Liu 2009) even 

though the research was initially undertaken by Onishi et al. (1979). Researchers 

worldwide are investigating HCCI engines as this technology has not yet been 

sufficiently developed and is not commercially available. General Motors (GM) 

Corporation has unveiled a prototype car with a gasoline HCCI engine, which could 
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cut fuel consumption by 15% (Premier 2007). The engine is able to reduce the 

emissions levels and lower throttling losses, which improves fuel economy. 

 

2.2.2 Fuels Used in HCCI Engines 

 

HCCI engines can operate using any fuel as long as the fuel can be vaporized and 

mixed with the air before ignition (Aceves & Flowers 2004). Since HCCI engines are 

fully controlled by chemical kinetics, it is important to evaluate the fuel’s auto-ignition 

point to produce smooth engine operation: no knocking or misfiring. Different fuels 

will have different auto-ignition points. Figure 2.2 shows the intake temperature 

required for different fuels to auto-ignite at different compression ratios when 

operating in HCCI mode (Aceves & Flowers 2004). It can be seen that methane 

requires the highest intake temperature and highest compression ratio to auto-ignite 

compared to other fuels. Thus, a fuel requiring a high intake temperature to auto-ignite 

is less reactive. This is also reported by Sjorberg and Dec (2008) that a low-reactivity 

fuel requires a high intake temperature and compression ratio to auto-ignite. 

 

Figure 2.2 Intake temperature required for fuels to operate under HCCI mode with varying compression ratios, 

reproduced from (Aceves & Flowers 2004). 

 

The composition of natural gas varies for different countries as shown in Table 2.1. It 

is easily adapted for use as a fuel due to its wide availability, it is economical and has 

environmental benefits (Papagiannakis & Hountalas 2004; Tobin et al. 1999). Natural 

gas is also more readily available than crude oil, with a cost that has been competitive 
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for a long time (Cho & He 2007). Natural gas is able to operate as a single fuel in an 

SI engine with low HC and CO emissions. However, it produces less power output in 

HCCI engines (Flowers et al. 2001; Rousseau, Lemoult & Tazerout 1999; Zeng et al. 

2006). Its high auto-ignition point (about 810K) gives it a significant advantage over 

diesel-natural gas operation by maintaining the high CR of a diesel engine and 

lowering emissions at the same time (Duc & Wattanavichien 2007; Papagiannakis & 

Hountalas 2004; Saravanan & Nagarajan 2010). Duc and Wattanavichien (2007) 

claimed that the high octane number of methane (about 120) allows engines to operate 

at a high CR. Results from a four-stroke HCCI engine simulation have shown that 

methane did not ignite if the intake temperature was less than 400K with a CR of 15:1, 

as reported by Fiveland and Assanis (2000). This is supported by Figure 2.2, where 

methane will only auto-ignite with an intake temperature less than 400K when the CR 

is greater than 18:1. 

 

Table 2.1 The Difference in Natural Gas Composition between Some Countries (Chemical safety data sheet  2011; 
Jonathan 2006; Kong & Reitz 2002; Olsson et al. 2002; Papagiannakis & Hountalas 2004; Ramli 2009). 

Components 
% Volume 

Australia Greece Sweden US Malaysia 

Methane (CH4) 90.0 98.0 87.58 91.1 92.74 

Ethane (C2H6) 4.0 0.6 6.54 4.7 4.07 

Propane (C3H8) 1.7 0.2 3.12 1.7 0.77 

Butane (C4H10) 0.4 0.2 1.04 1.4 0.14 

Pentane (C5H12) 0.11 0.1 0.17 - - 

Hexane (C6H14) 0.08 - 0.02 - - 

Heptane (C7H16) 0.01 - - - - 

Carbon Dioxide (CO2) 2.7 0.1 0.31 0.5 1.83 

Nitrogen (N2) 1.0 0.8 1.22 0.6 0.45 

 

Automotive manufacturers are producing vehicles powered by fuel-cells, as well as 

vehicles fuelled by compressed natural gas (CNG) (Jahirul et al. 2010; Mercuri, Bauen 

& Hart 2002). The vehicles are purpose-built to reduce emissions and are more 

economical than vehicles using gasoline and diesel. There are commercialization 

difficulties for fuel-cells because of their complexity to produce, high material cost 
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and safety issues. CNG, on the other hand, has been successfully commercialized with 

48% of global market share for on-road vehicles, but it has difficulties with high capital 

cost, existing refuelling infrastructure and competition from other alternative fuels 

(Johannes et al. June 2009).  

 

The Indicated Mean Effective Pressure (IMEP) is a measure of the engine’s capacity 

to do work in each stroke, before considering all the losses. If IMEP is increased, it 

can reduce the intake temperature needed in an HCCI engine; increasing the CR has 

the same effect (Olsson et al. 2002). Antunes, Mikalsen and Roskilly (2008) have 

investigated the performance of an HCCI engine fuelled with hydrogen, and they 

found that the IMEP increases when the air intake temperature is decreased. Hydrogen 

requires a lower air intake temperature than natural gas for the same CR, as shown in 

Figure 2.2, due to hydrogen having a lower auto-ignition temperature. Therefore, it is 

important to control the intake temperature and the operating conditions of an HCCI 

engine to achieve an optimized combustion point. The methods to achieve this will be 

discussed in section 2.4. 

 

Hydrogen can operate as a single fuel in an HCCI engine but it is often unstable and 

is prone to generating knocking (Szwaja & Grab-Rogalinski 2009). It has the highest 

diffusivity of any gas in air, about 3-8 times faster than that of natural gas, which leads 

to fast mixing (Saravanan & Nagarajan 2010) and the intake charge can be considered 

homogeneous when premixed with air (Szwaja & Grab-Rogalinski 2009). The net 

heating value for hydrogen is almost three times higher than diesel (119.93MJ/kg 

compared to 42.5MJ/kg) with a high self-ignition temperature to initiate combustion 

(858K) (Saravanan et al. 2008). Hydrogen cannot be used as a single fuel, because the 

HCCI engine operates in an unstable condition. Thus, most researchers use hydrogen 

as an additive: either to control the ignition timing or to increase the engine 

performance (Flowers et al. 2001; Park et al. 2010; Peucheret et al. 2005; 

Rattanapaibule & Aung 2005; Saravanan & Nagarajan 2010). 

 

Iso-octane is used as a surrogate fuel for gasoline in HCCI engine experiments while 

n-heptane is used for diesel (Komninos, Hountalas & Kouremenos 2004; Naik et al. 

2005; Pitz et al. 2007). Alcohol-derived fuels, as shown in Figure 2.2, are not widely 

used due to their complexity to produce, leading to high manufacturing costs. Most of 
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the alcohol-derived fuels like biofuels are still subject to worldwide investigations as 

they create engine durability problems such as injector cocking, piston ring sticking, 

severe engine deposits and fuel filter clogging (Bari, Lim & Yu 2002; Fazal, Haseeb 

& Masjuki 2011; Jayed et al. 2011). Even though biofuels have their own challenges, 

they have received increasing attention from researchers as a renewable energy source, 

as reported by Komninos and Rakopoulos (2012). 

 

2.2.3 Natural Gas and Hydrogen with Diesel Operating 

Conditions 

 

The combination of natural gas or hydrogen with diesel was reported to yield low 

emissions and, to some extent, increase the engine efficiency, either in HCCI or CI 

combustion mode (de Risi et al. 2008; Saravanan, Nagarajan & Narayanasamy 2008; 

Saravanan et al. 2008; Verhelst & Wallner 2009). Diesel alone is not suitable for HCCI 

engines due to its low volatility and high propensity to auto-ignite, while natural gas 

has a high resistance to auto-ignition as reported by Kong (2007). 

 

Combinations of high octane number fuels (such as natural gas and hydrogen) with 

high cetane number fuels (such as diesel) are able to increase the engine durability and, 

under certain operating conditions, reduce emissions such as soot, HC, CO and NOx 

(Szwaja & Grab-Rogalinski 2009; Tomita 2004; Tomita et al. 2001; Tomita et al. 

2002). It was also reported that these combinations (diesel and methane) have a high 

thermal efficiency under early injection timing (Tomita 2004; Tomita et al. 2002). 

Fuels with a higher octane number have better resistance to knocking while fuels with 

a higher cetane number have a shorter ignition delay time, thus providing more time 

for the fuel to complete the combustion. Therefore, a combination of both (high cetane 

number fuels and high octane number fuels) with proper blend ratio provides soft 

(without knocking) engine run (Szwaja & Grab-Rogalinski 2009), whereby the 

mixture can be operated at a high CR and has a longer combustion duration. 

Hydrogen has a high octane number (approximately 130) and a high Lower Heating 

Value (LHV) (119.93MJ/kg). Its combination with diesel helps to increase engine 

efficiency (Saravanan, Nagarajan & Narayanasamy 2008) and control the auto-
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ignition point in HCCI engines (Szwaja & Grab-Rogalinski 2009). Natural gas, on the 

other hand, has a higher auto-ignition temperature and it can be used in high CR 

engines (Akansu et al. 2004). Table 2.2 compares the physical and chemical properties 

of diesel with natural gas and hydrogen. 

 

Table 2.2 Diesel Properties Compared to Hydrogen and Natural Gas (Liu & Karim 2008; Saravanan & Nagarajan 
2010; Saravanan et al. 2008; Verhelst & Wallner 2009) 

Properties Diesel Hydrogen Natural Gas 

Main component C12H23 H2 Methane (CH4) 

Auto-ignition temperature (K) 553 858 923 

Lower heating value (MJ/kg) 42.5 119.93 50 

Density (kg/m3) 833-881 0.08 0.862 

Molecular weight (g/mol) 170 2.016 16.043 

Flammability limits in air (vol%) (LFL–

UFL) 
0.7-5 4-75 5-15 

Flame velocity (m/s) 0.3 2.65-3.25 0.45 

Specific gravity 0.83 0.091 0.55 

Boiling point (K) 453-653 20.2 111.5 

Cetane number 40-60 - - 

Octane number 30 130 120 

CO2 emissions (%) 13.4 0 9.5 

Diffusivity in air (cm2/s) - 0.61 0.16 

Min ignition energy (mJ) - 0.02 0.28 

 

Hydrogen has the highest LHV or Lower Calorific Value (LCV) compared to both 

diesel and natural gas, which means it releases a high amount of energy during 

combustion and thus produces the highest flame speed. A wide range of flammability 

limits in air allows a wider range of engine power outputs through changes in the 

mixture equivalence ratio. Flammable mixtures of hydrogen can go from as lean as λ 

= 10 to as rich as λ = 0.14 (Verhelst & Wallner 2009), where λ is the air-to-fuel ratio 

actual divided by the air-to-fuel ratio stoichiometric. 
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2.2.4 Gasoline Operated HCCI Engines 

 

Gasoline could be operated in HCCI mode on its own. However, it would also be 

unstable in a high load operating range. High load difficulties are a common problem 

for HCCI engines regardless of the fuel being used. The solution for this issue for 

gasoline fuel is to operate the engine in HCCI mode in the medium load range, and 

switch to SI mode in the high load range (Yingnan et al. 2010). Wang et al. (2006) 

studied the gasoline HCCI engine with secondary injections and reported that the 

operating load range could be extended by using two-zone HCCI mode, which utilises 

secondary injections. However, the two-zone mode yields higher NOx emissions due 

to the fuel-rich zone developed in the chamber. 

 

Iso-octane is generally used as a gasoline surrogate fuel in numerical studies due to its 

high octane rating. Higher octane numbers cause difficulties in achieving the HCCI 

mode for low CR engines (Hosseini & Checkel 2009) due to higher ignition 

temperature. The intake temperature must be very high, if pre-heating is the only 

option to achieve HCCI. This would be difficult as this method requires a high power 

heater with a precise temperature controller. Thus the ignition has to be controlled 

using other means, which will be discussed in Section 2.4. The use of high octane 

number fuels such as gasoline in a low CR engine allows the engine to be switchable 

to SI mode in a high load range (Fuerhapter, Unger & Piock 2004). It has been found 

that a high CR engine (as high as 18:1) has the advantages of producing ultra-low NOx 

emissions (1ppm) and higher thermal efficiency (43%) at a fixed operating condition 

(John & Magnus 2002). 

 

Gasoline can also be mixed with diesel to operate in HCCI mode. A study by Kim and 

Lee (2006) on the effect of blended fuels on emissions showed that the combination 

of diesel and gasoline (diesel is direct injected while gasoline is port injected) is an 

effective way to reduce NOx levels, with the increase of the premixed ratio. The 

premixed ratio is defined as the ratio of the energy of the premixed (port injected) fuel 

to the energy of the total fuel (direct and port injected). Zhong et al. (2005) also studied 

the effect of fuels which are a blend of gasoline and diesel, and reported that UHC and 

NOx were significantly reduced throughout the HCCI engine load ranges compared to 
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a gasoline only HCCI engine. The purpose of blending gasoline and diesel is that 

gasoline has a high volatility and is easy to vaporise, thus can be used to form a 

homogeneous mixture. Gasoline also has a high octane number, where higher numbers 

show higher resistance to knocking. Diesel, on the other hand, has good ignitability 

and fast combustion due to its high cetane number. Table 2.3 compares the 

characteristics of the gasoline and diesel fuels, where for the selected gasoline (octane 

number 98) the heating values are almost identical between those fuels. 

 

Table 2.3 Characteristics of gasoline and diesel fuels (Kim & Lee 2006) 

 Gasoline Diesel 

Octane number 98 - 

Cetane number - 54 

Higher heating value (kJ/kg) 47,300 44,800 

Lower heating value (kJ/kg) 44,000 42,500 

Boiling point (K) 468 553 

Density (kg/m3) 750 814 

Stoichiometric air-fuel ratio 14.6 14.5 

 

 

2.2.5 Peak Pressure and Temperature 

 

The variations of heat release rate during combustion affect the in-cylinder peak 

pressure and temperature. All these quantities (heat release rate, temperature and 

pressure) depend on the speed of the engine, equivalence ratio, load, intake pressure, 

temperature and energy content of the fuel configurations. Higher loads and richer 

mixtures typically produce higher peak pressures. Table 2.4 shows how the in-cylinder 

peak pressure and temperature vary for HCCI and conventional CI modes. These are 

general data to illustrate which mode produces a higher in-cylinder peak pressure 

irrespective of the load produced by the engines. The data for maximum temperature 

is not fully reported but, in general, temperature increases with pressure. HCCI 

configurations generally produce a lower peak pressure than conventional CI modes 

for every fuel configuration, leading to significant impacts on emission levels: the 

impacts refer to whether the emission of a particular gas decreases or increases. As for 

HCCI engines with lower peak pressure, the emissions for NOx are generally 

improved, as are particulate matter. However, the emissions for some gases such as 

CO and unburned HC are not improved due to the limitations of the HCCI engines, 
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which are currently being investigated. The addition of hydrogen to diesel influences 

the peak pressure generation. The greater the amount of hydrogen added, the higher 

the peak pressure, and the addition of hydrogen is able to reduce ignition delay as well 

(Szwaja & Grab-Rogalinski 2009). It is shown that the hydrogen fuel configuration 

yields the highest peak pressure. 

 

Table 2.4 In-Cylinder Peak Pressure and Temperature Comparison for Natural Gas and Hydrogen in Various 
Configurations (Amneus et al. 1998; Antunes, Mikalsen & Roskilly 2008, 2009; Garcia, Aguilar & Lencero 2009; 

Nathan, Mallikarjuna & Ramesh 2010; Zheng, Zhang & Zhang 2005) 

Mode 
Max Pressure (MPa) Max Temperature (K) 

HCCI CI HCCI CI 

H2 ~ 8 ~ 12 - - 

NG ~ 7 ~ 7.5 ~ 1300 ~ 1850 

Diesel ~ 6.1 ~ 6.6 - ~ 2300 

NG + 

Diesel 
~ 3 ~ 5.5 ~ 1450 - 

H2 + 

Diesel 
~ 7 ~ 7.8 - - 

 

2.2.6 Brake Thermal Efficiency 

 

The brake thermal efficiency (BTE) of an engine is the ratio of brake output power to 

input power and describes the brake power produced by an engine with respect to the 

energy supplied by the fuel. A study has been performed (Nathan, Mallikarjuna & 

Ramesh 2010) to determine the best BTE for biogas fuels with an energy ratio range 

from 40% to 57% of biogas and an intake temperature of 80°C, 100°C and 135°C. The 

biogas’ main component was methane (>60%), which was produced by anaerobic 

fermentation of cellulose biomass materials (Duc & Wattanavichien 2007). It was 

reported that the best energy ratio with diesel in HCCI mode was 51% biogas and the 

optimum efficiency occurred when the intake temperature was 135°C. High energy 

ratios lower the heat release rate and the efficiency (Nathan, Mallikarjuna & Ramesh 

2010). However, even when operated at the optimum biogas energy ratio, the BTE was 

no better than diesel running in CI mode. Duc and Wattanavichien (2007) reported that 

biogas-diesel running in dual-fuel non-HCCI engines has a lower efficiency than diesel 

single fuel in either HCCI or non-HCCI mode.  
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Hydrogen, on the other hand, had a higher BTE than pure diesel in non-HCCI mode, 

increasing the BTE by 13-16% (Saravanan & Nagarajan 2010). Szwaja and Grab-

Rogalinski (2009) reported that the BTE was increased from 30.3% to 32% with an 

addition of 5% hydrogen. The increase of BTE in hydrogen-diesel mode might be due 

to the uniformity of mixing of hydrogen with air (Saravanan et al. 2008). Hydrogen as 

a single fuel running in HCCI mode gives a BTE of up to 45% (Antunes, Mikalsen & 

Roskilly 2008), showing that hydrogen is able to operate with extremely lean mixtures 

and still maintain a relatively high efficiency compared to diesel engines. Table 2.5 

shows that hydrogen in HCCI mode yields better results compared to the conventional 

mode (45% compared to 42.8%) and hydrogen with diesel in non-HCCI mode 

produces a higher efficiency than diesel alone (Antunes, Mikalsen & Roskilly 2009). 

It is expected that the combination of hydrogen and diesel in HCCI mode will produce 

a higher BTE than diesel in CI mode. This conclusion was reached with partially 

premixed charge compression ignition (PPCCI) configurations when reformed exhaust 

gas recirculation (REGR) was used with hydrogen-rich gas (no more than 24%) added 

to the intake manifold (Tsolakis & Megaritis 2005). PPCCI has the potential to reduce 

NOx and PM emissions like the HCCI engine does, and maintaining or improving the 

engine efficiency. 

 

Table 2.5 Maximum BTE for Hydrogen-Diesel Fuel Compared with Hydrogen HCCI, Direct Injection (DI) Diesel and 
Dual Fuel (Antunes, Mikalsen & Roskilly 2009; Tsolakis & Megaritis 2005) 

 Diesel DI 
Dual fuel 

(H2+diesel) 

H2+Diesel 

PPCCI 

H2 

HCCI 
H2 DI 

BTE (%) 27.9 33.9 36.5 45.0 42.8 

 

2.2.7 Brake Mean Effective Pressure 

 

The brake mean effective pressure (BMEP) is an effective comparison tool to measure 

engine performance and indicates an engine’s capacity to produce power output over 

the full engine speed range. It is also used to compare one engine’s performance with 

another. A high BMEP shows the ability of the engine to perform high load operations. 

One of the HCCI engine’s challenges is its limited load range because high load 

operations tend to produce knock (Kong 2007). Table 2.6 shows the BMEP ranges of 

standard engines. In comparison, the BMEP range for passenger cars (Saab 5-cylinder 
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engine) operating in HCCI mode is only between 0-0.36MPa (Hyvonen, Haraldsson 

& Johansson 2003), which is lower than conventional SI engines. 

 

Natural gas-diesel in HCCI mode operates in the BMEP range of 0.25-0.4MPa 

(Nathan, Mallikarjuna & Ramesh 2010), which is low compared with the engines in 

Table 2.6. To increase the BMEP, the concentration of natural gas has been increased 

but if its concentration compared to diesel is too high, this will lead to knocking 

(Nathan, Mallikarjuna & Ramesh 2010). Figure 2.3 shows that the best energy ratio 

for natural gas-diesel HCCI mode is about 51% and within the shaded region. For this 

optimized energy ratio, the maximum BMEP is only 0.4MPa, which is a very limited 

load range and is not suitable for high load engine operations. 

 

Hydrogen with diesel in HCCI mode is stable up to 0.6MPa BMEP (Tsolakis & 

Megaritis 2005; Tsolakis, Megaritis & Yap 2008). If a supercharger is used in 

hydrogen-diesel dual-fuel mode on a non-HCCI engine, a maximum BMEP of 

0.91MPa was reported (Roy et al. 2010). Thus, hydrogen and diesel in HCCI mode 

might be able to be used for high load engine operations.  

 

When gasoline is used in an HCCI engine, the achievable BMEP is 0.35MPa on a two-

stroke engine and approximately 0.5MPa on a four-stroke high CR engine, where CR 

varies from 15.0 to 18.0 (Duret 2002). This BMEP is considered low when compared 

with other engines in Table 2.6, where small SI engines can achieve BMEP of 1MPa. 

This is also reported by Kaneko et al. (2003), where the HCCI engine has the 

disadvantage of low BMEP. The BMEP of a gasoline HCCI engine can be improved 

by using high CR engines (Duffy et al. 2005). 
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Table 2.6 BMEP Range for Various Engines Types (Heywood 1988) 

Engine Type Compression Ratio BMEP Range (MPa) 

SI Engines 

Small (Motorcycles) 6-11 0.4-1 

Passenger cars 8-10 0.7-1 

Trucks 7-9 0.65-0.7 

Large gas engines 8-12 0.68-1.2 

Diesel Engines 

Passenger cars 17-23 0.5-0.75 

Trucks 16-22 0.6-0.9 

Large trucks 14-20 1.2-1.8 

Locomotive 12-18 0.7-2.3 

Marine engines 10-12 0.9-1.7 

 

 
Figure 2.3 BMEP for different intake temperatures with varying energy ratio between natural gas and diesel. The 

shaded region shows the best energy ratio for natural gas-diesel HCCI engines, reproduced from (Nathan, 
Mallikarjuna & Ramesh 2010). 

 

2.2.8 Exhaust Gas Emissions 

 

Emissions in HCCI engines consist of UHC, CO, NOx, soot and particulates. UHC and 

CO emissions in HCCI engines are generally higher than conventional CI engines as 

reported by (Ganesh & Nagarajan 2010; Kong & Reitz 2003; Park & Reitz 2007). 

There are no exact numbers reported in this study because the value was inconsistent 

for all engines and across all engine loads. High emissions level of CO and UHC might 

be due to incomplete combustion caused by low combustion temperatures (Bression 

et al. 2008; Ganesh, Nagarajan & Ibrahim 2008; Yap et al. 2006), which cause 

deposition of fuel in boundary layers and crevices (Garcia, Aguilar & Lencero 2009). 
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The low combustion temperature will reduce the combustion efficiency as a result of 

the lower oxidation activity of the hydrocarbons and the lower conversion rate of CO 

to CO2 (Alkidas 2007). Results of simulations confirm that the piston-ring crevice 

needs to be resolved in order to accurately predict UHC and CO emissions (Kong & 

Reitz 2003). UHC and CO emissions originate in the crevices and boundary layer, 

which are too cold for complete combustion (Aceves et al. 2001). Higher 

concentrations of hydrogen and natural gas in diesel engines have the ability to reduce 

UHC and CO emission levels, because the gaseous state of hydrogen and natural gas 

will reduce the wall wetting effect on the cylinder liner (He & Cho 2007).  

 

However, the difference in NOx concentration between natural gas and hydrogen in 

diesel HCCI mode could be due to different combustion temperatures, because 

hydrogen has a higher temperature and flame speed compared to natural gas and diesel 

(Soberanis & Fernandez 2010). A survey of research papers by Akansu et al. (2004) 

shows that the NOx level is increased when the hydrogen content in natural gas-

hydrogen mixtures is increased. It shows that the combustion temperature and the 

flame speed of hydrogen contribute to a higher level of NOx emissions.  

 

In biogas-diesel HCCI engines, the NOx level was low when the biogas energy was 

increased (Nathan, Mallikarjuna & Ramesh 2010). This might be due to a higher 

homogeneity level achieved between air and fuels. Van Blarigan (2002) in his study 

reported that the mixture must be homogeneous, lean or highly diluted in order to 

eliminate the production of NOx. Olsson et al. (2002) stated that the NOx level is low 

in natural gas HCCI engines and when combined with Exhaust Gas Recirculation 

(EGR), it drops further (Yap et al. 2006). Even in natural gas-diesel non-HCCI mode, 

the NOx level is lower than in diesel conventional CI engines (Yusaf et al. 2010). 

Hydrogen, on the other hand, produces zero UHC, CO and CO2, due to the absence of 

carbon in the fuel, but still produces NOx (Verhelst & Wallner 2009). Hydrogen 

operated as a single fuel in CI mode yielded lower NOx levels than diesel (Antunes, 

Mikalsen & Roskilly 2009). Saravanan and Nagarajan (2010) in their study of 

hydrogen addition to diesel in non-HCCI mode showed that lower NOx emissions were 

obtained for all load ranges compared to diesel in conventional mode. They reported 

that the formation of NOx depends on temperature more than the availability of 
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oxygen. Therefore, hydrogen-diesel in HCCI mode results in extremely low NOx 

emissions levels with no significant amount of soot (Tsolakis, Megaritis & Yap 2008). 

 

When the HCCI engine is operated with a gasoline fuel, the engine is reported to be 

unstable if the EGR is less than 40% or greater than 60% (Yingnan et al. 2010). This 

is also reported by Hosseini and Checkel (2009), where EGR is not suitable to be used 

for ignition control in a gasoline fuelled HCCI engine because EGR effects are 

different at different operating conditions.  

 

2.2.9 Knocking 

 

Knocking in SI engines is a phenomenon where the unburned mixture in the 

compressed gas ignites before it is reached by the propagating flame front (Stiesch 

2003). Knock is physically detected when the engine vibrates excessively and a 

pinging sound can be heard outside as a result of the combustion activity. It causes 

loss of power and, if not controlled, knocking could lead to severe engine damage and 

shorten its life. Knocking can occur in any reciprocating engine. HCCI engines are 

prone to knock since they are controlled by chemical kinetics and there is no fixed 

mechanism to control knock in them. Knocking phenomena limit the load range of an 

HCCI engine: high load operations can easily initiate knock, so upper load limits have 

to be applied (Yap et al. 2006). In all engines, generally knocking occurs when the 

combustion starts before the piston reaches TDC, while misfire is when combustion 

commences after TDC. Knocking and misfire are two different behaviours which must 

be avoided in engine operation as both of them can contribute to deterioration of engine 

performance (Andreae et al. 2007; Jun, Ishii & Iida 2003; Kong & Reitz 2003; Nathan, 

Mallikarjuna & Ramesh 2010; Yelvington & Green 2003). 

  

Knocking occurs when a rapid release of energy in the remaining unburned mixture 

causes a rapid increase in local pressure. Knocking phenomena can be detected in the 

in-cylinder pressure variations, observing a rapid instantaneous local pressure rise. The 

graph formed depends on the knocking frequency: the higher the frequency, the more 

severe the knock (Szwaja & Grab-Rogalinski 2009). Figure 2.4 shows knocking 

behaviour in a hydrogen-fuelled HCCI engine for a single combustion event with a 
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compression ratio of 17 by monitoring its in-cylinder pressure. It can be seen that the 

in-cylinder pressure suddenly increases to the peak before following the normal 

pressure trend: the peak pressure is higher than the normal in-cylinder peak pressure 

without knocking. The maximum increase in pressure for knocking is unpredictable 

and this abnormality usually occurs when there is an incorrect operating condition. 

 

 

Figure 2.4 Knocking phenomena in a hydrogen HCCI engine for a single combustion event, reproduced from 

(Szwaja & Grab-Rogalinski 2009) 

 

2.3 Injection Methods for Homogeneous Mixtures 

 

Vaporized fuels are needed to initiate combustion in conventional CI engines. 

Therefore, a high fuel injection pressure is required. A higher injection pressure leads 

to better fuel vaporization and forms many small droplets of fuel leading to efficient 

fuel-air diffusion processes. Compression of air generates high in-cylinder 

temperatures, which is important to achieve the auto-ignition point of the fuel. CI 

engines using common rail injection systems employ injection pressures of at least 

35MPa to ensure the injected fuel is vaporized before the combustion takes place. 

However, in HCCI combustion it is quite challenging to form a homogeneous fuel-air 

mixture before the initiation of combustion. Therefore, there are three methods to 

achieve homogeneous mixtures in HCCI engines (Yao, Zheng & Liu), and these could 

be applied to any fuel: 

1. Port injection 

2. Early injection 
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3. Late injection 

 

2.3.1 Port Injection 

 

Port injection is the method of locating the fuel injector in the intake manifold, where 

the injection pressure is not as high as in a direct injection system. Ganesh and 

Nagarajan (2010) have studied the HCCI combustion with port injection, which they 

called “external mixture formation”. It is used to form a homogeneous fuel-air mixture 

with injection pressures of no more than 0.6MPa.  

 

Because the port injection pressure is not high, the fuel will not vaporize when entering 

the inlet manifold, creating an undesirable inhomogeneity problem. To overcome this, 

the fuel vaporizer must be mounted in the air intake manifold system so that the fuel 

is supplied in vapour form (Ganesh & Nagarajan 2010; Ganesh, Nagarajan & Ibrahim 

2008). However, there are drawbacks when using port injection systems to form a 

homogeneous mixture: the soot is quite significant and NOx emission is not as low as 

in SI engines (Yao, Zheng & Liu 2009). This might be due to the poor vaporization of 

the fuel, creating inhomogeneous mixtures. 

 

2.3.2 Early Injection 

 

Early injection uses the direct injection method, but with injection timing earlier in the 

compression stroke; there is no modification of the injection pressure from CI engines. 

Garcia, Aguilar and Lencero (2009) have studied the performance of an HCCI engine 

with early injection by varying the injection timing between 17° and 144° crank angle 

(CA) before top dead centre (BTDC). It was found that CO and HC were higher in 

HCCI mode compared to the conventional CI mode due to fuel impingement on the 

cylinder walls (Garcia, Aguilar & Lencero 2009). Another study of the spray structure 

of common rail type high-pressure injectors in HCCI engines obtained similar results 

(Ryu, Kim & Lee 2005). The spray structure was simulated for early injection timing 

between 240° and 340°CA BTDC with an increment of 20°CA with injection pressures 

of 80MPa and 100MPa. It was found that if the fuel was injected earlier than 280° 

BTDC, the fuel would impinge on the cylinder wall and create a rich mixture, leading 
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to incomplete combustion due to wall and crevice effects. However, if the fuel was 

injected at 300°CA BTDC, the fuel would impinge on the outer surface of the piston 

area. Any injection earlier than 320°CA BTDC results in impingement on the piston 

bowl. This process is shown in Figure 2.5. 

 

 

Figure 2.5 Spray structure simulation result for various initial conditions, reproduced from (Ryu, Kim & Lee 2005). 

The dark curved areas at the centre represent the piston crown surface, the black circle line is the piston crown 

edges, the outer circle is the cylinder wall which in turn resembles piston edge and the five radial lines represent fuel 

being injected from the centre. Spray structure behaviour does not change much with initial conditions, while it does 

with injection timing. 

 

It is obvious that early injection systems lead to fuel impingement problems on the 

cylinder wall and crevice areas. There are few methods to address this issue: using 

multiple injectors, multi-pulse fuel injection and narrow spray angle injectors. 

Multiple injectors will increase costs while multi-pulse fuel injection requires very 

precise control over injection timing by managing the injection pulse and its period 

(Yao, Zheng & Liu 2009). Therefore, it is hard to control the injection for different 

engine loads. Narrow spray angles might be an easier and cheaper way, which can be 

achieved by replacing the conventional injector (spray angle of about 156°) with a 

narrow spray angle injector (of about 60°). Kim and Lee (2007) have studied the effect 

of narrow spray angle injectors in an HCCI engine with an injection pressure of 

100MPa. They found that a narrow spray angle injector in HCCI engines using early 

injection timing is effective in maintaining a high IMEP (Kim & Lee 2007). The 

schematic diagram for narrow spray angle injectors is shown in Figure 2.6. By using 
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narrow spray angle injectors, the fuel will hit the piston bowl instead of the cylinder 

wall. However, the obvious drawback of using early injection is the difficulty in 

controlling the start of combustion. Therefore, one has to pay extra attention to the 

ignition delay effects. 

 

 

Figure 2.6 Schematic diagram of the narrow spray angle injector, reproduced from (Kim & Lee 2007). 

 

2.3.3 Late Injection 

 

Late injection still uses a direct injection approach in order to minimize modification 

to the injection system. However, a high-injection pressure system is used with 

retarded injection timing at the end of the compression stroke or at the early power 

stroke. Conventional ignition timing for CI engines varies from 23° BTDC to 5° after 

top dead centre (ATDC) depending on the equivalence ratio (Roy et al. 2009). For late 

injection systems, typically the ignition timing is retarded up to 7° ATDC (Yao, Zheng 

& Liu 2009). Late injection systems require a long ignition delay and rapid mixing rate 

(Ganesh & Nagarajan 2010; Yao, Zheng & Liu 2009). The former can be achieved by 

implementing EGR (as discussed in Section 2.4.4), while the latter is dependent on the 

geometry of the combustion chamber. The Nissan Motor Company has developed a 

successful late injection system for HCCI engines by using Modulated Kinetics (MK) 

combustion systems (Yao, Zheng & Liu 2009). They implemented high swirl effects 

in a toroidal combustion bowl to achieve rapid mixing with a bigger piston bowl 
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diameter. A higher piston bowl diameter is better as it can minimize the potential of 

fuel impingement on the piston bowl and the cylinder walls; Figure 2.7 shows an 

overview of a piston bowl with toroidal geometry. This late injection system is able to 

control the start of combustion better than the first two methods. 

 

 
Figure 2.7 Piston bowl with toroidal geometry, reproduced from (Liu 2006). 

 

2.4 Ignition Control in HCCI Engines 

 

Ignition control is one of the challenges in developing HCCI engines. The challenges 

include (Kong & Reitz 2003; Park & Reitz 2007): 1) auto-ignition control; 2) limiting 

the heat release rate at high load operations; 3) meeting emissions standards; 4) 

providing smooth engine operation by achieving cold starts (‘startability’ of the 

engine); and 5) limited load range. Various studies have suggested that ignition can be 

controlled by using promoters or additives, blending of low cetane number fuels with 

high cetane number fuels (Morsy 2007), pre-heating of the intake air (Yap et al. 2006), 

pressurizing the intake air (Fiveland & Assanis 2002), hydrogen addition and varying 

the amount of exhaust gas recirculation (EGR) (Flowers et al. 2001) through early 

closure of the exhaust valve. 

 

Managing the ignition delay is one of the effective ways to control the start of 

combustion. Ignition delay is the time lag between the start of injection and the start 

of combustion. This is difficult to control because the combustion in HCCI engines is 



Chapter 2 

PhD Mechanical Engineering                                                                                 31 

fully controlled by chemical kinetics. The ignition delay is affected by the rate of the 

heat loss through the cylinder wall, in-cylinder temperature and pressure, injection 

pressure and also the type of fuel used. Too short an ignition delay leads to knocking 

while too long an ignition delay leads to misfiring. The ignition delay is strongly 

dependent on the gas temperature: an increase in temperature accelerates the chemical 

reactions, thereby helping to reduce the ignition delay (Antunes, Mikalsen & Roskilly 

2009; Reitz 2007). Tanaka et al. (2003) studied two-stage ignition in HCCI 

combustion, suggesting that the ignition delay can be controlled by the fuel-air ratio, 

initial temperature and additive dosages. The ignition delay can also be controlled by 

varying the compression ratio (Kim et al. 2006). 

 

2.4.1 Pre-Heat Intake Air 

 

As discussed in Section 2.2, using natural gas and hydrogen in HCCI require a high 

intake temperature. By pre-heating the intake air, ignition delay is reduced and thus 

the ignition timing can be controlled. As shown in Figure 2.2, methane and natural gas 

require high temperatures to auto-ignite and methane did not ignite for an intake 

temperature of 400K at low CR (Morsy 2007). Gasoline, on the other hand, requires 

an intake temperature of at least 303K for a relatively high CR engine (CR=14.5) 

(Bunting et al. 2008). Therefore, it is imperative to pre-heat the intake air to make the 

fuels combust smoothly. 

 

Antunes, Mikalsen and Roskilly (2008) stated that heating the intake air is the most 

useful method to control the ignition timing. Questions may arise regarding the 

practicality of including electric heaters (Jun, Ishii & Iida 2003) in an engine bay just 

for this purpose: the heater causes the operation and maintenance costs to increase and 

contributes to extra engine weight. In addition, a heater with fast response time is 

required, which increases the cost further. Implementation of a heater also reduces the 

charge density, which affects the amount of fuel to be burnt (Ganesh, Nagarajan & 

Ibrahim 2008). However, installing a heater is an option used by most researchers as 

it is the easiest way to get intake air heated to a specific temperature. Exhaust gas 

recirculation (EGR) could be another option to reduce the need for a high intake 
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temperature (Ganesh, Nagarajan & Ibrahim 2008; Peucheret et al. 2005; Yap et al. 

2006). 

 

2.4.2 Pressurized Intake Air 

 

Turbochargers and superchargers are commonly used in real engine applications 

because they can be applied to any internal combustion engine. The operational 

concepts of these two devices are the same: to provide a high intake pressure into the 

combustion chamber, increase the charge density and thereby increase the engine 

performance. Some studies (Agarwal & Assanis 1998; Fiveland & Assanis 2002; Liu 

et al. 2009) show that the start of combustion (SOC) is advanced if the intake pressure 

is increased by 0.1 MPa. This indicates that pressurised intake air is able to improve 

the auto-ignition of the fuel. However, these situations also depend on the type of fuel 

used, and in this case they used primary reference fuels and gasoline. By increasing 

the intake pressure, it was possible to get the auto-ignition to start at 15° before top 

dead centre (BTDC). On the other hand, supercharging (pressurising intake air) is able 

to increase engine efficiency (Soylu 2005). A supercharged hydrogen-diesel engine, 

but in non-HCCI mode, was able to maintain high thermal efficiencies and it was 

possible to use more than 90% hydrogen energy substitution for the diesel (Tsolakis 

& Megaritis 2005). Another study by Guo et al. (2011) shows that hydrogen-diesel in 

HCCI mode with pressurized intake air (150kPa) is able to improve the atomization 

process, and therefore improve the combustion efficiency. CO, HC and NOx emissions 

were also decreased in this case. 

 

2.4.3 Hydrogen Addition 

 

Hydrogen is one of the promising renewable fuels because it is naturally available on 

the earth and can be produced from various resources such as fossil energy and 

biomass (Najjar 2013; Sun et al. 2012). Hydrogen can be used as a sole fuel in an SI 

engine but cannot be used in a CI engine due to its higher ignition point compared to 

diesel (de Morais et al. 2013; Saravanan & Nagarajan 2008). The used of hydrogen in 

internal combustion engines requires extra care due to safety reasons. According to 
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Najjar (2013), there are three hazards associated with the use of hydrogen: 

physiological (frostbite and suffocation), physical effect (embrittlement and 

component failures) and chemical (burning or explosion). Proper hydrogen installation 

such as high pressure vessel is required to avoid physiological effects. The ability of 

hydrogen to permeate through steel may cause an embrittlement effect and lead to 

component failures. Fayaz et al. (2012) reported that to avoid the embrittlement effect 

on some metals, the following alloys can be used in a hydrogen engine application: 

brass and copper alloys, aluminium and its alloys and copper beryllium. The crank 

case design of the engine should also be taken into consideration so that it has good 

ventilation. The blow-by effect causes unburned hydrogen to enter the crankcase and 

at certain concentrations may lead to combustion. The hydrogen injection method also 

plays an important role in avoiding undesired explosions. Direct injection is a preferred 

method over port injection to avoid the backfire effect (Fayaz et al. 2012). Backfire is 

combustion occurring during the intake stroke due to hot spots and could also occur in 

the intake manifold (Verhelst & Wallner 2009). It is of the utmost importance to avoid 

any undesired combustion behaviour for safety reasons. 

 

Hydrogen can be produced in many ways including natural gas conversion, coal 

gasification, electrolysis, biomass gasification and photolytic processes (Fayaz et al. 

2012). However, the conversion cost of hydrogen using current technology is still very 

expensive (Najjar 2013) and it is not practical to have a separate hydrogen vessel for 

a vehicle with dual fuel technology because the combined fuel cost becomes higher. 

Thus, an on-board hydrogen generator is a possible solution to overcome this high 

hydrogen conversion cost and also the problems associated with storage and handling 

(Christodoulou & Megaritis 2013). Tsolakis and Megaritis (2008) used a fuel 

reforming reactor in the diesel exhaust system to extract hydrogen. Bromberg (2001) 

used a plasmatron fuel converter to convert a gas containing hydrogen, while Bari and 

Esmaeil (2010) used water electrolysis to generate hydrogen. 

 

Hydrogen addition in a CI engine is able to reduce UHC, CO and smoke emissions, 

however, NOx emissions are typically increased due to the high combustion 

temperature (Christodoulou & Megaritis 2013; de Morais et al. 2013; Fayaz et al. 

2012; Frolov et al. 2013; Nguyen & Mikami 2013; Saravanan & Nagarajan 2008; Sun 

et al. 2012). To reduce the NOx, intake charge dilution with nitrogen can be used 



Chapter 2 

PhD Mechanical Engineering                                                                                 34 

(Christodoulou & Megaritis 2013), or EGR (Fayaz et al. 2012). With nitrogen dilution, 

the NOx level is reduced substantially, however, smoke, CO and fuel consumption are 

increased. EGR, on the other hand, causes increase in PM, UHC, CO and also engine 

wear. Thus, Miyamoto et al. (2011) recommended using large amounts of EGR and 

late diesel-fuel injection timing for diesel engines with hydrogen addition. They 

reported that the NOx emissions were low without the increase in UHC due to the low 

combustion temperature.  

 

Hydrogen addition to the HCCI engine is one of the effective ways to reduce the 

ignition delay due to its high diffusivity in air, which causes rapid mixing between 

fuels and oxidizers. Hydrogen addition in a natural gas mixture is able to increase the 

in-cylinder peak pressure, reduce ignition delay time and ignition temperature, and 

increase indicated power (Rattanapaibule & Aung 2005). It also allows the extension 

of the lean limit of the natural gas mixture without entering the lean misfire region, 

while achieving extremely low emissions (Verhelst & Wallner 2009). 

 

Hydrogen addition in ultra-low sulphur diesel (ULSD) promotes partially-premixed 

compression ignition and results in improved performance and reduction in emissions 

(Tsolakis & Megaritis 2005). In HCCI engines, hydrogen is able to form a 

homogeneous mixture due to its rapid mixing behaviour, and thus increase the 

efficiency of the engine (Saravanan et al. 2008). Furthermore, hydrogen can be 

produced from the exhaust gases of the engine itself using a reformer, which is called 

an “on-board hydrogen producer” (Tsolakis, Megaritis & Yap 2008; Yap et al. 2006). 

As the amount of hydrogen is increased, the auto-ignition delay time reduces 

accordingly while as the in-cylinder peak pressure is increased, the ignition 

temperature reduces and indicated power increases (Rattanapaibule & Aung 2005). 

The addition of hydrogen is not costly because it uses a lower-pressure fuel-injection 

system (Aceves et al. 2001).  

 

Furthermore, the addition of hydrogen increases the engine efficiency by a significant 

margin, about 13-20% (Saravanan & Nagarajan 2010; Saravanan et al. 2008). By using 

a catalytic reforming aid in HCCI, the addition of hydrogen in natural gas HCCI 

engines helps in decreasing the need for high intake temperatures and also is a means 

of extending the lower limit of HCCI operations (Peucheret et al. 2005). It can be seen 
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from Figure 2.8 that the in-cylinder peak temperature increases and the ignition delay 

time reduces as the amount of hydrogen increases.  

Szwaja and Grab-Logarinski (2009) studied hydrogen addition (in HCCI mode) with 

diesel in a CI engine and found that the addition of hydrogen in small amounts (e.g. 

about 5% in energy ratio) was able to reduce the ignition delay and improve engine 

performance. They also concluded that the addition of hydrogen to diesel should not 

be more than 15% in energy ratio to avoid severe knock. 

 

 

Figure 2.8 Hydrogen effect on the in-cylinder peak temperature and the ignition delay (Rattanapaibule & Aung 

2005). 

 

2.4.4 Exhaust Gas Recirculation (EGR) 

 

EGR is a system where some portions of the exhaust gas are returned to the combustion 

chamber, controlled by using a valve. Exhaust gas contains less oxygen (O2) and more 

CO2: combustion with reduced O2 will lower the combustion temperature, and thus 

reduce the NOx emissions. It is also used to reduce the large temperature difference 

between peak pressure and intake pressure: as a consequence, the rate of heat release 

is reduced. This means that the intake temperature using EGR is high and certainly 

helps in auto-ignition of the mixture. Saravanan and Nagarajan (2010) reported that 

EGR is able to increase the BTE of the engine, while reducing the NOx formation. 

Furthermore, EGR improved auto-ignition of the engine and reduced the in-cylinder 

peak pressure. EGR used in an HCCI engine showed an improvement of 1.1% engine 
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efficiency, advanced the auto-ignition by 10° and reduced the heat release rate by 11 

J/°CA compared to a CI engine (Ganesh, Nagarajan & Ibrahim 2008). Ganesh and 

Nagarajan (2010) found that by using EGR on HCCI engines they were able to reduce 

the heat release rate with a lower combustion temperature. They could control ignition 

delay and reduce the in-cylinder peak pressure. The ignition delay is increased 

(combustion phasing is retarded) when the EGR rate increases (Lu, Chen & Huang 

2005). However, this resulted in about 20% power loss (Garcia, Aguilar & Lencero 

2009). Cooled EGR is preferred because it can suppress advanced auto-ignition of the 

premixed fuel with reduced emissions levels compared to hot EGR (Kim & Lee 2006). 

 

2.4.5 Addition of Dimethyl Ether (DME) 

 

Additives do not seem to lead to any major practical improvements, due to the addition 

of extra chemical compounds, which leads to an increase in operational cost. However, 

with the help of additives such as DME, the start of combustion of DME in a natural 

gas/DME mixture is improved by reducing the ignition delay time. It was found that 

methane-fuelled HCCI engines with an intake temperature of 400K ignited only if 

small amounts of additives were added (Morsy 2007). This shows the advantage of 

using additives, which can control the auto-ignition timing, but with extra drawbacks. 

2.4.6 Charge Stratification 

 

Stratification methods result in different mixture compositions while still retaining the 

chemical-kinetics dominated auto-ignition to control HCCI combustion. This has led 

to various control strategies, which has moved away from truly homogeneous 

mixtures. The term that is sometimes used is stratification charge compression ignition 

(SCCI) engines (Yao, Zheng & Liu 2009; Zheng & Yao 2007). SCCI is achieved with 

a combination of port fuel injection and direct-injection methods (Dec & Sjoberg 2004; 

Sjoberg & Dec 2006). A study from Dec and Sjoberg (2004) on the potential of fuel 

stratification for ignition control reported that they used port fuel injection to achieve 

a homogeneous mixture, with direct-injection at the early stages of the compression 

stroke to achieve a stratified charge. Direct-injection at the early stages of the 

compression stroke is to prevent the fuel from entering the crevice areas. They 
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concluded that charge stratification can be used to control the ignition timing and also 

improve the low-load combustion efficiency. 

 

Thermal stratification can also be applied for ignition control. Sjoberg and Dec (2005) 

investigated the potential of thermal stratification and combustion retardation for 

reducing pressure-rise rates in HCCI engines. They used numerical methods of a 

highly tuned (adjusting wall zone temperature, in-cylinder pressure at BDC and CR) 

multi-zone model from Sandia National Laboratories (Lutz 2002) to match the 

experimental results. The multi-zone model can be used to assign a different wall 

temperature to a different zone. They reported that the combustion rate in HCCI 

engines can be reduced by adjusting the wall zone temperature. They also suggested 

that the combination of slow combustion and thermal stratification allow the HCCI 

engine to achieve higher loads. However, it is unclear how to use thermal stratification 

in practical engines by controlling different combustion zone temperatures (Zheng & 

Yao 2007). 

 

2.5 Numerical Study of HCCI Engines  

 

Simulations are undertaken to reduce research costs while maintaining good 

productivity because of their cost efficiency compared to experimentation alone. By 

using numerical methods, one can optimize engine parameters before conducting 

experiments and obtain optimized parameters within a short time and at low cost. 

Many researchers use KIVA-3V CFD software in combination with detailed chemical 

kinetics solutions using CHEMKIN from Sandia National Laboratories (Agarwal & 

Assanis 1998, 2000; Babajimopoulos, Lavoie & Assanis 2003; Chen, Konno & Goto 

2001; McTaggart-Cowan et al. 2009). Good agreement between simulations and 

experiments has been achieved. 

 

2.5.1 Chemical Kinetics 

 

In a CI engine, the fuel is direct-injected in the chamber with a high injection pressure 

when the piston is nearly at TDC. Then, the fuel ignites rapidly in the hot air 
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environment. In SI engines, the spark plug is triggered when the piston is 

approximately at TDC to initiate the combustion. HCCI engines, on the other hand, 

have no mechanism to control the ignition timing and rely solely on chemical kinetics 

for combustion, as discussed in Section 2.3. The combustion in an HCCI engine is 

triggered when the heat in the chamber has reached the fuel activation energy. To 

numerically investigate the combustion behaviour, chemical kinetic mechanisms 

which represent the actual fuels have been developed (Curran et al. 1998, 2002; 

Golovitchev 2003; Lee, Kim & Min 2011; Mehl, Pitz, et al. 2011; William & Charles 

2011). A detailed mechanism such as those developed for diesel fuel consists of a 

blend of components such as n-alkanes, iso-alkanes, cyclo-alkanes, aromatics and 

others (Westbrook et al. 2009). Those components were then combined to represent 

the real fuels (Farrell et al. 2007). Most studies on developing the chemical kinetic 

mechanism (Curran et al. 1998, 2002; Mehl, Curran, et al. 2009; Mehl, Pitz, et al. 

2011; Naik et al. 2005; Westbrook et al. 2009) for HCCI engines use the Arrhenius-

like plot (such as shown in Figure 2.9) to relate the fuel activation energy with ignition 

delay time, where the activation energy is proportional to the slope of the graph (Taylor 

2006). 

 

Figure 2.9 Ignition delay time for n-heptane validated against experiment for different pressures (Ra & Reitz 2008). 

Small variations in fuel properties affect the HCCI combustion by having a different 

ignition delay time. Figure 2.10 shows the ignition delay time and burn rate of different 

fuels (Tanaka et al. 2003). The n-heptane has the lowest ignition delay time, while iso-

octane is the highest with a slower burn rate. This shows that the ignition delay time 
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(for multiple ignition stages as in Figure 2.10) and burn rates are dependent on the fuel 

structure. Tanaka et al. (2003) reported that the failure of toluene auto-ignition is due 

to the high activation energy required to abstract the hydrogen (H) radical from the 

carbon chain. 

 

 

Figure 2.10 Summary of ignition burn rate and delay time for different type of fuels (Tanaka et al. 2003). 

 

Westbrook et al. (2009) studied detailed chemical kinetic models for large n-alkanes, 

which can be used to represent the diesel fuel. The aim was to investigate the model 

that can use fewer computing resources by having an almost identical ignition 

behaviour compared to the experiment. They found that the ignition delay time is not 

affected significantly for different carbon lengths. Thus, they concluded that a small 

n-alkane such as n-octane can be used as a surrogate fuel for diesel which has the same 

ignition behaviour of a much larger n-alkane like n-hexadecane. Many studies have 

been conducted to develop a chemical kinetic mechanism that can represent the actual 

fuels. This is summarised in Table 2.7, which shows different chemical kinetic 

mechanisms to represent different fuels. 

 

It is common to use n-heptane as a surrogate fuel for diesel (Guo et al. 2010; 

Hernandez et al. 2008; Pitz & Mueller 2011; Westbrook, Pitz & Curran 2006) because 
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the chemical properties between those two are very similar, particularly in terms of 

cetane number. The intake temperature when n-heptane is used as a fuel in an HCCI 

engine is not as high as methane or natural gas. A study by Guo et al. (2010) showed 

that n-heptane can easily be ignited when the inlet temperature is 313K on a low CR 

engine (CR=10). Methane, on the other hand, is reported to have no ignition when the 

inlet temperature is less than 400K on a high CR engine (CR=15) (Fiveland & Assanis 

2000). Thus, it is important to have the right fuel and its chemical kinetic mechanism 

in order to study the combustion behaviour of an HCCI engine. 

 

Curran et al. (1998) developed a detailed mechanism for n-heptane and validated the 

result over a wide range of operating conditions. They found that the ignition delay is 

in very good agreement with experiments using flow reactors, shock tubes and rapid 

compression machines. Because a detailed mechanism uses more computational 

resources, Seiser et al. (2000) and Golovitchev (2003) developed a reduced 

mechanism for n-heptane. Patel (2004) reduced the mechanism by more to obtain 26 

species and 52 reactions. He reported that the CPU time is reduced by 50-70% and the 

validation was completed under both constant-volume reactor and HCCI engine 

conditions. The ignition delay result is similar to those of detailed mechanisms. The 

use of n-heptane as the only main component in the mechanism is not sufficient to 

predict the soot emission from CI and HCCI engines. Thus, Wang et al. (2013) 

improved the mechanism by blending the n-heptane and toluene mechanisms. They 

reported that the mechanism gives reliable soot predictions and combustion phasing 

under various engine conditions. 

 

An iso-octane mechanism was used as a surrogate fuel for gasoline and it can also be 

blended with n-heptane to represent a real fuel (Curran et al. 2002; Tanaka, Ayala & 

Keck 2003). A real gasoline fuel consists of thousands of hydrocarbon compounds 

(Ogink & Golovitchev 2001; Zheng et al. 2002) and the fuel should be modelled using 

a combination of a few components. Mehl et al. (2011) developed a mechanism that 

represents a commercial grade gasoline, which consists of n-heptane, iso-octane, 

toluene and olefins. They reported that the result is in good agreement over a wide 

range of pressures and temperatures relevant to internal combustion engine 

applications. A reduced mechanism was also developed by Mehl and Chen et al. 

(2011) and further reduced by Lee et al. (2011). A reduced mechanism shows an 



Chapter 2 

PhD Mechanical Engineering                                                                                 41 

advantage when used in a complex CFD model, which requires more computational 

resources (Lee, Kim & Min 2011). 

 

The main component of natural gas mainly is methane, as shown in Table 2.1 and 

Table 2.2. A mechanism for methane called Gri-Mech (Smith et al. 1999) has received 

wide attention (Fiveland & Assanis 2000; Morsy 2007; Sato et al. 2005). A further 

development of the methane mechanism has ended with the final version being Gri-

Mech 3.0. Then, reduced mechanisms have been developed based on the Gri-Mech 

mechanisms such as those from Msaad et al. (2012). A recent development of the 

methane mechanism is by Slavinskaya et al. (2013). The mechanism was validated for 

high- and low-pressure conditions for rocket applications. They take into consideration 

the depletion of ozone layer. The result shows that a methane-air propelled liquid 

rocket engine influences the formation of nitrogen compounds and thereby depleted 

the ozone. 

 

Hydrogen mechanisms, on the other hand, show a matured development, where the 

species and reactions are not substantially varied. A well-developed hydrogen 

mechanism in 1995 by Marinov et al. (1995) has been validated over a wide range of 

operating conditions, including high-pressure combustion. A recent development by 

Burke et al. (2012) focused on the discrepancies (in reaction rate parameters) between 

experiment and simulation. They reported the characterisation of the non-linear 

mixture for H+O2(M)=HO2(+M) might be necessary to predict high pressure flame 

speed within an accuracy of 5%. 

 

Biofuel is considered as an alternative fuel and is produced from long-chain fatty acids 

derived from either vegetable or animal oil. The trans-esterification method is used to 

transform these large molecules into esters, where methanol is commonly used during 

the trans-esterification process (Herbinet, Pitz & Westbrook 2010). The focus of using 

biofuels has received increasing attention (Komninos & Rakopoulos 2012) because of 

their advantages as alternative fuels. Biofuel can be extracted from fats or vegetable 

oils (An, Wilhelm & Searcy 2011) and also algae (Amin 2009). The chemical kinetics 

development for biofuels has advanced to the next level by blending the n-heptane and 

methyl esters to represent rapeseed and soybean derived biodiesels, such as those 

developed by Herbinet et al. (2010). They reported that the ignition delay is in good 
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agreement with experiments using rapeseed oil. The mechanism can also be used for 

modelling the biofuel from various origins by adjusting the mole or mass fractions of 

the components (methyl decenoate, methyl-5-decenoate, methyl-9-decenoate and n-

heptane) according to the actual biofuel blends. For more detail on chemical kinetic 

reaction mechanisms available for biofuels, one can refer to a review paper by 

Komninos and Rakopulous (2012). 

 



Chapter 2 

PhD Mechanical Engineering                                                                                 43 

Table 2.7 Chemical kinetic mechanisms available for different fuels. 

Fuel Main Components References Number of Species / 

Number of Reactions 

Temperature 

Range (K) 

Pressure 

Range (bar) 

Equivalence 

Ratio Range 

Diesel 

n-heptane 1998 (Curran et al.) 565/2540 550 - 1700 1 - 42 0.3 – 1.5 

n-heptane 2000 (Seiser et al.) 159/770 625-1667 1-13.5 - 

n-heptane 2003 (Golovitchev) 57/290 600-1300 6-42 0.5-3.0 

n-heptane 2004 (Patel, Kong & Reitz) 26/52 700-1100 40-50 0.2-1.0 

n-heptane/toluene 2013 (Wang et al.) 71/360 - - - 

Gasoline 

iso-octane 2001 (Ogink & 

Golovitchev) 

101/479 600-1400 10-40 0.22-2 

iso-octane 2002 (Curran et al.) 857/3606 550 - 1700 1 - 45 0.3 - 1.5 

iso-octane 2002 (Zheng et al.) 45/69 - - 0.2-0.7 

iso-octane 2003 (Tanaka, Ayala & 

Keck) 

32/55 750-900 30-50 0.2-0.6 

n-heptane/iso-octane/toluence 2003 (Golovitchev) 119/621 600-1300 20-50 1 

n-heptane/iso-octane/toluene/olefins 2011 (Mehl, Pitz, et al.) 1389/5935 650-1200 3-50 0.5-1.3 

n-heptane/iso-octane/toluene/olefins 2011 (Mehl, Chen, et al.) 312/2469 650-1200 3-50 0.5-1.3 

n-heptane/iso-octane/toluene 2011 (Lee, Kim & Min) 48/67 700-1200 40 0.5-2.0 

Natural gas 

Methane 1999 (Smith et al.) 53/325 1000-2500 0.01-10 0.1-5 

Methane 2001 (Hughes et al.) 37/351 - - - 

Methane 2006 (Huang & Bushe) 55/278 900-1400 16-40 1 

Methane 2007 (Lu & Law) 19/15 1000-2000 1-30 0.5-1.5 

Methane 2012 (Msaad et al.) 14/9 300-1800 40-60 0.7-1 
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Methane 2013 (Slavinskaya et al.) 37/354 300-1800 0.02-100 0.5-3.0 

Hydrogen 

Hydrogen 1995 (Marinov, Westbrook 

& Pitz) 

9/20 250-2500 0.05-87 0.2-6 

Hydrogen 2004 (O Conaire et al.) 10/18 298-2700 0.05-87 0.2-6 

Hydrogen 2012 (Zhukov) 9/14 900-1400 1 0.5-5 

Hydrogen 2012 (Burke et al.) 11/19 1000 1-30 0.5-4.5 

Biofuels 

Ethanol 1999 (Marinov) 57/383 300-2500 1 0.5-2.0 

Methanol 2002 (Lindstedt & Meyer) 52/326 - - - 

Ethanol 2006 (Mosbach et al.) 112/484 - - - 

Methyl butanoate 2007 (Gail et al.) 295/1498 800-1350 1-13 0.35-1.5 

Methyl butanoate/n-heptane 2008 (Brakora et al.) 53/156 650-1350 40-60 0.4-1.5 

Methyl decanoate/methyl-5-

decenoate/methyl-9-decenoate/ n-

heptane 

2010 (Herbinet, Pitz & 

Westbrook) 

3036/8555 800-1400 10 0.5 

Methyl decanoate/methyl 9-

decenoate/n-heptane 

2012 (Luo et al.) 115/460 700-1800 1-100 0.5-2 

Butanol 2012 (Sarathy et al.) 426/2335 720-1700 0.04-80 0.6-1.7 

Methyl decanoate/methyl 9-

decenoate/n-heptane 

2013 (Brakora) 69/192    
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2.5.2 Numerical and CFD Environments 

 

Numerical modelling can be categorized by the number of dimensions considered: 

zero-dimensional, quasi-dimensional and multi-dimensional. CFD is a multi-

dimensional method whereby it resolves very small-scale zones (discretisation of 

domain into many small control volumes). Once the domain is discretised, the CFD 

method solves all the governing equations in all directions. The smaller the 

discretisation zone (at the domain of interest), typically produces a more accurate 

result as it can solves boundary layer or turbulent effects more efficiently. A zero-

dimensional model is the simplest model where there is only one independent variable, 

typically either time or crank angle, and a heat transfer model is normally applied. The 

advantage of a zero-dimensional model is that the run time is fast (computationally 

effective) and therefore it can be utilized for immediate use of engine design and 

analysis. However, the disadvantage of this method is that the simulated combustion 

duration is shorter than the actual duration due to inhomogeneities in reality (Yao, 

Zheng & Liu 2009). The calculated results of zero-dimensional models produce rapid 

pressure increases and very high heat release rates compared to actual HCCI engine 

combustion due to the assumption that the model is perfectly homogeneous (Sato et 

al. 2005). A quasi-dimensional model uses a turbulent sub-model for turbulent 

combustion and to derive a heat release model. Figure 2.11 shows three different 

interacting regions for a quasi-dimensional model which is typically used to improve 

upon the zero-dimensional model. However, UHC emissions are over-predicted by 5-

15% and CO emissions exhibit a 50% error. This is due to the inability of the model 

to capture small temperature differences in the crevices (Fiveland & Assanis 2001, 

2002). 
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Figure 2.11 General layout of the quasi-dimensional simulation showing the interacting adiabatic core, thermal 

boundary layer and crevice regions, reproduced from (Fiveland & Assanis 2002). 

 

2.5.3 Single-Zone and Multi-Zone Models 

 

A single-zone model is where the combustion chamber area is treated as one 

homogeneous block. A multi-zone model separates the combustion chamber into 

several zones and the zone distribution depends on the type of the engine, either based 

upon flame propagation or homogeneous mixtures, thereby representing the 

inhomogeneity in the cylinder prior to combustion (Yao, Zheng & Liu 2009). The zone 

distribution for HCCI engines is shown in Figure 2.12(a) while Figure 2.12(b) is a 

multi-zone model for SI engines. Multi-zone modelling of HCCI engines is organized 

in such a way because the heat generated in an HCCI engine comes from the core of 

the combustion chamber. This is different to SI engines where the zone is started from 

the spark plug (the location of the heat source), and propagated according to the flame 

front motion.  
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Figure 2.12 Multi-zone model geometric configuration difference (a) HCCI engine, reproduced from (Komninos, 

Hountalas & Kouremenos 2004) (b) SI engines, reproduced from (Liu & Chen 2009). 

 

The single-zone model has some limitations due to the assumption that the whole 

combustion chamber is treated as homogeneous. Peak cylinder pressure and rate of 

pressure rise can be over-predicted. It also predicts a short burn duration and cannot 

accurately predict CO and HC emissions, which primarily depend on crevices (Morsy 

2007). Crevices and the boundary layer are the cold areas for HC and CO to react 

during combustion. On the other hand, the multi-zone model predicts the pressure trace 

and the peak cylinder pressure very well, but it also cannot consider boundary layer 

effect and crevices and thus cannot predict CO and HC emissions (Aceves et al. 2000). 

Better agreement in combustion phasing is achieved when the single-zone model is 

coupled with turbulent effects, as shown in Figure 2.13. In a zero-dimensional model, 

the turbulence affects the heat loss model by changing the characteristic velocity in the 

Nusselt-Reynolds heat transfer model. The characteristic velocity is obtained by taking 

into consideration the contribution from mean velocity, turbulent intensity and piston 

motion. 
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Figure 2.13 Effects of various turbulence models in in-cylinder pressure trace compared with experiment in the 

single-zone zero-dimensional model (Agarwal et al. 1998). 

 

If there is any inhomogeneity in the mixture, turbulence has an effect on combustion, 

while for a completely homogeneous mixture, turbulent mixing has little effect on the 

combustion heat release rate. However, it is suspected that there will be 

inhomogeneities in the mixture as there is often insufficient time to mix down to the 

smallest relevant scales, which would cause turbulent mixing to directly affect reaction 

rates (Kong & Reitz 2002, 2003). In actual combustion chambers, transportation of 

chemical species, heat transfer and heterogeneity of temperature and species 

concentration exist (Peucheret et al. 2005). A multi-zone model of HCCI combustion 

predicted maximum pressure, burn duration, indicated efficiency and combustion 

efficiency with the worst error of 10% (Aceves et al. 2000). However, UHC and CO 

emissions were under-predicted; Aceves et al. (2000) suggested that this might be due 

to some crevices not being considered in the analysis. They used a multi-zone model 

including zones in crevice regions, producing more accurate results.  

 

2.5.4 Multi-Dimensional Models: CFD 

 

A multi-dimensional model solves the equations for mass, momentum, energy and 

species conservation to obtain more accurate results at the expense of computational 

time and resources. When solving detailed chemical kinetics, a sequential operation is 

used to reduce computational time by solving the flow field then the chemistry rather 

than attempting to satisfy both simultaneously. Two common approaches to multi-

dimensional modelling are multi-zone models and CFD. A multi-zone model requires 
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substantially less computational time and resources than CFD, at the expense of 

accuracy. However, Aceves et al. (2002) showed that a 40-zone model can 

successfully predict the effect of crevice geometry on HCCI combustion with 

combustion efficiency predicted to within 5% error compared to experiment.  

 

A study has been performed using two-step processes in CFD to analyse combustion 

(Aceves & Flowers 2004). First, KIVA CFD was used for the effect of turbulence to 

solve the transport of all variables. Then the result from KIVA was used in the 

hydrodynamics, chemistry and transport (HCT) code to calculate the combustion 

parameters. This two-step method made it possible to obtain accurate predictions for 

turbulent combustion within a reasonable computational time (Aceves & Flowers 

2004). The proposed approach using the CFD method can provide an accurate 

prediction of the combustion process and accounts for mixture inhomogeneities in both 

temperature and composition (Babajimopoulos, Assanis & Fiveland 2002). 

 

2.5.5 Effect of Operating Parameters on Ignition Delay Time 

 

As discussed in Section 2.4, the ignition in HCCI engines can be controlled using a 

number of parameters. This can also be discussed using a numerical approach, where 

the chemical kinetics was used to investigate the ignition delay time for different fuels. 

Tanaka et al. (2003) developed a reduced chemical kinetic model for a Primary 

Reference Fuel (PRF), which is a blend of n-heptane and iso-octane. They validated 

the model in a Rapid Compression Machine (RCM) to represent HCCI combustion. 

The comparison was made between iso-octane, PRFs and n-heptane. The results in 

Figure 2.14 and Figure 2.15 show the ignition delay time for the selected fuel 

mechanisms with varying initial temperature and equivalence ratio. The results 

indicate that n-heptane has the fastest ignition delay time compared to PRFs and iso-

octane. When the inlet temperature increases, the ignition delay time reduces further, 

where all fuels follow the same trend, as expected. The ignition delay time is also 

decreased when the equivalence ratio is increased towards the rich mixture, where the 

n-heptane has the fastest ignition delay time irrespective of the equivalence ratio 

compared to other fuels, as shown in Figure 2.15. The n-heptane also has the highest 

burn rate, which shows its characteristic of susceptibility to auto-ignite.  
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The results for the ignition delay time between n-heptane and iso-octane by Tanaka et 

al. (2003) is consistent with experiment. As discussed in Section 2.5.1, the n-heptane 

can easily be ignited using an inlet temperature of 313K on a low CR engine. Gasoline, 

on the other hand, requires an inlet temperature of 453K to auto-ignite for a high CR 

engine (CR=14.5) (Puduppakkam et al. 2009). This shows that gasoline has a higher 

chemical activation energy compared with n-heptane. Different fuels require different 

inlet temperatures to auto-ignite, as shown in Figure 2.2, which result in different 

ignition delay times. The inlet temperature requirement reduces as the compression 

ratio of the engine increases. This is also consistent with Olsson et al. (2002), where 

they studied the effect of compression ratio on a natural gas fuelled HCCI engine. They 

found that as the compression ratio increased, the required inlet temperature decreased, 

which reduced the ignition delay time. 

 

 

Figure 2.14 The effect of initial temperature on ignition delay time for different fuels (Tanaka, Ayala & Keck 2003). 
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Figure 2.15 The effect of equivalence ratio on the ignition delay and burn rate for n-heptane, iso-octane and primary 
reference fuel (PRF) (Tanaka, Ayala & Keck 2003). 

 

The effect of different inlet pressures using chemical kinetics was investigated by 

Puduppakkam et al. (2010). They studied the ignition delay time between diesel and 

gasoline using detailed chemical reaction mechanisms. The n-heptane mechanism 

used as a surrogate fuel for diesel consists of 3809 species and 15678 reactions. The 

surrogate fuel for gasoline consists of 1833 species and 8764 reactions. Both surrogate 

fuels use a blend of several chemical classes, such as normal-, cyclo- and iso-alkanes, 

alkenes and aromatics. The result is shown in Figure 2.16 for n-heptane, where the 

ignition delay time reduced as the inlet pressure increased. The pressurised intake air 

is able to increase the charge density and engine performance, and also can be used as 

an effective tool to control the ignition in HCCI engines, as discussed in Section 2.4.2. 

 

Figure 2.16 The effect of different pressure on the auto-ignition delay time for a stoichiometric mixture of n-
heptane/air (Puduppakkam et al. 2010). 
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Figure 2.17 shows the effect on ignition delay time when EGR is employed. It shows 

that the ignition delay time is slightly increased when EGR increases (reduction in O2 

mole fraction). The result in Figure 2.17 also shows that the ignition delay time reduces 

when the inlet pressure increases. The effect of EGR is also discussed by Christensen 

and Johansson (1998), where they studied the mixture quality using iso-octane, ethanol 

and commercial-grade natural gas in a high CR HCCI engine. They reported that the 

ignition delay time also increased when EGR was used. This in return gives retarded 

combustion and slows the combustion rate, which is useful to reduce the combustion 

noise and also knocking. 

 

 

Figure 2.17 Effect of EGR on ignition delay for n-heptane fuel (Taylor 2006). 

 

Knocking, as discussed in Section 2.2.9, is due to the instability in combustion phasing. 

Unstable combustion may cause knocking or misfiring (advanced or retarded ignition 

timing). EGR is able to retard the ignition timing and also to obtain higher loads, but 

too much retarded combustion causes misfiring especially for the fuel with longer burn 

duration (Dec 2009). The combustion phasing in HCCI engines is difficult to control 

at high loads because the stability limits between knocking and misfiring is narrow 

(Sjoberg et al. 2004). Maurya and Agarwal (2011) reported that the unstable 

combustion is due to high cycle-to-cycle variation and to overcome this, they used 

closed loop control to monitor the combustion phasing. 

 

Olsson et al. (2002) in their study of compression ratio influence on the maximum load 

of an HCCI engine reported that the combustion-phasing stability is due to the 

coupling between chemical kinetics and thermal problems. The gas temperature during 

combustion is influenced by the wall temperature or heat transfer rate, which affects 
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the ignition timing. The instability in combustion becomes more severe at high loads, 

where the unstable combustion causes advanced or retarded combustion, as shown in 

Figure 2.18. They employed hydrogen addition to control the ignition timing. The 

mass fraction of hydrogen was increased in order to advance the ignition. Once the 

wall temperature was substantially increased, the hydrogen amount was then reduced 

to keep the stability limit under control. Thus, a closed-loop control for the ignition 

timing was achieved by monitoring the wall temperature (heat transfer rate) and the 

rate of hydrogen addition, in addition to the inlet temperature and fuel composition. 

 

 

Figure 2.18 Ignition timing stability captured over time-lapse (Olsson et al. 2002). 

 

2.5.6 Heat Transfer Model 

 

The heat transfer model plays an important role in combustion: it affects ignition 

timing; combustion duration; formation of CO, UHC and NOx; and the rate of in-

cylinder pressure and temperature rise, which is correlated to knock (Hou et al. 2010; 

Komninos & Kosmadakis 2011). The influence of the heat loss through the 

combustion walls could be added in any of the numerical models discussed earlier. 

Some of the most commonly used heat transfer models are those devised by Anand, 

Woschni, Prandtl, Assanis and Hohenberg (Jia, Xie & Peng 2008; Reitz & Han 1997; 

Soyhan et al. 2009) and readers are advised to look at the work by Soyhan et al. (2009), 

which explains the heat transfer equations by Assanis, Woschni and Hohenberg. From 

the study by Soyhan et al. (2009), the Hohenberg model performs best in comparison 
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with the Woschni and Assanis models: it predicted the in-cylinder pressure closest to 

the experiment, as shown in Figure 2.19.  

 

 
Figure 2.19 Heat transfer model comparison with experiment, (a) heat transfer coefficient, (b) in-cylinder 

temperature difference, reproduced from (Soyhan et al. 2009). 

 

2.5.7 Turbulence Models: RANS vs. LES 

 

Turbulent flow occurs at high Reynolds numbers and, according to Tennekes and 

Lumley (1972), the nature of the turbulence can be characterized as “irregularity, 

diffusivity, three-dimensional vorticity fluctuations, large Reynolds number and 

continuum phenomenon (continuous in space and time)”. Currently there is no exact 

solution for most turbulent flows and this has led to the creation of turbulence models, 

where the useful method to analyse the equation of motion is using statistical 

techniques (Cant & Mastorakos 2008; Peters 2000). The simplest statistical technique 

is to consider the average of flow variables over time.  

 

Reynolds-Averaged Navier-Stokes (RANS) turbulence models are used in transient 

fluid flows, whereby the flow variables are decomposed into average and fluctuating 

quantities over regions in physical space that are of the order of the integral length 

scale (Peters 2000). Different classes of RANS models exist: zero-equation models, 

one-equation models, two-equation models and stress-equation models (Alfonsi 

2009). RANS models have their disadvantages, whereby: 1) they are not able to 

properly predict simple free-shear layers and are known to be inadequate in complex 

flows (Alfonsi 2009; Girimaji 2006); 2) they are unable to capture dynamically 

evolving fine-scale vortical and scalar structures due to turbulence model induced 

(a) (b) 
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dissipation on the in-cylinder unsteady mixing process (Sone & Menon 2003). Celik, 

Yavuz and Smirnov (2001) reported that the k-ε model performs poorly when applied 

to IC engines, with the predictions being less accurate than desired. 

 

In HCCI engines, a piston-crown design is important to create turbulent behaviour 

inside the combustion chamber. A study by Kong et al. (2003) found that the square-

bowl piston generates higher turbulence levels and results in a longer combustion 

duration, where the turbulence affects the combustion through its influence on the wall 

heat transfer and property transport. This is supported by Aceves et al. (2004) with 

their experimental data, where the square-bowl piston resulted in a longer combustion 

duration but with higher UHC and CO emissions and lower combustion efficiency as 

a result of the thicker boundary layer. Therefore, one has to pay particular attention 

when designing the piston-crown to achieve the desired combustion behaviour. 

Another study by Kong and Reitz (2002) revealed that including the turbulent mixing 

effects gave better predictions for in-cylinder pressure compared to the chemistry 

alone, as shown in Figure 2.20. The link between chemistry and mixing effects with 

turbulence models is illustrated in Figure 2.21.  

 

 
Figure 2.20 The in-cylinder pressure comparison for experiment, modelling with chemical kinetics only and 

modelling with both chemical kinetics and turbulent mixing, reproduced from (Kong & Reitz 2002).   
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Figure 2.21 Illustration of an overall model for transient simulations (Combustion  2009; Janicka & Sadiki 2005; 

Peters 2000). 

 

Large Eddy Simulation (LES), on the other hand, is a turbulence model that computes 

more turbulent length scales than RANS, with the turbulent energy within the inertial 

sub-range separated into resolved large-scale eddies and unresolved small-scale 

eddies. Resolved large-scale eddies are computed directly by the discretized equations, 

while small-scale unresolved eddies, which contain only a small fraction of the 

turbulent kinetic energy, are modelled through subgrid scale models. LES equations 

are obtained by appropriate filtering of the Navier-Stokes equations and the energy 

equations over a three-dimensional space (Celik, Yavuz & Smirnov 2001). In complex 

flows for nonreactive and reactive system studies, LES generally predicts the scalar 

mixing process and dissipation rates with considerably improved accuracy compared 

to RANS (Pitsch 2006). It offers a more realistic representation of the in-cylinder 

turbulent flow and delivers accurate predictions for non-premixed combustion 

(Haworth 1999; Janicka & Sadiki 2005). 
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However, LES has difficulties in the near-wall region, where the mesh should be fine 

enough to compute a correct shear stress (Benarafa et al. 2006; Janicka & Sadiki 2005). 

Furthermore, results from LES may introduce serious errors into simulations due to 

both aliasing and truncation errors of low-order schemes, which can degrade LES 

computations (Peters 2000). LES requires greater mesh refinement compared to RANS 

as the LES models the small-scale eddies, which increases the computational cost. 

However, mesh or time-step refinement in RANS improves the numerical accuracy, 

but does not improve the scales that are resolved. 

 

A hybrid approach between RANS and LES has been created in order to resolve the 

disadvantages of these two models. Alfonsi (2009) has categorized this approach into 

zonal decomposition, nonlinear disturbance equations and universal modelling. 

Benarafa et al. (2006) in their study on the hybrid approach, which they called 

RANS/LES coupling, shows that this approach seems to correctly force the averaged 

LES velocity to reach the correct steady RANS velocity field even at high Reynolds 

numbers. The fluctuations are globally improved despite the use of very coarse 

meshes.  

 

Another approach which is similar to the hybrid RANS-LES model is called Detached 

Eddy Simulation (DES). DES, which is already included in commercial CFD software 

packages, implements the RANS approach near the wall region, while using the LES 

technique in the outer detached eddies. The main objective of using this technique is 

to avoid using high resolution in the near-wall region and, therefore, reduce 

computational cost.  Instead, algebraic boundary-layer models (which have proven to 

be very successful in the RANS context) are implemented. 

 

2.5.8 Mixing Models for Non-premixed Combustion 

 

Turbulent mixing will take place when there is inhomogeneity in the mixture and 

depends on the geometry of the piston-crown. Fuels and oxidizers are required to be 

mixed at molecular levels to initiate combustion, while the molecular mixing will take 

place at the interface between small eddies (Peters 2000; Pitsch 2006). This process 
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will heavily involve the chemical reactions, which accelerate the diffusion process by 

creating strong gradients through the removal or creation of the species. 

 

The Probability Density Function (PDF) (Pope 1985) method offers a good advantage 

in modelling turbulent reactive flows, where it has the ability to capture strong 

turbulence-chemistry interactions in the mixing models, such as Euclidean Minimum 

Spanning Tree (EMST), Interaction by Exchange with the Mean (IEM), or the 

Modified Curl’s (MC) (Haworth 2010). The EMST (Subramaniam & Pope 1998) 

mixing model is designed to overcome shortcomings of simpler turbulent mixing 

models, and was successful in diffusion flame tests (Mitarai, Riley & Kosaly 2005; 

Subramaniam & Pope 1998). The problem with simpler models is that the mixing 

occurs between particles across the reaction zone, which is not local. The EMST model 

only allows the particles to mix between their immediate neighbours in composition 

space. The model was constructed by connecting particles to form branches of trees 

over the time step. The particles enter or leave the cell according to their velocity. Each 

of the particles has its own age property and this determines whether the particle 

belongs to the mixing or non-mixing state. If the particle age property is positive, it 

belongs to the mixing state, while it does not if the age property is zero or negative. 

The EMST is formed on the mixing state and changes discontinuously in time due to 

the particles entering or leaving the mixing state.  

 

Mitarai, Riley and Kosaly (2005) conducted a performance comparison between 

EMST, IEM (Villermaux & Devillon 1972) and MC (Janicka, Kolbe & Kollmann 

1979) mixing models in RANS and LES environments and found the EMST mixing 

model yielded significantly better results than the IEM and MC mixing models. It was 

found that the EMST mixing model performs better in an LES environment than in a 

RANS environment. This is because of the ability of LES to resolve finer scales 

compared to RANS and therefore particle interactions are over finer scales (Bisetti & 

Chen 2005). The EMST mixing model has also successfully predicted the appearance 

and disappearance of cold particles in LES, where it has failed in RANS. A study of 

turbulence and chemistry interaction performed by Bisetti and Chen (2005) showed 

that the EMST in the LES environment performed better than the IEM and MC in 

predicting the temperature conditioned on the mixture fraction, as shown in Figure 

2.22. 
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Figure 2.22 Scatter plots of temperature versus mixture fraction from experiment and simulations using LES, a) 

experimental data, b) IEM, c) MC and d) EMST. All figures reproduced from (Bisetti & Chen 2005). 

 

Bisetti et al. (2008) studied turbulence and chemistry interactions in HCCI engines 

using the same models as Mitarai, Riley and Kosaly (2005). They found that the EMST 

mixing model performed better than the other mixing models. They noted that the LES 

simulation gives a promising step in HCCI engine modelling under high levels of 

stratification.  

 

However, the PDF model is hard to solve because it has many dimensions: one for 

each chemical species in a particular set of chemical reactions. Therefore, it will end 

up with n dimensions for n chemical species and if there are m nodes per dimension, 

the total number of nodes will be mn, resulting in an enormous computational cost, 

which is why it is always solved stochastically.  

 

The Conditional Moment Closure (CMC) (Bilger 1993) model, on the other hand, was 

designed to handle turbulence-chemistry interactions, where large chemical 

mechanisms can be used at modest computational cost. The conditional fluctuations 

of the reactive components are to be ignored when calculating the chemical source 

term for first-order CMC: the value is significantly smaller than the unconditional 

fluctuations (Schroll 2009). Bushe and Steiner (1999) implemented the CMC model 

in the LES environment for non-premixed turbulent reacting flows. They noted that 
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the resolution constraints were reduced because the chemical reactions are resolved in 

the mixing space. However, the CMC model has a disadvantage in modelling the 

properties’ fluctuations since it has only one conditioning variable (Klimenko & Pope 

2003).  

 

The MMC model (Klimenko & Pope 2003) was designed to solve the difficulties faced 

by the PDF method and the CMC model. It combines the precepts of PDF modelling 

(in modelling the major species) and CMC (for the minor species) while treating the 

complete set of dependent variables equally (Klimenko & Pope 2003). The major 

species are solved by mapping them to a set of prescribed reference variables (often 

standard Gaussian in the conventional description), while fluctuations of minor species 

are either ignored (conditional MMC) or treated with conventional mixing models 

(probabilistic MMC) (Cleary, M. J. & Kronenburg, A. 2007). The MMC model has 

been investigated in a number of studies such as homogeneous and inhomogeneous 

combustion, and non-premixed and partially premixed flames (Cleary, M. & 

Kronenburg, A. 2007; Cleary & Klimenko 2009; Cleary et al. 2009; Cleary, M. J. & 

Kronenburg, A. 2007; Vogiatzaki, Cleary, et al. 2009; Vogiatzaki, Kronenburg, et al. 

2009; Wandel & Klimenko 2005; Wandel & Lindstedt 2009). 

 

A study of MMC in a homogeneous turbulence shows that the model is capable of 

predicting the bimodal distribution of sensible enthalpy in near stoichiometric mixture 

when compared with DNS data (Cleary & Klimenko 2011). This is in contrast with 

the presumed β-PDF model where the model is incapable of predicting such 

distribution between arbitrary minimum and maximum sample space limits. The MMC 

model has also been investigated in inhomogeneous turbulence, where the MMC 

model has been coupled with RANS turbulence model, with the binomial Langevin 

model and LES. The results show that the MMC model is able to produce high-quality 

and efficient simulations (Cleary & Klimenko 2011).  

 

An investigation of MMC studying the same case as Mitarai, Riley & Kosaly (2005) 

reported that the model is capable of predicting the mean temperature rise with 

reasonable fidelity and follows the temperature history at stoichiometric mixture 

fraction better than the other models (Wandel & Klimenko 2005), as shown in Figure 

2.23. A study by Cleary and Kronenburg (2007) for the MMC model in turbulent 
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diffusion flames shows an improved accuracy in predicting local extinction compared 

to the CMC model by accounting for multiple timescales across the spectrum. CMC 

utilises an average timescale to model the fast and slow processes. Vogiatzaki et al. 

(2009) tested the MMC model for inhomogeneous reactive flows in turbulent jet 

diffusion flames. The model was constructed using a one-dimensional reference space 

with mixture fraction used as a basis for the reference variable. They found that the 

temperature was predicted well compared to the experiment at all locations. In 

addition, Vogiatzaki et al. (2009) mentioned that the MMC model could be easily 

included in an LES turbulent model. This was done by Cleary et al. (2009) where they 

used the MMC model with an LES scheme for turbulent diffusion flames. The LES 

model was used to solve for the turbulent velocity field and the reference mixture 

fraction, while the stochastic MMC model solved the reactive scalars. They concluded 

that the conditional averages of temperature and species were in good agreement with 

the experiment. 

 

Another advantages of using the MMC model (Vaishnavi & Kronenburg 2010; 

Vogiatzaki, Cleary, et al. 2009) are: 1. the simplicity of modelling the MMC diffusion 

coefficients against other models; 2. conditional scalar dissipation rate appears in 

closed form; and 3. no need to presume the mixture fraction PDF because it is 

computed from the modelling of the relationship between mixture fraction and 

reference variable. However, there is difficulty in modelling the MMC where the 

model cannot generate fluctuations around the conditional mean for the joint PDF, and 

an additional transport equation is necessary to impose the conditional fluctuations 

(Kronenburg & Cleary 2008). In other words, the MMC method looks to be a 

promising step in developing a mixing model for HCCI engines. 
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Figure 2.23 Temperature at stoichiometric mixture fraction for various mixing models (Mitarai, Riley & Kosaly 2005; 

Wandel & Klimenko 2005). 

 

2.6 Conditional Moment Closure (CMC) Model in 

HCCI Engines 

 

Even though the MMC mixing model has shown a promising result in simulating the 

mixing behaviour, CMC was chosen in this thesis as a starting point to couple the 

mixing model with a zero-dimensional single-zone model for HCCI engines. The 

CMC mixing model performance has been studied extensively by many researchers, 

especially in the area of a jet flame (Kim & Huh 2004; Navarro-Martinez & 

Kronenburg 2009; Navarro-Martinez & Rigopoulos 2011; Patwardhan et al. 2009; 

Roomina & Bilger 2001). However, applying the CMC model to the engine simulation 

is relatively new, where most applications use CFD to obtain the flow field (De Paola 

et al. 2008; Seo et al. 2010; Wright et al. 2005). The usage of CMC in a zero-

dimensional single-zone model is new in the literature. A zero-dimensional 

environment was selected due to its faster computing time and ease of coding. An 

assumption has been made in modelling the CMC, where the conditional fluctuations 

of reactive scalars are negligibly small. This is because the use of port fuel injection 

reduces the inhomogeneity of the mixture. This has led to the use of simple first-order 

closure for the conditional chemical reaction rates. The combination of CMC and the 

zero-dimensional model is expected to produce good accuracy in the results, with 

reduced simulation time as a consequence of using the zero-dimensional model. The 

difference between zero-, two- and three-dimensional CMC models is shown in Figure 

2.25, where the result for the zero-dimensional CMC model is in good agreement with 
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the experiment. The intention of this study is to use the CMC model in a zero-

dimensional single-zone environment to study the combustion behaviour in an HCCI 

engine. 

 

2.6.1 CMC Modelling in Zero-Dimensional Simulations 

 

Usage of the CMC model in a zero-dimensional environment has been investigated by 

Kwon et al. (2011), where they studied the combustion and emissions of a diesel 

engine using skeletal reaction mechanisms. A direct-injection diesel engine was 

simulated in a zero-dimensional environment, where the entire engine cycle was 

modelled based on the energy equation of the first law of thermodynamics. The fuel 

injection was modelled using a multi-zone spray penetration model, where the fuel 

injection was divided into ten radial zones. They reported that the result for the 

pressure trace shows reasonable agreement between simulation and experiment, as 

shown in Figure 2.24. This is a good indication that the CMC model could be used in 

a zero-dimensional environment. However, the approach in this thesis for the zero-

dimensional simulation is slightly different, where the fuel is injected at the inlet 

manifold instead of direct injection. Therefore, there is no multi-zone spray model to 

be used. 

 

 

Figure 2.24 Result for in-cylinder pressure at 1000 rpm between simulation and experiment, as reported by Kwon et 

al. (2011). 
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2.6.2 CMC Modelling in Multi-Dimensional Simulations 

 

Most multi-dimensional simulations use CFD for the computations at the expense of 

computing resources. A separate code has to be written to couple the CMC mixing 

model with the CFD software package. The CFD will solve the flow field parameters, 

e.g. mean pressure, pressure rate of change, turbulence parameters, variance and mean 

of the mixture fraction. Then, all these parameters will be used by the CMC mixing 

model to compute the temperature and species mass fractions due to the chemical 

reaction by weighting with presumed β-function PDF. The computed values will be 

returned to CFD for the next time step computation. This is called full two-way 

coupling, as reported by Wright (2005). 

 

A multi-dimensional simulation of a diesel engine coupled with the CMC model has 

been studied by De Paola et al. (2008). A commercialised CFD software package 

(STAR-CD) was used in the study and the result was then compared with a single-

cylinder diesel engine. Heat transfer to the cylinder wall was added to the CMC mixing 

model and evaluated using the CFD solver. They concluded that the predicted in-

cylinder pressure traces are in good agreement with the experiment, as shown in Figure 

2.25. 

 

 

Figure 2.25 In-cylinder pressure comparison between CMC model using CFD and experiment, reproduced from (De 

Paola et al. 2008). 
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Seo et al. (2010) have also studied the CMC model in a multi-dimensional 

environment. They investigated the combustion behaviour for a diesel engine in partial 

HCCI mode with split injections (a pair of sequential injections: first injection at -

57.5°CA ATDC and second injection at 7.5°CA ATDC). In this case, they used 

KIVA3V as a CFD solver and coupled with the CMC model using a separate script. A 

heat transfer model was then added to the CMC equation with a different approach, 

i.e. the heat loss coefficient was determined using Woschni’s experimental correlation. 

They reported that the in-cylinder pressure traces are in reasonable agreement between 

the experiment and the simulation.  

 

Therefore, it could be concluded that the CMC model in multi-dimensional 

simulations is capable of producing good results, with the ability of predicting the 

flame structure. 

 

 

2.7 Conclusion 

 

Many studies show the HCCI engine has low NOx emissions, soot and particulates. 

The HCCI engine can achieve a higher or similar BTE compared to CI engines by 

using a high CR engine configuration. One of the advantages of the HCCI engine is 

that it does not suffer from throttling losses, which also improves the BTE. A higher 

BTE helps in reducing the fuel consumption of the engine and it might be able to match 

the fuel consumption of a hybrid engine. However, HCCI engines still have unresolved 

issues, which are ignition control, knocking and high levels of unburned HC and CO 

emissions. Further studies have to be performed in order to solve these remaining 

issues. To achieve this, the numerical method shows a great advantage over 

experiments to simulate the combustion behaviour in terms of cost and time. To this 

end, a simulation model has to be developed to investigate the behaviour and, once 

completed, it has to be validated against experiments. 

 

The multi-zone numerical method combined with advanced turbulent mixing models 

shows promising results, compared with the single-zone model. CFD offers greater 

accuracy than the multi-zone model at the expense of computational cost. However, 
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one could easily implement the LES or DES model with CFD. The DES model will be 

useful in the near future, where it combines the LES and RANS models together with 

improved accuracy using the former where needed and improved computational 

efforts using the latter where possible. A mixing model has been developed to study 

the mixing behaviour at molecular levels. The performance of EMST, MC and IEM 

models was compared and the result showed that the EMST model performed best. A 

study of the CMC model showed that it has the ability to capture all phases of 

combustion, i.e. ignition, flame propagation and a diffusion flame (Mastorakos 2010). 

A CMC model in an LES environment has been investigated and it shows that the 

model has the capability to predict extinction and ignition phenomena (Bushe & 

Steiner 1999). The MMC model is created by combining the advantages of the CMC 

and PDF models. In this thesis, the CMC model was chosen and combined with zero-

dimensional modelling, as discussed in Section 2.6. 

 

There are several methods to achieve HCCI configurations through experiments. 

Using a direct injection system seems to require few modifications, but care is required 

with the associated disadvantages. If port injection is to be used, one might have to 

install the atomizer and heater in the inlet port, which leads to additional costs. The 

main objective of the HCCI engine is to achieve low emissions levels with efficiency 

similar or better to that of a CI engine. Therefore, an optimized experimental method 

would be able to solve the HCCI engine problems, with the help of simulations. 
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Chapter 3  

TURBULENCE MODELLING BACKGROUND 

 

 

3.1 Introduction 

 

A computer simulation, in general, has a strong influence in today’s research activities, 

but because they are only models of reality, they must be validated against 

experimental data. Once the numerical analysis has been validated, the simulation 

could be used for further research, which would reduce many experimental costs. 

Recently, the emissions regulations in automotive sectors have become more stringent 

and, therefore, more effort is required to obtain less polluting engines. The research 

and development (R&D) cost would increase substantially if all efforts relied solely 

on experiments. Thus, research efficiency must be improved. This could be achieved 

by using computer simulations to predict experimental results, which has the 

advantage of reducing the R&D time with relatively low computation costs. 

 

HCCI combustion occurs when the correct composition of oxidisers and fuels is 

present in the combustion chamber. It is important to investigate mixing between 

oxidisers and fuels in more detail, which could improve the knowledge of mixing due 

to turbulent flows. Numerical investigations are truly important in current research, 

where they could improve research productivity in the near future. This chapter will 

briefly explain the current models used in simulations of turbulence. The chapter 

begins with fundamental governing equations in Section 3.2, followed by chemical 

reaction mechanisms and statistical descriptions in Sections 3.3 and 3.4 respectively. 

Next, turbulence modelling is discussed in Section 3.5, before closing with a 

conclusion in Section 3.6. 
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3.2 Conservation Equations 

 

3.2.1 Mass 

 

The conservation of mass is represented by 

 

 𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑽) = 0 

(3.1) 

 

The first term is the rate of change of density and the second term is the convective 

transport, where 𝑽 is the velocity and 𝜌 is the density. 

 

3.2.2 Momentum 

 

The conservation of linear momentum equation is represented by: 

 

 𝜕𝜌𝑽

𝜕𝑡
+ ∇ · (𝜌𝑽𝑽) = −∇𝑝 + ∇ · 𝝉 + 𝜌𝒈 

(3.2) 

 

The first term on the left hand side (LHS) is the local rate of change, and the second 

term is convection of momentum, while the first two terms on the right hand side 

(RHS) represent pressure gradient and molecular transport due to viscous forces, 

respectively. The last term on the RHS is the body forces due to buoyancy. The viscous 

stress tensor 𝝉, is represented by 

 

 
𝝉 = 𝜇 (2𝑺 −

2

3
𝜹∇ · 𝑽) 

(3.3) 

 
𝑺 =

1

2
(∇𝑽 + ∇𝑽𝑇) 

(3.4) 

 

and 𝑺 is the strain rate tensor, where 𝜇 is the dynamic viscosity, ∇𝑽 is the velocity 

gradient and ∇𝑽𝑇 is the transpose of the velocity gradient. 
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3.2.3 Species 

 

The balance equation for the mass fraction, Y, of species i is represented by 

 

 
𝜌
𝜕𝑌𝑖
𝜕𝑡

+ 𝜌𝑽 · ∇𝑌𝑖 = ∇ · (𝜌𝐷𝑖∇𝑌𝑖) + 𝜌�̇�𝑖        (𝑖 = 1,2,… , 𝑛) 
(3.5) 

 

where 𝐷𝑖 is the mass diffusivity, �̇�𝑖 is the mass reaction rate of the species per unit 

volume and summation over repeated indices is not intended. The first term on the 

LHS is the rate of change of species mass fraction and the second term is convection. 

The first term on the RHS is the molecular diffusivity and the last one is the source 

term. 

 

For simplicity, all mass diffusivities, 𝐷𝑖, are assumed to be proportional to the thermal 

diffusivity, 𝜅, and the Lewis number, Le, is constant  

 

 
𝜅 =

𝜆

𝜌𝑐𝑝
,            𝐿𝑒 =

𝜆

𝜌𝑐𝑝𝐷𝑖
=
𝜅

𝐷𝑖
 (3.6) 

 

In equation (3.6), 𝜆 is the thermal conductivity and cp is the specific heat capacity at 

constant pressure of the mixture. 

 

3.2.4 Energy 

 

In a mixture, the enthalpy, h, is the mass-weighted sum of the specific enthalpies hi of 

species i, 

 
ℎ =∑𝑌𝑖ℎ𝑖

𝑛

𝑖=1

 (3.7) 

 

and similarly for cp, 

 
𝑐𝑝 =∑𝑌𝑖(𝑐𝑝)𝑖

𝑛

𝑖=1

 (3.8) 
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The enthalpy of an ideal gas at a temperature T can be decomposed into enthalpy of 

formation, hi,ref , and sensible enthalpy, ℎ𝑠 , so that ℎ(𝑇) = ℎ𝑖,𝑟𝑒𝑓 + ℎ𝑠(𝑇) . This 

equation can be rewritten in its differential form as 

 

 𝑑ℎ

𝑑𝑡
=∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑛

𝑖=1

+ 𝑐𝑝
𝑑𝑇

𝑑𝑡
 (3.9) 

 

where, for an ideal gas, ℎ depends only on the temperature. Then, the enthalpy balance 

equation can be derived from the first law of thermodynamics (Williams 1985) 

 

 
𝜌
𝜕ℎ

𝜕𝑡
+ 𝜌𝑽 · ∇ℎ =

𝜕𝑝

𝜕𝑡
+ 𝑽 · ∇𝑝 − ∇ · 𝑗𝑞 + 𝑞𝑅 

(3.10) 

 

Equation (3.10) has been simplified by ignoring frictional heating due to low speed 

flows. The term 𝑽 · ∇𝑝 can also be ignored for small Mach numbers. The rate of 

change in pressure 𝜕𝑝 𝜕𝑡⁄  is retained for engine applications. The heat flux term is 

denoted by 𝑗𝑞, while the source term due to radiation heat transfer, 𝑞𝑅, can be ignored 

in HCCI engines (Chang et al. 2004; Soyhan et al. 2009). 

 

 

3.3 Chemical Reactions 

 

The last term in equation (3.5) is the source term due to chemical reactions, which 

accounts for destruction and creation of species i. A complete description of 

combustion reactions involves a highly complex chemical system, which must be 

modelled. If there are N possible species in the system, with the ith species in the jth 

reaction, the general chemical reaction can be written as 

 

 
∑𝜈′𝑖𝑗𝒳𝑖

fj

bj

k

k

𝑁

𝑖=1

∑𝜈′′𝑖𝑗𝒳𝑖

𝑁

𝑖=1

                 (𝑗 = 1,2, … , 𝐿) (3.11) 
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where 𝒳𝑖 represents the chemical formula of species i, L is the number of elementary 

reactions, while 𝜈′𝑖𝑗 and 𝜈′′𝑖𝑗 are the stoichiometric coefficients of the reactants and 

products respectively. Forward and backward reaction constants, 𝑘𝑓𝑗  and 𝑘𝑏𝑗 , are 

modelled by the temperature-dependent Arrhenius form, 

 

 
𝑘(𝑇) = 𝐴exp (−

𝐸𝐴
𝑅𝑢𝑇

) (3.12) 

 

where A is the pre-exponential factor, EA is the activation energy and Ru is the universal 

gas constant. 

 

The net production rate of all chemical reactions, or the source term �̇�𝑖, which is the 

mass of species i produced per unit volume and unit time, is 

 

 
�̇�𝑖 = 𝑀𝑊𝑖∑𝜈𝑖𝑗𝑞𝑗            (𝑖 = 1,2, … , 𝑁)

𝐿

𝑗=1

 (3.13) 

 

with 

 𝜈𝑖𝑗 = (𝜈′′𝑖𝑗 − 𝜈′𝑖𝑗) (3.14) 

 

and 

 
𝑞𝑗 = 𝑘𝑓𝑗∏(

𝜌𝑌𝑖
𝑀𝑊𝑖

)
𝜈′𝑖𝑗

𝑁

𝑖=1

− 𝑘𝑏𝑗∏(
𝜌𝑌𝑖
𝑀𝑊𝑖

)
𝜈′′𝑖𝑗

𝑁

𝑖=1

 (3.15) 

 

where 𝑞 is the rate-of-progress variable and 𝑀𝑊𝑖 is the molecular weight of species i. 

Chemical species with strong bonds require extra energy to break the chemical bonds. 

The extra energy is supplied by the so-called catalyst, where the catalytic molecule or 

the third body remains unaffected by the reaction. An example of this reaction is 

represented by 

 H + H +MH2 +M (3.16) 
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where “M” is the catalyst, or the third-body species. The rate-of-progress variable of 

this reaction is obtained using 

 

 
𝑞𝑗 = [M]𝑗 (𝑘𝑓𝑗∏(

𝜌𝑌𝑖
𝑀𝑊𝑖

)
𝜈′𝑖𝑗

𝑁

𝑖=1

− 𝑘𝑏𝑗∏(
𝜌𝑌𝑖
𝑀𝑊𝑖

)
𝜈′′𝑖𝑗

𝑁

𝑖=1

) (3.17) 

 

The third body concentration, [M], in equation (3.17) is 

 

 
[M]𝑗 =∑[𝒳𝑖]

𝑁

𝑖=1

=
𝑝

𝑅𝑇
 (3.18) 

 

assuming that all the third-body species behave the same way. 

 

 

3.4 PDF and Statistical Descriptions 

 

Random methods are generally used in turbulent processes to describe the fluctuating 

velocity and scalar fields in terms of their statistical distributions. As a starting point, 

let 𝜑 be a random variable and 𝜂 its sample space variable. The random variable 𝜑 can 

take any value within its sample space, where the sample space is defined as the space 

of all possible realizations of the random variable. It is assumed that 𝜑 ∈ [𝜂min, 𝜂max] 

and −∞ < 𝜂 < ∞.  

The cumulative probability 𝒫𝜑(𝜂) is defined as the total probability for any value 𝜑 <

𝜂: 

 𝒫𝜑(𝜂) = prob(𝜑 < 𝜂) (3.19) 

and the probability of 𝜑 within a range 𝜂min ≤ 𝜑 < 𝜂max is represented by 

 

 prob(𝜂min ≤ 𝜑 < 𝜂max) = 𝒫𝜑(𝜂max) − 𝒫𝜑(𝜂min) (3.20) 

Now, the Probability Density Function (PDF) is defined as 
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𝑃𝜑 =

𝑑𝒫𝜑(𝜂)

𝑑𝜂
 

(3.21) 

 

The PDF is non-negative and the probability of finding 𝜑 in the whole of its sample 

space 𝜂𝑚𝑖𝑛 ≤ 𝜑 < 𝜂𝑚𝑎𝑥 is 

 
∫ 𝑃𝜑𝑑𝜂 = 1
𝜂𝑚𝑎𝑥

𝜂𝑚𝑖𝑛

 (3.22) 

 

Such a statement indicates that the probability is certain (i.e. unity probability) and 

serves as a normalising condition if the PDF is determined numerically. Once 𝑃𝜑 is 

known, the first moment of 𝜑 can be defined as 

 

 
〈𝜑〉 = ∫ 𝜑(𝜂)𝑃𝜑𝑑𝜂

𝜂𝑚𝑎𝑥

𝜂𝑚𝑖𝑛

 (3.23) 

 

Here, the first moment represents the average or mean value of 𝜑, with the 〈•〉 symbol. 

Then, the second central moment is defined as 

 

 
〈(𝜑 − �̅�)2〉 = ∫ (𝜂 − 〈𝜑〉)2𝑃𝜑𝑑𝜂

𝜂𝑚𝑎𝑥

𝜂𝑚𝑖𝑛

 (3.24) 

 

which is called the variance.  

 

The moments of a random scalar can be explicitly calculated using its PDF. However, 

the calculation of PDF is often computationally expensive or insufficient information 

is known to be able to determine it. To overcome this, presumed functions for single 

PDF are often used (e.g. Gaussian-type or β–function PDF), which is parameterized 

on the mean and variance of a variable. 

 

3.5 Turbulence Modelling 

 

One of the characteristics of turbulent flows is the existence of eddies of different 

length scale. The eddies are developed when a high Reynolds number flow experiences 
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shear layer instabilities before being transformed into many eddies. According to 

Kolmogorov’s 1941 theory for homogeneous isotropic turbulence, the kinetic energy 

from large-scale eddies will be transferred to the small-scale eddies before being 

dissipated at the small-scale eddies through viscous dissipation. These eddies can be 

categorised as large scale, integral scale, inertial sub-range and viscous sub-range. 

Figure 3.1 shows the turbulent kinetic energy spectrum, where the wavenumber 𝑘 is 

the inverse of a length scale. The well-known 𝑘−5/3 law is used for the kinetic energy 

spectrum in the inertial sub-range. The maximum turbulent kinetic energy is contained 

in the integral scale eddies, then decreases following the 𝑘−5/3 law in the inertial sub-

range. The energy decreases exponentially in the viscous sub-range due to viscous 

effects. 

 

 

Figure 3.1 Turbulent kinetic energy spectrum as a function of the wavenumber, reproduced from (Peters 2000). 

 

Direct numerical simulation (DNS) is necessary to resolve all the spatial and temporal 

scales present in the flow with high accuracy (Sengupta & Mashayek 2008). It solves 

the Navier-Stokes equations using a fine mesh. However, DNS is computationally 

expensive to use with current computing power for engineering-scale problems. To 

overcome this limitation, a number of turbulence modelling approaches have been 

developed, so that the solution for different turbulent flow regimes can be obtained 

within a reasonable time and cost. 
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3.5.1 Averaging Techniques 

 

Averaging is used to filter small-scale fluctuations in turbulent flows because it is not 

feasible to consider in detail all of the small scales in flows. It could be done by 

decomposing instantaneous quantities into mean and fluctuating quantities. This 

section describes two methods of averaging, which are Reynolds and Favre averaging. 

 

3.5.1.1 Reynolds Averaging 

 

Reynolds averaging refers to averaging a variable in time. Let a mean of a random 

variable be 

 
�̅�(𝑥, 𝑡) =

1

𝑁
∑𝜑(𝑥𝑖 , 𝑡)

𝑁

𝑖=1

 (3.25) 

where 𝑁 is the sample size. A variable 𝜑 can be decomposed into a slowly varying 

mean and rapidly varying turbulent fluctuation components 

 

 𝜑(𝑥, 𝑡) = �̅�(𝑥, 𝑡) + 𝜑′(𝑥, 𝑡) (3.26) 

with the assumption that the mean is constant over the period of averaging. By 

definition 𝜑′̅̅ ̅(𝑥, 𝑡) = 0 and, for instance, using Reynolds averaging in equation (3.1) 

produces, 

 

 𝜕�̅�

𝜕𝑡
+ ∇ · (𝜌𝑽̅̅̅̅ ) = 0 

(3.27) 

   

3.5.1.2 Favre Averaging 

 

Favre averaging is used to separate turbulent fluctuation from the mean flow when 

there is a fluctuation in density, especially in a compressible flow. A density-weighted 

average (Favre 1969) is defined as 
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�̃� =

𝜌𝜑̅̅ ̅̅

�̅�
 (3.28) 

 

with Favre decomposition 

 

 𝜑(𝑥, 𝑡) = �̃�(𝑥, 𝑡) + 𝜑′′(𝑥, 𝑡) (3.29) 

Double prime superscript is used to distinguish between Reynolds and Favre 

averaging. It should be noted that  

 

 𝜑′̅̅ ̅(𝑥, 𝑡) = 0     but      𝜑′′̅̅ ̅̅ (𝑥, 𝑡) ≠ 0 (3.30) 

However, 

 𝜌𝜑′′̅̅ ̅̅ ̅(𝑥, 𝑡) = 0 and  𝜌�̃�̅̅ ̅̅ = �̅��̃� = 𝜌𝜑̅̅ ̅̅  (3.31) 

By introducing Reynolds decomposition for 𝜌 and 𝑝, and Favre decomposition for 𝑢 

and ℎ as 

 𝜌 = �̅� + 𝜌′                  𝑝 = �̅� + 𝑝′ (3.32) 

 𝑢 = �̃� + 𝑢′′                  ℎ = ℎ̃ + ℎ′′ (3.33) 

The Favre averaged mass, momentum, species and energy conservation equations then 

become 

 𝜕�̅�

𝜕𝑡
+ ∇ · (�̅��̃�) = 0 

(3.34) 

 𝜕�̅��̃�

𝜕𝑡
+ ∇ · (�̅��̃��̃�) = −∇�̅� + ∇ · 𝜏̅ − ∇ · (�̅�𝑽′′𝑽′′̃ )+ �̅�𝑔 

(3.35) 

 𝜕(�̅��̃�𝑖)

𝜕𝑡
+ �̅��̃� · ∇�̃�𝑖 = ∇ · ( 𝜌𝐷𝑖∇𝑌𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ − �̅�𝑽𝑖

′′𝑌𝑖
′′̃)+ �̇�𝑖̅̅ ̅               

(𝑖 = 1,2, … , 𝑛) 

(3.36) 

 𝜕(�̅�ℎ̃)

𝜕𝑡
+ ∇ · (�̅��̃�ℎ̃)

= −∇ · (�̅�𝑽′′ℎ′′̃)+
𝜕�̅�

𝜕𝑡
+ �̃� · ∇𝑝 + 𝜏: ∇𝑽̅̅ ̅̅ ̅̅ ̅ − ∇ · 𝑗�̅� + 𝑞𝑅̅̅ ̅ 

(3.37) 

 

Additional terms arising from the averaging are Reynolds stress (�̅�𝑽′′𝑽′′̃ ) in equation 

(3.35), velocity-scalar co-variances (�̅�𝑽′′𝑖𝑌′′𝑖̃ ) in equation (3.36), and enthalpy fluxes 
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(�̅�𝑽′′ℎ′′̃) in equation (3.37). These terms, including the chemical source term (�̇�𝑖̅̅ ̅) in 

equation (3.36), are known as the closure problem of moment methods, which require 

modelling. The modelling of these terms will not be discussed in detail in this thesis 

because they are not used in zero-dimensional modelling. 

 

3.5.2 Turbulence Models 

 

The averaged conservation equations are not closed until the unknown quantities are 

modelled. The zero-, one- and two-equation models are presented briefly in this 

section. They will not be discussed in detail and serve as a background to turbulence 

modelling. 

 

3.5.2.1 Zero-equation models 

 

Zero-equation models, also called algebraic turbulence models, are the simplest of the 

turbulence models because the closure of the shear stress term is in algebraic form. It 

does not require any partial differential equation (PDE) that describes the turbulent 

fluxes and can be calculated directly from the flow variables. In this model, the mixing 

length theory of Prandtl is usually used (Pope 2000). The Reynolds stress is modelled 

as 

 
�̅�𝑽′′𝑽′′̃ = 𝜈𝑡 (

𝜕𝑉

𝜕𝑦
) (3.38) 

where 𝜈𝑡  is the eddy viscosity. The mixing length model of Prandtl for two-

dimensional flows is represented by 

 
𝜈𝑡 = 𝑙𝑚

2 (
𝜕𝑉

𝜕𝑦
) =

𝜇𝑡
𝜌

 (3.39) 

 

where 𝜇𝑡 is the turbulent viscosity, 𝑦 is the coordinate normal to the wall and 𝑙𝑚 is the 

mixing length. The problem with this model is that 𝑙𝑚  is unknown and must be 

determined. This model has good predictions in free shear and boundary layer flows. 

However, it is incapable of capturing many flow details such as separation and 

recirculation (Pope 2000).  
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3.5.2.2 One-equation models 

 

In one-equation models, an additional PDE (transport equation) is required to solve 

the turbulent kinetic energy and the turbulent length scale is obtained from an algebraic 

equation. The unknowns are expressed as a function of turbulent kinetic energy as 

 

 
�̅�
𝜕�̃�

𝜕𝑡
+ �̅��̃� · ∇�̃� = ∇ · (

�̅�𝜈𝑇
𝜎𝑘

∇�̃�) − �̅�𝑽′′𝑽′′̃:∇�̃� − �̅�𝜀̃ 
(3.40) 

 

The first term on the LHS is the local rate of change, and the second term is the 

convection. On the RHS, the first term is the turbulent transport, the second one 

turbulent production and the last term is turbulent dissipation. The constant 𝜎𝑘 = 1.0 

is generally used (Peters 2000). The Reynolds stress in equation (3.40) is usually 

modelled using eddy viscosity hypothesis:  

 

 
−�̅� 𝑽′′𝑽′′̃ = �̅�𝜈𝑡 [2�̃� −

2

3
𝜹∇ · �̃�] −

2

3
𝜹�̅��̃� 

(3.41) 

 

where 𝜹 is the Kronecker delta. The kinematic eddy viscosity  𝜈𝑡  can be modelled 

using the Favre average turbulent kinetic energy, �̃�, and its dissipation, 𝜀̃, as 

 

 
𝜈𝑡 = 𝑐𝜇

�̃�2

𝜀̃
,            with 𝑐𝜇 = 0.09 

(3.42) 

 

The dissipation rate is modelled as follows, 

 

 

𝜀̃ =
𝐶𝐷�̃�

3
2

𝑙𝑚
 

(3.43) 

 

where 𝐶𝐷 is an empirical constant. This model still requires a prescribed length scale 

to be fitted with a given flow, and it is not possible to determine this scale in many 

types of flow. The only advantage over the zero-equation model is that the turbulent 

kinetic energy is calculated. 
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3.5.2.3 Two-equation models 

 

In this model, two transport equations are derived for two scalars, e.g. the turbulent 

kinetic energy, 𝑘, and dissipation rate, 𝜀. The 𝑘 ̵𝜀 model is the most widely used due 

to its completeness and simplicity, and it is incorporated in most commercial CFD 

codes (Pope 2000). Once this model is solved, a length scale (𝑙 = 𝑘3 2⁄ 𝜀⁄ ), a timescale 

(𝜏 = 𝑘 𝜀⁄ ) and an eddy viscosity in equation (3.37) can be computed, and 𝑙𝑚 is no 

longer required. It consists of 𝑘 given by equation (3.40) and 𝜀 with similar form as 

 

 
�̅�
𝜕𝜀̃

𝜕𝑡
+ �̅��̃� · ∇𝜀̃ = ∇ · (

�̅�𝜈𝑇
𝜎𝜀

∇𝜀̃) − 𝑐𝜀1�̅�
𝜀̃

�̃�
𝑉′′𝑉′′̃ :∇�̃� − 𝑐𝜀2�̅�

𝜀̃2

�̃�
 

(3.44) 

 

The constants are generally set as 𝜎𝜀 = 1.3, 𝑐𝜀1 = 1.44 and 𝑐𝜀2 = 1.92. This model is 

usually acceptable for simple flows, but can be inaccurate for complex flows, where 

the inaccuracies come from the turbulent viscosity hypothesis and from the 𝜀-equation 

(Kim 2004; Pope 2000). 

 

3.5.3 Turbulent Reacting Flows 

 

3.5.3.1 Dissipation and Scalar Transport 

 

Another unclosed term appears in equation (3.36) and equation (3.37), which are 

reactive scalars in the form of 𝑽𝑖
′′𝑌′′̃

𝑖 and 𝑽′′ℎ′′̃. Considering 𝜓 represents the reactive 

scalars for the mass fraction and enthalpy, the unclosed term may be written as 𝑽′′𝜓′′̃ . 

Generally, the transport term containing molecular diffusivity, 𝐷𝑖, can be ignored in 

high Reynolds numbers. The scalar can then be modelled as 

 

 𝑉′′𝜓′′̃ =−𝐷𝑡∇�̃�𝑖          and         𝐷𝑡 =
𝜈𝑡
𝑆𝑐𝑡

 (3.45) 
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where 𝐷𝑡 is the turbulent diffusivity and 𝑆𝑐𝑡 is the Schmidt number. The variance can 

be obtained by subtracting equation (3.36) from equation (3.5) and ignoring the mean 

of molecular diffusive flux, 

 

 
�̅�
𝜕𝜓𝑖

′′2̃

𝜕𝑡
+ �̅��̃� · ∇𝜓𝑖

′′2̃ = −∇ · (�̅�𝑽′′𝜓𝑖
′′2̃ )+2�̅�(−𝑽′′𝜓𝑖

′′̃) · ∇�̃�𝑖 − �̅�𝜒𝑖

+ 2�̅�𝜓𝑖
′′�̇�𝑖

′′̃  

(3.46) 

 

The first term on the RHS is the turbulent transport term, the second one the production 

of scalar fluctuation, the third term is the scalar dissipation and the last one covariance 

of the reactive scalar with the chemical source term. For a non-reacting case, the scalar 

dissipation is conventionally modelled as 

 

 
�̃�𝑖 = 𝐶𝐷

𝜀̃

�̃�
𝜓𝑖
′′2̃  (3.47) 

 

where 𝐶𝐷 is a constant which is often set to 2.0 (Peters 2000).  

 

3.5.3.2 Mixture Fraction 

 

Mixture fraction is an important quantity to describe non-premixed combustion, where 

can be used in determining the flame surface (Peters 2000) and is denoted as Z in this 

thesis. Note that the behaviour at the stoichiometric mixture fraction is very important 

in combustion, but the behaviour at a range of mixture fractions is found to be critical 

in this study. It is defined as the ratio of mass originating from the fuel stream to the 

sum of mass in the system  

 

 𝑍 =
𝑚𝐹

𝑚𝐹 +𝑚𝑂
 (3.48) 

 

where 𝑚𝐹  is the mass from the fuels and 𝑚𝑂  is the mass from the oxidisers. The 

mixture fraction is normalized to 0 in the oxidiser stream and 1 in the fuel stream. 

Considering a two-feed system containing fuel in one stream and oxygen in the other 
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stream, the mass fraction of fuel 𝑌𝐹 and oxygen 𝑌𝑂2 is related to the mixture fraction 

as 

 
𝑍 =

𝜈𝑌𝐹 − 𝑌𝑂2 + 𝑌𝑂2,2

𝜈𝑌𝐹,1 + 𝑌𝑂2,2
 (3.49) 

 

where 𝜈 is the stoichiometric oxygen-to-fuel mass ratio, 𝑌𝐹,1 is the mass fraction of 

fuel in the fuel stream and 𝑌𝑂2,2 represents the mass fraction of oxygen in the oxidiser 

stream. 

 

3.5.4 Turbulent Combustion Models 

 

This section discusses the turbulent combustion models available for non-premixed 

combustion. A comprehensive overview of present turbulent approaches is presented 

by Veynante and Vervisch (2002). 

 

3.5.4.1 Eddy Break-Up 

 

Eddy break-up is an attempt to provide a closure for the chemical source term based 

on the work from Spalding (1971), and it is available in most CFD software packages. 

In non-premixed combustion with fast chemistry, the model uses turbulent mixing as 

the rate controlling parameter, with the assumption that the reactions are completed at 

the moment of mixing. The turbulent mean reaction rate of products is defined as 

 

 
�̇�𝑃̅̅ ̅̅ = 𝜌𝐶𝐸𝐵𝑈

𝜀

𝑘
(𝑌𝑃

′′2̅̅ ̅̅ ̅)

1
2
 

(3.50) 

 

where 𝐶𝐸𝐵𝑈  is the Eddy Break-Up constant and 𝑌𝑃
′′2̅̅ ̅̅ ̅

 is the variance of the product 

mass fraction. The variance can be modelled as 

 

 𝑌𝑃
′′2̅̅ ̅̅ ̅ ≅ 𝑌𝑃̅̅̅(1 − 𝑌𝑃̅̅̅) 

(3.51) 
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The model was later modified by Bilger (1976), where for non-premixed combustion, 

the PDF of mixture fraction Z at a point x and time t has to be defined. The mean fuel 

consumption rate is expressed as 

 

 
�̇�𝐹̅̅ ̅̅ = −

1

2
�̅�

𝑌𝐹,1
1 − 𝑍𝑠𝑡

𝜒𝑠𝑡𝑃�̃�(𝑍𝑠𝑡) 
(3.52) 

 

In equation (3.52), 𝑌𝐹,1is the fuel mass fraction in the fuel stream, 𝜒𝑠𝑡 is the scalar 

dissipation rate at the stoichiometric condition and 𝑃�̃�(𝑍𝑠𝑡) is the probability density 

function at the stoichiometric mixture fraction. However, this model tends to 

overestimate the reaction rate especially in the highly strained region, where the ratio 

𝜀 𝑘⁄  is large (Veynante & Vervisch 2002). 

 

3.5.4.2 Flamelet Models 

 

Flamelets are a wrinkled sheet of thin reactive-diffusive layers where the reaction 

occurs (Peters 2000). If the layer is thin compared to the smallest turbulent eddies, the 

flame can be treated as laminar. The flamelet equations are based on the mixture 

fraction using the scalar dissipation rate for the mixing process. The model has the 

advantage of including both finite-rate chemistry and the influence of the local mixture 

fraction gradients (Pitsch, Chen & Peters 1998).  

 

The flamelet equation for the reactive scalars is defined as 

 

 
𝜌
𝜕𝜓𝑖
𝜕𝑡

=
𝜌

2
 𝜒
𝜕2𝜓𝑖
𝜕𝑍2

+ �̇�𝑖 
(3.53) 

 

and the temperature equation as (Barths et al. 2000) 

 

 
𝜌
𝜕𝑇

𝜕𝑡
= 𝜌

𝜒

2

𝜕2𝑇

𝜕𝑍2
+ 𝜌

𝜒

2𝐶𝑝

𝜕𝑇

𝜕𝑍

𝜕𝐶𝑝
𝜕𝑍

+∑𝜌
𝜒

2𝐿𝑒𝑖

𝐶𝑝𝑖
𝐶𝑝

𝜕𝑌𝑖
𝜕𝑍

𝜕𝑇

𝜕𝑍
−
1

𝐶𝑝
∑ℎ𝑖�̇�𝑖

𝑛

𝑖=1

𝑛

𝑖=1

+
1

𝐶𝑝

𝜕𝑝

𝜕𝑡
 

(3.54) 
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where the instantaneous scalar dissipation rate is computed as 

 

 𝜒 = 2𝐷|∇𝑍|2 (3.55) 

 

The transport equation of the mixture fraction is 

 

 
𝜌
𝜕𝑍

𝜕𝑡
+ 𝜌𝑽 · ∇𝑍 = ∇ · (𝜌𝐷∇𝑍) 

(3.56) 

 

From equation (3.53), it can be seen that the reactive scalars, 𝜓𝒊, depend on the mixture 

fraction and the scalar dissipation rate. To obtain mean values of 𝜓𝒊, it is necessary to 

solve the PDF transport equation, where the mean values are obtained using equation 

(3.23), as represented by 

 

 
�̃�𝑖 = ∫ �̃�𝑧

1

0

�̃�𝑖(𝜂)𝑑𝜂 (3.57) 

 

A study by Pitsch, Chen and Peters (1998) on unsteady flamelet modelling of turbulent 

hydrogen-air diffusion flames showed that the transient effects can be ignored for 

predictions of major species. However, the flamelet model is not valid for a flame with 

local extinction and re-ignition, where the variations of scalar dissipation rate are 

significant (Veynante & Vervisch 2002). 

 

A flamelet model has also been used in engine simulations. A study by Keum, Im and 

Assanis (2012) on the use of the flamelet model for a CI engine reported that the model 

satisfactorily describes the physical and chemical processes for spray injection 

conditions. Mittal, Cook and Pitsch (2012) studied the two-dimensional flamelet 

model with different mixture and thermal inhomogeneities for CI and HCCI engines. 

The study, which used CFD, reported that the two-dimensional flamelet model 

performs well in both CI and HCCI engines in the presence of charge stratification. 
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3.5.4.3 Presumed PDF Methods 

 

Presumed PDF methods are used to represent a set of parameters with a pre-determined 

PDF, instead of solving a full PDF equation directly. It is computationally efficient by 

assuming that the involved scalars are statistically independent of each other. The most 

commonly used are β-function PDF and clipped Gaussian PDF. The mean mixture 

fraction and its variance are the parameters that are required to determine the shape of 

a presumed PDF. The conserved scalar transport equation of the Favre mean mixture 

fraction is 

 

 𝜕(�̅��̃�)

𝜕𝑡
+ ∇ · (�̅��̃��̃�) = ∇ · (�̅�𝐷∇�̃�) 

(3.58) 

 

and its variance, 𝑍′′2̃, 

 𝜕 (�̅�𝑍′′2̃)

𝜕𝑡
+ ∇ · (�̅��̃�𝑍′′2̃) = ∇ · (�̅�𝐷∇𝑍′′2̃) + 2�̅�𝐷(∇�̃�)

2
− �̅��̃� 

(3.59) 

 

where the mean scalar dissipation rate can be modelled in a similar fashion as equation 

(3.47) for the non-reacting case. The constant, 𝐶𝐷, in equation (3.47) is increased with 

the increasing of Reynolds number (Peters 2000) and Kim (2004) reported that 𝐶𝐷 is 

large for fast mixing. The value of 𝐶𝐷 used in this thesis is case-specific and will be 

specified later. 
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3.6 Conclusion 

 

This chapter has briefly discussed the conservation equations and models related to 

turbulent flows. The equations are presented in a multi-dimensional form, similarly to 

all the turbulence equations. 

 

A brief description of moment methods is discussed, followed by the difference 

between Reynolds and Favre averaging, with Favre averaging used for the rest of the 

equations. The chemical reactions present the most challenging closure problem, 

where they consume most of the computing resources. There are challenges ahead for 

using detailed chemical mechanism with current turbulent combustion models. 

However, they will not be discussed in this thesis. 

 

The non-premixed combustion, also called diffusion flames, uses two important 

parameters, which are the mean mixture fraction and variance. These two quantities 

will be extensively used in CMC equations. This equation (CMC), together with the 

simplification of the turbulent equations in a zero-dimensional environment, will be 

presented in the next chapter. 
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Chapter 4  

NUMERICAL MODELS 

 

 

4.1 Introduction 

 

Modelling the combustion in an IC engine has received increasing attention from 

researchers worldwide. Models have become widely available in many commercial 

CFD packages, such as Ansys Fluent, Kiva-3V and STAR-CD. They can be 

categorised as: 

 

1. Zero-dimensional models: time is the only independent variable used in the 

combustion model. 

2. Quasi-dimensional models: uses zero-dimensional model for the fluid 

mechanics, with an additional separate model for turbulent combustion to 

account for the inhomogeneities in the system. 

3. Multi-dimensional model: this model solves the conservation equations in 

three dimensions. 

 

A multi-dimensional model requires substantial computational time as compared to 

zero- and quasi-dimensional models, which are a simplified version of a multi-

dimensional model. Thus, the use of simplified models with the addition of turbulent 

sub-models becomes increasingly important because of its advantages in 

computational time and resources. A quasi-dimensional model used in this thesis was 

initially developed by Assanis and Heywood (1986). This thesis uses the term zero-

dimensional instead of quasi-dimensional model because the simulation environment 

is based on a zero-dimensional model. However, some changes have been made, so 

that the model uses different heat release rate and valve motion models for the zero-

dimensional simulation and added chemical reaction mechanisms, followed by the 
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CMC mixing model later on. This chapter describes the equations used in the zero- 

and quasi-dimensional single-zone model, and also the CMC formulations. 

 

 

4.2 Single-Zone Model 

 

The single-zone model assumes that the mixture of air and fuel in the combustion 

chamber is mixed homogeneously before combustion occurs. The mixing process of 

the HCCI engine in this study begins in the inlet manifold. Thus, the CMC mixing 

starts from the inlet manifold, where the fuel and air are in a non-premixed condition. 

The engine modelling starts with a zero-dimensional model, before being updated to a 

quasi-dimensional model with the addition of a turbulence model. The CMC mixing 

model was then added after the quasi-dimensional model. 

 

4.2.1 Zero-Dimensional Modelling 

 

A zero-dimensional model uses time as the independent variable to model the 

combustion in the chamber. In this study, time can be represented by 𝜃, which is the 

CA, because 𝜃  monotonically increases with time. In the next sub-sections, the 

equations used to model the zero-dimensional environment for a single-cylinder 

engine are discussed. The MATLAB code was developed based on these equations. 

 

4.2.1.1 Engine Parameters 

 

The engine movements are defined from the engine parameters, which have to be 

defined before employing the energy equation of the first law of thermodynamics in 

the zero-dimensional model. Figure 4.1 shows the geometry of the piston and crank 

mechanisms. 
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Figure 4.1 Engine geometry of the piston and crank mechanisms. 

 

The crank radius, a, is defined as half the stroke length, 𝐿 

 

 
𝑎 =

𝐿

2
 (4.1) 

 

and the ratio of connecting rod length to crank radius is given by 

 

 
𝑅 =

𝑙

𝑎
 (4.2) 

 

The rotational speed of the engine is 

 

 
𝜔 =

2𝜋𝑁

60
 (4.3) 
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where 𝑁 is the engine speed in rotations per minute (RPM). For a flat piston crown, 

the area is given by 

 
𝐴𝑝 =

𝜋𝐵2

4
 (4.4) 

 

where 𝐵 represents the bore diameter of the engine. When the piston is at TDC, the 

clearance volume is 

 
𝒱𝑐 =

𝒱𝑑
(𝑅𝑐 − 1)

 (4.5) 

 

where 𝒱𝑑 is the displacement volume and 𝑅𝒄 is the compression ratio, which are given 

as 

 𝒱𝑑 = 𝐴𝑝𝐿 (4.6) 

 
𝑅𝑐 =

maximum cylinder volume

minimum cylinder volume
=
𝒱𝑑 + 𝒱𝑐
𝒱𝑐

 
(4.7) 

 

From these parameters, the instantaneous piston speed can be obtained 

 

 
𝑆𝑝 =

𝜋

2
𝑆�̅�𝑠𝑖𝑛𝜃 (1 +

𝑐𝑜𝑠𝜃

√𝑅2 − 𝑠𝑖𝑛2𝜃
) (4.8) 

 

where �̅�𝑝 is the mean piston speed, defined as 

 

 
𝑆�̅� =

2𝐿𝑁

60
 (4.9) 

 

The instantaneous piston speed 𝑆𝑝 is zero at the beginning of the stroke and approaches 

its maximum at the middle of the stroke. It goes to zero again at the end of the stroke, 

as shown in Figure 4.2.  
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Figure 4.2 Instantaneous piston speed: zero at TDC and BDC, maximum at the middle of the stroke. 

 

Then, the instantaneous cylinder volume at any crank angle location can be determined 

from 

 𝒱 = 𝒱𝑐 + 𝐴𝑝(𝑙 + 𝑎 − 𝑠) (4.10) 

 

where 𝑠 is the distance between crank axis and piston pin axis, which is given by 

 

 𝑠 = 𝑎 cos 𝜃 + √(𝑙2 − 𝑎2 sin2 𝜃) (4.11) 

 

After manipulation of equations (4.10) and (4.11), the instantaneous cylinder volume 

is 

 
𝒱 = 𝒱𝑐 [1 +

𝑅𝑐 − 1

2
(𝑅 + 1 − 𝑐𝑜𝑠𝜃 − √𝑅2 − 𝑠𝑖𝑛2𝜃)] (4.12) 

 

with the rate of change of volume 

 

 𝑑𝒱

𝑑𝜃
= 𝒱𝑐 [

𝑅𝑐 − 1

2
(𝑠𝑖𝑛𝜃) (

1 + 𝑐𝑜𝑠𝜃

√𝑅2 − 𝑠𝑖𝑛2𝜃
)] (4.13) 

 

Cylinder volume is an important parameter because it determines the piston work in 

the energy equation. 
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4.2.1.2 Valve Geometry 

 

Valve geometry is an important parameter to be considered because the mixing begins 

in the inlet manifold and it determines the mass flow rate to the combustion chamber. 

In general engine configurations, the valve head is circular with a slightly different 

diameter between inlet and exhaust valves. Typical valve geometry for most engines 

is shown in Figure 4.3. 

 

 

Figure 4.3 Valve geometry for most engines with parameters defining the valve. 

 

Based on Heywood’s definition (Heywood 1988) on valve configurations for most 

engines, the valve head diameter is taken as 

 

 𝐷𝑣 = 1.1𝐷 (4.14) 

 

where 𝐷 is the inner seat diameter, as shown in Figure 4.3. Then, the valve seat width 

is 

 𝑆𝑤 = 𝐷𝑣 − 𝐷 (4.15) 

 

with the valve stem diameter defined as 

 

 𝐷𝑠 = 0.2𝐷 (4.16) 
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In order to determine the mass flow rate of the mixture to the combustion chamber, 

the valve lift profile has to be defined. The valve lift profile is determined by using the 

desired maximum valve lift Lv and half-event angle c. The half-event angle is defined 

as half of the total valve opening duration. The profile as a function of crank angle 

(Assanis & Polishak 1990) is then given by 

 

 𝑦 = 𝐿𝑣 + 𝐶2𝜃
2 + 𝐶𝑤𝜃

𝑤 + 𝐶𝑞𝜃
𝑞 + 𝐶𝑟𝜃

𝑟 + 𝐶𝑠𝜃
𝑠 (4.17) 

 

where 𝑤, 𝑞, 𝑟 and 𝑠  are constants to match the desired valve lift curve, which are 

selected as 𝑤 = 6, 𝑞 = 8, 𝑟 = 10 and 𝑠 = 12. The coefficients 𝐶𝑤 , 𝐶𝑞 , 𝐶𝑟  and 𝐶𝑠 are 

 

 
𝐶2 =

−𝑤𝑞𝑟𝑠𝐿𝑣
[(𝑤 − 2)(𝑞 − 2)(𝑟 − 2)(𝑠 − 2)𝑐2]

 (4.18) 

 
𝐶𝑤 =

2𝑞𝑟𝑠𝐿𝑣
[(𝑤 − 2)(𝑞 − 𝑤)(𝑟 − 𝑤)(𝑠 − 𝑤)𝑐𝑤]

 
(4.19) 

 
𝐶𝑞 =

−2𝑤𝑟𝑠𝐿𝑣
[(𝑞 − 2)(𝑞 − 𝑤)(𝑟 − 𝑞)(𝑠 − 𝑞)𝑐𝑞]

 
(4.20) 

 
𝐶𝑟 =

2𝑤𝑞𝑠𝐿𝑣
[(𝑟 − 2)(𝑟 − 𝑤)(𝑟 − 𝑞)(𝑠 − 𝑟)𝑐𝑟]

 
(4.21) 

 
𝐶𝑠 =

−2𝑤𝑞𝑟𝐿𝑣
[(𝑠 − 2)(𝑠 − 𝑤)(𝑠 − 𝑞)(𝑠 − 𝑟)𝑐𝑠]

 
(4.22) 

 

Using equation (4.17), a typical valve lift profile with tappet mechanism (mechanical 

lifters) is illustrated in Figure 4.4. Once the valve lift is known, the effective valve 

open area can be obtained. In this case, the effective valve open area is taken as its 

curtain area, which is given by 

 

 𝐴𝑐 = 𝜋𝐷𝑣𝐿𝑣 (4.23) 

 

Figure 4.4 shows a typical profile of valve lift for poppet valves with mechanical 

lifters. Generally, larger valve sizes (or more valves per cylinder) give higher 

maximum air flow in and out of the chamber.  
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Figure 4.4 Valve lift profile for typical poppet valves with mechanical lifters. 

 

The mass flow rate to the combustion chamber can be obtained by using the equation 

of compressible flow through a flow restriction (Heywood 1988). The equation 

includes the real gas flow effects with discharge coefficient Cd obtained from the 

experiments. In principle, the mass flows in or out of the combustion chamber when 

there is a pressure difference between the chamber and ports. The equation is separated 

into two cases: choked and subsonic flows. For choked flow, the following conditions 

are obeyed: 

 

(
𝑝𝑇

𝑝0⁄ ≤ [
2

𝛾 + 1
]

𝛾
𝛾−1⁄

) 

 

�̇�𝑖𝑛 =
𝐶𝑑𝐴𝑐𝑝0

√𝑅𝑇0
√𝛾 [

2

𝛾 + 1
]

𝛾+1
2(𝛾−1)⁄

 (4.24) 

 

while for subsonic flow, 

 

(
𝑝𝑇

𝑝0⁄ > [
2

𝛾 + 1
]

𝛾
𝛾−1⁄

) 
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�̇�𝑖𝑛 =
𝐶𝑑𝐴𝑐𝑝0

√𝑅𝑇0
(
𝑝𝑇
𝑝0
)

1
𝛾⁄

{
2𝛾

𝛾 − 1
[1 − (

𝑝𝑇
𝑝0
)

𝛾−1
𝛾⁄

]}

1
2⁄

 (4.25) 

 

where 𝑝𝑇 , 𝑝0 , 𝑇0  and 𝛾  are the downstream static pressure, upstream stagnation 

pressure, upstream stagnation temperature and ratio of specific heats, respectively. 

These equations, (4.24) and (4.25), are a function of gas properties, valve geometry 

and thermodynamics states upstream and downstream of the valves. For flow into the 

combustion chamber, 𝑝0 is the intake port pressure and 𝑝𝑇 is the cylinder pressure. On 

the other hand, 𝑝0 is the cylinder pressure and 𝑝𝑇 is the exhaust port pressure for the 

flow out of the combustion chamber. The value 𝐶𝑑 is obtained experimentally from 

Stiesch (2003) and interpolated for the whole valve lift event as shown in Figure 4.5. 

 

Once the mass flow rate is determined, it will be used in the energy equation and also 

to obtain the total mass in the combustion chamber. The next section will discuss the 

conservation equations used in the zero-dimensional model, which is a simplified 

version of the multi-dimensional model. 

 

 

 

Figure 4.5 Discharge coefficient for one valve event 
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4.2.1.3 Conservation of Mass 

 

The combustion chamber is assumed to be the control volume of the system, where it 

has mass transfer in and out of the system through the intake and exhaust valves. Thus, 

the mass in the system obeys 

 

 𝑑𝑚

𝑑𝑡
=∑�̇�𝑗

𝑗

 (4.26) 

 

where j is the number of flows in (�̇�𝑗 positive) or out of the system and 𝑚 is the total 

mass in the system.   

 

4.2.1.4 Conservation of Species 

 

Conservation of species is used to determine the evolution of species inside the 

combustion chamber due to the chemical reactions. The rate of change of the mass 

fraction of species 𝑖 is given by 

 

 𝑑𝑌𝑖
𝑑𝑡

+
(𝑌𝑖 − 𝑌𝑖𝑖𝑛)�̇�

�̅�𝒱
= �̇�𝑖 (4.27) 

 

where 𝑌𝑖𝑖𝑛 is the inlet mass fraction and �̇�𝑖 is the mass reaction rate of the species 𝑖.  

 

4.2.1.5 Conservation of Energy 

 

The first law of thermodynamics equation in differential form is used to model the 

combustion in the zero-dimensional single-zone model. The control volume of the 

combustion chamber is assumed to be an open thermodynamics system, by ignoring 

the changes in potential energy. The derivation of the first law of thermodynamics for 

engine simulations is described extensively by Assanis and Heywood (1986). In 

differential form, the first law of thermodynamics equation is 

 



Chapter 4 

PhD Mechanical Engineering                                                                                 97 

 𝑑𝑈

𝑑𝑡
=
𝑑𝑄ℎ
𝑑𝑡

−
𝑑𝑊

𝑑𝑡
+∑

𝑑𝐻𝑗
𝑑𝑡

𝑗

 (4.28) 

 

where 𝑈 is the internal energy, 𝑄ℎ is the heat transfer, 𝑊 is the work and 𝐻𝑗  is the 

enthalpy of flows entering or leaving the system. By using the definition of each term, 

equation (4.28) then becomes 

 

 𝑑(𝑚𝑢)

𝑑𝑡
=
𝑑𝑄ℎ
𝑑𝑡

− 𝑝
𝑑𝒱

𝑑𝑡
+∑ℎ𝑗

𝑑𝑚𝑗
𝑑𝑡

𝑗

 (4.29) 

 

After manipulating equation (4.29), the final equation for the temperature change in 

the zero-dimensional single-zone model is given by 

 

 
𝑑𝑇

𝑑𝑡
=
1

𝐶𝐴
[∑[(

𝑝𝓋

𝑅
𝑅𝑖 − ℎ𝑖)

𝑑𝑌𝑖
𝑑𝑡
]

𝑖

−
𝐶𝐵
𝑚

𝑑𝑚

𝑑𝑡
+
1

𝑚
(
𝑑𝑄ℎ
𝑑𝑡

− 𝑝
𝑑𝒱

𝑑𝑡
+∑�̇�𝑗ℎ𝑗

𝑗

)] 

(4.30) 

 

where 𝐶𝐴 and 𝐶𝐵 are defined as 

 𝐶𝐴 = 𝑐�̅� −
𝑝𝓋

𝑇
 (4.31) 

 𝐶𝐵 = ℎ − 𝑝𝓋 (4.32) 

 

The derivation of equation (4.30) is given in Appendix A. Once the temperature is 

obtained from equation (4.30), the in-cylinder pressure is determined by using the ideal 

gas law 

 
𝑝 =

𝜌𝑅𝑢𝑇

𝑊𝑚𝑤̅̅ ̅̅ ̅̅
 (4.33) 

 

where 𝑅𝑢 is the universal gas constant and 𝑊𝑚𝑤̅̅ ̅̅ ̅̅  is the mean molecular weight of the 

mixture. 
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4.2.1.6 Heat Loss Model in Zero-Dimensional Model 

 

Heat transfer from the combustion chamber to the cylinder wall occurs by convection 

and radiation. In HCCI engines, radiation heat transfer is negligible because its effect 

is very small, due to low soot and low temperature combustion (Bengtsson, Gafvert & 

Strandh 2004; Chang et al. 2004): therefore it is ignored (Soyhan et al. 2009). The 

convective heat transfer was modelled to match the experimental results so that the in-

cylinder gas motion can be predicted (Stone 1999). The convective heat transfer rate 

can be described by Newton’s law of cooling (Stiesch 2003), as 

 

 𝑑𝑄ℎ
𝑑𝑡

= ℎ𝑐𝐴𝑤(𝑇 − 𝑇𝑤) (4.34) 

 

where ℎ𝑐  is the heat transfer coefficient, 𝐴𝑤  is the wall area and 𝑇𝑤  is the wall 

temperature. The wall area is the sum of the piston, cylinder head and cylinder wall 

area, which is 

 
𝐴𝑤 =

𝜋

4
𝐵2 + (

𝜋

4
𝐵2 +

4𝒱𝑐
𝐵
)

+ [(𝜋𝐵
𝐿

2
) (𝑅 + 1 − 𝑐𝑜𝑠𝜃 − √𝑅2 − 𝑠𝑖𝑛2𝜃)] 

(4.35) 

 

In zero-dimensional modelling, an empirical sub-model is used for the heat transfer 

coefficient, where the model does not contain any physical or chemical principles. 

Instead, the model attempts to reproduce the characteristics of heat loss obtained from 

experiments (Stiesch 2003). In this thesis, the heat transfer coefficient is modelled 

using the modified Woschni (Chang et al. 2004) correlation, which has been calibrated 

in an HCCI engine mode. The details of the correlation are discussed in Section 5.3.2. 

 

4.2.2 Quasi-Dimensional Modelling 

 

Quasi-dimensional modelling requires a separate turbulent model. In this study, a 

simplified form of the 𝑘-𝜀 turbulence model was used. The heat loss is no longer 

modelled; instead, the turbulence models were used to predict the behaviour of the 

heat release rate by the combustion products. 
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4.2.2.1 Turbulence Models 

 

An energy cascade method by Mansouri, Heywood and Radhakrishnan (1982) was 

used to model the turbulence. It is called the energy cascade method because the mean 

kinetic energy, 𝐾, (due to the mean velocity of the fluid) enters the cylinder through 

the intake valve and is converted to the turbulent kinetic energy, 𝑘, (the strength of 

turbulence in the flow) via turbulent dissipation, (𝜀). The turbulent kinetic energy is 

then converted into heat by viscous dissipation. These are represented by the following 

differential equations:  

 

 𝑑𝐾

𝑑𝑡
=
1

2
�̇�𝑖𝑛𝑉𝑖𝑛

2 − 𝑃 − 𝐾
�̇�𝑒𝑥

𝑚
 (4.36) 

 𝑑𝑘

𝑑𝑡
= 𝑃 − 𝜀 − 𝑘

�̇�𝑒𝑥

𝑚
+ 𝑅𝐷𝑇 

(4.37) 

 

where �̇�𝑖𝑛  is the mass flow rate of the inlet flow, 𝑉𝑖𝑛  is the inlet velocity to the 

cylinder, 𝑃 is the production term, �̇�𝑒𝑥 is the exhaust mass flow rate and 𝑅𝐷𝑇 is the 

Rapid Distortion Theory term. The turbulence dissipation rate is then given by 

 

 

𝜀 =
𝑚𝑣′

3

𝑙𝑚
=
𝑚

𝑙𝑚
(
2𝑘

3𝑚
)

3
2
 (4.38) 

 

assuming that the turbulence is isotropic. In equation (4.38),  𝑣′  is the turbulent 

intensity and 𝑙𝑚  is the characteristic length scale, which is assumed to be the 

instantaneous combustion chamber height, subject to the restriction that it is less than 

half of the cylinder bore (Agarwal et al. 1998). 

 

RDT is the turbulence amplification rate due to rapid distortion during compression 

and combustion processes, which is modelled by 

 

 
𝑅𝐷𝑇 =

2

3
(
𝑘

𝜌
) (
𝑑𝜌

𝑑𝑡
) (4.39) 
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The production term, on the other hand, uses the assumption that the turbulence is 

generated in the boundary layer over a flat plate 

 

 

𝑃 = 𝜇𝑡 (
𝜕𝑉

𝜕𝑦
)
2

≈ 0.3307𝐶𝛽 (
𝐾

𝐿
) (
𝑘

𝑚
)

1
2
 (4.40) 

 

where 𝐶𝛽  is an adjustable constant. The value of 𝐶𝛽  is chosen as 1, following the 

calibration from Agarwal et al. (1998). Once the turbulence is modelled, it will be used 

to determine the mixture velocity in the combustion chamber, which is then converted 

to the heat loss due to combustion. 

 

4.2.2.2 Heat Loss Model in Quasi-Dimensional Model 

 

The convective heat transfer in the quasi-dimensional model is obtained by using the 

same heat loss equation as in equation (4.34). However, the heat transfer coefficient is 

obtained from the Nusselt-Reynolds number correlation as 

 

 
ℎ𝑐 =

Nu𝛾𝑇
𝑙𝑚

 (4.41) 

 

where Nu is the Nusselt number and 𝛾𝑇 is the thermal conductivity of the mixture. The 

Nusselt number is given by 

 

 Nu = 𝛩𝑅𝑒𝑑 (4.42) 

 

where 𝛩 and 𝑑 are the adjustable constants to fit the experimental data. The suggested 

values are (Assanis & Heywood 1986) 

 

 𝛩 = 0.035 − 0.13  

 𝑑 = 0.7 − 0.8 (4.43) 

Then, the Reynolds number is obtained based on the steady turbulent flow in a pipe as 

 
Re =

𝜌𝑉𝑚𝑙𝑚
𝜇

 (4.44) 
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where 𝜇 is the dynamic viscosity and 𝑉𝑚 is the characteristic velocity given by 

 

 

𝑉𝑚 = √[𝑉𝑓
2 + 𝑣′2 + (

𝑆𝑝
2
)
2

] (4.45) 

 

where 𝑉𝑓 is the mean flow velocity. The characteristic velocity in equation (4.45) is 

due to the contribution of mean kinetic energy, turbulent kinetic energy and the piston 

motion.  

 

 

4.3 Mixing Model: Conditional Moment Closure 

 

4.3.1 Conditional Transport Equations 

 

The CMC transport equations solve the conditional means of reactive scalars and 

temperature. The mass fraction of species 𝑖, 𝑌𝑖, is chosen as the reactive scalars and in 

non-premixed combustion, the reactive scalars is conditionally averaged with respect 

to the conserved scalar, 𝑍, which is the mixture fraction. This is because the turbulent 

fluctuations of reactive scalars are strongly dependent on the fluctuations of the 

mixture fraction. The conditional mean of the mass fraction, 𝑌𝑖 , and the 

temperature,  𝑇, are then defined as 

 

 𝑄𝑖(𝜂; 𝒙, 𝑡) ≡ 〈𝑌𝑖(𝒙, 𝑡)|𝜂 = 𝑍〉 (4.46) 

 𝑄𝑇(𝜂; 𝒙, 𝑡) ≡ 〈𝑇(𝒙, 𝑡)|𝜂 = 𝑍〉 (4.47) 

 

where 𝑄𝑖 is the conditional mean of reactive scalars, 𝑄𝑇 is the conditional temperature 

and 𝜂 is the sample space variable for the mixture fraction, 𝑍, at location 𝒙 and time 

𝑡. The operator 

 

 〈• |𝑍(𝒙, 𝑡) = 𝜂〉 (4.48) 
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denotes the conditional averaging subject to the condition on the right of the vertical 

bar. The instantaneous mass fraction, 𝑌, and temperature, 𝑇, can be decomposed into 

a conditional mean and conditional fluctuation as 

 

 𝑌𝑖(𝒙, 𝑡) = 𝑄𝑖(𝜂: 𝒙, 𝑡) + 𝑌𝑖
′′(𝒙, 𝑡) (4.49) 

 𝑇(𝒙, 𝑡) = 𝑄𝑇(𝜂: 𝒙, 𝑡) + 𝑇
′′(𝒙, 𝑡) (4.50) 

 

where 𝑌𝑖
′′ and 𝑇′′ are the conditional fluctuations with respect to the conditional mean 

mass fraction and conditional mean temperature, respectively. Differentiating equation 

(4.49) and (4.50) with respect to time gives (Klimenko & Bilger 1999) 

 

 
𝜕𝑌𝑖
𝜕𝑡

=
𝜕𝑄𝑖
𝜕𝑡

+
𝜕𝑄𝑖
𝜕𝜂

𝜕𝑍

𝜕𝑡
+
𝜕𝑌𝑖

′′

𝜕𝑡
 (4.51) 

 
𝜕𝑇

𝜕𝑡
=
𝜕𝑄𝑇
𝜕𝑡

+
𝜕𝑄𝑇
𝜕𝜂

𝜕𝑍

𝜕𝑡
+
𝜕𝑇′′

𝜕𝑡
 (4.52) 

 

and with respect to the location is 

 

 ∇𝑌𝑖 = ∇𝑄𝑖 +
𝜕𝑄𝑖
𝜕𝜂

∇𝑍 + ∇𝑌𝑖
′′ (4.53) 

 ∇𝑇 = ∇𝑄𝑇 +
𝜕𝑄𝑇
𝜕𝜂

∇𝑍 + ∇𝑇′′ (4.54) 

   

4.3.1.1 Conditional Mass Fraction 

 

To obtain the transport equation for the conditional mass fraction, the molecular 

diffusive flux in equation (3.5) is substituted to equation (4.53) and leads to 

 

 

𝛻. (𝜌𝐷𝑖𝛻𝑌𝑖) = 𝛻. (𝜌𝐷𝑖𝛻𝑄𝑖) +
𝜕𝑄𝑖
𝜕𝜂

𝛻. (𝜌𝐷𝑖𝛻𝑍) + 𝜌𝐷𝑖(𝛻𝑍)
2
𝜕2𝑄𝑖
𝜕𝜂2

+ 𝜌𝐷𝑖𝛻𝑍. 𝛻
𝜕𝑄𝑖
𝜕𝜂

+ 𝛻. (𝜌𝐷𝑖𝛻𝑌𝑖
′′) 

(4.55) 

 

Substituting equations (4.51), (4.53) and (4.55) into equation (3.5) gives 
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𝜌
𝜕𝑄𝑖
𝜕𝑡

+ 𝜌𝑽. 𝛻𝑄𝑖 = 𝜌𝑁
𝜕2𝑄𝑖
𝜕𝜂2

+ 𝜌𝐷𝑖∇𝑍∇
𝜕𝑄𝑖
𝜕𝜂

+ ∇(𝜌𝐷𝑖∇𝑄𝑖)  

+ ∇(𝜌𝐷𝑖∇𝑌𝑖
′′) − 𝜌

𝜕𝑌𝑖
′′

𝜕𝑡
− 𝜌(𝑽. ∇𝑌𝑖

′′) + 𝜌�̇� 

(4.56) 

 

where 𝑁 is the scalar dissipation rate, which is denoted as 𝑁 ≡ 𝐷𝑖(∇𝑍)
2. Taking the 

conditional expectation of equation (4.56), conditional on 𝑍(𝒙, 𝑡) = 𝜂, yields 

 

 𝜌𝜂
𝜕𝑄𝑖
𝜕𝑡

+ 𝜌𝜂〈𝑽|𝜂〉. 𝛻𝑄𝑖 = 𝜌𝜂〈𝑁|𝜂〉
𝜕2𝑄𝑖
𝜕𝜂2

+ 𝜌𝜂〈�̇�|𝜂〉 + 𝑒𝑄 + 𝑒𝑌 (4.57) 

 

with 

 𝑒𝑄 = 〈∇(𝜌𝐷𝑖∇𝑄𝑖) + 𝜌𝐷𝑖∇𝑍∇
𝜕𝑄𝑖
𝜕𝜂

|𝑍(𝑥, 𝑡) = 𝜂〉 (4.58) 

 𝑒𝑌 = −〈𝜌
𝜕𝑌𝑖

′′

𝜕𝑡
+ 𝜌(𝑽. ∇𝑌𝑖

′′) − ∇(𝐷𝑖𝜌∇𝑌𝑖
′′)|𝑍(𝑥, 𝑡) = 𝜂〉 (4.59) 

 

Equation (4.57) represents a multi-dimensional CMC equation in the unclosed form 

for  𝑄 , where 𝜌𝜂 ≡ 〈𝜌|𝜂〉  and the conditional fluctuations of density are ignored. 

According to Klimenko and Bilger (1999), 𝑒𝑄 in equation (4.58) is small when the 

Reynolds number is large. Thus, this term can be ignored. Also, following the closure 

hypothesis, 𝑒𝑌 in equation (4.59) can be modelled as  

 

 𝑒𝑌 = −
∇. [𝜌𝜂〈𝑽

′′𝑌𝑖
′′|𝜂〉𝑃𝑧(𝜂)]

𝑃𝑧(𝜂)
 (4.60) 

 

Therefore, equation (4.57) can be rewritten as 

 

 

𝜌𝜂
𝜕𝑄𝑖
𝜕𝑡

+ 𝜌𝜂〈𝑽|𝜂〉. 𝛻𝑄𝑖

= 𝜌𝜂〈𝑁|𝜂〉
𝜕2𝑄𝑖
𝜕𝜂2

+ 𝜌𝜂〈�̇�|𝜂〉 −
∇. [𝜌𝜂〈𝑽

′′𝑌𝑖
′′|𝜂〉𝑃𝑧(𝜂)]

𝑃𝑧(𝜂)
 

(4.61) 

 

The last term on the LHS is the convection term. The first term on the RHS corresponds 

to diffusion in conserved scalar space and is affected by the scalar dissipation rate. The 
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second term on the RHS is the conditional expectation of the chemical source term and 

the last term represents spatial diffusion. Equation (4.61) is the unconservative form 

of the CMC equation and the conditional covariance in the spatial diffusion term is 

usually ignored, while 〈𝑁|𝜂〉 must satisfy the conserved scalar PDF transport equation 

 

 
𝜕𝑃𝑧(𝜂)𝜌𝜂

𝜕𝑡
+ ∇(〈𝑽|𝜂〉𝑃𝑧(𝜂)𝜌𝜂) +

𝜕2〈𝑁|𝜂〉𝑃𝑧(𝜂)𝜌𝜂

𝜕𝜂2
= 0 (4.62) 

 

The unconservative CMC equation can be transformed to its conservative form by 

multiplying equation (4.61) by 𝑃𝑧(𝜂) and equation (4.62) by 𝑄𝑖 and adding to give 

 

 

𝜕𝑄𝑖𝑃𝑧(𝜂)𝜌𝜂

𝜕𝑡
+ ∇(〈𝑽|𝜂〉𝑸𝒊𝑃𝑧(𝜂)𝜌𝜂)

= 〈�̇�|𝜂〉𝑃𝑧(𝜂)𝜌𝜂 +
𝜕

𝜕𝜂
(〈𝑁|𝜂〉𝑃𝑧(𝜂)𝜌𝜂

𝜕𝑄𝑖
𝜕𝜂

−
𝜕〈𝑁|𝜂〉𝑃𝑧(𝜂)𝜌𝜂𝑄𝑖

𝜕𝜂
) 

(4.63) 

 

For homogeneous CMC, which was used in the study, the combustion chamber is 

modelled as an Incompletely Stirred Reactor (ISR) (Kwon et al. 2011) with varying 

Probability Density Function (PDF). 

 

 

𝜕𝑄𝑖𝑃𝑧(𝜂)𝜌𝜂

𝜕𝑡
+ ∇ (�̅�〈𝑽|𝜂〉𝑸𝒊�̃�𝑧(𝜂))

= �̅�〈�̇�|𝜂〉𝑃𝑧(𝜂) −
𝜕2�̅�〈𝑁|𝜂〉�̃�𝑧(𝜂)𝑄𝑖

𝜕𝜂2
+ 2

𝜕

𝜕𝜂
(�̅��̃�𝑧(𝜂)〈𝑁|𝜂〉

𝜕𝑄𝑖
𝜕𝜂
) 

(4.64) 

 

where the Favre PDF is introduced: 

 

 �̃�𝑧(𝜂) =
〈𝜌|𝜂〉𝑃𝑧(𝜂)

�̅�
  

 

Taking the volume integral of equation (4.64) and applying the flux divergence 

theorem to the convective term produces: 
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∭
𝜕𝑄𝑖�̃�𝑧(𝜂)𝜌𝜂

𝜕𝑡
𝒱

𝑑𝒱 + ∬(�̅�〈𝑽|𝜂〉𝑄𝑖�̃�𝑧(𝜂))
𝑜𝑢𝑡

𝑑𝑆

𝑆𝑜𝑢𝑡

− ∬(�̅�〈𝑽|𝜂〉𝑄𝑖�̃�𝑧(𝜂))
𝑖𝑛
𝑑𝑆

𝑆𝑖𝑛

=∭�̅�〈�̇�|𝜂〉�̃�𝑧(𝜂)𝑑𝒱

𝒱

−∭
𝜕2�̅�〈𝑁|𝜂〉�̃�𝑧(𝜂)𝑄𝑖

𝜕𝜂2
𝒱

𝑑𝒱

+∭2
𝜕

𝜕𝜂
(�̅��̃�𝑧(𝜂)〈𝑁|𝜂〉

𝜕𝑄𝑖
𝜕𝜂
)

𝒱

𝑑𝒱 

(4.65) 

 

where 𝑆𝑜𝑢𝑡 is the cross-sectional area of the chamber and 𝑆𝑖𝑛 includes both oxidiser 

and fuel inlets. The conditional expectations of the reactive scalars (�̇�, 𝑄𝑖) are uniform 

inside the core of the chamber and can be moved outside of the integrals in equation 

(4.65) to yield 

 

 

𝜕𝑄𝑖∭ �̃�𝑧(𝜂)𝜌𝜂𝒱
𝑑𝒱

𝜕𝑡
+ 𝑄𝑜𝑢𝑡 ∬(�̅�〈𝑽|𝜂〉�̃�𝑧(𝜂))

𝑜𝑢𝑡
𝑑𝑆

𝑆𝑜𝑢𝑡

− 𝑄𝑖𝑛 ∬(�̅�〈𝑽|𝜂〉�̃�𝑧(𝜂))
𝑖𝑛
𝑑𝑆

𝑆𝑖𝑛

= 〈�̇�|𝜂〉∭�̅��̃�𝑧(𝜂)𝑑𝒱

𝒱

−
𝜕2𝑄𝑖∭ 2�̅��̃�𝑧(𝜂)〈𝑁|𝜂〉𝒱

𝑑𝒱

𝜕𝜂2

+
𝜕2𝑄𝑖
𝜕𝜂2

∭�̅��̃�𝑧(𝜂)〈𝑁|𝜂〉

𝒱

𝑑𝒱 

(4.66) 

 

By using the following definitions for certain integrals: 

 

 𝑃𝑖𝑜
∗ =

1

�̇�
∬�̅�〈𝑽|𝜂〉�̃�𝑧(𝜂)𝑑𝑆

𝑆

 (4.67) 

 𝜌∗∗ =
1

𝒱
∭�̅�

𝒱

𝑑𝒱 (4.68) 

 𝑃𝑧
∗∗ =

1

𝜌∗∗𝒱
∭�̅�

𝒱

�̃�𝑧(𝜂)𝑑𝒱 (4.69) 
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 𝑁∗∗ =
1

𝜌∗∗𝑃𝑧
∗∗𝒱

∭�̅�

𝒱

�̃�𝑧(𝜂)〈𝑁|𝜂〉𝑑𝒱 (4.70) 

 

Equation (4.66) can then be written as 

 

 

𝜏
𝜕𝑃𝑧

∗∗𝑄𝑖
𝜕𝑡

+ (𝑄𝑜𝑢𝑡𝑃𝑜𝑢𝑡
∗ − 𝑄𝑖𝑛𝑃𝑖𝑛

∗ )

= 𝜏 (𝑃𝑧
∗∗〈�̇�|𝜂〉 + 2

𝜕

𝜕𝜂
(𝑃𝑧

∗∗𝑁∗∗
𝜕𝑄𝑖
𝜕𝜂
) −

𝜕2𝑃𝑧
∗∗𝑁∗∗𝑄𝑖
𝜕𝜂2

) 

(4.71) 

 

where 𝜏 is the residence time, given by 

 

 𝜏 =
𝜌∗∗𝒱

�̇�
 (4.72) 

 

In deriving equation (4.66), two assumptions have been made: 1) the conditional 

expectations of reactive scalars are uniform inside the core; and 2) the outlet 

composition of 𝑄 is the same as that within the volume, thus 𝑄𝑜𝑢𝑡 = 𝑄𝑖. Integrating 

the PDF transport equation (4.62) in a similar fashion and using the definitions of 

equations (4.67)-(4.70), yields 

 

 𝜏
𝜕𝑃𝑧

∗∗

𝜕𝑡
+ (𝑃𝑜𝑢𝑡

∗ − 𝑃𝑖𝑛
∗ ) = −𝜏

𝜕2𝑃𝑧
∗∗𝑁∗∗

𝜕𝜂2
 (4.73) 

 

Equation (4.73) is multiplied by 𝑄𝑖 and subtracting from equation (4.71) gives 

 

 𝜏𝑃𝑧
∗∗
𝜕𝑄𝑖
𝜕𝑡

+ (𝑄𝑖 − 𝑄𝑖𝑛)𝑃𝑖𝑛
∗ = 𝜏 (𝑃𝑧

∗∗〈�̇�|𝜂〉 + 𝑃𝑧
∗∗𝑁∗∗

𝜕2𝑄𝑖
𝜕𝜂2

) (4.74) 

For the unsteady ISR, equation (4.74) can be written as 

 

 
𝜕𝑄𝑖
𝜕𝑡

+
(𝑄𝑖 − 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
= 〈𝑁|𝜂〉

𝜕2𝑄𝑖
𝜕𝜂2

+ 〈�̇�|𝜂〉 (4.75) 

 

where �̇�𝑖𝑛 as the denominator in 𝜏 is the mass flow rate into the system, 𝑄𝑖𝑛 is the 

inlet reactive scalar and 𝑃𝑖𝑛
∗  is the inlet averaged PDF. The mass flow rate,  �̇�𝑖𝑛, is a 
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function of time depending on the inlet valve opening and closing, and it becomes zero 

when the valve is closed. The importance of considering the gas exchange process is 

that the in-cylinder temperature and pressure at IVC can be obtained accurately by 

using actual inlet conditions. Hence, no assumptions need to be made in obtaining the 

in-cylinder properties at IVC. Equation (4.75) is the CMC equation used for the HCCI 

engine simulation, which will be attached to the zero-dimensional model environment. 

Then, the mean mass fraction of the ith species can be obtained as 

 

 �̅�𝑖 = ∫ 𝑄𝑖(𝜂)
1

0

𝑃𝑧(𝜂)𝑑𝜂 (4.76) 

 
 

 
 

4.3.1.2 Conditional Enthalpy Equation 

 

The enthalpy, ℎ, of a mixture, as in equation (3.9), is a function of species mass 

fraction, 𝑌𝑖, and temperature, 𝑇, as given by 

 

 ℎ = ℎ(𝑌1, 𝑌2, … , 𝑌𝑛, 𝑇) =∑𝑌𝑖 [(ℎ0)𝑖 +∫ (𝑐𝑝)𝑖𝑑𝑇
𝑇

𝑇0

]

𝑖

 (4.77) 

 

where (ℎ0)𝑖 is the enthalpy of formation, specified from a standard state. Following 

the form in equation (3.10) and Klimenko and Bilger (1999), the CMC equation for 

𝑄ℎ ≡ 〈ℎ|𝜂〉 is given by 

 

 

𝜕𝑄ℎ
𝜕𝑡

+ 〈𝑽|𝜂〉. 𝛻𝑄ℎ

= 〈𝑁|𝜂〉
𝜕2𝑄ℎ
𝜕𝜂2

+ ⟨
1
𝜌𝜂

𝜕𝑝
𝜕𝑡
|𝜂⟩ − ⟨𝑊𝑅𝐴𝐷|𝜂⟩ −

∇. [𝜌𝜂〈𝑽
′′ℎ′′|𝜂〉𝑃𝑧(𝜂)]

𝑃𝑧(𝜂)𝜌𝜂
 

(4.78) 

 

where 𝑊𝑅𝐴𝐷 is the heat loss rate per unit mass due to radiation. The term 𝜕𝑝 𝜕𝑡⁄  in 

equation (4.78) is important for combustion simulation for IC engines (Seo et al. 

2010).  

 

Equation (4.78) (the unconservative conditional enthalpy equation) is transformed to 

its conservative form and the ISR model is then derived in a similar fashion to equation 

(4.75). The heat loss due to radiation is ignored for HCCI engine simulations and the 



Chapter 4 

PhD Mechanical Engineering                                                                                 108 

term is replaced with the heat loss due to convection (De Paola et al. 2008; Kwon et 

al. 2011; Seo et al. 2010). Equation (4.78) then becomes 

 

 
𝜕𝑄ℎ
𝜕𝑡

+
(𝑄ℎ − 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
= 〈𝑁|𝜂〉

𝜕2𝑄ℎ
𝜕𝜂2

+ ⟨
1
𝜌𝜂

𝜕𝑝
𝜕𝑡
|𝜂⟩ − [ℎ𝑐(𝑄𝑇 − 𝑇𝑤)

𝐴𝑤
𝑚
] (4.79) 

 

The heat transfer coefficient, ℎ𝑐, is modelled according to Section 4.2.1.6 based on the 

mean in-cylinder temperature. The heat loss in equation (4.79) is determined using, 

𝑄𝑇  the conditional temperature, which is obtained from equation (4.77). 𝜌𝜂  in the 

second term of RHS of equation (4.79) was obtained based on 〈𝑇|𝜂〉 using the ideal 

gas law, while 𝜕𝑝 𝜕𝑡⁄  was obtained based on the difference of the mean in-cylinder 

pressure between the current and previous time step. In this case, 〈𝜌〉 must satisfy 

〈𝜌〉 = ∫ 𝜌𝜂
1

0
𝑃𝑧(𝜂)𝑑𝜂 and 〈𝑇〉 = ∫ 〈𝑇|𝜂〉

1

0
𝑃𝑧(𝜂)𝑑𝜂, where 〈𝑇〉 is given by the energy 

equation from the zero-dimensional model. A comparison of the mean and the integral 

of the conditional mean shows they are identical within computational error. 

 

4.3.2 Sub-models for the Unclosed Terms 

 

Sub-models are required to close all terms in the CMC equations. The simplification 

of the CMC equations for the zero-dimensional simulation obviates the need for 

models for the conditional velocity, 〈𝑽|𝜂〉, in the convection term and conditional 

turbulent flux, 〈𝑽′′𝑌𝑖
′′|𝜂〉, in the spatial diffusion term. Thus, the terms required to be 

modelled in this case are the conditional scalar dissipation rate 〈𝑁|𝜂〉, the presumed 

PDF 𝑃𝑧(𝜂) and the conditional chemical source term 〈�̇�|𝜂〉. 

 

4.3.2.1 Conditional Scalar Dissipation 

 

The conditional scalar dissipation rate measures the magnitude of turbulent mixing in 

the mixture fraction space. It appears in the transport equations for both conditional 

species mass fraction, equation (4.75), and conditional enthalpy, equation (4.79). The 

model used for conditional scalar dissipation rate in this thesis is the Amplitude 

Mapping Closure (AMC), which has been used in other engine simulations (De Paola 
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et al. 2008; Kwon et al. 2011; Seo et al. 2010). The AMC model (Obrien & Jiang 

1991) is given by 

 

 

〈𝑁|𝜂〉 =
�̅�𝐺(𝜂)

2 ∫ 𝐺(𝜂)𝑃𝑧(𝜂)𝑑𝜂
1

0

 

𝐺(𝜂) = exp(−2[erf−1(2𝜂 − 1)]2) 

(4.80) 

 

where erf is the error function. The mean scalar dissipation rate, �̅�, is obtained from 

equation (3.47), where the turbulent quantities 𝜀 and 𝑘 are computed using equations 

(4.37) and (4.38). 

 

4.3.2.2 Presumed PDF 

 

The PDF of the mixture fraction is modelled using a presumed β-function PDF. This 

model is a function of the first two moments: mean mixture fraction �̃� and mixture 

fraction variance 𝑍′′2̃ . A β-function PDF is commonly used in multi-dimensional 

CMC engine simulations (De Paola et al. 2008; Seo et al. 2010; Wright et al. 2005) 

and takes the form 

 

 𝑃𝑧(𝜂) =
(𝑍)𝛼−1(1 − 𝑍)𝛽−1

Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽) 

(4.81) 

 𝛼 = �̃�𝛾 ,        𝛽 = (1 − �̃�)𝛾 ,       𝛾 =
�̃�(1 − �̃�)

𝑍′′
2̃

 
(4.82) 

 

where Γ is the gamma function. The mean mixture fraction and its variance are given 

in equations (3.58) and (3.59), respectively. With the assumption of using ISR, the 

mean mixture fraction is 

 

 𝜕(�̅��̃�)

𝜕𝑡
+ ∇ · (�̅��̃��̃�) = ∇ · (�̅�𝐷∇�̃�) (4.83) 
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Taking the volume integral and applying the flux divergence theorem to the convective 

term yields 

 

 
∭

𝜕(�̅��̃�)

𝜕𝑡
𝒱

𝑑𝒱 + ∬(�̅�𝑽�̃�)
𝑜𝑢𝑡
𝑑𝑆

𝑆𝑜𝑢𝑡

− ∬(�̅�𝑽�̃�)
𝑖𝑛
𝑑𝑆

𝑆𝑖𝑛

=∭∇ · (�̅�𝐷∇�̃�)𝑑𝒱

𝒱

 

(4.84) 

 

�̃� is uniform inside the core and can be moved outside the integrals, while the gradient 

of �̃� is zero. Equation (4.84) then becomes 

 

 𝜕�̃�

𝜕𝑡
∭�̅�𝑑𝒱

𝒱

+ �̃�𝑜𝑢𝑡 ∬(�̅�𝑽)𝑜𝑢𝑡𝑑𝑆

𝑆𝑜𝑢𝑡

− �̃�𝑖𝑛 ∬(�̅�𝑽)𝑖𝑛𝑑𝑆

𝑆𝑖𝑛

= 0 (4.85) 

 

By using the following definitions for the above integrals 

 

 
�̇� = ∬(�̅�𝑽)𝑑𝑆

𝑆

 (4.86) 

 
𝜌∗∗ =

1

𝒱
∭�̅�𝑑𝒱

𝒱

 (4.87) 

yields 

 
�̅�𝒱

𝜕�̃�

𝜕𝑡
+ (�̃�𝑜𝑢𝑡 − �̃�𝑖𝑛)�̇� = 0 (4.88) 

 

Using the same assumption from the derivation of equation (4.75), �̃�𝑜𝑢𝑡 = �̃�  and 

rearranging equation (4.88) gives the mean mixture fraction equation for the zero-

dimensional model 

 𝜕�̃�

𝜕𝑡
+
(�̃� − �̃�𝑖𝑛)�̇�

�̅�𝒱
= 0 (4.89) 

 

The initial condition of the mean mixture fraction, �̅�0, can be obtained from 
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�̅�0 =

𝑌𝐹
𝑌𝐹 + 𝑌𝑂

 (4.90) 

 

In equation (4.90), 𝑌𝐹 and 𝑌𝑂 are the mass fraction for fuel and oxidiser respectively. 

This equation can be expressed as a function of equivalence ratio by dividing every 

term in equation (4.90) with 𝑌𝑂  and then with (𝑌𝐹 𝑌𝑂⁄ )𝑠𝑡 , where subscript 𝑠𝑡 is the 

stoichiometric condition, to give 

 

 

�̅�0 =
(
𝑌𝐹
𝑌𝑂
⁄ ) (

𝑌𝐹
𝑌𝑂
⁄ )

𝑠𝑡

⁄

[(
𝑌𝐹
𝑌𝑂
⁄ ) (

𝑌𝐹
𝑌𝑂
⁄ )

𝑠𝑡

⁄ ] + [1 (
𝑌𝐹
𝑌𝑂
⁄ )

𝑠𝑡

⁄ ]
 (4.91) 

 

By using the definition of equivalence ratio, 

 

 
∅ =

𝑌𝐹 𝑌𝑂⁄

(𝑌𝐹 𝑌𝑂⁄ )𝑠𝑡
 (4.92) 

 

equation (4.91) then becomes 

 

 
�̅�0 =

∅

∅ + 𝐴𝐹𝑅𝑠𝑡
 (4.93) 

 

where 𝐴𝐹𝑅𝑠𝑡 is the air-to-fuel ratio at the stoichiometric condition.  

 

The transport equation for the mixture fraction variance can be derived in a similar 

fashion to equation (4.89), which gives 

 

 
𝜕𝑍′′2̃

𝜕𝑡
+
(𝑍′′2̃ − 𝑍𝑖𝑛

′′ 2̃ )�̇�

�̅�𝒱
= −�̃� (4.94) 

 

where the initial condition of the mixture fraction variance in the chamber is Z0
′′2̃ = 0. 

Equation (3.47) was used to determine the mean scalar dissipation rate �̃� in equation 

(4.94). The initial condition of the inlet mixture fraction variance was obtained based 

on  Z𝑖𝑛
′′
0
2̃ = 𝑌𝐹(1 − 𝑌𝐹). These values (the initial conditions) were used to obtain the 
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mixture fraction variance in the chamber and in the inlet port. It was assumed that there 

was no turbulent decay in the inlet manifold (the mixture fraction variance and kinetic 

energy were kept constant) because the fuel injector is located close to the inlet port. 

A mass-weighted average was then used to obtain the variance in the chamber after 

IVO, which implements the second term of equation (4.94). Another method was also 

used to obtain the initial condition of the inlet mixture fraction variance, which is 

using Z𝑖𝑛
′′
0
2̃ = ∫ (𝑍 − �̅�)2𝑃𝑧𝑑𝑍

𝑍

0
. A comparison between those equations was made and 

yields almost identical result. 

 

4.3.2.3 Chemical Source Term 

 

The chemical source term of the conditional reaction rate in equation (4.75) is 

modelled using the standard first-order CMC closure (Seo et al. 2010; Wright et al. 

2005):  

 〈�̇�|𝜂〉 ≈ �̇�𝑖(𝑄𝑖 , …𝑄𝑛, 𝑄ℎ, 𝑝) (4.95) 

 

It is only a function of the conditional mean mass fraction, conditional enthalpy and 

pressure: the conditional fluctuations are not included. The reaction rate is obtained 

from an open source chemical kinetics software package, Cantera. 

 

4.3.2.4 Other sub-models 

 

Another sub-model in the CMC equation that needs to be closed is 

 

 
⟨
1
𝜌𝜂

𝜕𝑝
𝜕𝑡
|𝜂⟩ =

1

⟨𝜌|𝜂⟩

𝜕�̅�

𝜕𝑡
 (4.96) 

 

where the in-cylinder pressure is assumed to be homogeneous for the whole chamber 

in each CA step, and thus there is no variation of pressure in the mixture fraction space. 

Density, however, is not the same, where it is affected by the conditional temperature 

and mass fraction, as given by 
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⟨𝜌|𝜂⟩ =

�̅�𝑊𝑚𝑤𝜂

𝑅𝑢𝑄𝑇
  (4.97) 

where 

 

𝑊𝑚𝑤𝜂 = (∑
𝑄𝑖

𝑊𝑚𝑤𝑖

𝑛

𝑖=1

)

−1

  (4.98) 

 

The thermodynamic quantities in equations (4.97) and (4.98) are also obtained from 

the Cantera chemical kinetics software package. 
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4.4 Implementation of CMC in Zero-Dimensional 

Model 

 

4.4.1 Interfacing the Zero-Dimensional and CMC Codes 

 

A combination of the CMC code with a zero-dimensional single-zone model was 

implemented following the method applied for CMC with multi-dimensional model 

(Kim & Huh 2002; Mastorakos & Wright 2003; Wright et al. 2009). The diagram of 

how the combined model works is shown in Figure 4.6. The zero-dimensional model 

solves the energy equation from equation (4.30). Then, the zero-dimensional model is 

used to determine the mean pressure in the chamber, as well as the following 

parameters: pressure rate of change 𝜕𝑝 𝜕𝑡⁄ , the turbulent quantities (�̃� and 𝜀̃) and mean 

and conditional scalar dissipation rate, �̃� and 〈𝑁|𝜂〉 respectively. The pressure rate of 

change is obtained as discussed in Section 4.3.1.2. Cantera was used to determine the 

chemical reaction rate based on the current crank angle step at a constant volume. All 

these equations (conditional mass fraction and enthalpy and chemical source term) 

were solved simultaneously. Conditional temperature, 𝑄𝑇, can then be obtained once 

the equation (4.79) is solved.  
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Figure 4.6 Coupling between CMC and zero-dimensional single-zone model. 

 

At the beginning of the simulation, where the intake valve is in the closed position, 

only the zero-dimensional model is used without CMC mixing. This is due to the 

absence of mixing activity in the chamber, which contains only air: the fuel is 

introduced to the chamber when the intake valve is open. Once the intake valve is 

opened, the CMC mixing calculation begins. The effect of residuals are neglected in 

this study because the effect is very small for non-overlapped valves. Fiveland and 

 ℎ̅ =  ℎ𝑖(𝑇)�̅�𝑖
𝑛
𝑖=1  

Zero-D Simulation 

CMC  

𝜕𝑄𝑖
𝜕𝑡

+
(𝑄𝑖 − 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
= 〈𝑁|𝜂〉

𝜕2𝑄𝑖
𝜕𝜂2

+ 〈�̇�|𝜂〉 

𝜕𝑄ℎ
𝜕𝑡

+
(𝑄ℎ − 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
= 〈𝑁|𝜂〉

𝜕2𝑄ℎ
𝜕𝜂2

+ ⟨
1
𝜌𝜂

𝜕𝑝
𝜕𝑡
|𝜂⟩ − [ℎ𝑐(𝑄𝑇 − 𝑇𝑤)

𝐴𝑤
𝑚
] 

Cantera 

〈�̇�|𝜂〉 ≈ �̇�𝑖(𝑄𝑖 , …𝑄𝑛, 𝑄ℎ, 𝑝) 

𝑝 =
𝜌𝑅𝑢𝑇

𝑊𝑚𝑤̅̅ ̅̅ ̅̅
 

�̃�, 〈𝑁|𝜂〉, �̃�, 𝜀̃, 𝑝, 
𝜕𝑝

𝜕𝑡
 

 �̃�, 

𝑍′′2̃ 
�̅�𝑖 = ∫ 𝑄𝑖(𝜂)

1

0

𝑃𝑧(𝜂)𝑑𝜂 

 

 𝑃𝑧(𝜂) = 𝑃𝑧 (𝜂, �̃�, 𝑍
′′2̃) 
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Assanis (2002) reported that the residual gas will be diluted back to a fresh mixture 

state during the intake process. Liu and Chen (2009) in their zero-dimensional 

modelling study also neglected the effect of burnt residuals. The effect of residuals can 

be considered if there is a big overlap between exhaust and intake valves and when the 

simulation is run for two or three engine cycles. Then, the temperature, pressure, 

conditional and mean mass fraction, conditional enthalpy and all the turbulent 

parameters between the intake manifold and combustion chamber are to be calculated. 

The CMC model will obtain pressure, pressure rate of change and the turbulent 

parameters from the zero-dimensional model. Equation (4.76) is used to obtain the 

mean quantities for the conditional mass fraction and enthalpy. These quantities are 

returned to the zero-dimensional model, which subsequently advances to the next 

time-step. 

 

4.4.2 Numerical Solutions 

 

This section discusses the numerical solution for the zero-dimensional model and the 

CMC equation. In the zero-dimensional model, a flow chart on how the code works is 

discussed. The discretisation involved in solving the CMC equation is also presented. 

 

4.4.2.1 Zero-Dimensional Solution 

 

A zero-dimensional model solves the first law of thermodynamics equations, as 

presented in equation (4.30). The numerical solution for the temperature change is 

straightforward because the equation is in the form of a first-order Ordinary 

Differential Equation (ODE). The equation was rearranged so that the change in 

temperature is on the LHS. Then, a stiff solver was used to solve equations (4.27) and 

(4.30) simultaneously. A flow chart of the model is presented in Figure 4.7. 

 

The model was coded so that the simulation runs based on the value of CA, instead of 

the pre-defined process with pre-defined combustion, as done by Shaver et al. (2003), 

Bengtsson, Gafvert and Strandh (2004), Canova et al. (2005) and Killingsworth et al. 

(2006). A pre-defined or segregated process is where the simulation code is divided 
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according to the engine cycle: intake, compression, power and exhaust. Each cycle 

will use a different set of equations to obtain temperature or pressure change across 

the CA, which is based on the ideal gas law equation. Then, the ignition occurs based 

on the pre-defined ignition location with an estimated combustion duration, where the 

ignition delay has been measured according to the experiment. There is no detailed 

chemical reaction involved. For the simulation based on the value of CA, it uses the 

energy equation for the entire engine cycle to solve the temperature change in the 

chamber with detailed chemical reactions involved. This method gives an advantage 

in predicting the chemical reaction behaviour along the CA step, because the chemical 

reactions fully control the HCCI engines. 
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Figure 4.7 A flow chart for zero-dimensional single-zone model simulation 

 

At the beginning of the simulation, the engine parameters and initial operating 

condition were defined, which were based on the experimental data. Then, the mixture 

composition in the combustion chamber and inlet manifold was initialised. It was 

assumed that the initial composition in the combustion chamber before IVO consists 

of only air and a mixture of air and fuel is introduced after the IVO. A typical valve 

profile was determined based on equation (4.17), which was used to represent the valve 

motion and also to get the inlet mass flow rate, �̇�𝑖𝑛. 
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The simulation began from 0°CA, where the piston was at TDC, and finished at EVO. 

The entire simulation consists of three parts: before IVO, before IVC and before EVO, 

as shown in Figure 4.7. For the first part, the piston was in downward motion and the 

air was expanded before being mixed with the intake mixture. Once the intake valve 

was opened (second part), the air in the combustion chamber was mixed with the intake 

mixture. In this process, the mass was added to the combustion chamber based on 

equation (4.26). The cylinder volume was expanding and it is expected that the mixture 

temperature was decreasing at this stage. The final part is where the main combustion 

occurred, which was after IVC and before EVO. At this stage, the piston was in upward 

motion after IVC, compressing the gas mixture. The chemical kinetics plays an 

important role here as it will determine the start of combustion. Once the piston passes 

the TDC mark, it will be in downward motion again, expanding the mixture and the 

simulation stops at EVO. The simulation solves the energy and species equations, 

along with the turbulent transport equations for the entire process. Therefore, this 

technique has eliminated the segregated process as usually done in zero-dimensional 

modelling. Segregated process is where the simulation is divided into four parts in one 

engine cycle: intake, compression, expansion and exhaust. Thus, the simulation uses 

four different sets of equations to cater for each process. In this study, the simulation 

uses only one set of equations for all the processes. This ensures the in-cylinder 

properties are consistent from one process to another. 

 

4.4.2.2 CMC Solution 

 

A zero-dimensional CMC is used, which is zero-dimensional in physical space but 

dependent on the conserved scalar space. The CMC equation is stiff because of the 

presence of the chemical reactions, and thus a stiff solver is necessary to solve the 

equations. The CMC equations contain several partial differential equations (PDEs). 

To solve the CMC equations, the PDE is transformed into a number of ordinary 

differential equations (ODEs), in the form of  𝑑𝑦 𝑑𝑡 = 𝑓(𝑡, 𝑦)⁄ . A fractional step 

method was then employed and a stiff ODE solver can be used to solve separately the 

stiff chemical reactions. The equation (4.75) for conditional mass fraction is separated 

as 
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𝜕𝑄𝑖

(1)

𝜕𝑡
= 〈𝑁|𝜂〉

𝜕2𝑄𝑖
𝜕𝜂2

 (4.99) 

 
𝜕𝑄𝑖

(2)

𝜕𝑡
= 〈�̇�|𝜂〉 −

(𝑄𝑖
(1) − 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
 (4.100) 

 

Similarly, equation (4.79) for conditional enthalpy is separated as the following: 

 

 
𝜕𝑄ℎ

(1)

𝜕𝑡
= 〈𝑁|𝜂〉

𝜕2𝑄ℎ
𝜕𝜂2

 (4.101) 

 𝜕𝑄ℎ
(2)

𝜕𝑡
= ⟨

1
𝜌𝜂

𝜕𝑝
𝜕𝑡
|𝜂⟩ − [ℎ𝑐(𝑄𝑇

(1)
− 𝑇𝑤)

𝐴𝑤
𝑚
] −

(𝑄ℎ
(1)
− 𝑄𝑖𝑛)𝑃𝑖𝑛

∗

𝜏𝑃𝑧
 (4.102) 

 

Equations (4.99) and (4.101) were solved using the implicit finite difference method 

(IFDM). The numerical implementation of the IFDM was second-order in mixture-

fraction space and utilised an LU decomposition before back-substituting to determine 

the intermediate value, 𝑄(1), that was the initial condition for solving equations (4.100) 

and (4.102). It can also be solved using the explicit finite difference method (EFDM), 

which has a simpler algorithm compared with IFDM. However, EFDM has a 

numerical stability issue, where the error at any stage of the computation could be 

amplified (Chapra & Canale 2006). The Courant-Friedrichs-Lewy (CFL) criterion 

must be satisfied, where the method is both convergent and conditionally stable when 

CFL ≤ 0.5 (Carnahan, Luther & Wilkes 1969). For IFDM scheme, the method is stable 

at any CFL value, which is called unconditionally stable. The CFL criterion is defined 

as 

 

 
𝐶𝐹𝐿 =

max(𝑁𝜂)∆𝑡

(∆𝜂)2
  (4.103) 

 

The errors of the solution do not grow but oscillate if the CFL ≤ 1/2. Furthermore, if 

CFL is set to be ≤ 1/4, this will ensure the solution will not oscillate and when CFL ≤ 

1/6, the truncation error is minimised (Carnahan, Luther & Wilkes 1969; Chapra & 

Canale 2006). In this thesis, CFL ≤ 1/6 was used to ensure minimised truncation error 

and the numerical computations became unstable when the CFL was not controlled. 
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The fundamental difference between EFDM and IFDM is shown in Figure 4.8. For 

EFDM, the spatial derivative is estimated at time level t, giving it a single unknown to 

be solved explicitly, which is 𝑄𝜂
𝑡+1. IFDM, on the other hand, approximates the spatial 

derivatives at the advanced time level, t+1. Thus, when a discretised term is substituted 

back into its original PDE, it has several unknowns to be solved simultaneously. Even 

though IFDM has a complicated algorithm, it overcomes the stability issue from 

EFDM (Chapra & Canale 2006). 

 

Figure 4.8 The fundamental difference between EFDM and IFDM (Chapra & Canale 2006). 

 

Equations (4.99) and (4.101) can then be discretised using central finite-differences 

with second order accuracy as 

 

 𝑄𝜂
𝑡+1 − 𝑄𝜂

𝑡

∆𝑡
= 〈𝑁|𝜂〉 [

𝑄𝜂+1
𝑡+1 − 2𝑄𝜂

𝑡+1 + 𝑄𝜂−1
𝑡+1

(∆𝜂)2
]  (4.104) 

 

Rearranging equation (4.104) gives 

 

 𝑄𝜂
𝑡+1 − 𝑄𝜂

𝑡 = 𝜉(𝑄𝜂+1
𝑡+1 − 2𝑄𝜂

𝑡+1 + 𝑄𝜂−1
𝑡+1)  (4.105) 

 

where 𝜉 is given by 

 

 
𝜉 = 〈𝑁|𝜂〉

∆𝑡

(∆𝜂)2
  (4.106) 

 

Equation (4.105) is rearranged so that the reactive scalars at current time-step is on the 

RHS  
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 −𝜉𝑄𝜂+1
𝑡+1 + (1 + 2𝜉)𝑄𝜂

𝑡+1 − 𝜉𝑄𝜂−1
𝑡+1 = 𝑄𝜂

𝑡  (4.107) 

 

For 𝑛 number of CMC bins, equation (4.107) can be transformed into a matrix form 

as  

 

 

[
 
 
 
 
1 0 0 0 0
𝑒2 𝑓2 𝑔2 0 0
0 ⋱ ⋱ ⋱ 0
0 0 𝑒𝑛−1 𝑓𝑛−1 𝑔𝑛−1
0 0 0 0 1 ]

 
 
 
 

 

{
 
 

 
 
𝑄1
1

𝑄2
1

⋮
𝑄𝑛−1
1

𝑄𝑛
1 }
 
 

 
 

=

{
 
 

 
 
𝑄1
0

𝑄2
0

⋮
𝑄𝑛−1
0

𝑄𝑛
0 }
 
 

 
 

 (4.108) 

 

Where, 𝑓 = (1 + 2𝜉) and 𝑒 = 𝑔 = −𝜉. Then, equation (4.108) can be solved using 

the LU decomposition method, followed by back substitution. Once equation (4.108) 

was solved, a stiff solver was used to solve the remaining equations (4.100) and (4.102) 

simultaneously. 

 

4.4.2.3 Chemical Kinetics Mechanism: Cantera 

 

The chemical source term in equation (4.75) is the net production rate of the ith 

chemical species. Equation (4.100) was solved sequentially after equation (4.108), 

where the net production rate is obtained from Cantera (Goodwin 2003). Cantera is 

also used to evaluate the other properties such as thermodynamic and transport 

properties. Cantera is an open source software package for chemical kinetics 

mechanism and is widely used (Andrae 2011; Lee & Jeung 2009; Totton, Shirley & 

Kraft 2011; Votsmeier 2009). New researchers could easily adopt Cantera for their 

research needs given the software’s capability to integrate with MATLAB, Fortran and 

Python languages. 

 

The chemical kinetics mechanism files can be obtained in Chemkin format, where the 

file will then be converted to a Cantera-readable file. The use of a chemical reaction 

mechanism enables the study of the chemical species interaction, where the interaction 

is influenced by the temperature, pressure and species mass fraction. Furthermore, the 

chemical reaction mechanism would be able to give a better understanding in the 

combustion study.  
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4.4.3 Boundary Conditions 

 

Boundary conditions for the simulation are discussed in this section, while the initial 

conditions for each different case will be discussed in different chapters, since they are 

case-specific. This section will discuss the boundary conditions of the CMC model, 

where the conditions is similar for each different test. For n number of bins of the CMC 

model, as depicted in Figure 4.9, the boundary was set at the first and last bins. For the 

first bin, it was filled with pure air in atmospheric quantity (O2 is 21% of the mole 

fraction and N2 is 79%), for both intake and combustion chamber. On the other hand, 

the nth bin was filled with fuel (Y = 1) at 𝜂 = 1. This type of boundary condition was 

chosen because of the assumption that the fuel and air remain as distinct volumes until 

mixing is almost complete. The dissociation effect of changing the species can be 

neglected during the intake and compression processes, as suggested by Heywood 

(1988), because the dissociation occurs at a sufficiently high temperature. The 

temperature at the beginning of the simulation is low (less than 1000 K). The boundary 

conditions for the conditional enthalpy transport equation were set based on the values 

of the temperature and pressure at the start of each time step. Hence, this boundary 

varies over time (as the piston moves). Then, the mixing state in each bin is controlled 

by the CMC transport equations. 

 

 

Figure 4.9 Bin configuration of the CMC model 
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The boundary condition of the β-function PDF is also set at the first and last bins. For 

the first bin, the β-function PDF is as follows, 

 

 
𝑃𝑧1 =

CDF𝛽[(𝜂 = ∆𝑍), 𝛼, β]

∆𝑍
  (4.109) 

 

while for the last bin, the β- function PDF is given by 

 

 
𝑃𝑧𝑛 =

1 − CDF𝛽[(𝜂 = 1 − ∆𝑍), 𝛼, β]

∆𝑍
  (4.110) 

 

where CDF𝛽(𝑋, 𝐴, 𝐵) is the β-function cumulative distribution function at a location X 

given the corresponding parameter A and B, which are governed by the �̃� and 𝑍′′
2
, 

which were set according to the AFR of the test condition. By definition, the CDF is  

 

 
𝐶𝐷𝐹 = ∫𝑃𝑧(𝜂)𝑑𝜂  (4.111) 

 

Equations (4.109) and (4.110) are used because a discrete representation of a β-

function PDF cannot capture the full probability contained in the tails when the PDF 

at the bounds tends to infinity: this deficiency grows with increasing bin size. By 

capturing the full probability contained in the boundary bins, the integral of the PDF 

throughout the entire domain is 1. 

 

 

4.5 Conclusion 

 

This chapter has discussed the methodology used in developing the simulation model. 

It begins with the single-zone zero-dimensional model, where the model assumed that 

the entire combustion chamber is homogeneous. Then, the model was further 

improved to a quasi-dimensional model with the addition of the turbulence model: the 

energy cascade method was used. In the quasi-dimensional model, the heat loss to the 

cylinder wall was influenced by the turbulence model, instead of using a pre-defined 
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heat loss model. Both models for zero- and quasi-dimensional models employed a 

chemical reaction mechanism, where the properties of the species was obtained from 

the Cantera software package with a MATLAB interface. 

 

After that, a formulation for the CMC with zero-dimensional model was discussed, 

together with its sub-models for the unclosed terms. Then, the CMC was combined 

with the zero-dimensional model, where the interface between the CMC and zero-

dimensional model was discussed in Section 4.4.1. The solution to the model was also 

discussed, along with its boundary conditions. 
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Chapter 5  

VALIDATION OF CMC MODELS 

 

 

5.1 Introduction 

 

This chapter will validate the zero-dimensional and CMC models against the 

experimental data from the literature. The ability of the model to predict the in-cylinder 

pressure over a range of engine conditions, including intake temperature, AFR and 

compression ratio is also discussed. Two experimental data sets were used for 

validation purposes: one is the HCCI engine fuelled with diesel and the other with 

gasoline. Because two types of engine configurations were used, the models used two 

different types of chemical reaction mechanism to model the fuels. This is to ensure 

that the model works in both engine conditions. 

 

This chapter consists of two parts. Part 1 will discuss the validation of the models 

against the experimental data using diesel, which covers up to Section 5.5. Section 5.1 

concludes with the chemical reaction mechanism used for both models, followed by 

the experimental data of the engine in Section 5.2. Section 5.3 validates the zero-

dimensional model against the experiment, which also discusses the heat loss model 

to be used in an HCCI engine. The validation of the combined model of the CMC and 

zero-dimensional together with its performance against different engine parameters 

will be discussed in Sections 5.4 and 5.5 respectively. Part 2, discusses the validation 

of the combined model against the experiment using gasoline fuel, and contains two 

sections. Section 5.6 discusses the engine details used for the validation and Section 

5.7 discusses the validation work. The chapter ends with the conclusion in Section 5.8. 
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5.1.1 Chemical Reactions Mechanism for n-Heptane 

 

A chemical reaction mechanism is used to solve the chemical reactions during 

combustion. For diesel fuelled HCCI engines, a reduced n-heptane mechanism (Seiser 

et al. 2000) was used to simulate the diesel combustion. This was chosen because n-

heptane’s chemical properties are similar to those of conventional diesel in terms of 

the cetane number (Maroteaux & Noel 2006). In addition, n-heptane as a diesel 

surrogate fuel has been widely used by many researchers (Hernandez et al. 2008; Pitz 

& Mueller 2011; Westbrook, Pitz & Curran 2006). The mechanism consists of 160 

species and 770 elementary reactions. The mechanism was then used in the Cantera 

chemical kinetics software package (Goodwin 2003) to obtain the chemical properties 

and reactions mechanisms. 

 

 

5.1.2 Chemical Reactions Mechanism for Gasoline 

 

Commercial grade gasoline consists of a blend of many chemical species (Westbrook 

et al. 2009). Most of the gasoline contents are distilled from crude oil, which is then 

upgraded in the refinery to improve the octane rating by blending with other chemicals 

(Pitz et al. 2007). The content of gasoline in the market varies from one brand to 

another, in order to meet a stringent regulations regarding fuel volatility, octane 

number, stability and other product quality parameters (Chevron 1996; Pitz et al. 2007) 

. In this study, a reduced gasoline mechanism was used as a surrogate fuel for gasoline, 

which was developed by Chalmers University of Technology (Golovitchev 2003). The 

hundreds of hydrocarbons in gasoline are represented by the blends of n-paraffins, iso-

paraffins and aromatics, where they are modelled using n-heptane, iso-octane and 

toluene, respectively (Lee, Kim & Min 2011). Thus the mechanism used in this study 

was chosen to have the blends of 54% iso-octane, 24% toluene and 22% n-heptane by 

liquid volume, because this composition has been validated as having a similar ignition 

delay time compared with commercial gasoline (Lee, Kim & Min 2011; Lee & Min 

2009). The selected reduced mechanism consists of 119 species and 621 reactions. 

More detailed gasoline mechanisms are available in the literature, such as those 

developed by Mehl et al. (Mehl, Chen, et al. 2011; Mehl, Pitz, et al. 2011).  
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In the past, the gasoline surrogate was only modelled using iso-octane, n-heptane or a 

mix of the two (Curran et al. 1998, 2002; Pitz et al. 2007). The gasoline surrogate has 

only more recently been modelled using a more complicated mechanism as discussed 

above. Hence it is necessary to validate the gasoline surrogate. Unlike n-heptane, 

which many people already use as a diesel surrogate fuel in diesel HCCI engines, a 

gasoline reduced mechanism is quite new in the literature. The validation for the 

reduced gasoline mechanism is shown in Figure 5.1, where the ignition delay time for 

the reduced gasoline mechanism is in agreement with a more detailed mechanism. The 

detailed mechanism used in the validation consists of 874 species and 3796 elementary 

reactions, while 119 species and 621 reactions are used in the reduced mechanism. The 

validation was completed at stoichiometric conditions and pressure of 1 MPa. The 

equivalence ratio used in the validation is almost similar to the experiment in this study 

using a gasoline fuelled HCCI engine. The ignition delay time for both mechanisms 

agrees well with the experiment. A reduced mechanism was chosen in this study 

because according to the validation in Figure 5.1, the ignition delay time is comparable 

to a more detailed mechanism. By using reduced mechanism, the computational 

resources can be minimised without sacrificing the ignition delay time accuracy. 

 

 

Figure 5.1 A validation for reduced gasoline mechanism used in this study (Golovitchev 2003). LLNL prf is a 

detailed gasoline mechanism from Lawrence Livermore National Laboratory. CTH is a reduced gasoline mechanism 

from Chalmers University of Technology. 
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PART 1: DIESEL HCCI 

 

5.2 Experimental Data 

 

Part 1 of this chapter discusses the validation of CMC and zero-dimensional models 

against the experiment of a diesel fuelled HCCI engine. The experimental data from 

Guo et al. (Guo et al. 2010) was used as a validation tool, where the diesel was port 

injected at the intake manifold. Then the intake temperature was increased to 40°C or 

313K. The details of the engine used in this study is shown in Table 5.1. 

 

Table 5.1 Engine parameters used in the simulation of a diesel fuelled HCCI engine (Guo et al. 2010) 

Cylinder bore 82.55 mm 

Stroke 114.3 mm 

Connecting rod length 254 mm 

Compression ratio 10 

Engine speed 900 rpm 

Inlet pressure 95 kPa 

Inlet valve open (IVO) 10°CA ATDC 

Inlet valve closed (IVC) 36°CA ABDC 

Exhaust valve open (EVO) 40°CA BBDC 

Exhaust valve closed (EVC) 5°CA ATDC 

Wall Temperature (K) 530 

AFR 50 

 

 

5.3 Zero-Dimensional Single-Zone Model 

 

This section will discuss the validation of the zero-dimensional single-zone model 

without CMC. The difference in the models for the heat transfer coefficient, ℎ𝑐, used 

in equation (4.34) is also discussed, where all coefficient models (Woschni, modified 

Woschni and Hohenberg) have been widely used in the HCCI engine simulation 

(Bengtsson, Gafvert & Strandh 2004; Chang et al. 2004; Guo et al. 2010; Komninos 

& Kosmadakis 2011; Kwon et al. 2011; Seo et al. 2010; Soyhan et al. 2009). Thus, 

the performance of those heat transfer coefficient models used in the area of HCCI 

engines was investigated in order to match with the zero-dimensional environment in 

this study. 
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5.3.1 Validation 

 

The diesel in this study was injected at the intake manifold and the mixing effect must 

be taken into consideration. For the zero-dimensional model, the intake air temperature 

was set 20K higher than the actual temperature to account for the mixing effects (Guo 

et al. 2010). A different study also stated that the intake temperature for a single-zone 

model has to be increased up to 30K, while up to about 10K for a multi-zone model 

(Bunting et al. 2008). The assumption of uniform wall temperature for the entire 

engine cycle, uniform in-cylinder temperature and pressure, and a potential limitation 

of the chemical chemistry as well may contribute to the adjustment of the intake 

temperature (Guo et al. 2010). The wall temperature for this case, on the other hand, 

was estimated at 530 K, which is in reasonable agreement with 500 K from De Paola 

et al. (2008) using a diesel setup. Further justification for wall temperature selection 

will be discussed in Section 5.4.1. The wall temperature value was obtained by 

comparing the simulation result with experiment, where the intake temperature was 

set according to Guo et al. (2010).  In this study for the zero-dimensional model using 

n-heptane, the intake temperature was increased to 333K from the actual experimental 

intake temperature of 313K.  

 

The result is compared with the experiment, as shown in Figure 5.2, where it is also 

compared with another zero-dimensional single-zone model from Guo et al. (2010). 

The results show that both zero-dimensional models predict higher in-cylinder 

pressure compared to the experiment, with the zero-dimensional model from Guo et 

al. (2010) over-predicting by a greater amount. The predicted maximum in-cylinder 

pressure is evidently slightly higher than that of the experiment due to the limitation 

of the zero-dimensional model, where the entire combustion chamber is assumed to be 

homogenous. Overall, the combustion phasing is in good agreement with the 

experimental data, demonstrating that the zero-dimensional single-zone model can be 

used in HCCI engine simulations. 
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Figure 5.2 Comparison between zero-dimensional model (with modified Woschni heat transfer coefficient model) 
with experimental data and another single-zone model (Guo et al. 2010). CR=10.0, N=900 rpm, Tin=40°C, Pin=95 

kPa, AFR=50. 

 

5.3.2 Heat Transfer Coefficient Models 

 

In equation (4.34), a heat transfer coefficient model, ℎ𝑐 , is used in the zero-

dimensional single-zone model, where the coefficient model attempts to reproduce the 

heat loss obtained from experiments. The effects of different heat transfer coefficient 

models are discussed, where the models used are the Woschni correlation (Bengtsson, 

Gafvert & Strandh 2004; Woschni 1967), modified Woschni correlation for HCCI 

engines (Chang et al. 2004), and Hohenberg correlation (Hohenberg 1979; Sanli et al. 

2008; Zeng & Assanis 1989). 

 

The Woschni heat transfer coefficient uses bore, 𝐵, as the characteristic length and 

mean piston speed, 𝑆𝑝̅̅ ̅, as the characteristic velocity: 

 

 ℎ𝑐 = 129.8𝐵
−0.2𝑝0.8𝑇−0.55(2.28𝑆𝑝̅̅ ̅)

0.8
            (W m2K⁄ ) (5.1) 

 

A modified Woschni correlation has been developed for HCCI engines where the 

measurements of the heat flux were taken in the piston crown and cylinder head areas 

(Chang et al. 2004). The equation then becomes 
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 ℎ𝑐 =∝𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝐿
−0.2𝑝0.8𝑇−0.73(𝜈𝑡𝑢𝑛𝑒𝑑)

0.8        (W m2K⁄ ) (5.2) 

 

where the characteristic velocity 𝜈𝑡𝑢𝑛𝑒𝑑 is 

 

 
𝜈𝑡𝑢𝑛𝑒𝑑 = 𝐶1𝑆𝑝̅̅ ̅ +

𝐶2
6

𝒱𝑑𝑇𝑟
𝑃𝑟𝒱𝑟

(𝑝 − 𝑝𝑚𝑜𝑡) (5.3) 

 

The modified Woschni equation uses the instantaneous chamber height, 𝐿 , as the 

characteristic length scale; the temperature exponent is changed to 0.73, and ∝𝑠𝑐𝑎𝑙𝑖𝑛𝑔 

is the scaling factor to fit the experimental data. In equation (5.3), 𝐶1 = 2.28 and 𝐶2 =

0.00324 are constants, 𝒱𝑑  is the displacement volume, subscript 𝑟 is the reference 

condition, and 𝑝𝑚𝑜𝑡  is the motoring pressure: the cylinder pressure without 

combustion. 

 

The Hohenberg correlation, on the other hand, includes some modifications to the 

Woschni equation, where it uses instantaneous cylinder volume instead of bore. In 

addition to that, the characteristic velocity is replaced with the effective gas velocity, 

and the temperature exponent has also changed. The Hohenberg correlation is 

 

 ℎ𝑐 = 130𝑝
0.8𝑇−0.4𝒱−0.06(𝑆𝑝̅̅ ̅ + 1.4)

0.8
          (W m2K⁄ ) (5.4) 

 

In equations (5.1), (5.2) and (5.4), SI units are used for all variables (𝐵 in m, 𝑇 in K, 

𝒱 in m3, 𝑆𝑝 and 𝜈 in m/s) except for 𝑝, the instantaneous in-cylinder pressure, which 

is in bars. The difference in heat transfer correlations leads to varying predictions 

regarding heat loss. Therefore, the combustion behaviour is also changed with 

different heat coefficients. The changes become significant in HCCI engines, where 

chemical kinetics plays a major role in combustion. 

 

The in-cylinder pressure is predicted differently when using different heat transfer 

coefficient models, as shown in Figure 5.3 (left). Both the Woschni and Hohenberg 

models over-predicted the combustion phasing by having an advanced ignition about 

5°CA earlier than the experiment did. The modified Woschni equation, on the other 
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hand, agreed well with the experiment despite having a slightly higher maximum in-

cylinder pressure compared with the experiment. 

 

In a diesel HCCI engine, the fuel has a characteristic of two-stage ignition, which are 

low temperature reaction (LTR) and high temperature reaction (HTR) (Kim & Lee 

2007; Neely, Sasaki & Leet 2004). LTR, also called the cool flame phenomenon, 

occurs at a temperature below the auto-ignition temperature. The LTR region was 

found to be advanced by about 10°CA compared to the experiment for all heat transfer 

coefficient models. The LTR region occurred at approximately 800K, which is the 

same as reported by Kim and Lee (2007), where they studied experimentally the effect 

of narrow spray angle of a diesel fuelled HCCI engine. The HTR region, on the other 

hand, begins at about 1000K, as shown in Figure 5.3 (right). This is in agreement with 

other studies (experimentally and numerically), where the HTR region began at about 

900–1050K (Epping et al. 2002; Kim & Lee 2007; Zheng et al. 2001) . 

 

 

Figure 5.3 Combustion phasing for different heat transfer coefficient models showing high temperature region 

(HTR) and low temperature region (LTR). In-cylinder pressure on the left and temperature on the right for different 

heat transfer coefficient models. 

 

 

 

LTR 
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5.3.2.1 Heat Fluxes 

 

The history of the heat loss, 𝑑𝑄ℎ 𝑑𝑡⁄  and the heat transfer coefficient, ℎ𝑐 among all 

models is shown in Figure 5.4, where the maximum values of the heat transfer 

coefficient vary from 303 to 880 W/m2K. The difference in this value is due to a 

difference in the scaling factor, velocity characteristic, and temperature exponent. The 

Hohenberg equation has the highest value of the heat transfer coefficient, which causes 

it to have the highest heat loss, as in Figure 5.4 (left). 

 

 

Figure 5.4 Heat release rate (left) and heat transfer coefficient (right) comparison among Woschni, modified 

Woschni and Hohenberg models. 

 

The heat transfer coefficient traces were changed when the same scaling factor 

(∝𝑠𝑐𝑎𝑙𝑖𝑛𝑔=194.7) was used for all models, as shown in Figure 5.5. The Hohenberg 

correlation has the highest heat transfer coefficient compared with the other two 

models as a result of the difference in the temperature exponent used in the model. The 

heat flux decreases when the piston is in a downward motion, and during the intake 

process, the heat flux is minimal. This indicates that the heat loss is minimal due to a 

small different between in-cylinder and wall temperatures during the intake process. 

However, the heat flux increases when the piston is in the compression process. A high 

heat transfer coefficient causes too much heat loss to the cylinder wall, and this shows 
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that the Hohenberg model causes too much energy to be wasted when the piston is at 

TDC. Therefore, a high scaling factor is not suitable for the Hohenberg model. 

 

 

Figure 5.5 Comparison of heat transfer coefficient with same scaling factor. 

 

Improper characteristic velocity causes incorrect heat loss to the cylinder wall as well. 

The piston is in a downward and upward motion, so the piston’s instantaneous velocity 

is not the same across the crank angle ranges. The instantaneous piston speed is at its 

minimum when the piston is at TDC and BDC, and it is at its maximum when the 

piston is in the middle of the stroke. Therefore, in this case, the characteristic velocity 

could be different across the stroke range. However, the Woschni and Hohenberg 

models assume that the characteristic velocity is constant for all of the crank angle 

ranges, as shown in Figure 5.6. The modified Woschni equation, on the other hand, 

uses a different approach, where the characteristic velocity varies across the engine 

cycle. 
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Figure 5.6 Comparison of characteristic velocity between the Woschni, modified Woschni, and Hohenberg models. 

 

5.3.2.2 Heat Transfer Behaviour of Different AFR 

 

A diesel HCCI engine operates in a lean condition, where the actual AFR is greater 

than the stoichiometric AFR of 14.5. In a high-load operation, the AFR is reduced 

toward the rich zone, while the AFR is higher when the engine is in a low load. Heat 

loss effects for all models were tested with varying AFRs. Both the Woschni and 

Hohenberg models yielded slightly lower in-cylinder pressure compared with the 

modified Woschni equation for both different AFRs, as shown in Figure 5.7. 

 

The LTR region is advanced for both the Woschni and Hohenberg models and 

subsequently for the main combustion (HTR) region. A high heat transfer coefficient 

for the Woschni and Hohenberg models, as shown in Figure 5.8, leads to more energy 

loss from the combustion chamber. The modified Woschni equation agreed well with 

the experiment, which produced a more accurate result compared with the other two 

models and could be used for further analysis of HCCI engines. More tuning is 

required for Woschni and Hohenberg models in order to achieve a desirable result. 

Therefore, a modified Woschni equation for the convection heat loss was used for the 

rest of the simulations. 
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Figure 5.7 In-cylinder pressure comparison with different AFRs and different heat transfer coefficient models, 

CR=10.0, N=900 rpm, Tin=40°C, Pin=95 kPa. 

 

 

Figure 5.8 Heat release rate comparison with varying AFRs and different heat transfer coefficient models, CR=10.0, 

N=900 rpm, Tin=40°C, Pin=95 kPa. 
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5.4 CMC with Zero-Dimensional Model 

 

This section will discuss the performance of the combined model between CMC and 

zero-dimensional models in a diesel fuelled HCCI engine. The combined model in this 

thesis is called CMC, while the standalone zero-dimensional model without CMC is 

called zero-dimensional. A comparison of the CMC with the experiment and zero-

dimensional model is discussed. The turbulent behaviour in the chamber is also 

discussed and then followed by the characteristics of the CMC model. 

 

5.4.1 Boundary and Initial Conditions 

 

In this study, the boundary condition for air (in mole fraction) was set to 79% nitrogen 

(N2) and 21% oxygen (O2) at 𝜂 = 0 and 0% for both N2 and O2 at 𝜂 = 1. These 

correspond to conditional mass fractions of 〈𝑄𝑁2|𝜂 = 0〉 = 0.7671, 〈𝑄𝑂2|𝜂 = 0〉 =

0.2329  and  〈𝑄𝑁2|𝜂 = 1〉 = 0 , 〈𝑄𝑂2|𝜂 = 1〉 = 0 . For the fuel, the mass fraction is 

〈𝑄𝐶7𝐻16|𝜂 = 0〉 = 0 and 〈𝑄𝐶7𝐻16|𝜂 = 1〉 = 1. The mass fraction of the mixture was 

then initialised in the intake manifold by using linear interpolation between 𝜂 = 0 and 

𝜂 = 1, as shown in Figure 5.9 (the frozen limit). The initial conditions for �̅�0 and  Z𝑖𝑛
′′
0
2̃ 

at the inlet valve are, 0.0196 and 0.0192 respectively. On the other hand, both  �̅�0 and 

 Z𝑖𝑛
′′
0
2̃  in the chamber are 0. As for the inlet pressure and temperature, the initial 

conditions are 𝑃0 = 95 kPa and 𝑇0 = 313 K. 

 

The wall temperature, 𝑇𝑤 was set to be 530K for a CI engine (Zheng, Zhang & Zhang 

2005). However, the wall temperature used in the numerical studies varies from one 

engine to another (Jia, Xie & Peng 2008; Komninos, Hountalas & Kouremenos 2004; 

Komninos, Hountalas & Kouremenos 2005; Soyhan et al. 2009; Wang, Z. et al. 2006; 

Zheng, Zhang & Zhang 2005), where the wall temperature ranges from 293K (Barroso, 

Escher & Boulouchos 2005) to approximately 800K (Soyhan et al. 2009). The exhaust 

temperature and pressure were approximated at 1000K and 101.3kPa, respectively 

(Heywood 1988), where the approximated value is close to measurement of a diesel 

engine (Zhou, Zhou & Clelland 2006). 
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At the beginning of the simulation, where CA is less than IVO, the mixture 

composition in the chamber was assumed to be only air with no fuel. The fuel is being 

introduced into the chamber during the IVO period, where the fuel quantity is based 

on the AFR used in the experiment. 

 

 

Figure 5.9 Initial condition of the air-fuel mixture in the intake manifold. 

 

5.4.2 Comparison with Experiment 

 

The CMC with zero-dimensional model was studied using the same engine operating 

conditions as discussed in Section 5.2. The result shown in Figure 5.10 is a comparison 

between the experiment (Guo et al. 2010), the zero-dimensional model from Guo et 

al. (2010), the zero-dimensional model without CMC and CMC with zero-dimensional 

model. The result shows that the CMC with zero-dimensional model is in good 

agreement with the experiment. The model predicted the LTR and HTR points close 

to those found in the experiment. However, the model predicts lower in-cylinder peak 

pressure. This behaviour is similar to that observed when modelling a zero-

dimensional CMC in a diesel engine, where the result was improved when 

implementing CMC in a multi-dimensional simulation (Figure 5.11) (Wright 2005). 

The lower in-cylinder peak pressure could be due to the low number of CMC bins, 

homogenous assumptions of the combustion chamber temperature and pressure, 
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constant wall temperature for the whole engine cycle or the limitations of the reduced 

chemical kinetics mechanism. 

 

The advantage of using CMC in a zero-dimensional model in this study is that the 

model does not require the increase in intake air temperature that a zero-dimensional 

model needs. Instead, the model uses the actual experimental intake temperature, 

which is 313K. The result shown in Figure 5.10 was using the intake temperature of 

313K for CMC compared to 333K for zero-dimensional alone, where both of them 

yield a very similar HTR point. 

 

 
Figure 5.10 Comparison of the in-cylinder pressure between experiment (Guo et al. 2010), zero-dimensional model 

from Guo et al. (2010), zero-dimensional model without CMC and CMC with zero-dimensional model. 

 

 

Figure 5.11 Zero-dimensional CMC and a multi-dimensional simulation (STAR EBU) compared with experiment 
(Wright 2005) 
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To test the sensitivity of the intake temperature, Figure 5.12 shows the CMC model 

with the same intake temperature as the zero-dimensional model, which is 333K: the 

combustion is advanced by about 10˚CA. This is expected from actual engine 

operation: combustion is advanced when the intake temperature increases. The zero-

dimensional model, on the other hand, predicted that auto-ignition failed to occur when 

the intake temperature was set to be the same as the experimental data. Thus, it is 

necessary to fine tune the intake temperature before the zero-dimensional model can 

be used, while the CMC model can be used without any artificial alteration of the input 

parameters. The CMC model in a zero-dimensional simulation predicts the timing of 

key events with a known under-prediction of pressure, thus this model can be used for 

further analysis. 

 

 

Figure 5.12 Combustion behaviours when the intake temperature was changed for both models. 

 

5.4.3 Turbulence Interactions 

 

A turbulence model was used in modelling the CMC and is important to understand 

the turbulence behaviour in the chamber. Low in-cylinder pressure when using CMC 

compared to zero-dimensional alone could be due to the turbulence effects in the 

combustion chamber. In the zero-dimensional model, the mixture was assumed to be 

homogenous and therefore no turbulence effect was involved. The CMC model, on the 

other hand, uses a turbulence model to account for the molecular mixing rate, where 
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the mixing rate is proportionally related to the ratio of turbulent dissipation rate and 

turbulent kinetic energy. Thus, in the CMC model, combustion is influenced by the 

turbulence-chemistry interactions. 

 

Because the engine was simulated from the IVO, the turbulence effects due to the fluid 

flowing through the intake valve must be taken into consideration. The intake mass 

flow rate and piston speed pattern across the entire CA are shown in Figure 5.13, where 

the flow rate is at its maximum when the valve is nearly at the maximum opening. At 

this condition, the mixture flows in faster. Hence, the mean kinetic energy increases 

and reached the peak at approximately the maximum intake valve opening, as shown 

in Figure 5.14. Then, the mean kinetic energy is gradually decreasing when the intake 

valve is closing and the decrease rate is faster when the piston is approaching TDC in 

the compression stroke. The turbulent kinetic energy and dissipation rate begin to 

increase when the mean kinetic energy is decreasing. 

 

 

Figure 5.13 Intake mass flow rate and piston speed pattern for the simulated engine. CR=10.0, N=900 rpm, 
Tin=40°C, Pin=95 kPa, AFR=50 
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Figure 5.14 The difference in mean kinetic energy, turbulent kinetic energy and turbulent dissipation rate across the 
crank angle cycle. 

 

The energy cascade method used in the turbulent model converts the mean kinetic 

energy to the turbulent kinetic energy via turbulent dissipation. The loss in mean 

kinetic energy is described by the increase of the turbulent kinetic energy, which shows 

the conversion between those energies. The turbulent kinetic energy is increased 

during the compression stroke because of the effect of RDT in the turbulence model. 

According to Borgnakke, Arpaci and Tabaczynski (1980), the RDT effect can generate 

turbulence during compression due to the compressibility effect.  Hence, the turbulent 

kinetic energy is at its maximum at the end of the compression stroke. The turbulence 

starts to decay when the piston is in the power stroke. The effect of turbulence would 

justify the molecular mixing rate in the CMC model, which will be discussed in the 

next section. 

 

5.4.4 CMC Characteristics 

 

5.4.4.1 Independence Test: Effects of Different 𝑪𝑫 

 

The value of 𝐶𝐷 in equation (3.47) is case-specific and according to Kim (2004), this 

constant should be large enough to reproduce fast mixing. Thus, this constant will be 

tested for each of the different engine models. For the n-heptane fuelled HCCI engine, 

the test was using the engine setup by Guo et al. (2010) and the number of bins of the 
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CMC model was set to 100 to reduce the time taken to complete the test. Figure 5.15 

shows the in-cylinder pressure trace between the experiment and CMC model with 

varying 𝐶𝐷, where 𝐶𝐷 = 2.5 shows a better result compared to 2.0 and 3.0. When 𝐶𝐷 =

3.0, the in-cylinder peak pressure is slightly lower than 𝐶𝐷 = 2.5. 𝐶𝐷 = 2.0 shows the 

lowest in-cylinder peak pressure. This is because different value of 𝐶𝐷  affects the 

scalar variance, where the variance decreases when 𝐶𝐷 is increased, as shown in Figure 

5.16 (right). This is because the mean scalar dissipation rate (SDR), which governs the 

mixing rate in the mixture, is proportional to 𝐶𝐷. The mean SDR is the highest for the 

highest 𝐶𝐷 value until the significantly reduced variance reverses this behaviour, as 

shown in Figure 5.16 (left), when the combustion is about to occur after 300°CA. 

Hence, a different level of mixing rate will then affect the in-cylinder pressure. The 

comparison between Figure 5.15 and Figure 5.16 also shows that there is an optimal 

value for 𝐶𝐷 to achieve optimal combustion phasing that is close to the experiment, 

where 𝐶𝐷 directly affects the mixing rate in the mixture. When comparing the oxidisers 

and fuel behaviour over the entire simulation, as shown in Figure 5.17, 𝐶𝐷 = 2.0 

yields inconsistent O2 consumption during the main combustion, while 𝐶𝐷 = 3.0 

shows a slight increase in N2 when the simulation is nearly finished. Thus, 𝐶𝐷 = 2.5 

for the n-heptane case was chosen for the study and can be used for further analysis. 

 

 

Figure 5.15 In-cylinder pressure comparison between experiment and CMC model with varying 𝐶𝐷. 
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Figure 5.16 Effects of varying  𝐶𝐷 on the mean SDR (left) and mixture fraction variance (right). 
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Figure 5.17 Oxidiser and fuel behaviour for the entire simulation with varying 𝐶𝐷 

 

5.4.4.2 Grid Independence Test: Number of Bins of the CMC Model 

 

The number of bins (as shown in Figure 4.9) of the CMC model is important so that 

the CMC model has enough resolution to account for the chemical reaction in 𝜂-space 

around 𝑍𝑚𝑒𝑎𝑛. The stoichiometric mixture fraction is 𝑍𝑠𝑡𝑜𝑖𝑐 = 0.0622 and the mean 

mixture fraction used for comparison with the experiment is 𝑍𝑚𝑒𝑎𝑛 = 0.0188. Figure 
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5.18 shows the comparison of the CMC model with different numbers of bins 

compared with the experiment. Because the 𝑍𝑚𝑒𝑎𝑛 is small, the CMC model with 100 

bins is not enough to accurately resolve the details around the mean mixture fraction 

space. The CMC model with 100 bins yielded the lowest in-cylinder peak pressure 

compared to others. 

 

The in-cylinder peak pressure increases with the increased number of bins, as shown 

in Figure 5.19. However, the time taken to complete the test with increasing numbers 

of bins is also increased. For comparison, the 100 bins CMC model took about one 

day on a mainstream 2013 computer, two days for 150 bins, three days for 200 bins, 

four days for 300 bins and almost five days for 500 bins. There was a big jump in in-

cylinder peak pressure when more than 100 bins was used, with 150 bins yielding 

slightly lower than the experiment while 200 bins and above showed slightly higher 

peak pressure. The results show that at least 150 bins are enough to resolve the details 

around the mean mixture fraction space. Thus, 150 bins of the CMC model were used 

for the rest of the analysis for the n-heptane case.  

 

 

Figure 5.18 Comparison between CMC model and experiment with varying number of bins.  

 

Even though the 200 bins model shows close in-cylinder peak pressure compared to 

the experiment, 150 bins provides a balance between numerical accuracy and 

computational efficiency. A slightly lower in-cylinder peak pressure compared with 

the experiment is similar to results using zero-dimensional CMC coupled with multi-
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dimensional CFD, as in Figure 5.11 (Wright 2005). Therefore, the 150 bins CMC 

model for the n-heptane case is sufficient when time and accuracy are taken into 

consideration and the result for fewer bins is expected to improve if the model runs in 

a multi-dimensional simulation. 

 

 

Figure 5.19 Peak pressure comparison between experiment and varying number of bins of the CMC model. 

 

5.4.4.3 Scalar Dissipation Rate 

 

The scalar dissipation rate measures the mixing rate at a molecular level. The mixing 

rate is high when there is inhomogeneity in the mixture. This is shown in Figure 5.20 

for direct injected diesel in a multi-dimensional CMC by Seo et al. (2010), where the 

mixing rate is increased abruptly during the injection period. In contrast to this study, 

the mean mixing rate is very low, which is below 0.3/s as shown in Figure 5.21. 

Because the fuel was port injected, the mean mixing rate is at its maximum during the 

intake stroke, which is 0.27/s, before decreasing again when the intake valve is closing. 

The mixing rate begins to increase again in the compression stroke, because turbulence 

is generated at this stage as shown in Figure 5.14. Then, the mixing rate is reduced 

when combustion is about to occur: the mixture is not completely homogeneous even 

though after the combustion occurred, as shown in Figure 5.21. The result shown here 

indicates that a high turbulence generation rate causes a high mixing rate. 
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Figure 5.20 Mean SDR for direct-injected diesel in a multi-dimensional CMC model (Seo et al. 2010). 

 

 
Figure 5.21 Mean scalar dissipation rate for port injected diesel of CMC with zero-dimensional model. 

 

A low mixing rate in this study when compared with Figure 5.20 is due to the 

assumption that the in-cylinder pressure is homogeneous and the fuel was injected in 

the intake manifold instead of being direct injected. The direct injection method 

contributes to the turbulence generation in the chamber and also creates a high 

inhomogeneity in the mixture. Thus, port injection methods reduce the turbulence, 

where the turbulence is generated due to the piston motion and fluid through the 

valves. Therefore, the effect of turbulence in a homogeneous mixture is low. The result 

is in agreement with the study from Aceves et al. (2000), where turbulence has a minor 

direct effect on HCCI combustion. 
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5.4.4.4 Chemical Reactions 

 

The chemical reactions are considered in equation (4.75) as a chemical source term of 

the CMC equations, where they affect the mass fractions and temperature in the 

combustion chamber. The temperature and mass fractions change as a result of the 

chemical energy being released during combustion. In HCCI engines, the combustion 

is necessary to model with a chemical kinetics mechanism rather than a pre-defined 

ignition point (Assanis & Heywood 1986; Bengtsson, Gafvert & Strandh 2004; Shaver 

et al. 2005) because chemical kinetics fully control the combustion. 

 

Figure 5.22 shows the mean mass fraction over the CA locations for the entire 

simulation. The fuel (C7H16) is being added to the combustion chamber after IVO and 

its mass fraction begins to increase and becomes constant after the specified AFR is 

attained. The result shows that no chemical reaction occurred until after 340°CA. Once 

the combustion started at approximately 345°CA, the oxygen and fuel were consumed 

and the amount of CO2 increased. The characteristics of LTR and HTR are also 

observed by having two-stage reductions in 𝑌𝑂2 , where LTR is shown by a small 

reduction in 𝑌𝑂2 while HTR is shown with a sudden drop. A two-stage reaction of n-

heptane is also reported in the literature (Curran et al. 1998; Maroteaux & Noel 2006; 

Mehl, Curran, et al. 2009). 

 

 

Figure 5.22 Mean mass fraction for the entire simulation, which shows the mean mass fraction of O2, H2O2, CO2, 
C7H16 and CO. 

 

The details of the species mass fraction change during the combustion event is shown 

in Figure 5.23, where the in-cylinder temperature trace is also shown to indicate at 
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which temperature the changes occur. These species (H, OH, H2O2, CH2O and HO2) 

are selected during the combustion because they are the most important for driving the 

ignition process (Aceves et al. 2000; Zheng & Yao 2007; Zheng & Yao 2006) , while 

C7H16 and O2 are the main reactants and CO and CO2 are the combustion by-products. 

NOx is not included in the chosen chemical kinetics mechanism. Maroteaux and Noel 

(2006) reported that the H2O2 decomposition occurs at the time of auto-ignition and a 

similar trend is observed in Figure 5.23 (B), where the amount of H2O2 increases when 

LTR is started. Radicals H2O2 and HO2 (Figure 5.23 (C)) are related to LTR, where 

they reached the peak near the point of the main combustion (Aceves et al. 2000). The 

LTR occurs when the in-cylinder temperature is between 850K and 1000K (Aceves et 

al. 2000; Curran et al. 1998; Maroteaux & Noel 2006), as can be seen in Figure 5.23, 

where n-heptane and O2 begin to decrease at approximately 850K followed by H2O2 

decomposition. Almost half of the fuel is consumed during LTR and intermediate 

species such as H2O2, HO2 and CH2O are generated. The main initial reactions during 

LTR are represented by (Zheng & Yao 2006) 

 

nC7H16 + O2 ↔ C7H15-2 + HO2 

nC7H16 + O2 ↔ C7H15-3 + HO2 

 

which show the H-atom is abstracted from the fuel molecule and generates an n-heptyl 

radical. The O2 addition in the above reactions is the most important path for low 

temperature branching (Zheng & Yao 2006). The increase in HO2 radical can be seen 

in Figure 5.23 (C) during the start of LTR. The HO2 radicals will then react with fuel 

molecules to generate hydrogen peroxide (H2O2) 

 

nC7H16 + HO2 ↔ C7H15-2 + H2O2 

nC7H16 + HO2 ↔ C7H15-3 + H2O2 

 

The H2O2 plays an important role during HTR. The accumulation process of HO2 

followed by H2O2 is shown in Figure 5.23 (B) and Figure 5.23 (C), where HO2 radicals 

reach the first peak at the start of LTR and H2O2 reaches its peak at the end of the LTR 

process. Due to the large amounts of HO2, the H2O2 is mainly generated from HO2 + 

HO2 ↔ H2O2 + O2 and then consumed by H2O2(+M) ↔ OH + OH(+M) to form OH 

radicals. 
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In general, the combustion occurs when the amount of H2O2 starts to accumulate 

during the LTR process and decomposes to form a significant amount of hydroxyl 

(OH) radicals: two OH radicals are produced for each H2O2. The decomposition rate 

becomes very rapid when the in-cylinder temperature reaches 900-1000K (Maroteaux 

& Noel 2006) and the amount of OH also increases rapidly, as in Figure 5.23 (B). The 

results observed in Figure 5.23 show that the main combustion starts at about 354°CA 

and the remaining amounts of O2 and C7H16 are decreasing when the H2O2 is 

decomposed. During the decomposition of H2O2, the amount of OH and H radicals are 

increasing and reach the peak by the time the H2O2 is fully decomposed, which is 

consistent with Aceves et al. (2000). The OH radicals react with the remaining fuel 

molecules producing water and heat, which increases the temperature during the 

combustion event. These radicals (H and OH) are at their maximum when the fuel 

molecules are fully consumed at the maximum in-cylinder temperature. The 

production and destruction activities of OH radicals are briefly shown below (Aceves 

et al. 2000; Roomina & Bilger 2001): 

 

H + O2 ↔ OH+ O 

OH + H2 ↔ H2O + H 

O + H2O ↔ 2OH 

 

The OH radicals are observed to have two peaks, which are during LTR and HTR. The 

amount of OH produced during LTR is very small; hence the fuel is only consumed a 

little. The radicals H and OH are then reduced after the combustion and according to 

Aceves et al. (2000), the radical H is consumed during high temperature combustion 

(1100-1800K). The intermediate species CH2O plays an important role in the transition 

from LTR to HTR. The CH2O is consumed as soon as the HTR begins to form CO. 

OH radicals will abstract an H-atom from CH2O to generate HCO radicals and HCO 

will be converted to CO as 

 

CH2O + OH ↔ HCO + H2O 

HCO + O2 ↔ CO + HO2 
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The oxidation of CO occurs during the HTR, where the oxidation process releases a 

significant portion of energy at high temperature (Zheng & Yao 2006). The reaction 

for CO consumption is given by 

 

CO + OH ↔ CO2 + H 

 

The amounts of CO and CO2 are increased as a result of the combustion products. 

Heywood (1988) reported that the amount of CO is increased rapidly to a maximum 

value in the flame zone and this behaviour can be seen in Figure 5.23(D), where the 

value of CO is increased to a peak value during the main combustion. 



Chapter 5 

PhD Mechanical Engineering                                                                                 155 

 

Figure 5.23 Mean mass fractions behaviour during combustion event compared with in-cylinder temperature trace, 
A: C7H16 and O2, B: OH and H2O2 C: H and HO2, D: CO and CO2. 

 

(A)

(B) 

(C) 

(D) 
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When studying the combustion behaviour in the mixture fraction space of the CMC 

model, the result shows that the combustion started in the lean side of mixture fraction 

space and propagated towards the rich side. Then the combustion shifted back to 

stoichiometric conditions during HTR. The stoichiometric mixture fraction for n-

heptane is 0.0622. Figure 5.24 shows the PDF of mixture fraction (modelled as a β-

function PDF), where most of the mixture has been dominated by air towards the 

combustion (PDF≈0 at Z=1). This shows that the mixture has not mixed 

homogeneously. There is a visible change when the combustion is finished (Figure 

5.24 D), which indicates that the mixture continues to mix, even though it does not 

reach perfect homogeneity. This is shown in Figure 5.16, where some inhomogeneity 

still exists in the mixture (variance > 0) after the combustion. The first stage of ignition 

(LTR) occurs in the lean side of mixture fraction space and propagates towards the 

rich region. The HTR occurs in the rich mixture and propagates towards the lean side, 

where the propagation from the rich to lean mixture can be seen at 355°CA. This 

behaviour is shown in Figure 5.27 for OH radicals, where OH plays an important role 

during combustion. The amount of OH increases first in the lean mixture before 

propagating to the rich region during the LTR process. Then, the chemical reactions 

continue, causing the peak OH radicals to shift back towards stoichiometric conditions 

at 355°CA, which is the HTR region. The amount of OH increases steadily at 

stoichiometric conditions during the main combustion event (HTR) before being 

consumed, as shown in Figure 5.27 (D). The combustion behaviour can also be seen 

from the generation of CO2, which is a by-product of the combustion. The CO2 is 

generated at the lean mixture and propagates towards the rich side during LTR process. 

Then the CO2 shifts back, with an increase at the stoichiometric condition at HTR. 

Figure 5.25 to Figure 5.30 show the conditional mean mass fraction for reactive scalars 

(C7H16, O2, OH, H2O2, CO and CO2) during the combustion event from LTR to HTR. 

The LTR starts at 345°CA with n-heptane being slowly consumed from the lean side 

of the mixture fraction space and moves to the rich region. Note that the LTR region 

is generally shown in images (A) and (B) while images (C) and (D) show the main 

combustion of the HTR region. 

 

From Figure 5.28, the result shows that the H2O2 is rapidly accumulating on the lean 

side of 𝜂 during LTR. The H2O2 is slowly decomposed and forms a small amount of 

OH radicals. These OH radicals are slowly consumed by n-heptane, where the 
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consumption of n-heptane propagates to the rich region and the n-heptane is not fully 

consumed at the lean mixture. Once the HTR starts at about 354°CA, the remaining n-

heptane at lean mixture is rapidly consumed. The same occurs for O2, where the O2 is 

fully consumed around the stoichiometric mixture. This can be seen by the rapid 

decomposition of H2O2 during HTR and OH reaching the peak at the stoichiometric 

mixture fraction when the in-cylinder temperature is at its maximum. The mass 

fractions of CO and CO2 are also slowly increasing from LTR to HTR, where CO2 has 

its maximum at the stoichiometric mixture fraction. The behaviour of the OH mass 

fraction profile is in agreement with Bolla et al. (2013) running diesel spray simulation 

using multi-dimensional CMC, where the OH mass fraction profiles peak at the 

stoichiometric mixture fraction. This indicates that the main combustion occurs at the 

stoichiometric mixture fraction. 
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Figure 5.24 PDF of mixture fraction during the combustion event. 
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Figure 5.25 Conditional mass fraction of n-heptane (C7H16) during combustion with varying CA. The x-axis range is 
slowly increased from image A-D because the ignition started at the lean side before propagating to the rich side of 

the mixture fraction space. The dotted red line shows the location of the stoichiometric mixture fraction. 
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Figure 5.26 Conditional mass fraction of oxygen (O2) during combustion with varying CA. The x-axis range is slowly 
increased from image A-D because the ignition started at the lean side before propagating to the rich side of the 

mixture fraction space. The dotted red line shows the location of the stoichiometric mixture fraction. 
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Figure 5.27 Conditional mass fraction of hydroxyl (OH) radical during combustion with varying CA. The dotted red 
line shows the location of the stoichiometric mixture fraction. 
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Figure 5.28 Conditional mass fraction of hydrogen peroxide (H2O2) during combustion with varying CA. The x-axis 
range is slowly increased from image A-D because the ignition started at the lean side before propagating to the rich 

side of the mixture fraction space. The dotted red line shows the location of the stoichiometric mixture fraction. 

 



Chapter 5 

PhD Mechanical Engineering                                                                                 163 

 

Figure 5.29 Conditional mass fraction of carbon monoxide (CO) during combustion with varying CA. The x-axis 
range is slowly increased from image A-D because the ignition started at the lean side before propagating to the rich 

side of the mixture fraction space. The dotted red line shows the location of the stoichiometric mixture fraction. 
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Figure 5.30 Conditional mass fraction of carbon dioxide (CO2) during combustion with varying CA. The x-axis range 
is slowly increased from image A-D because the ignition started at the lean side before propagating to the rich side 

of the mixture fraction space. The dotted red line shows the location of the stoichiometric mixture fraction. 

 

5.4.4.5 Conditional Temperature 

 

The conditional temperature profile is used to investigate the evolution of in-cylinder 

temperature in 𝜂 -space over the CA step. Figure 5.31 shows the conditional 

temperature profile for the same image configurations of the LTR and HTR events as 
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in Figure 5.25 to Figure 5.30. The temperature increases from the lean side of 𝜂-space 

and propagates towards the rich region. During LTR, the temperature propagates until 

approximately  𝜂 = 0.16 . The temperature profile shows a double-peak at the 

beginning of HTR (355°CA), where the small peak can be seen to form at 348°CA and 

slowly dominates until 354°CA: the small peak lies in the LTR region. Then, the 

second peak (the higher peak) occurs at 355°CA and the small peak diminishes from 

this point onwards. This shows that the small peak is not present in the HTR region. 

However, this double-peak profile is not evident when using gasoline, as discussed in 

section 5.6. This behaviour is also due to the chemical reaction mechanisms being used 

in this study, where skeletal, reduced or detailed mechanisms would have different 

behaviours (Bolla et al. 2013). The use of a zero-dimensional study would also give a 

different performance due to homogeneity assumption, where most of the CMC 

studies in the engine research were performed using multi-dimensional simulations 

(Bolla et al. 2013; De Paola et al. 2008; Seo et al. 2010; Wright 2005; Wright et al. 

2005). 

 

Once the HTR occurred, the temperature rapidly increased towards the stoichiometric 

mixture fraction and reached the peak at that condition. This indicates that the heat is 

released at the stoichiometric mixture fraction, where the conditional temperature is at 

maximum at 362°CA before decreasing again when the piston is moving towards 

BDC. The high temperature zone slowly propagates to the rich region when the peak 

temperature is decreasing in the process of reaching chemical equilibrium. The 

conditional temperature peaks at the stoichiometric mixture fraction in agreement with 

multi-dimensional CMC simulations (De Paola et al. 2008; Seo et al. 2010), as it is 

expected to be. Thus, further study can be performed using a zero-dimensional CMC 

approach. 
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Figure 5.31 Conditional temperature during combustion with varying CA. The x-axis range is slowly increased from 
image A-D because the ignition started at the lean side before propagating to the rich side of the mixture fraction 

space. The dotted red line shows the location of the stoichiometric mixture fraction. 
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5.5 Behaviour of CMC and Zero-D 

 

This section will discuss the parametric study between a zero-dimensional model and 

a combination of CMC with zero-dimensional model. The parameters investigated are 

the effect of intake air temperature, effect of air-to-fuel (AFR) ratio and the predicted 

effect of hydrogen addition to a diesel HCCI engine. 

 

5.5.1 Effect of Intake Temperature 

 

Intake air temperature is an important factor for controlling the auto-ignition timing of 

HCCI engines. Different fuels have different auto-ignition points and some of them 

require pre-heating to achieve good combustion. If methane or natural gas is used as a 

fuel,  the intake air temperature has to be set to at least 400K to achieve appropriate 

ignition (Morsy 2007). Therefore, the intake temperature will affect the auto-ignition 

point for other fuels as well and increasing the intake temperature will reduce the 

ignition delay.  

 

Figure 5.32 and Figure 5.33 show that the auto-ignition timing can be advanced once 

the intake temperature is increased for both CMC and zero-dimensional models. 

Results from the current simulation were compared with experimental results (Guo et 

al. 2010) in Figure 5.33 to validate the model over different operating temperatures. 

The usage of the CMC model improves the result compared to the zero-dimensional 

model alone. For an intake temperature of 25°C, the CMC model is in agreement with 

the experiment with marginally lower peak pressure for HTR and much lower pressure 

for LTR. The zero-dimensional model, on the other hand, has retarded combustion and 

higher peak pressure even though the intake temperature has been increased to 20°C 

higher than the actual temperature. For an intake temperature of 57°C, both the CMC 

and zero-dimensional models have advanced combustion, where the peak pressure of 

the CMC model is slightly higher than the experiment and the zero-dimensional model 

higher still.   



Chapter 5 

PhD Mechanical Engineering                                                                                 168 

 

Figure 5.32 A comparison between experiment, zero-dimensional model and CMC model with various intake air 
temperatures. 

 

 

Figure 5.33 The effect of different intake air temperatures on in-cylinder pressure trace between zero-dimensional 
and CMC models. 

 

A performance comparison between the CMC and zero-dimensional models is shown 

in Figure 5.33. The result shows that both models have very similar ignition points for 

intake temperatures of 60°C and 70°C. When the intake temperature is reduced, the 

zero-dimensional model has retarded combustion for an intake temperature of 40°C 

and no combustion at 20°C. The peak pressure for the CMC model is always lower 
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than for the zero-dimensional model. In all cases, the intake temperature for the zero-

dimensional model was set 20°C higher than for the CMC model. The deficiency in 

the zero-dimensional model is due to the assumption that the combustion is 

homogeneous, no turbulence effect was considered in the combustion chamber and 

there was a constant combustion chamber wall temperature for the whole engine cycle. 

In practice, temperature, pressure and mixture inhomogeneities exist in the chamber 

(Guo et al. 2010). The deficiency may also due to the potential limitation (slightly 

different auto-ignition point compared to the detailed mechanism) of the reduced 

chemical kinetics mechanism. All these assumptions contribute to the artificial 

increase in intake temperature. It was found that the temperature for the ignition point 

(start of HTR) or start of combustion (SOC) for the zero-dimensional model is always 

higher than the CMC model, as shown in Figure 5.34. If the temperature was not 

increased and was set to be the same as the actual temperature, the combustion did not 

occur (Figure 5.12). This shows that the single-zone zero-dimensional model requires 

more energy due to the assumptions discussed above. In the CMC model, the 

combustion was affected by the turbulence-chemistry interactions. The main 

combustion in the CMC model occurs at stoichiometric conditions given the right 

operating temperature, but this is initiated by reactions at a range of mixture fractions, 

which is not captured in the single-zone zero-dimensional model. Thus, the ignition 

occurs once the composition gains enough energy from the chemistry interaction. For 

lean combustion, the temperature started to increase in the lean mixture fraction space 

before propagating to the rich side and peaking at the stoichiometric condition, as 

discussed in Section 5.4.4.5. In the zero-dimensional model, combustion can only 

occur at the lean mixture fraction of the composition, and so there is no possibility for 

strong chemical reactions around the stoichiometric mixture fraction. This deficiency 

in the rate of releasing chemical energy has to be substituted by thermal energy in the 

form of an artificially-increased intake temperature. Thus, the result shows that the 

CMC model has better performance compared to the zero-dimensional model for 

varying the intake air temperature.  

 

An increase in air intake temperature will not affect the in-cylinder peak pressure 

significantly. However, it does affect the ignition timing. The ignition point is 

advanced when the intake temperature increases, as shown in Figure 5.34, where the 

start of HTR was chosen as the ignition point (Shahbakhti & Koch 2008). Note the 
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trend as the intake temperature increases: the predicted in-cylinder peak pressure starts 

to decrease (Figure 5.35) even though the auto-ignition is advanced (Figure 5.34). This 

trend is also observed in the experiment (Guo et al. 2010). This is a good option for 

control because of the low increase in in-cylinder peak pressure: high peak pressures 

and advanced auto-ignition will create knocking. Also note that because CMC allows 

reactions in the vicinity of stoichiometric conditions, the temperature at start of 

combustion (SOC) can be lower (Figure 5.34) due to the higher rate of chemical energy 

being released promoting combustion. 

 

 

Figure 5.34 Effect of varying intake air temperature on ignition timing and start of combustion (SOC) temperature 
for CMC and zero-dimensional models. 

 

 

Figure 5.35 In-cylinder peak pressure comparison between CMC and zero-dimensional models with varying intake 
air temperature. 
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5.5.2 Effect of Air-to-Fuel Ratio (AFR) 

 

The AFR is a measure of how much fuel and air is being consumed in the combustion 

chamber; HCCI engines operate with lean mixtures (AFR𝑎𝑐𝑡𝑢𝑎𝑙 >  𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐). Figure 

5.36 shows the validation of different AFR between the CMC and zero-dimensional 

models compared to the experiment, again showing good agreement. 

 

Figure 5.37 shows the predicted result of increasing the equivalence ratio: an increase 

in the in-cylinder peak pressure and advancement of the auto-ignition timing can be 

observed for the zero-dimensional model. The CMC model, however, shows a 

limitation, where the ignition point is almost identical for all cases with varying AFR 

even though the in-cylinder peak pressure increases when the AFR moves towards the 

rich mixture. The limitation is possibly due to the implementation of the zero-

dimensional model with CMC, where the mixture could be close to the lower 

flammability limit. This requires further investigation to confirm the cause. The 

formulation for conditional quantities of a homogeneous CMC model is reduced to 

reaction-diffusion in conserved scalar space with no physical space dependence. CMC 

is reported to produce a better result when implemented in a multi-dimensional 

simulation (Wright 2005). Thus, implementing a CMC model in a zero-dimensional 

simulation has some advantages but also some limitations. 

 

Figure 5.36 A comparison between experiment, zero-dimensional and CMC models with various AFR. 
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Figure 5.37 The effect of different AFR on in-cylinder pressure trace between zero-dimensional and CMC models, 

where the stoichiometric AFR for n-heptane is 15.1. 

 

Figure 5.38 shows the in-cylinder peak pressure trend with the change of AFR. The 

in-cylinder peak pressure trend keeps increasing when the AFR is reduced towards the 

rich mixture, which will possibly create knocking. In addition, the start of LTR is 

retarded, as shown in Figure 5.37, when the AFR is reducing. Therefore, careful tuning 

(especially for AFR) is needed to adapt to dynamic engine loads. 

 

 
Figure 5.38 In-cylinder peak pressure comparison between CMC and zero-dimensional models with varying AFR. 
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PART 2: GASOLINE HCCI 

 

5.6 Experimental Data 

 

Part 2 of this chapter will discuss the validation of CMC and zero-dimensional models 

against a gasoline fuelled HCCI engine. The experimental data of the engine from 

Bunting et al. (2008) was used as a validation tool, where the engine was run in HCCI 

mode with port atomisation of fuel. The focus of the study by Bunting et al. (2008) 

was on the emission characteristics of the engine. Thus the in-cylinder pressure data 

of the engine was taken from Puduppakkam et al. (2009), where they studied the effect 

of different gasoline chemical kinetics models using the same engine configuration. 

The engine details used for validation are shown in Table 5.2. Note the wall 

temperature used for this case, which is 353 K, is different compared to a diesel fuelled 

HCCI engine. This is consistent with Komninos and Kosmadakis (2011) where a 

gasoline fuelled engine has a lower wall temperature compared to diesel. 

 

Table 5.2 Engine parameters used in the simulation of a gasoline fuelled HCCI engine (Bunting et al. 2008) 

Cylinder bore 97 mm 

Stroke 70 mm 

Connecting rod length 110.42 mm 

Compression ratio 14.5 

Engine speed 1800 rpm 

Inlet pressure 101.3 kPa 

Inlet valve open (IVO) 350°CA ATDC 

Inlet valve closed (IVC) 578°CA ATDC 

Exhaust valve open (EVO) 139°CA ATDC 

Exhaust valve closed (EVC) 380°CA ATDC 

Wall Temperature 353 K 

AFR 35.9 

 

5.7 CMC with Zero-Dimensional Model Validation 

 

Just like the n-heptane case, the zero-dimensional model required the intake 

temperature for the gasoline case to be set higher than the actual to account for the 

mixing effect. For the gasoline case, the intake temperature for the zero-dimensional 
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model was set 7K higher than the actual to achieve a good result, smaller than that for 

the n-heptane case (20K). The increase in intake air temperature for the zero-

dimensional model is expected due to the limitations of the model. When the intake 

temperature was set to be the same as the actual, the zero-dimensional model showed 

a retarded combustion by 2°CA, as shown in Figure 5.39. The in-cylinder peak 

pressure is marginally lower than the experiment. A 10K higher intake temperature 

yields a slightly advanced combustion by 1°CA with slightly higher peak pressure. 

The results show that a zero-dimensional model requires tuning of the intake 

temperature to achieve a good agreement with the experiment. 

 

 

Figure 5.39 In-cylinder pressure comparison between the experiment (Puduppakkam et al. 2009), the CMC and 
zero-dimensional models, where the zero-dimensional model was tested with different intake temperatures. 

 

The CMC with zero-dimensional model, on the other hand, is in very good agreement 

with the experiment. The intake temperature was set to be the same as in the 

experiment and the model yields a slightly lower in-cylinder peak pressure. Note that 

the in-cylinder pressure trace is smooth over the peak and has no sharp edges like the 

zero-dimensional model has. This shows that a combination of CMC with zero-

dimensional model reduces the instantaneous rise in in-cylinder pressure, which 

overcomes one of the disadvantages of a zero-dimensional model: it exhibits a short 

burn duration (Morsy 2007). Also, with a combination of these models, the actual 
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intake temperature of the engine can be used without any tuning. Therefore, a CMC 

with zero-dimensional model shows an advantage over the single-zone zero-

dimensional model and can be used for further analysis. 

 

5.7.1 Independence Test 

 

The independence test will investigate the performance of the number of bins of the 

CMC model and the constant 𝐶𝐷. The CMC result in Figure 5.39 was tested with 150 

CMC bins. A comparison between 100 and 150 bins is shown in Figure 5.40 and 

compared with the experiment. The CMC model with 100 bins seems to be insufficient 

to resolve the details around the mean mixture fraction space. The mean mixture 

fraction for this study is  𝑍𝑚𝑒𝑎𝑛 = 0.0271 while the stoichiometric mixture fraction is 

 𝑍𝑠𝑡𝑜𝑖𝑐 = 0.0637 . The mean is relatively low, hence a higher number of bins is 

required to resolve the details in that region of the mixture fraction space. The CMC 

with 100 bins shows a lower in-cylinder peak pressure and when the number of bins 

increased to 150, the in-cylinder peak pressure improved, which is close to the 

experiment. Thus, 150 bins for the CMC model are used for the validation and further 

study. 

 

When comparing the constant 𝐶𝐷, the value used in this case is different compared to 

the n-heptane case. A difference in the engine model lead to a difference in the mixing 

coefficient, where the engine design also influenced the mixing rate in the combustion 

chamber. The value used for 𝐶𝐷  in the validation is 2.0 as implemented by other 

researchers. Figure 5.41 shows the effect of varying 𝐶𝐷 on in-cylinder pressure. High 

𝐶𝐷 increases the scalar dissipation rate during the intake process, as shown in Figure 

5.42 (left). This results in a smaller variance as shown in Figure 5.42 (right), where the 

variance diminishes faster when the piston is moving towards TDC. The fuel amount 

reduces with higher 𝐶𝐷, which results in a lower in-cylinder peak pressure. Thus, a 

proper 𝐶𝐷  has to be chosen, as also reported by Kim (2004), to achieve better 

agreement with in-cylinder pressure. 
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Even though the results for 𝐶𝐷 = 1.5 show a good agreement with in-cylinder pressure 

compared to the experiment, there is a slight inconsistency in O2 consumption during 

the main combustion event, as shown in Figure 5.43. Also, the N2 is slightly increased 

when the simulation is nearly finished. This shows that there is a small instability when 

using a smaller 𝐶𝐷 value. When 𝐶𝐷 was set to 1.0, the O2 consumption inconsistency 

becomes even worse during combustion where its amount is increasing after 30°CA. 

Thus, 𝐶𝐷 = 2.0 shows a good result in chemistry computation, where the in-cylinder 

pressure is improved when the number of CMC bins is increased. 

 

 

Figure 5.40 A comparison between the CMC model and the experiment, where the CMC model varies with 100 and 
150 bins. 
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Figure 5.41 A comparison of constant of 𝐶𝐷 used in the gasoline study and compared with the experiment. 

 

 

Figure 5.42 Global mean SDR (left) and variance (right) comparison over the entire simulation with varying 𝐶𝐷. 
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Figure 5.43 Oxidisers and fuels behaviour for the entire simulation with varying 𝐶𝐷. 

 

5.7.2 Chemical Reactions 

 

The chemical kinetics mechanism for gasoline fuel in this study was discussed in 

section 5.1.2, where it has a blend between n-heptane (C7H16), iso-octane (C8H18) and 

toluene (C7H8). The chemical reactions slowly occurred at approximately 335°CA 

before the main combustion. Unlike the n-heptane case, the gasoline fuel exhibits a 
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single-stage ignition, as shown in Figure 5.44, where the figure shows the result of 

fuels’ (C7H16, C8H18, C7H8) and oxidisers’ (N2, O2) mean mass fraction over the CA 

step for the entire simulation. A single-stage ignition for gasoline fuel is consistent 

with Kim, Kim and Lee (2004), where they reported that the combustion of a premixed 

gasoline HCCI engine can be controlled using the premixed ratio of the EGR rate and 

exhibits a single-stage ignition. In the experiment of a gasoline HCCI engine in this 

study (discussed in Chapter 8), the combustion in the HCCI engine was controlled by 

varying the intake temperature using heating without EGR. 

 

 

Figure 5.44 Mean mass fraction for the entire simulation for fuels (C7H16, C8H18, C7H8) and oxidisers (N2, O2) 

 

As reported by Aceves et al. (2000) and Maroteaux and Noel (2006), the combustion 

is initiated by the accumulation of H2O2 and this behaviour can be seen in Figure 5.45. 

The H2O2 accumulates before the main combustion is about to occur and as the fuel is 

slowly being consumed after 340°CA. The H2O2 is fully decomposed to OH radicals 

as observed by the rapid increase in the amount of OH during the combustion. The 

results also show that the radicals HO2, OH and H only have one peak, unlike n-

heptane’s case whose radicals have a double-peak to account for LTR. This confirms 

that the gasoline only has single-stage ignition, as supported by Kim, Kim and Lee 

(2004).  
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The amount of H2O2 is fully reduced to almost zero (fully decomposed) when the in-

cylinder temperature reached its peak. The amount of OH radicals is drastically 

increased at approximately 357°CA, about 2°CA after the amount of H and HO2 are 

rapidly increased. The in-cylinder temperature at which the rapid increase of H and 

HO2 occurred is at approximately 1200K, which is also consistent with Aceves et al. 

(2000), where the consumption of H and HO2 radicals occurred at a high temperature. 

In this case, those radicals (H and HO2) are drastically reduced when the in-cylinder 

temperature reached the peak at about 1800K. At the same time, the amount of CO 

and CO2 are also increased during the combustion, where the amount of CO2 is much 

higher than that of CO. The amount of CO reduces after the combustion, showing that 

the CO is converted to CO2 to achieve chemical equilibrium. 
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Figure 5.45 Mean mass fractions behaviour during the combustion event compared with in-cylinder temperature 
trace, A: C7H16, C8H18, C7H8 and O2, B: OH and H2O2 C: H and HO2, D: CO and CO2. 

 

(A) 

(B) 

(C) 

(D) 
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5.7.3 Conditional Temperature 

 

The conditional temperature for gasoline combustion is shown in Figure 5.46, where 

the results show the conditional temperature with varying CA steps during the 

combustion. The temperature starts to increase at the lean region of 𝜂-space, where 

 𝑍𝑚𝑒𝑎𝑛 = 0.0271 and this can be observed at 357°CA and 358°CA. The Z locations 

of maximum temperature at 357°CA and 358°CA are 0.0269 and 0.0336 respectively. 

Then, the temperature increases towards the stoichiometric mixture fraction (De Paola 

et al. 2008; Seo et al. 2010) and reaches the peak at  𝑍 = 0.0671, which is close to the 

stoichiometric mixture fraction of 0.0637. After that, the temperature propagates 

towards the rich region of the 𝜂-space when the temperature is decreasing. Note that 

the conditional temperature profile only has one peak and confirms that the ignition 

for gasoline fuel is single-stage, as also reported by Kim, Kim and Lee (2004). This is 

in contrast with the n-heptane case, which has a secondary low peak during LTR, 

where the fuel has two-stage ignition. Thus, the gasoline mechanism with the CMC 

model can be used for further analysis. 

 

 

Figure 5.46 Conditional temperature for gasoline combustion with varying CA. The dotted red line shows the 
location of the stoichiometric mixture fraction. 
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5.8 Conclusion 

 

This chapter has discussed the validation of the CMC and zero-dimensional models 

against experimental works from others. The validation covers the diesel and 

commercial gasoline fuels, where the diesel is represented by the n-heptane chemical 

reactions mechanism while the gasoline is a blend between n-heptane, iso-octane and 

toluene. Different heat transfer coefficient models were investigated so that the model 

is suitable for use with HCCI engines. In this case, a modified Woschni heat transfer 

coefficient was used for all simulations. Even though other models like Woschni and 

Hohenberg are also being used in HCCI engine models, the modified Woschni model 

shows better results because the equation was tuned according to the HCCI engine 

configuration. 

 

For n-heptane’s case, both the CMC and zero-dimensional models show good 

agreement with the experiment. The zero-dimensional model requires the intake 

temperature to be set 20°C higher than the actual to account for the mixing effects, 

while the CMC model does not need to tune the intake air temperature and can use the 

actual temperature. The CMC model shows better results than the zero-dimensional 

model in a validation test and also in the parametric study of varying intake 

temperature. However, the CMC model showed its limitation when AFR and hydrogen 

addition tests were performed. The limitation is due to the homogeneous equations of 

the CMC and zero-dimensional models, where the homogeneous model does not 

consider spatial variation. 

 

The CMC and zero-dimensional models also show a good agreement with the 

experiment when a gasoline HCCI engine configurations are used. The CMC model 

shows a better result than the zero-dimensional alone without intake temperature 

tuning. However, a parametric study was not performed in this engine configuration. 

A parametric study for gasoline HCCI will be discussed in Chapter 8, where both 

models will be compared against the experimental data collected in this study. 
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Chapter 6  

EXPERIMENTAL METHODOLOGY 

 

 

6.1 Introduction 

 

A methodology employed to convert an SI engine to an HCCI engine is presented in 

this chapter. A single cylinder four-stroke SI engine was used in this work. Major 

modifications have been conducted to convert the engine to HCCI mode. The 

modification involves the engine management system, where an Electronic Control 

Unit (ECU) was added to the engine. The intake manifold was also modified to allow 

the installation of an air heater. A port fuel feeding system was replaced with an 

electronic fuel injection (EFI) system for safety reasons which will be discussed later 

in this chapter. 

 

Many researchers have adopted the technique of using a high compression ratio for a 

gasoline HCCI engine (Dec & Yang 2010; Gerty & Heywood 2006; Koopmans & 

Denbratt 2001; Machrafi & Cavadias 2008; Yingnan et al. 2010). The advantage is 

that the engine will achieve diesel-like engine efficiency by employing a high 

compression ratio and lower emissions levels because of using gasoline as a fuel. 

However, the use of a low compression ratio (less than 12) in an HCCI engine with 

commercial grade gasoline fuel could cause deterioration in engine performance, 

which will be investigated in this study.  

 

When operating an HCCI engine in a low compression ratio setup, n-Heptane is 

normally used (Charalambides 2006; Guo et al. 2010). The reason is that the n-heptane 

has the same characteristic as a diesel fuel in terms of its cetane number, which is 

susceptible to auto-ignition. Thus, HCCI mode would easily be achieved in a low 

compression ratio engine with a small increment in the intake air temperature; about 

40-90°C (Guo et al. 2010).  
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Commercial grade gasoline, on the other hand, is unable to operate in HCCI mode in 

a low compression ratio engine with only a small increment in the intake air heating 

and without EGR. The transition point between SI and HCCI has to be achieved before 

switching to HCCI mode (Charalambides 2006; Dec & Yang 2010), where for a low 

compression ratio engine without EGR, the intake air temperature has to be at least 

210°C (Charalambides 2006).  

 

Therefore, a major modification has to be made for the single cylinder SI engine used 

in this study to achieve HCCI mode. In addition, most of the HCCI studies focus on 

the fundamental knowledge behind the combustion mechanism and also the techniques 

to improve the HCCI engines (Aceves et al. 2001; Aceves et al. 2000; Amneus et al. 

1998; Dec & Yang 2010; Ganesh & Nagarajan 2010; Hyvonen, Haraldsson & 

Johansson 2003; Kawano et al. 2005; Kim & Lee 2006; Komninos 2009b; Komninos 

& Kosmadakis 2011; Sheppard, Tolegano & Woolley 2002). In this study, a side-by-

side comparison of engine performance between SI and HCCI modes will be 

performed experimentally using the same engine configuration, because there is 

limited information in the literature.  

 

This chapter discusses the experimental methodology, with Section 6.2 discussing the 

experimental apparatus, followed by the modification to an HCCI engine in Section 

6.3. Then, the use of an Electronic Control Unit (ECU) is discussed in Section 6.4 and 

experimental techniques are discussed in Section 6.5. The chapter ends with a 

conclusion. 
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6.2 Experimental Apparatus 

6.2.1 Engine Test Bed 

The engine used in this study is a single cylinder Honda GX160 connected to a portable 

hydraulic dynamometer on a fixed test bed. The type of the engine is a four stroke 

engine with two-valve, flat crown piston, pull starter and is fully commercialised. The 

engine was originally in SI mode with a fixed compression ratio (CR) and is air-cooled. 

The valve is operated with a tappet mechanism and connected to the crank shaft via a 

gear system, as shown in Figure 6.1. The engine specification is presented in Table 

6.1, where the rated power for the SI engine claimed by the manufacturer is 3.6 kW at 

3600 rpm with 10.3 Nm of torque at 2500 rpm. 

 

 

Figure 6.1  Cross-sectional view of the standard engine (Honda 2012). 
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Table 6.1 Engine parameters used in this study 

Engine Parameter Honda GX160 

Engine Type Air-cooled 4-stroke overhead valve 

Displacement 163 cc 

Bore x stroke 68 x 45 mm 

Compression ratio 9:1 

Number of valves 2 

Inlet valve diameter 24.9 mm 

Inlet valve lift (max) 5.8 mm 

Inlet valve open (°CA ATDC) 10.5  

Inlet valve closed (°CA ATDC) 201 

Exhaust valve diameter 23.9 mm 

Exhaust valve lift (max) 5.8 mm 

Exhaust valve open (°CA BTDC) 207 

Exhaust valve closed (°CA ATDC) 12.5 

Con-rod length 60.45 mm 

Fuel Gasoline RON91 unleaded 

Rated power (kW) 3.6 at 3600 rpm 

Rated torque (Nm) 10.3 at 2500 rpm 

 

 

The experimental setup diagram is shown in Figure 6.2, where the engine was 

connected to various sensors and actuators. Two computers (PC) were used, as shown 

in the diagram and each PC recorded or monitored a different set of data. One PC was 

used to monitor or record the reading from the ECU and the other one for the 

dynamometer system, which has its own software. The pressure and encoder sensors 

were connected to the PC with the dynamometer system. Each of the sensors and 

actuators connected to the engine will be discussed in the following sections, as will 

the ECU details. A detailed experimental setup is shown in Figure 6.3, where the setup 

complied with all safety measures required by the university’s safety body. 
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Figure 6.2 Experimental setup diagram for an HCCI engine. 

 

Figure 6.3 Engine setup in the engine laboratory. 
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6.2.2 Dynamometer 

 

A portable water brake type dynamometer from Land and Sea was used in the study. 

The dynamometer model is DYNOmite 5” with maximum power of 25 horsepower 

(Hp) at 4000 rpm, which is more than enough for the current engine. The dynamometer 

is connected to its own data logger and software, which can be used to measure power, 

torque and various sensor readings. Many sensors (including a weather station to 

determine atmospheric pressure, temperature and humidity) can be added to the system 

and the readings will be displayed on its software interface. In this study, only some 

sensors (inlet pressure, exhaust temperature and air flow meter) and actuators (load 

and throttle controllers) were connected to the dynamometer’s data logger system. 

 

The dynamometer has a rotor inside the enclosure, which acts as a brake when water 

passes through. The water is controlled by an adjustable inlet valve and orifice. 

Increasing the water level will increase the rotor drag and thus apply more resistance 

to the engine. The dynamometer was controlled using an automatic controller, where 

the controller adjustment was made via the software. Figure 6.4 shows the 

dynamometer connected to the engine together with its automatic controller. The 

automatic controller was set up to have two sets of load increments, one with 5% 

increments for coarse tuning and the other with 1% increments for fine tuning.  

 

 

Figure 6.4 The dynamometer connected to the engine (left) with its controller (right). 
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6.2.3 Instrumentations 

 

6.2.3.1 Thermocouples and Pressure Sensors 

 

Two thermocouples and three pressure sensors were used in this study. The 

thermocouples were used to measure the intake and exhaust temperatures, while two 

pressure sensors were used to measure the intake pressure and in-cylinder pressure. 

The intake and exhaust temperatures were measured using a K-type thermocouple. 

This type of thermocouple provides the widest operating temperature range, where the 

common range is between -270°C and 1250°C. The thermocouple for the intake air 

temperature was installed close to the intake port, as shown in Figure 6.5. The 

thermocouple reading was sent to the temperature controller box, which was used to 

control the mixing temperature in the intake manifold. 

 

 

Figure 6.5 Intake temperature sensor location next to the intake port, as circled in red. 

 

The exhaust temperature thermocouple was installed next to the exhaust port to give 

real time exhaust temperature reading with less heat loss to the environment. Figure 

6.6 shows the location of the exhaust temperature sensor, which is close to the exhaust 

port. The sensor was connected to the Land and Sea data logger system, where the 

exhaust reading was monitored through its software. 
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Figure 6.6 Exhaust temperature sensor was installed after the exhaust port, as circled in red. 

 

The intake pressure, on the other hand, was measured using a pressure sensor, as 

shown in Figure 6.7 (left). The sensor has a measuring range between -82.74 kPa and 

151.68 kPa. This type of sensor was chosen because no pressurising applied to the 

intake manifold. The intake manifold has a maximum pressure of 0.997 atm or 99.7 

kPa at an altitude of about 600 m above sea level. The intake pressure reading was sent 

to the dynamometer’s data logger system. Another intake pressure sensor, Figure 6.7 

(right), was used to give the intake pressure reading to the Electronic Control Unit 

(ECU), where the sensor joins the ECU package. 

 

 

Figure 6.7 Intake pressure sensors from Land and Sea (left) and for ECU (right) 
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For the in-cylinder pressure, the pressure transducer used was a spark plug type with 

model number 6118AFD35Q04 from Kistler.  It has a measuring range from 0 MPa to 

1.5 MPa. The transducer was connected to the Kistler SCP-Slim amplifier (type 5064) 

to amplify the signal before it was read by the data logger. In-house calibration was 

required to confirm the reading from the transducer even though the pressure 

transducer had been factory calibrated. The calibration technique is discussed in 

Appendix B. 

 

 

6.2.3.2 Rotary Encoder 

 

The rotary encoder was used to measure the engine speed and to recognize the location 

of top dead centre (TDC). The encoder was installed on the engine’s Power Take-Off 

(PTO) shaft, which was connected after the dynamometer, as shown in Figure 6.4. The 

resolution of the encoder is 720 pulses per revolution, which records 1440 data points 

per engine cycle. The encoder was connected to a 5V DC power supply and the data 

logger from National Instruments was used to record the data. 

 

6.2.3.3 Lambda Sensor 

 

The lambda (𝜆) sensor comes with a digital display which uses a Bosch driver chip 

CJ125 and a Bosch LSU4.9 oxygen sensor. The Bosch LSU4.9 sensor is used to 

measure the exhaust gas oxygen, where the sensor type is a wideband 𝜆 sensor. The 

oxygen sensor used in this study has a wide range 𝜆 reading from 0.65 - ∞ and the fuel 

can be tuned based on the 𝜆  on the display. The sensor was installed further 

downstream from the exhaust port to avoid high temperature effects from the exhaust, 

which could damage the sensor. The display of the lambda sensor can be programmed 

to either show AFR or λ value. 

 

6.2.3.4 Airflow Meter 

 

The airflow meter used in this study is a low-inertia turbine type installed directly to 

the intake manifold, before the throttle body. The air will pass through, which will turn 
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the turbine. High turbine rotation shows a high air flow rate. The part number for the 

air flow meter is 430-803, which has an inlet diameter of three inches. The turbine has 

a measuring range of 1.7-85 m3/h. Figure 6.8 shows the air flow meter installed onto 

the inlet manifold in the L-shape due to space constraints. 

 

 

Figure 6.8 Air flow meter connected to the inlet manifold before the throttle body. 

 

6.2.3.5 Exhaust Gas Analyser 

 

An exhaust gas analyser (model EMS 5002) was used to measure the concentration of 

O2 (0-25%), CO (0-10%), CO2 (0-20%), HC (0-2000 ppm) and NOx (0-5000 ppm). 

AFR was also calculated when the gas analyser was connected to the dynamometer 

software on the PC. The exhaust gas analyser has an accuracy of 1% with a fast 

response time and is connected via a 12V DC connection. 

 

6.2.4 Fuel Measurement 

 

A 50 ml burette was used to measure the fuel consumption. The burette was connected 

to the fuel tank via a three-way valve. A ball valve was also used to open or close the 

fuel flow from the fuel tank. The ball valve was located before the three-way valve, at 

the bottom of the fuel tank, as shown in Figure 6.9. The ball valve was opened while 

the three-way valve handle was positioned towards the operator in order to fill the fuel 

into the burette. Once the fuel was about the same level as in the fuel tank, the ball 

Throttle body 
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valve was closed and the three-way valve handle was left at its current position. In this 

position, the fuel flows straight to the fuel pump from the burette instead of the fuel 

tank. The measurement was taken five times at each operating condition and then 

averaged to reduce the parallax error. 

 

 

Figure 6.9 The burette and fuel tank were installed side-by-side (left) and an enlarged picture of the area circled in 
red contains the ball valve, three-way valve and fuel flow direction (right) 

 

 

6.3 Modification to an HCCI Engine 

 

HCCI mode can be achieved by using several techniques, such as increasing the air 

intake temperature and compression ratio, exhaust gas recirculating and negative valve 

overlap, as discussed in Chapter 2. Most of the engine configurations used in this study 

are fixed and there was not much room available for modifications considering time 

and cost. Because the engine has a fixed compression ratio, the easiest option available 

to achieve HCCI is to use a high air intake temperature. Thus, modification of the 

existing engine to operate in HCCI mode requires major changes in the air intake 

system. 

 

Therefore, an air heater was chosen and installed in the intake system. To achieve this, 

the entire air intake system of the engine was modified, which will be discussed in the 
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following sub-sections. This change led to a modification of the other systems, 

including the fuel delivery system. The engine was then operated and evaluated based 

on its current unmodified compression ratio. The compression ratio was not modified, 

in order to reduce the modification work on the engine. 

 

Safety issues were made a high priority when modifying the engine. Thorough safety 

identification was conducted between the laboratory and the safety auditor. The 

engine, surrounding, laboratory facilities and how to operate the engine were checked. 

The modification work was then performed according to the safety check. 

 

6.3.1 Air Intake Heater 

 

Installation of the air intake heater required the original air intake system and 

carburettor to be removed. The carburettor was replaced with an Electronic Fuel 

Injection (EFI) system. The intake manifold was redesigned to accommodate the 

heater and EFI. The EFI came with an Electronic Control Unit (ECU) and has its own 

fuel delivery system. The ECU is discussed in more detail in Section 6.4. The original 

fuel tank shown in Figure 6.1 was also removed. It was replaced with an in-house fuel 

tank as shown in Figure 6.9, which was easier to set up and keep away from any heat 

source. 

 

The reason for replacing the carburettor with the EFI system was to remove any plastic 

parts in the air intake system. Hot air causes the plastic parts to melt. The fly valve in 

the carburettor has a plastic part in the middle of it and a failure occurred during the 

initial test. The plastic part melted when the air intake temperature reached 100°C, as 

shown circled in red in Figure 6.10. Due to this reason, the carburettor had to be 

replaced to ensure there were no plastic parts along the air intake system. Another 

reason for replacing the carburettor was to avoid the fuel in the small carburettor tank 

vaporising, as discussed in Section B.3. 

 



Chapter 6 

PhD Mechanical Engineering                                                                                 197 

 

Figure 6.10 Failure occurred on the plastic part of the fly valve of the carburettor due to the hot air, where the plastic 
part melted. The carburettor was then removed and replaced with an EFI. 

 

Modification to an HCCI engine was started by choosing the right heater for the 

engine, which was achieved by installing a 2 kW heater in the air intake manifold. The 

required power of the heater was obtained based on the manufacturer’s calculations. 

At the beginning, the maximum air intake flow rate has to be calculated, where the 

calculation assumes 100% volumetric efficiency (VE). Maximum VE gives the 

maximum air flow to the engine, as represented by 

 

𝑆𝐶𝐹𝑀 =
𝒱𝑑𝑁

3456
𝑉𝐸 

 

where 𝑆𝐶𝐹𝑀 is the air flow rate in standard cubic feet per minute and 𝑁 is the engine 

speed in RPM. The maximum air flow should occur at the maximum engine speed and 

wide-open-throttle (WOT) condition. Thus, at 𝑁 = 3600 rpm and 𝒱𝑑 = 9.7638 in3, 

the maximum 𝑆𝐶𝐹𝑀 is 10.17 ft3/min. Then, the power (in Watts) was obtained by 

using 

𝑃 =
𝑆𝐶𝐹𝑀(∆𝑇)

3
 

 

where ∆𝑇  is the temperature difference in ˚F. The desired maximum intake 

temperature is 350˚C and the room temperature during winter in the morning is about 

15˚C. This gives ∆𝑇 = 603˚F. By using all these calculations, it can be seen that the 
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maximum required power for the heater would be 2044 W. Therefore, a 2 kW heater 

would be sufficient to heat the intake air given the calculation based on 100% VE, 

where the actual VE of the engine is less than that. 

 

The heater is a flow-torch type using a 240 V single phase power supply. Two K-type 

thermocouples were pre-installed in the outlet of the heater. However, these 

thermocouples were not used because the location was too far from the intake port. 

The thermocouple used for the intake air temperature measurement and connected to 

the temperature controller box was discussed in Section 6.2.3.1. The heater has a 

maximum heating temperature of 755K at a maximum air flow rate of 195.4 m3/h. The 

minimum operating pressure was 0.0012 bar. Figure 6.11 shows the diagram of a 

modified air intake system, where the heater was installed downstream of the fuel 

injector.  

 

 

 

Figure 6.11  HCCI conversion by using a heater installed in the intake system. 

 

A schematic diagram of the intake manifold modification to accommodate the heater 

is shown in Figure 6.12. The EFI is located at part number 4, which has a port to fit 

the EFI in and this part is close to the intake valve. Part number 5 and 6 are an adapter 

to connect to the throttle body, which has slightly smaller diameter. The heater is 

Spark plug 
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located in between them and all these parts were fabricated by the university’s 

mechanical workshop. The details of the drawing, which include all the dimensions, 

are attached in Appendix C. 

 

 

Figure 6.12 Engineering drawing shows the modification of the inlet manifold to install the heater 

 

The physical location of the heater was fixed in the intake manifold, as shown in Figure 

6.13, where the heater was installed in between the throttle body and the EFI. The 

heater was wrapped with a heat shield to ensure the heater body was not exposed to 

the environment (Figure 6.13 bottom). The temperature at the heater outlet was 

controlled by using the temperature controller, in a resolution of ±1 °F. A high air 

intake temperature causes the port’s wall (part number 4 in Figure 6.12) holding the 

EFI (which is made of steel) to be heated as well. Because the EFI has a plastic base 

with a rubber O-ring as a seal, the port’s wall needs to be cooled down. Thus, a water 

jacket was installed around the EFI to ensure the EFI was always in a good condition, 

as shown in Figure 6.13 (bottom). 
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Figure 6.13  Top: The bare heater was installed in between the throttle body and the EFI in the inlet manifold. 

Bottom: The heater in the final setup with heat shield and also a water jacket installed around the EFI to prevent the 

plastic part from melting. 

 

The EFI cooling system also helps to cool down the air used to measure the intake 

pressure. There were two intake pressure sensors used in the study; one of them 

connected to the ECU and the other one to the dynamometer software. The sensor 

connected to the ECU has a plastic base, which could melt if the air is too hot. Thus, 

the air used to measure the intake pressure has also been cooled down. An exploded 

view of the cooling system is shown in Figure 6.14, where there are two rolled tubes 

inside the water jacket to prevent hot air from reaching the pressure sensors. Those 

parts were also fabricated by the university’s mechanical workshop. The details of the 

drawing are included in Appendix D. 

Heater 

Throttle body EFI 

To inlet 

EFI cooling system 
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Figure 6.14 Exploded view of the water cooling system for the EFI and pressure sensors. 

 

 

6.4 Electronic Control Unit (ECU) 

 

The use of the EFI requires an ECU to be installed in order to control the fuel injection 

rate for precise fuel-air mixing. The ECU used in the study was a commercial type for 

motorbikes or any small size engines and can be re-programmed to suit the specific 

engine. The ECU and EFI have been pre-programmed according to the engine 

specification. Thus, a little more programming was required on the ECU to fine tune 

the engine operation to suit the current environment. The ECU was installed using the 

manual provided by Ecotrons (Ecotrons 2013) and the engine was tested after the 

installation was completed. Detailed information about the ECU is discussed in 

Appendix B. 

 

 



Chapter 6 

PhD Mechanical Engineering                                                                                 202 

6.4.1 ECU Program 

 

Once the ECU installation was finished, the ECU required a little programming to 

adapt it to the current engine conditions and environment. To do this, ProCAL software 

version 7.2.4 from Ecotrons was used. This software communicates with the ECU via 

a Universal Serial Bus (USB) connection on the computer. Figure 6.15 shows the user 

interface of the software, where the software can also be used to monitor the readings 

from all sensors connected to the ECU. The data which can be displayed on the 

software, as shown by the dials, are the engine speed (RPM), manifold absolute 

pressure (MAP), throttle position sensor (TPS), engine temperature (ECT), intake air 

temperature (IAT), oxygen sensor (O2S), spark timing (SPARK) and fuel pulse-width 

of the injector (FUELPW1). The software can also be used to record all the ECU 

readings by pressing the record button. 

 

 

Figure 6.15 ProCAL version 7.2.4 user interface, which can show the readings from all the sensors connected to 
the ECU. 

 

The engine capacity must be set correctly. To check this, one can click on Calibrations 

- System Parameters - Engine Displacement. A dialog box as shown in Figure 6.16 

will pop up. The value can be changed according to the engine displacement size and 

in this case it was set to 163. 
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Figure 6.16 Engine displacement setting 

 

The engine speed range also needs to be set correctly. The setting can be accessed via 

Calibrations - System Parameters - Engine RPM Range and a dialog box as shown in 

Figure 6.17 will pop up. The maximum value (3600) was set according to the engine 

specification from the manufacturer. Once the engine speed goes beyond the set point, 

the ECU will cut-off the EFI, thus leaving the engine speed at the maximum set value. 

 

 

Figure 6.17 The setting for the maximum engine speed 

 

The start fuel factor is an important tuning parameter in order to get the engine started. 

The start fuel factor varies from one engine to another. If the intake manifold has been 

modified substantially, the start fuel factor would be different from the one pre-set by 

Ecotrons. The start fuel factor works by multiplying the base fuel amount with the 

factor set as in Figure 6.18. The amount of fuel required to start the engine is increased 

and it is normal for the engine to run rich during the warming-up process. The colder 

the environment, the higher the fuel amount required to start the engine. The start fuel 

factor reduces to 1 as the engine temperature increases. Once the engine temperature 

has reached 90°C, the fuel amount is injected as normal based on the operating 

condition of the engine. The start fuel factor can be changed by clicking Calibrations 

- Fuel System - Start Fuel Factor on the ProCAL menu. 
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Figure 6.18 Start fuel factor used for this engine 

 

Once the above parameters have been set, advanced tuning is required to get the engine 

running in HCCI mode. The tuning required here is a set point (also called engine map) 

which determines the fuel amount to be injected at each operating condition. There are 

three methods that can be used for tuning: speed density, alpha-N and blended method 

(Ecotrons 2013). The speed density method uses the volumetric efficiency (VE) factor 

to determine how much fuel to be injected, which is dependent on engine speed and 

intake pressure. Alpha-N uses a load based system, where the load can tell the ECU 

how much fuel is needed for the desired air-to-fuel (AFR) ratio. Alpha-N depends on 

the engine speed and throttle position. The blended method is a combination of speed 

density and alpha-N, which has more accuracy. However, for low engine speeds 

(below 8000 rpm), the speed density method often gives good enough control and 

Ecotrons used this method for most of the engine calibrations (Ecotrons 2013). Thus, 

in this study, the speed density method was used for engine tuning, meaning the VE 

table needs to be examined. 

 

Most of the programs have been pre-set by Ecotrons according to the engine 

specification. However, the ECU program that was pre-set by Ecotrons was based on 

the original engine setup and completed in isolation from the physical engine. The 

engine intake system has been substantially modified and due to this modification, the 

performance would therefore be different compared to the original setup. Because of 

this incomplete information, the engine might run unstably. Thus, the tuning step has 

to be completed to ensure the stability of the engine. The engine should be able to run 

smoothly once everything is set.  
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To tune the VE table on the ProCAL software, VE should have been obtained by using 

information from the 𝜆 meter and the fuel injection pulse-width. The fuel injection 

pulse-width was used because it gives the exact amount of fuel injected into the intake 

manifold for one cycle. From that information, the mass of fuel can be obtained from: 

 

𝑚𝑓 = 𝐼𝐶𝐼𝑃𝑊 

 

where 𝐼𝐶 is the injector characteristic (in kg/s) and 𝐼𝑃𝑊 is the injection pulse-width (in 

s) obtained from the ECU reading. The injector characteristic of the EFI is 80 g/min, 

or 1.333x10-3 kg/s as has been set in the program. By using 𝜆 definition: 

 

𝜆 =
𝐴𝐹𝑅𝑎𝑐𝑡𝑢𝑎𝑙
𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐

 

 

where 𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐  is the stoichiometric air-to-fuel ratio which is taken to be 14.7 for 

gasoline and 𝐴𝐹𝑅𝑎𝑐𝑡𝑢𝑎𝑙 is the actual air-to-fuel ratio. The actual mass of air inducted 

into the chamber can be obtained using the information from the 𝜆 meter as: 

 

𝑚𝑎 = 𝜆𝑚𝑓(𝐴𝐹𝑅𝑠𝑡𝑜𝑖𝑐) 

 

Once the actual mass of air and fuel are obtained, the VE is determined using 

(Heywood 1988): 

𝑉𝐸 =
𝑚𝑎

𝜌𝑎𝒱𝑑
 

 

For tuning purposes, VE at all operating points should have been obtained.  The table 

can be accessed from the software by clicking Calibrations - Air System - Volumetric 

Efficiency. Then run the engine at one operating point, obtain the VE using the above 

relationship and change the value in the table if it is different from calculated. This 

step was repeated until all points were examined. To speed up the tuning process, an 

interpolation method between adjacent points can be used.  The value in the table can 

be changed while the engine is running provided that the engine temperature has 

reached over 70°C. Figure 6.19 shows the engine map used in the study, where each 

point is dependent on the intake pressure (Y-axis) and engine speed (X-axis). 
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Figure 6.19 Engine map used for engine operating conditions 

 

To ensure the engine is running smoothly, the table should be plotted in 3D and 

checked to see if there is a spike at any point. If a spike occurs, smooth the curve by 

changing the value in the table. This is important because a spike can cause the engine 

to run unstably. Figure 6.20 shows the engine map in 3D with a smooth curve. Once 

the ECU program was examined, the program was saved in the ECU by choosing 

‘Burn to ECU’ from the ProCAL menu. The engine stability was then checked by 

running the engine at idle speed, part load, full load and wide-open-throttle (WOT). 

 

 

Figure 6.20 Engine map plotted in 3D to ensure there is no spike at any point. 
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6.5 Experimental Techniques 

 

HCCI mode was achieved by using a high inlet temperature. To operate the engine, 

one should use the safe working procedure (SWP) created for this engine setup (the 

SWP is attached in Appendix E). The SWP was used as a reference for the step-by-

step operation of the engine. The engine was run at 1500 rpm at 80% throttle opening: 

wide-open-throttle (WOT) or 100% opening causes the engine to run unstably at a 

high intake air temperature. HCCI mode was hard to achieve when the engine speed 

was running above 1500 rpm and the engine speed was also unstable beyond this point.  

 

At the beginning, the engine was started in SI mode until the engine had warmed up. 

The engine speed was slowly increased above 2000 rpm with low load, about 30% of 

the SI engine’s load. Once the engine speed was stable, the heater was then turned on. 

The intake air temperature was heated to at least 210°C due to the low compression 

ratio of the engine. In cold weather, the engine was difficult to switch from SI to HCCI 

mode at 210°C. To get the starting point, the air intake temperature had to be increased 

up to 310°C. The engine was run for about five more minutes before the intake air 

temperature gave a stable reading (no fluctuation). Then, the engine load was slowly 

increased by 1% increments until the transition point between SI to HCCI mode was 

achieved. The transition point could be observed when there was a ringing sound (or 

knocking) produced by the engine. After that, the spark plug can be turned off and the 

engine will operate in HCCI mode. The engine speed will reduce to 1500 rpm once 

the engine operates in HCCI mode. 

 

Reducing the load will increase the engine speed but in an unstable condition. 

Increasing the load will stop the engine because the engine could not operate below 

1500 rpm. In addition to that, the idle speed of the engine in SI mode is between 1500-

2000 rpm. Thus, the engine will not work properly below 1500 rpm because the lowest 

speed of the engine is given by its idle speed characteristics. The experiment was 

started from the highest air intake temperature (310°C) to the lowest possible air intake 

temperature (210°C) in 10°C resolution. The lowest air intake temperature was 

selected as 210°C because the engine will stop working below this point. Sometimes 

the engine was also unstable at 210°C if the intake air temperature experienced small 
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variations. The baseline data of the SI engine was created in order to compare the 

engine performance between SI and HCCI at the same operating condition, except for 

the air intake temperature the HCCI engine needs to work. The comparison will be 

discussed in the next chapter. 
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6.6 Conclusion 

 

This chapter has discussed the experimental methodology used to achieve HCCI mode 

by using a commercially available four-stroke single-cylinder engine. The 

compression ratio of the engine is fixed, thus the HCCI mode can be achieved by 

heating the intake air. To achieve this, a 2 kW heater was installed in a modified air 

intake manifold. Also, the engine was using the EFI and ECU systems instead of the 

original carburettor due to safety reasons. Thus, a little bit of programming was 

required to install the ECU and, once completed, the engine can be operated in a 

closed-loop cycle: a wideband oxygen sensor was used to control the input parameters. 

A direct comparison between SI and HCCI engines will be discussed in Chapter 7. 
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Chapter 7  

EXPERIMENTAL PERFORMANCE STUDY OF A 

GASOLINE HCCI ENGINE  

 

 

7.1 Introduction 

 

The performance of a gasoline HCCI engine is discussed in this chapter and compared 

with the SI engine. The power curve of the SI engine will be developed before 

discussing the engine operating conditions. The HCCI engine performance (the in-

cylinder pressure, engine power, fuel consumption, engine efficiency and emissions 

levels) will then be investigated and compared to the SI engine. The conclusion will 

complete the chapter. 

 

7.2 Power Curve Comparison of SI Engine with 

Manufacturer Data 

 

The power curve of the SI engine is compared against the manufacturer data because 

the air intake manifold of the engine has been substantially modified. The 

manufacturer data uses the original engine setup with a short air intake manifold 

coupled with a carburettor. The experimental setup, on the other hand, uses a long air 

intake manifold with an EFI. An ECU was also fitted to control the EFI. An ECU was 

not used in the old engine setup. Engine performance might vary depending on whether 

a short or long intake manifold is used. Figure 7.1 shows the difference between the 

manufacturer data and the experimental data for the engine power and torque. The 

engine power (Figure 7.1 top) for the experiment is slightly higher than the 

manufacturer data for the lower engine speed (below 3400 rpm). The maximum power, 
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however, is similar between the experiment and manufacturer data at the maximum 

engine speed, which is 3.5 kW at 3600 rpm. 

 

 

Figure 7.1 The comparison of SI engine power and torque between manufacturer data and experiment. 

Manufacturer uses carburettor with short intake manifold while experiment uses long intake manifold with EFI. 

 

The engine torque, as shown in Figure 7.1 (bottom), has different behaviour between 

the manufacturer data and the experiment. The engine torque for the experiment is 

higher than the manufacturer data for the engine speed below 3400 rpm. The torque is 

then lower than the manufacturer data when the engine speed is maximum at 3600 

rpm. The maximum engine torque for the experiment is 12.1 Nm at 2700 rpm, while 

the maximum engine torque from the manufacturer data is 10.3 Nm at 2500 rpm. A 

higher engine torque for the experiment is due to the long air intake manifold compared 

to the old engine setup from the manufacturer. A long intake manifold creates a 

pulsation effect at low engine speeds (Heywood 1988; Muller & Mich 1983). When 

the intake valve is closed, the air keeps moving in and hits the valve wall. This creates 

a piling effect and the air becomes slightly compressed. The compressed air then 

moves back and forward to form the pulsation effect. When the intake valve is open, 

the air is drawn into the combustion chamber, which creates a supercharging-like 
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effect. Thus, the torque is increased for the low engine speed, which explains the 

behaviour in Figure 7.1 (bottom). 

 

In a modern automotive engine, higher engine torque is necessary at a low engine 

speed while higher engine power is required at a high engine speed. To achieve this, 

the engine uses an airflow module to change the length of the air intake manifold at 

the desired engine speed (Proton 2013), as shown in Figure 7.2. When the engine speed 

is low, the module uses a long air intake runner to get more torque. Once the engine 

achieves the desired high engine speed, the module will then bypass the long air intake 

and use a shorter air intake flow to get more engine power. This will enhance the 

engine performance at low and high engine speeds. 

 

 

Figure 7.2 Airflow module used in the air intake manifold of modern engines to implement the effect of short or long 

air intake (Proton 2013). 

 

7.3 Experimental Conditions 

 

HCCI engines are reported to have difficulty starting in cold conditions (Kong & Reitz 

2003; Soylu 2005). The air intake temperature has to be increased high enough to allow 

the HCCI operation. The engine was operated at a constant compression ratio of CR 9 

and the 𝜆 was kept at near stoichiometric mixture of 1.1. Because the HCCI engine 

only operates in a stable condition at 1500 rpm and is unstable at a higher engine speed, 

the performance study will use an engine speed of 1500 rpm as a comparison point 
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between HCCI and SI modes. The engine speed was set to be constant so that a direct 

comparison can be made between the two modes of combustion. Three different cases 

were investigated: SI at its maximum load; SI at part load but similar power to HCCI; 

and HCCI at its maximum load. The engine operating conditions are shown in Table 

7.1 and the details of the engine operations are discussed in Section 6.5. The 𝜆 was set 

the same for all the cases due to the limitation of the ECU, which cannot operate in a 

stable condition if the 𝜆 more the 1.1. 

 

Table 7.1 Engine operating conditions 

Case Engine Speed 

(RPM) 

Power Output 

(kW) 

Lambda CR Load  

(%) 

SI_1 1500 1.1 1.1 9 100 

SI_2 1500 0.8 1.1 9 30 

HCCI 1500 0.8 1.1 9 100 

 

 

7.4 Engine Performance Comparison 

 

7.4.1 In-Cylinder Pressure 

 

The in-cylinder pressure can be used to monitor the combustion activities inside the 

combustion chamber. High in-cylinder pressure is useful when the engine requires 

more load and the in-cylinder pressure is low when the engine operates at no load. 

High or low in-cylinder pressure translates to high or low power produced by the 

engine. Figure 7.3 shows the in-cylinder pressure for the SI engine in this study 

between no load (Figure 7.3 left) and full load (Figure 7.3 right), where the TDC is at 

360°CA. The idle engine speed is 1700 rpm (no load), 1500 rpm at full load and 6% 

throttle opening to get the desired engine speed. The in-cylinder pressure is very low 

(close to 0.7 MPa) when the engine is idle, where the in-cylinder pressure at full load 

is 4.37 MPa. The big in-cylinder pressure difference helps the engine to operate at a 

high load configuration in SI mode. 
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When the engine was switched to HCCI mode, the in-cylinder pressure sometimes 

became unstable, which created knocking. Knocking is not a desired behaviour 

because the engine will have a limited load range and long exposure to knocking would 

damage the engine. Verhelst and Wallner (2009) reported that knocking is caused by 

an instantaneous heat release rate due to spontaneous auto-ignition of the end gas 

condition which generates a high-amplitude pressure wave. Knocking phenomena 

limit the load range of an HCCI engine, where high load operations can easily initiate 

knock (Yap et al. 2006). In this study, the HCCI engine has knocking because the 

operating condition of 𝜆 is near stoichiometric condition. 

 

 

Figure 7.3 In-cylinder pressure comparison for SI mode in this study between no load (left) and full load (right). 

 

The knock occurs when the combustion is advanced and a loud ‘pinging’ noise can be 

heard from the engine. Figure 7.4 shows the in-cylinder pressure behaviour when 

knocking occurs in the HCCI engine. The straight blue line in Figure 7.4 shows the 

TDC location at a position of 720th of the encoder reading where the encoder has 

0.5°CA resolution. The combustion is advanced by almost 10°CA and the in-cylinder 

pressure reached the instantaneous peak at 6.41 MPa before TDC. The in-cylinder 

pressure has a rapid up and down motion before the pressure is uniform at 15°CA after 

TDC. 
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Figure 7.4 In-cylinder pressure for HCCI engine when knocking occurred. Straight blue line is the TDC location at 
360°CA with encoder having a 0.5°CA resolution. 

 

To reduce knocking in an HCCI engine, the engine should be operated in a lean 

condition, where the 𝜆 is about 2 in order to achieve a knock stability limit (John & 

Yang 2010). However, the 𝜆 in this study was kept at near stoichiometric condition so 

that a direct comparison can be made between SI and HCCI at the same engine speed 

and mixture condition. The engine was only run for a short time to keep the engine in 

good condition. 

 

The in-cylinder pressure comparison between the SI and the HCCI engine is presented 

in Figure 7.5. The in-cylinder pressure condition of the HCCI engine was selected at 

a best case condition of 250°C intake temperature, when less knocking occurred. The 

in-cylinder pressure for the HCCI engine is higher than for the SI engine. The 

maximum pressure for the HCCI engine is 4.64 MPa and 4.37 MPa for the SI engine. 

Note that from the in-cylinder pressure diagram (Figure 7.5) the combustion event for 

the HCCI engine occurs in a short time. The in-cylinder pressure increases faster and 

reaches the peak in approximately 5°CA with the combustion starting at 365°CA. With 

the SI engine, the pressure increases steadily and the combustion is slower compared 

to the HCCI engine. The combustion event for the SI engine starts at approximately 
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357°CA before the pressure reaches the peak at 377°CA. Thus, the combustion event 

for the SI engine occurred in approximately 20°CA, which is four times slower than 

for the HCCI.  

 

When the in-cylinder pressure is translated into the rate of change, the pressure 

increment rate for the HCCI engine is higher compared to the SI engine, as shown in 

Figure 7.6. This event shows that the in-cylinder pressure rise rate is very high during 

combustion. Hence, the combustion in the HCCI engine occurs instantaneously with a 

very fast combustion, as has been discussed by Rattanapaibule and Aung (2005) and 

Tomita (2004). Therefore, the HCCI combustion requires very well controlled 

operating conditions to achieve the desired in-cylinder pressure behaviour, otherwise 

knocking will take place. 

 

 

Figure 7.5 In-cylinder pressure comparison between SI and HCCI engines. 
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Figure 7.6 In-cylinder pressure rate of change comparison between SI and HCCI engines. 

 

7.4.2 Engine Power 

 

Engine power is a measure of the engine’s ability to perform useful work over a period 

of time (Heywood 1988). The power absorbed by the dynamometer is a product of 

torque and angular speed; hence at a low engine speed the power produced by the 

engine is also low. In this study, the power produced by the engine was measured by 

using the dynamometer. A comparison in engine power was made and is shown in 

Figure 7.7, where it shows the engine power for the three different cases in this study 

(Figure 7.7 left) together with a recorded BMEP for each case (Figure 7.7 right). The 

maximum power for the SI engine is 1.1 kW at 1500 rpm (case SI_1) and 0.8 kW for 

the HCCI engine for all air intake temperatures. The SI engine was operated at full 

load (100%), while the HCCI engine only managed to operate at 35% of the SI 

engine’s maximum load, which translates to a 27.3% power decrease over the SI 

engine. This is because the HCCI engine has difficulty in high load operations (Kong 

2007). The 35% of the SI engine’s maximum load represents the maximum load for 

the HCCI engine because the HCCI engine is unable to operate at higher loads. Thus, 

at an engine speed of 1500 rpm, the HCCI engine is suitable to operate in low load 

conditions. 
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A reduction in HCCI engine power was described in Figure 7.5, where the in-cylinder 

pressure trace experienced a rapid increase in pressure when combustion occurred. 

This, in turn, will reduce the area under the curve: meaning the work produced by the 

HCCI engine decreases. Integrating the in-cylinder pressure over the volume produces 

work 𝑊 = ∫𝑝𝑑𝒱. Hence, the work produced by the HCCI and SI engines by using 

the in-cylinder pressure in Figure 7.5 is 109.94 J and 151.80 J respectively. Thus, the 

HCCI engine produces less work than its SI counterpart, which translates into low 

power. 

 

 

Figure 7.7 Engine power comparison between SI and HCCI modes 

 

The lower power of the HCCI engine translates into a low BMEP, as shown in Figure 

7.7 (right). SI_1 shows the highest BMEP of 0.5 MPa while the other two cases have 

BMEP of 0.4 MPa. SI_2 has the same BMEP as the HCCI mode because it was run 

on the same engine power so that a direct comparison could be made with the HCCI 

engine. BMEP shows the ability of the engine to perform high load operations. 

Typically, for a small engine the BMEP range is between 0.4 and 1 MPa (Heywood 

1988). The maximum BMEP for the HCCI engine in this study is 0.4 MPa and it shows 

that the HCCI engine has a very limited load range and is not suitable for high load 

operations (Kong 2007; Nathan, Mallikarjuna & Ramesh 2010). However, the 

recorded BMEP for the HCCI engine in this study shows a better result compared to 

the 5-cylinder SAAB engine in HCCI mode, which has a maximum BMEP of 0.36 
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MPa (Hyvonen, Haraldsson & Johansson 2003). The HCCI engine in this study has a 

similar BMEP to the natural gas-diesel HCCI engine reported by Nathan, Mallikarjuna 

and Ramesh (2010). Therefore, the BMEP for the HCCI engine achieved in this study 

is in agreement with the literature, where the HCCI engine operates in a limited load 

range. 

 

7.4.3 Fuel Consumption 

 

The fuel consumption (FC) was measured using a method discussed in Chapter 6, 

where the FC indicates the fuel used by the engine over a certain period of time. Lower 

FC is a desired performance in today’s world, where engine technology has been 

continuously improved to reduce the FC without sacrificing the engine power (Mehl, 

Faravelli, et al. 2009). The engine with low FC not only gives a fuel cost saving but 

also reduces the emissions levels as well (Ahn et al. 2002). Figure 7.8 shows the FC 

comparison between all cases of the engine test. The FC for the HCCI engine is shown 

at its minimum and maximum because the FC was measured across a range of intake 

air temperatures. The FC comparison for maximum load condition between the SI and 

HCCI engines shows that the SI engine has a higher FC with 0.32 kg/h (SI_1) while 

the HCCI engine recorded an improved FC with 0.24 kg/h at a minimum reading. 

When comparing the FC between the HCCI and SI engines for the same engine power, 

the SI engine shows a better result than the HCCI engine with an FC of 0.23 kg/h 

(SI_2). The results show that the HCCI engine, at maximum operating load condition, 

has up to 22.6% better FC than the SI engine, while for the same engine power, the SI 

engine shows a better result with 7.8% less FC than the HCCI engine. 

 

The brake specific fuel consumption (BSFC) was used to measure how efficient the 

engine is in using the fuel to produce power. The BSFC is obtained by using 

BSFC =
�̇�𝑓

𝑃𝑒
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where �̇�𝑓 is the fuel mass flow rate in kg/h and 𝑃𝑒 is the engine power in kW which 

gives kg/kWh for the BSFC. A typical SI engine has a BSFC of about 0.27 kg/kWh 

and the lower it is, the better (Heywood 1988). 

 

 

Figure 7.8 FC comparison between SI and HCCI engines, where the FC for the HCCI engine was recorded over a 

range of intake air temperatures and uses the minimum and maximum. 

 

Figure 7.9 shows the BSFC for the HCCI engine over a range of intake air 

temperatures, where the BSFC varies for different air intake temperature. In Figure 

7.9, intake air temperature was located on the x-axis because it is the control parameter 

(Antunes, Mikalsen & Roskilly 2008; Fiveland & Assanis 2000; Rattanapaibule & 

Aung 2005). When compared with the HCCI engine, the BSFC for SI (both cases) is 

better than the HCCI, as shown in Figure 7.10. The SI engine has the best BSFC at 

0.28 kg/kWh, where the HCCI has a minimum BSFC of 0.30 kg/kWh. When the SI 

engine operates in a full load condition, the BSFC marginally increases to 0.29 

kg/kWh. Thus, the HCCI engine has up to 4.3% lower BSFC than the SI engine at 

maximum load and 7.1% lower than the SI engine for the same engine power. This is 

because the power generated by the HCCI engine is 27.3% lower due to the low 

compression ratio of the engine. However, if the HCCI engine can achieve a lower 

BSFC than the SI engine, the HCCI engine would be a good option in the near future. 

The BSFC for the HCCI engine can be improved further by using other parameters to 

control the combustion such as high compression ratio, leaner mixture, exhaust gas 

recirculation etc. 
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Figure 7.9 BSFC for the HCCI engine over a range of intake air temperatures 

 

 

Figure 7.10 BSFC comparison between SI and HCCI engines with the HCCI engine using the minimum and 

maximum values over a range of intake air temperatures 
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7.4.4 Engine Efficiency 

 

Engine efficiency measures the engine’s ability to produce useful power given the 

amount of energy supplied by the fuel. The amount of energy supplied by the fuel is 

given by its heating value, 𝑄𝐻𝑉, where 𝑄𝐻𝑉 for gasoline is taken to be 47300 kJ/kg. 

Then, the engine efficiency can be obtained by using 

𝜂𝑓 =
𝑃𝑒

�̇�𝑓𝑄𝐻𝑉
 

A typical engine efficiency for SI engines is between 20% and 25% (Heywood 2005; 

Meyer 2007), where the most common driving range falls into that efficiency region 

(Meyer 2007). Higher engine efficiency is good because the engine uses less fuel and 

produces more power. Hence, the engine with high efficiency has a lower fuel cost, 

which is good for long term usage. Figure 7.11 shows the HCCI engine efficiency for 

different intake air temperatures, where the engine has a minimum efficiency at 

temperatures between 240°C and 260°C. The engine efficiency starts to increase at the 

lower and higher ends of the intake air temperature range.  

 

When the efficiency between the two modes of combustion is compared, the HCCI 

engine yields a lower efficiency than the SI engine. The SI engine has a maximum 

efficiency for case SI_2 of 27%, where the HCCI engine has an efficiency up to 25.3%. 

At a minimum condition, the HCCI engine yields 21.2% with 26.3% for the SI engine. 

Typically, a diesel engine has an efficiency of about 30% given a high compression 

ratio (Heywood 2005). However, diesel is not the focus in this chapter. The option to 

employ a high compression ratio in the HCCI engine is there in order to improve the 

HCCI engine efficiency. This is because, unlike the SI engine, the HCCI engine is able 

to operate at a high compression ratio with efficiencies similar to the CI engine 

(Christensen & Johansson 1998; Epping et al. 2002; Killingsworth et al. 2006; Mack, 

Aceves & Dibble 2009; William & Charles 2011). Therefore, given a small difference 

in engine efficiency between SI and HCCI engines at the same operating condition, 

the HCCI engine can produce a better result if more tuning is carried out. 
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Figure 7.11 HCCI engine efficiency for a range of intake air temperatures. 

 

 

Figure 7.12 Engine efficiency comparison between SI and HCCI engines, where the HCCI engine has a minimum 

and maximum range for a set of air intake temperatures. 

 

7.4.5 Emissions Levels 

 

Limits on emissions levels are becoming more rigorous nowadays because regulatory 

bodies such as those in Europe, the United States (US) and Japan are imposing 

stringent vehicle emissions quality standards (EPA 2000; Popp 2004; Wesselink, 
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Buijsman & Annema 2006). HCCI engines claim to have low emissions levels of NOx 

and particulate matters (Nathan, Mallikarjuna & Ramesh 2010) and high levels of 

unburned hydrocarbons (HC) and carbon monoxide (CO) (Kong et al. 2003; Nathan, 

Mallikarjuna & Ramesh 2010). However, the emissions levels vary from one engine 

to another and are dependent on the operating conditions of the engine, fuel quality 

and the engine design (Meca 1997; Rizvi 2009). Thus, the emissions levels from one 

engine cannot be directly compared with another engine because of those factors. The 

emissions levels from the HCCI engine in this study are compared with the SI mode 

at the same operating condition. Figure 7.13 shows the emissions levels of unburned 

HC, NOx, CO2 and CO for the HCCI engine over a range of intake air temperatures 

and will be discussed in the next sub-sections. 

 

 

Figure 7.13 Emissions levels of HC and NOx (above) and CO2 and CO (below) for HCCI engines for a range of 

intake air temperatures.  

 

7.4.5.1 NOx 

 

The NOx formation is explained by several formation mechanisms: the Zeldovich 

mechanism, the Fenimore mechanism, the fuel-bound NOx mechanism, the NO2 

mechanism and the N2O mechanism. The Zeldovich mechanism, also known as the 

thermal NOx mechanism, explains that the NOx is not formed from the fuel because 

there is no nitrogen component in the fuel. NOx is formed in a high temperature 
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reaction, where the nitrogen in the air dissociates into nitrogen radicals to form NO 

when it reacts with oxygen. Some NO is converted back to NO2 when further reactions 

occur in the chamber. The thermal NOx is not significant when the combustion 

temperature is below 1800 K (Kuo 2005). 

 

Under the Fenimore mechanism, also known as the prompt NOx mechanism, the NOx 

is promptly formed in laminar premixed flames long before the NOx is formed by the 

thermal mechanism. The Fenimore mechanism explains the additional NOx produced 

over the Zeldovich mechanism in the hydrocarbon flames. Prompt NOx is important 

for hydrocarbon fuels in fuel-rich conditions, where NOx is formed by rapid reactions 

of hydrocarbon radicals (CH, CH2, C2, C2H and C) with molecular nitrogen. Miller 

and Bowman (Miller & Bowman 1989) reported that NOx formed by the thermal 

mechanism is the dominant source of NOx only in the equivalence ratio range of ∅ =

0.8 − 1.0. For ∅ < 0.8, the temperature is sufficiently low and NOx was formed by 

the Fenimore mechanism. 

 

The fuel-bound NOx mechanism is used for coal and coal-derived fuels, where 

nitrogen exists as chemically bound nitrogen. The NOx formation is dependent on the 

local combustion temperature, stoichiometric conditions and the level of the nitrogen 

compounds in the fuel-air mixture. The NO2 mechanism, on the other hand, is based 

on the chemical kinetic calculations near the flame zone, where NO2 is formed due to 

the reaction between NO and HO2. The NO2 then reacts with H and O radicals to form 

NOx. The N2O mechanism is also based on the chemical kinetic calculations, where 

the N2O is formed due to the reactions of various nitrogen radicals with NO. The N2O 

will finally react with oxygen radicals to form NOx. In short, NOx formation is still 

under investigation and one cannot claim that all mechanisms have been found (Kuo 

2005). 

 

Generally, most of the NOx formation is determined by the peak temperature during 

combustion, where the peak temperature is dependent on other parameters as well such 

as equivalence ratio, fuel composition and the initial temperature of the fuel-air 

mixture (Kuo 2005). Kim and Lee (2006) reported that a higher inlet temperature 

causes high NOx emissions, especially when the mixture is not lean. Note that the same 

applies to Figure 7.13 (top), where the NOx in the HCCI engine is higher when the 
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intake air temperature increases, where the engine was operated at about stoichiometric 

conditions. This result shows that the NOx pattern formed in this study is in agreement 

with Kim and Lee (2006). The NOx produced in the HCCI engine shows that the NOx 

formation is sensitive to the intake air temperature. 

 

However, the NOx produced by the HCCI engine in this study is higher than that 

produced by the SI engine, as shown in Figure 7.14 for both SI_1 and SI_2. The NOx 

level increased substantially at the onset of knock. Knock easily occurs in HCCI 

engines, especially when the engine operates in a near stoichiometric condition. This 

is consistent with Li et al. (2007), where they found that the NOx level was increased 

when knock occurred. They also reported that the NOx level can be reduced by 

reducing the knock intensity. This can be achieved by operating the engine on a leaner 

mixture. In this study, the mixture condition for the HCCI engine was set to be the 

same as for the SI engine for a direct comparison. 

 

 

Figure 7.14 NOx comparison between SI and HCCI modes, where HCCI mode has a minimum and maximum range 

for different intake air temperatures. 
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7.4.5.2 Unburned HC 

 

Unburned HC is the consequence of the incomplete combustion of the hydrocarbon 

fuel and measures the combustion inefficiency. The level of unburned HC is generally 

specified in total hydrocarbon concentration, which is expressed in parts per million 

carbon atoms (Heywood 1988). The source of unburned HC is reported from the 

crevice region, the cylinder wall with a thin layer of oil left when the piston moves 

down and any combustion wall which has a cold area (Heywood 1988; Komninos 

2009a). In Figure 7.13 (top), the unburned HC for HCCI engines increases when the 

intake air temperature increases, which relates to the CO emissions explained in the 

next sub-section. 

 

When comparing the unburned HC between SI and HCCI engines, the result in Figure 

7.15 shows that the SI_2 has the lowest unburned HC and SI_1 is the highest, with the 

HCCI engine in the middle. In the literature, the unburned HC in HCCI engines is 

reported to be higher than the SI engines (Kong & Reitz 2003; Kong et al. 2003; 

Nathan, Mallikarjuna & Ramesh 2010; Yap et al. 2006). This is due to the low 

temperature combustion in the engine which causes low combustion efficiency 

(Erlandsson, Johansson & Silversand 2000; Li et al. 2007). In this study, however, the 

unburned HC in the HCCI engine is lower than in the SI engine at full load and only 

slightly higher than in the SI engine at the same engine power. This is possibly due to 

knocking occurring in the HCCI engine because, when knocking occurred, the 

combustion temperature was high (Kim & Lee 2006; White, Steeper & Lutz 2006). 

Therefore, unlike in low temperature combustion, high temperature combustion causes 

any unburned HC to be burnt and thus reduces the unburned HC emissions levels. 
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Figure 7.15 Unburned HC comparison between SI and HCCI modes, where HCCI mode has a minimum and 
maximum range for different intake air temperatures. 

 

7.4.5.3 CO and CO2 

 

The amount of CO2 and CO presented in Figure 7.13 (bottom) is dependent on the 

combustion efficiency, where the combustion efficiency can be defined as the ratio of 

CO2 to the total of fuel carbon present in the exhaust including CO, CO2 and UHC (Li 

et al. 2007). CO emissions are controlled primarily by the fuel-air equivalence ratio 

(Heywood 1988; Stone 1999). The principal reaction mechanism of CO formation 

is RH → R → RO2 → RCHO → RCO → CO, where R is the hydrocarbon radical. The 

CO2 is then produced by the reaction of CO with OH radicals, which also forms 

hydrogen radicals. The conversion of CO to CO2 occurs when the concentration of OH 

radicals increases during combustion (Kuo 2005). Thus, if the combustion is efficient, 

enough OH radicals will be formed to produce CO2. If the combustion is inefficient, 

the CO2 will be less with more CO left after the combustion.  

 

From Figure 7.13, it can be seen that the amount of CO is increased when the amount 

of unburned HC increases, before it is decreased again when the unburned HC is about 

constant. This is consistent with Li et al. (2007) running an HCCI engine with n-

heptane at low load condition, where the increase in CO and unburned HC is due to 

the termination reaction of CO to CO2. Hence, when unburned HC is about constant, 

the amount of CO is decreasing and CO is converted to CO2 resulting in a fast increase 

in the amount of CO2, as shown in Figure 7.13.  
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When comparing the result of CO2 and CO between HCCI and SI engines, as shown 

in Figure 7.16, the HCCI engine produces slightly lower CO2 and higher CO compared 

to SI_2. The result of higher CO for the HCCI engine is consistent with the literature, 

where HCCI engines have the disadvantage of producing more CO (Kong & Reitz 

2003; Nathan, Mallikarjuna & Ramesh 2010). This indicates that the combustion 

efficiency in the HCCI engine is low by having less CO2 converted from CO (Li et al. 

2007). The combustion efficiency can be represented by the composition of the 

combustion products, where more unburned HC and CO indicates combustion 

inefficiency (Heywood 1988). 

 

 

Figure 7.16 CO2 and CO comparison between SI and HCCI modes, where HCCI mode has a minimum and 

maximum range for different intake air temperatures 
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7.5 Conclusion 

 

This chapter has discussed the performance of the HCCI engine and compared it side-

by-side with the SI engine. Even though the HCCI engine experienced some knocking 

issues, a direct comparison with the SI engine is necessary to evaluate the combustion 

performance before performing any tuning. For full load comparison, the HCCI engine 

returns a 22.6% lower FC but the engine power is reduced by 27.3%. In turn, the HCCI 

engine has a slightly lower BSFC than the SI engine, by 4.3%. When comparing the 

SI and HCCI engines at the same engine power, the SI engine has the advantage over 

the HCCI engine. This is consistent with the literature, where the HCCI engine has the 

limitation of operating in a low load condition. 

 

As for the emissions levels, the HCCI engine in this study recorded a high level of 

NOx due to a knocking issue when operating the engine in near stoichiometric 

condition. Unburned HC is lower than in the SI engine at full load condition and 

slightly higher than in the SI engine at the same engine power. The same applies for 

CO emissions levels, where the HCCI engine returns higher CO than the SI engine at 

the same engine power. This is also consistent with the literature where the HCCI 

engine has the disadvantage of producing more unburned HC and CO than the SI 

engine. 

 

The HCCI engine can be used in a real world situation, whether in a hybrid engine 

(two or more power sources) or cruising mode. Both modes aim to reduce the FC of 

the engine. In cruising mode (low load condition), the engine can be switched to HCCI 

mode, then operating in SI mode when acceleration is needed. However, the HCCI 

engine needs more tuning before implementing it in a real world situation. The engine 

efficiency and emissions levels can be improved further by utilising different control 

parameters such as compression ratio, leaner mixture, exhaust gas recirculation, etc. 

Therefore, the HCCI engine could be a viable option in the near future. 
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Chapter 8  

CMC IN A ZERO-DIMENSIONAL SINGLE-ZONE 

MODEL OF A GASOLINE HCCI ENGINE 

 

 

8.1 Introduction 

 

In Chapter 5, the CMC and zero-dimensional models were validated against the 

experimental data from others, where both diesel and gasoline fuels were used. This 

chapter will discuss the performance of both models against the experimental setup in 

this study. The next section will validate the models’ performance against the 

experimental gasoline fuelled HCCI engine. Section 8.3 discusses the CMC model 

characteristics followed by the parametric study in Section 8.4. The chapter ends with 

the conclusion in Section 8.5. 

 

8.2 Comparison with Experiment 

 

8.2.1 Boundary and Initial Conditions 

 

The boundary conditions for air in mixture fraction space were set to 79% N2 and 21% 

O2 by mole at 𝜂 = 0 and no N2 and O2 when 𝜂 = 1. For the fuel, the mass fraction of 

the surrogate components at 𝜂 = 1 were set to 0.22 for n-heptane, 0.54 for iso-octane 

and 0.24 for toluene, which represents the components of a commercial gasoline fuel 

(Lee, Kim & Min 2011; Lee & Min 2009). All of the fuel components were set to 0 

when 𝜂 = 0 . Then, all the species mass fractions between 𝜂 = 0  and 𝜂 = 1  were 

initialised as a frozen mixture, as shown in Figure 8.1. 
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Figure 8.1 Initial condition of the air-fuel mixture in the intake manifold. 

 

The details of the engine is given in Table 6.1. The wall temperature for this HCCI 

engine was set to 353K for the small single-cylinder gasoline fuelled HCCI engine, 

which is consistent with Barroso, Escher and Boulouchos (2005) and Su et al. (2007). 

The exhaust temperature of the engine was set to 700K, as recorded by the 

thermocouple reading during the experiment and the intake pressure was 90.3kPa, as 

given by the pressure sensor. At the beginning of the simulation, which is before the 

IVO, the mixture in the chamber was assumed to be only air and the fuel-air mixture 

was added according to the pre-set AFR value after the IVO. 

 

8.2.2 Validation 

 

The details of the engine used in the experiment are shown in Table 6.1, where the fuel 

(gasoline) was port injected. The chemical kinetics mechanism used to model the 

gasoline fuel was discussed in Section 5.1.2, where the surrogate fuel model is a blend 

between n-heptane, iso-octane and toluene. Figure 8.2 shows the validation result 

between CMC and zero-dimensional models against the experiment in this study at the 

intake temperature of 250°C. The result shows that both the CMC and zero-

dimensional models are in good agreement with the experiment. The in-cylinder peak 

pressure for the models is almost identical for this case, where both models show 
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slightly lower peak pressure compared to the experiment. The ignition point for both 

models occurred at the same location and both of them are slightly advanced compared 

to the experiment. Note that the intake temperature for the zero-dimensional model 

was set 15°C higher than the actual to account for the mixing effects. This is consistent 

with Bunting et al. (2008) and Guo et al. (2010), where the intake temperature for the 

zero-dimensional model was set 10 - 30°C higher than the actual. 

 

 

Figure 8.2 In-cylinder pressure comparison between CMC and zero-dimensional models. Tin = 250°C, CR= 9, 

AFR=16, N=1500rpm. 

 

When the intake temperature for the zero-dimensional model was set to be the same 

as the actual, the model produced no combustion activity, as shown in Figure 8.2. This 

shows that the CMC model yields better results compared to the zero-dimensional 

alone without any increase in the intake temperature. The result is similar to the other 

two engine configurations discussed in Chapter 5, where the CMC model can use the 

actual intake temperature while the zero-dimensional model cannot. Thus, the CMC 

model is suitable to be used for further analysis, including in understanding the 

chemical reactions in an HCCI engine. 
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8.3 CMC Characteristics 

 

8.3.1 Independence Test: Constant 𝑪𝑫 

 

The value of constant 𝐶𝐷 in equation (3.47) was also tested in this engine configuration 

because it is case-specific. Figure 8.3 shows the in-cylinder pressure comparison 

between the experiment and the CMC model with varying 𝐶𝐷. The result shows that 

smaller 𝐶𝐷  causes slightly retarded combustion with 𝐶𝐷 = 1.0  retarding the 

combustion the most. It shows that a smaller 𝐶𝐷 value causes slow mixing and this is 

consistent with Kim (2004), where a higher 𝐶𝐷 value is required for fast mixing near 

the nozzle area. When 𝐶𝐷 = 1.0, the chemistry reactions become unstable, as shown 

in Figure 8.4, where a significant amount of O2 is suddenly created again after the 

combustion. When 𝐶𝐷 = 1.5  the amount of O2 increases before the simulation is 

finished but only at a slow rate.  

 

 

Figure 8.3 In-cylinder pressure comparison between experiment and CMC model with varying 𝐶𝐷. Tin = 250°C, CR= 

9, AFR=16, N=1500rpm. 
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Figure 8.4 Oxidisers (O2 and N2) and fuels (C7H16, C8H18 and C7H8) behaviour for the entire simulation for 𝐶𝐷 = 1.5 

and 𝐶𝐷 = 1.0. Tin = 250°C, CR= 9, AFR=16, N=1500rpm. 

 

Figure 8.5 shows that when 𝐶𝐷 = 2.0 and 𝐶𝐷 = 2.5 , the combustion behaviour is 

consistent for all species throughout the simulation.  The in-cylinder pressure 

comparison in Figure 8.3 shows the peak pressure when 𝐶𝐷 = 2.0 is slightly higher 

than 𝐶𝐷 = 2.5, approaching the experimental in-cylinder peak pressure. The effects of 

𝐶𝐷 on the scalar dissipation rate and variance are shown in Figure 8.6. Kim (2004) 

reported that increasing the 𝐶𝐷  value results in a lower scalar dissipation rate. The 

result is consistent with Figure 8.6(A), where as the 𝐶𝐷  value increases, the scalar 

dissipation rate is reduced during the combustion (piston near TDC). This is due to the 

variance diminishing faster with the increasing 𝐶𝐷, as shown in Figure 8.6(B).  The 

turbulent quantities (𝑘 and 𝜀) for all 𝐶𝐷 values in Figure 8.7 are very similar for the 

entire simulation and are not significantly affected. A small change in the turbulent 

quantities for different 𝐶𝐷 values is due to a difference in mean density because 𝐶𝐷 

only directly affects the scalar transport equation. For higher 𝐶𝐷 values, the turbulent 

kinetic energy and dissipation rate during combustion is slightly lower, as shown in 

Figure 8.7(B) and Figure 8.7(D). High 𝐶𝐷 values are required for fast mixing at the 
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nozzle area (Kim 2004) and, for the engine model, the flow of the air-fuel mixture is 

high during the IVO. Thus the 𝐶𝐷 value should be high enough during the intake stroke 

without causing too much retarded combustion. Therefore, 𝐶𝐷 = 2.0 was used for the 

rest of the study in this engine configuration, where it gives a good agreement between 

the model and experiment in terms of in-cylinder pressure trace. 

 

 

Figure 8.5 Oxidisers (O2 and N2) and fuels (C7H16, C8H18 and C7H8) behaviour for the entire simulation for 𝐶𝐷 = 2.5 

and 𝐶𝐷 = 2.0. Tin = 250°C, CR= 9, AFR=16, N=1500rpm. 
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Figure 8.6 The effect of different 𝐶𝐷 values on mean scalar dissipation rate (A) and variance (B) for the entire 
simulation. 
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Figure 8.7 Turbulent quantities (𝑘 and 𝜀) behaviour when 𝐶𝐷 varies. Images B and D are enlarged at the peak of 
images A and C. 

 

8.3.2 Independence Test: Number of Bins of the CMC Model 

 

The number of bins is also tested for this engine configuration. For the n-heptane case, 

a higher number of bins causes a big difference in in-cylinder peak pressure. The same 

occurred for the gasoline test using others’ experimental data in Chapter 5. This is due 

to the big variation between the stoichiometric mixture fraction, 𝑍𝑠𝑡𝑜𝑖𝑐, and the mean 
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mixture fraction, 𝑍𝑚𝑒𝑎𝑛. In the experiment of this study, the AFR was kept close to 

the stoichiometric condition for a direct comparison between SI and HCCI engines, 

which is AFR = 16. This translates to 𝑍𝑚𝑒𝑎𝑛 = 0.0588, where the stoichiometric 

mixture for gasoline fuel is 𝑍𝑠𝑡𝑜𝑖𝑐 = 0.0637. Thus, the high number of bins has not 

affected the in-cylinder peak pressure by much, as shown in Figure 8.8 and Figure 8.9, 

where there is a marginal increase in peak pressure when the number of bins is only 

slightly greater than 100. Therefore, the number of bins used in this engine 

configuration is 100, which gives faster computation time with very small effect in in-

cylinder peak pressure. 

 

 
Figure 8.8 In-cylinder pressure comparison between experiment and CMC model with varying number of bins. Tin = 

250°C, CR= 9, AFR=16, N=1500rpm. 

 

 

Figure 8.9 In-cylinder peak pressure comparison for different number of bins of the CMC model. 
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8.3.3 Conditional Mass Fractions 

The combustion of gasoline fuel has a single-stage ignition (Kim, Kim & Lee 2004), 

and this behaviour can be observed in Figure 8.10, where the OH mass fraction shows 

a single peak compared to n-heptane’s case with two peaks. The gasoline combustion 

with single-stage ignition is also observed with a gasoline fuelled HCCI engine in 

Chapter 5. As discussed before, where ignition is triggered by H2O2 decomposition, 

the same occurs for this engine configuration. The OH mass fraction increases rapidly 

once the decomposition process of H2O2 is nearly finished. The fuel components 

(C7H16, C8H18 and C7H8) were slowly consumed and their amounts reached zero once 

the in-cylinder temperature reached the peak.  The species H and HO2 are consumed 

at a high temperature, as discussed in Section 5.7.2, and this behaviour is also observed 

in Figure 8.10. The amount of CO peaks at approximately maximum in-cylinder 

temperature and CO2 increases rapidly during the combustion. The oxidation of CO to 

CO2 (Figure 8.10D) continues by the decreasing amount of CO matching the 

corresponding steady increase in CO2 to complete the combustion. 

 

Figure 8.11 and Figure 8.12 show the conditional mass fraction of the species during 

the combustion process. The result of O2 consumption shows that the combustion was 

started near the mean mixture fraction before further advancing to the stoichiometric 

mixture fraction and propagating towards the rich region. The same occurs for the fuel 

components, where the combustion begins at a lean region and moves towards rich 

compositions as chemical equilibrium is approached. The OH and CO2 mass fractions 

reached the peak at the stoichiometric mixture fraction, which is consistent with the 

CMC model in a multi-dimensional simulation (Bolla et al. 2013). The production of 

species H2O2, OH, CO and CO2 is also observed to start at the lean side and propagate 

to reach a peak at the stoichiometric condition. Roomina and Bilger (2001) reported 

that the OH production was over-predicted compared to the experiment because of the 

limitation in using a first order closure for the chemical source terms. This could also 

be due to the limitation of using the zero-dimensional model where most of the 

fluctuations are neglected. The results were expected to improve when the model was 

run on the multi-dimensional simulation. However, the combustion characteristics in 

the HCCI engine can be understood using the zero-dimensional model while using 

modest computational resources and time. Also, the result shown here indicates that 
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the CMC with zero-dimensional model can be used for future investigation for 

different fuels, thereby requiring less time to complete without sacrificing much 

accuracy. 

 

 
Figure 8.10 Mean mass fractions behaviour during combustion event compared with in-cylinder temperature trace 

for Honda engine, A: C7H16, C8H18, C7H8 and O2, B: OH and H2O2 C: H and HO2, D: CO and CO2. 
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Figure 8.11 Conditional mass fraction comparison for different CA location during combustion for species O2, C7H16, 
C8H18 and C7H8. The dotted red line shows the location of the stoichiometric mixture fraction. 
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Figure 8.12 Conditional mass fraction comparison for different CA location during combustion for species H2O2, OH, 
CO and CO2. The dotted red line shows the location of the stoichiometric mixture fraction. 
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8.3.4 Conditional Temperature 

 

The conditional temperature profile for this engine configuration is shown in Figure 

8.13, where the profile was observed from an early stage of the combustion at 

approximately 350°CA until 30°CA ATDC. The result shows that the conditional 

temperature peaks at 𝑍 = 0.07, where the stoichiometric mixture fraction is 𝑍𝑠𝑡𝑜𝑖𝑐 =

0.0637. The small variation between the peak location and 𝑍𝑠𝑡𝑜𝑖𝑐 is due to the smaller 

number of bins used in this study. A higher number of bins could resolve more 

combustion chemistry details with more computational resources and time. The 

difference in in-cylinder peak pressure for more than 100 bins is not significant, as 

shown in Figure 8.8, thus a small variation between 𝑍𝑠𝑡𝑜𝑖𝑐 and the in-cylinder peak 

pressure location is acceptable. 

 

The auto-ignition for this case occurred for lean conditions and diffused towards the 

rich side when the combustion completed. Unlike the ignition for the n-heptane case, 

the ignition started on the fuel rich side of the stoichiometric boundary and diffused to 

the lean side to peak at the stoichiometric mixture fraction, which is consistent with 

Bolla et al. (2013). Both gasoline fuelled HCCI engine configurations show the same 

ignition behaviour with single stage-ignition as reported by Kim, Kim and Lee (2004). 

Thus, the CMC with zero-dimensional model with the gasoline fuelled HCCI engine 

configuration can be used to predict the combustion behaviour for different operating 

conditions, which will be discussed in the next section. 
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Figure 8.13 Conditional temperature profile during combustion with varying CA. The dotted red line shows the 

location of the stoichiometric mixture fraction. 

 

 

8.4 Parametric Study 

 

8.4.1 Intake Temperature 

 

Heating the intake air is one of the useful methods to control the ignition timing of an 

HCCI engine (Antunes, Mikalsen & Roskilly 2008; Morsy 2007). The HCCI engine 

used in the experimental work of this study used intake air heating to achieve HCCI 

mode. Due to the small CR of the engine, the intake air has to be heated to at least 

210°C; otherwise the engine cannot run in HCCI mode. A high intake air temperature 

for a small HCCI engine with low CR is also reported by Charalambides (2006). 

 

Figure 8.14 shows the comparison between the CMC and zero-dimensional models 

with the experiment for different intake air temperatures. Three different intake 

temperatures from the experiment were selected: 250°C, 260°C and 270°C. Even 

though the intake air temperature in the experiment was run from 210°C up to 310°C, 

the selected readings showed less knocking behaviour compared to the rest. This is 

because the gasoline fuelled HCCI engine in this study was run at a near stoichiometric 

condition so that a direct comparison can be made between SI and HCCI engines, as 
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discussed in Chapter 7. Thus, those intake air temperature ranges were used for the 

rest of the study. 

 

The result in Figure 8.14 shows that both the CMC and zero-dimensional models are 

in good agreement with the experiment for different intake air temperatures. Both 

models show slightly advanced combustion with lower in-cylinder peak pressure 

compared to the experiment. However, the zero-dimensional model shows further 

advancement of the ignition compared to the CMC model when the intake air 

temperature is higher than 250°C. When the in-cylinder peak pressure between the 

CMC and zero-dimensional models is compared, as shown in Figure 8.15, the in-

cylinder peak pressure for the CMC model is slightly lower than for the zero-

dimensional model. The peak pressure of those models is close when the intake air 

temperature is 270°C. Note that the intake air temperature for the zero-dimensional 

model was set 15°C higher than the actual, while the CMC model uses the actual 

temperature. The results show that the CMC model performs better than the zero-

dimensional model. This is due to the zero-dimensional model’s assumption that the 

combustion chamber is fully homogeneous, while the CMC model takes into 

consideration the effects of turbulence on the molecular mixing. Practically, the 

mixture is not perfectly homogenous, nor are the in-cylinder temperature and pressure. 

By using the CMC model, the variation of fuel in the mixture and turbulent effects 

were taken into consideration. These two parameters were not considered in the zero-

dimensional model. Therefore, the results show that turbulence has a direct effect on 

the HCCI combustion that could change the temperature distribution across the 

chamber, where a small temperature difference affects the combustion behaviour, 

which is also reported in the literature (Cabra et al. 2002; Kong 2007) 
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Figure 8.14 Comparison between CMC and zero-dimensional models against experiment with varying intake air 

temperature. CR= 9, AFR=16, N=1500rpm. 

 

Figure 8.15 Comparison of in-cylinder peak pressure between CMC and zero-dimensional models against 

experiment. CR= 9, AFR=16, N=1500rpm. 
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8.4.2 Compression Ratio (CR) 

 

An HCCI engine operating with a high CR has the advantage of a CI engine’s 

efficiency with low emissions levels (Christensen & Johansson 1998; Epping et al. 

2002). The gasoline fuelled HCCI engine in this study has a low CR and thus the 

engine efficiency is not as high as in those with a high CR. If the engine has a high 

CR, the intake air temperature can be lowered to control the combustion. Figure 8.16 

shows the effects of a high CR on the in-cylinder peak pressure and ignition point. The 

zero-dimensional model has an advanced ignition point compared to the CMC model, 

where the behaviour becomes more significant when the intake air temperature is set 

to 270°C. The zero-dimensional model only has a similar ignition point to the CMC 

model at the lowest CR and intake air temperature, which are 9 and 250°C respectively. 

Then, the zero-dimensional model tends to advance the ignition by more once the CR 

and intake air temperature are increased. As discussed in the previous section, the 

intake air temperature for the zero-dimensional model was set 15°C higher than the 

actual and this shows that the CMC model (using the actual intake air temperature) 

predicts the combustion better than the zero-dimensional model. 

 

The difference in in-cylinder peak pressure, Figure 8.17(A), and the ignition location, 

Figure 8.17(B), is determined for varying CR and intake air temperature using the 

CMC model with the same AFR as the experiment in this study. The results show that 

the in-cylinder peak pressure increases with the increasing CR. High in-cylinder 

pressure is useful to obtain high engine BMEP so that the engine can be operated in a 

high load condition (Tsolakis & Megaritis 2005; Tsolakis, Megaritis & Yap 2008). To 

obtain high BMEP, the CR of the engine has to be increased. However, the ignition 

point is advanced significantly when high CR is employed (CR=13), where the ignition 

occurs long before TDC, which can create knocking. The ignition point is advanced 

further if the intake air temperature increases. This shows that the ignition point can 

be controlled using different CR and intake air temperature. If a high CR engine is to 

be used, a much lower intake air temperature than 250°C is necessary to achieve good 

combustion characteristics, where the ignition occurs at about TDC. Thus, the HCCI 

engine can achieve high engine efficiency if a high CR is employed, provided that the 

ignition point is controlled well. 
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Figure 8.16 In-cylinder pressure comparison between CMC and zero-dimensional models with varying CR and 
intake air temperature. 
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Figure 8.17 A comparison for in-cylinder peak pressure (A) and ignition location (B) with varying CR and intake 
temperature. 

 

 

8.5 Conclusion 

 

This chapter has discussed the validation of the CMC and zero-dimensional models 

against a gasoline fuelled HCCI engine in the experimental work of this study. Also 

discussed in this chapter is the performance of these models for different engine 

operating conditions. The CMC model shows a good agreement with the experiment, 

where the model can use the actual intake air temperature. The zero-dimensional 

model, on the other hand, is required to increase the intake air temperature, where for 

this case it was increased 15°C higher than the actual.  

 

When a high intake air temperature is used, the ignition is slightly advanced, but the 

peak pressure has not been affected much. For varying CR, the ignition point is 

advanced before TDC when the CR of the engine is increased. The ignition point was 

further advanced when a high intake air temperature was also used. Thus, to control 

the combustion for a gasoline fuelled HCCI engine, the intake air temperature can be 

reduced further if a high CR engine is to be used. Other means of ignition control can 

also be used for HCCI combustion, such as EGR and valve timing, and the study of 

these controls is recommended for future work. 
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Chapter 9  

CONCLUSION 

 

 

9.1 Summary and Future Work 

The purpose of this thesis was to implement the CMC model in a zero-dimensional 

simulation. Most CMC studies utilise a multi-dimensional simulation (Bolla et al. 

2013; De Paola et al. 2008; Seo et al. 2010; Wright et al. 2005), where the model 

produces good agreement with the experiment but requires high computational 

resources. A zero-dimensional single-zone model has the advantage of faster 

computing time. However, it has the limitation of short burn duration which causes 

higher in-cylinder peak pressure (Morsy 2007).  

 

There is also an argument in the literature that the turbulent mixing only has a minor 

direct effect on HCCI combustion (Aceves et al. 2000; Aceves et al. 2002). Kong and 

Reitz (2002) suggested that the turbulent mixing effect on HCCI combustion requires 

further investigation. The use of a zero-dimensional single-zone model assumes that 

the combustion chamber is fully homogeneous without any turbulence effect. 

Implementing a CMC model into a zero-dimensional single-zone model will take into 

consideration the turbulence-chemistry interactions at the molecular level. The use of 

this combined model (CMC and zero-dimensional single-zone models) in the HCCI 

combustion area is new in the literature. There is a study by Kwon et al. (2011) using 

CMC in a zero-dimensional model. However, they used a CI engine configuration with 

a direct-injection spray penetration model. The method in this thesis uses an HCCI 

engine configuration, where the fuel was port-injected in the intake manifold. 

 

The results in Chapter 5 and Chapter 8 show that the combined model has improved 

the limitation of the zero-dimensional single-zone model. The combined model has the 

ability to use the actual intake air temperature directly, while the zero-dimensional 

model requires the intake temperature to be set 15-30°C higher than the actual 
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(Bunting et al. 2008; Guo et al. 2010). The results in Chapter 5 show that the combined 

model slightly under-predicts the peak pressure with smooth variations throughout the 

in-cylinder pressure profile. The same behaviour is also observed in Chapter 8 with 

small differences between the CMC and zero-dimensional models. The combined 

model, however, has a limitation of inaccurately predicting the ignition point when the 

AFR varies. This is due to the nature of the homogeneous CMC model where most of 

the fluctuating quantities are ignored, especially the physical space dependence 

(Wright 2005), and there may be significant conditional fluctuations which require 

higher-order modelling than the first-order CMC (Behzadi et al. 2013). The rest of the 

parametric investigations show that the combined model is in good agreement with the 

experiment. The investigation of the limitation of the combined model is 

recommended for future work. 

 

Experimental work was also performed in this thesis and used as a third validation tool 

in Chapter 8. The performance of a gasoline fuelled HCCI engine developed in the 

experimental test rig was directly compared with the SI engine configuration using the 

same operating conditions. The results in Chapter 7 are consistent with the literature, 

where the HCCI engine has the limitation of operating in a low load condition. The 

emissions levels also show that the HCCI engine returns higher unburned HC and CO 

compared to the SI engine, which again is consistent with the literature. The HCCI 

engine, however, produces a high level of knock because the AFR was kept at a near 

stoichiometric mixture for a direct comparison with the SI engine. Future work is 

recommended for this engine to gain more control of the combustion timing so that 

the engine operates without knocking. Direct comparison with the SI engine will no 

longer be valid, but the aims overall are to obtain better HCCI engine combustion, 

which can also improve the emissions levels. There are a few ways to control the 

ignition of the HCCI combustion, e.g. implementing EGR (Ganesh & Nagarajan 2010; 

Saravanan & Nagarajan 2010), pressurising intake air (Agarwal & Assanis 1998; Liu 

et al. 2009) or hydrogen addition (Saravanan, Nagarajan & Narayanasamy 2008; 

Tsolakis & Megaritis 2005; Tsolakis, Megaritis & Yap 2008). These ignition control 

methods for HCCI combustion can be used in future work to improve the operation of 

the HCCI engine. 
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APPENDIX A 

DERIVATION OF TEMPERATURE EQUATION 

 

 

This appendix contains the derivation of temperature changes in a zero-dimensional 

single-zone model from the first law of thermodynamics equation. The first law of 

thermodynamics equation is 

 

 𝑈 = −𝑊 + 𝑄ℎ +∑𝑚𝑗ℎ𝑗
𝑗

 (A.1) 

 

where j represents each flow entering or leaving the system. For a quasi-static process, 

where work can be expressed as 𝑊 = 𝑝𝑑𝒱, the first law equation in its differential 

form is given by 

 

 𝑑(𝑚𝑢)

𝑑𝑡
= −𝑝

𝑑𝒱

𝑑𝑡
+
𝑑𝑄ℎ
𝑑𝑡

+∑�̇�𝑗ℎ𝑗
𝑗

 (A.2) 

 

The enthalpy for a homogeneous system is defined as 

 

 ℎ = 𝑢 + 𝑝𝑣 (A.3) 

and can be substituted into equation (A.2) to yield 

 

 𝑑(𝑚ℎ)

𝑑𝑡
−
𝑑(𝑝𝒱)

𝑑𝑡
=
𝑑𝑄ℎ
𝑑𝑡

− 𝑝
𝑑𝒱

𝑑𝑡
+∑ℎ𝑗�̇�𝑗

𝑗

 (A.4) 

 

Equation (A.4) is manipulated and becomes 
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𝑚
𝑑ℎ

𝑑𝑡
+ ℎ

𝑑𝑚

𝑑𝑡
− 𝑝

𝑑𝒱

𝑑𝑡
− 𝒱

𝑑𝑝

𝑑𝑡
=
𝑑𝑄ℎ
𝑑𝑡

− 𝑝
𝑑𝒱

𝑑𝑡
+∑ℎ𝑗�̇�𝑗

𝑗

 
(A.5) 

 
𝑚
𝑑ℎ

𝑑𝑡
=
𝑑𝑄ℎ
𝑑𝑡

+ 𝒱
𝑑𝑝

𝑑𝑡
− ℎ

𝑑𝑚

𝑑𝑡
+∑ℎ𝑗�̇�𝑗

𝑗

 (A.6) 

 

In equation (A.6), 𝑑ℎ 𝑑𝑡⁄  needs to be expressed in terms of change in temperature. For 

a multi-component mixture of ideal gasses in a single phase, 

 

 ℎ =∑𝑌𝑖ℎ𝑖
𝑖

                 and               ℎ = ℎ(𝑇, 𝑝, 𝑌𝑖) (A.7) 

 

where i is the component species in the mixture. Applying the chain rule to the 

derivative of enthalpy produces 

 

 𝑑ℎ

𝑑𝑡
=
𝜕ℎ

𝜕𝑇
|
𝑝,𝑌𝑖

𝑑𝑇

𝑑𝑡
+
𝜕ℎ

𝜕𝑝
|
𝑇,𝑌𝑖

𝑑𝑝

𝑑𝑡
+∑

𝜕ℎ

𝜕𝑌𝑖
|
𝑝,𝑇,𝑌𝑖≠𝑗

𝑑𝑌𝑖
𝑑𝑡

𝑖

 (A.8) 

 

The change of enthalpy with respect to pressure at constant temperature and 

composition is zero, hence equation (A.8) becomes 

 

 𝑑ℎ

𝑑𝑡
= �̅�𝑝

𝑑𝑇

𝑑𝑡
+∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

 (A.9) 

 

The pressure change in equation (A.6) can be obtained by manipulating the equation 

of state for an ideal gas 

 𝑝𝒱 = 𝑚𝑅𝑇  

 
𝑝
𝑑𝒱

𝑑𝑡
+ 𝒱

𝑑𝑝

𝑑𝑡
= 𝑚𝑅

𝑑𝑇

𝑑𝑡
+ 𝑇

𝑑(𝑚𝑅)

𝑑𝑡
  

 
𝑝
𝑑𝒱

𝑑𝑡
+ 𝒱

𝑑𝑝

𝑑𝑡
= 𝑚𝑅

𝑑𝑇

𝑑𝑡
+ 𝑚𝑇

𝑑𝑅

𝑑𝑡
+ 𝑅𝑇

𝑑𝑚

𝑑𝑡
  

 
𝑚𝑇

𝑑𝑅

𝑑𝑡
= 𝑝

𝑑𝒱

𝑑𝑡
+ 𝒱

𝑑𝑝

𝑑𝑡
− 𝑚𝑅

𝑑𝑇

𝑑𝑡
− 𝑅𝑇

𝑑𝑚

𝑑𝑡
 

(A.10) 

 

The ideal gas law is used to substitute for the coefficients of each derivative so that the 

quantity being differentiated appears in the coefficient 
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 𝑝𝒱

𝑅

𝑑𝑅

𝑑𝑡
=
𝑚𝑅𝑇

𝒱

𝑑𝒱

𝑑𝑡
+
𝑚𝑅𝑇

𝑝

𝑑𝑝

𝑑𝑡
−
𝑝𝒱

𝑇

𝑑𝑇

𝑑𝑡
−
𝑝𝒱

𝑚

𝑑𝑚

𝑑𝑡
 (A.11) 

 

Dividing both sides of equation (A.11) with 𝑝𝒱 gives 

 

 1

𝑅

𝑑𝑅

𝑑𝑡
=
𝑚𝑅𝑇

𝑝𝒱2
𝑑𝒱

𝑑𝑡
+
𝑚𝑅𝑇

𝑝2𝒱

𝑑𝑝

𝑑𝑡
−
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝑚

𝑑𝑚

𝑑𝑡
  

 1

𝑅

𝑑𝑅

𝑑𝑡
=
𝑚𝑅𝑇

𝑚𝑅𝑇𝒱

𝑑𝒱

𝑑𝑡
+
𝑚𝑅𝑇

𝑚𝑅𝑇𝑝

𝑑𝑝

𝑑𝑡
−
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝑚

𝑑𝑚

𝑑𝑡
  

 1

𝑅

𝑑𝑅

𝑑𝑡
=
1

𝒱

𝑑𝒱

𝑑𝑡
+
1

𝑝

𝑑𝑝

𝑑𝑡
−
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝑚

𝑑𝑚

𝑑𝑡
 (A.12) 

 

The relationship 

 

 𝑑𝑅

𝑑𝑡
=∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

 (A.13) 

 

can be substituted into equation (A.12), and rearranging gives 

 

 𝑑𝑝

𝑑𝑡
= 𝑝 [

1

𝑅
∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

+
1

𝑚

𝑑𝑚

𝑑𝑡
+
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝒱

𝑑𝒱

𝑑𝑡
] (A.14) 

 

Hence, substituting equation (A.14) to (A.6)  

 

𝑚
𝑑ℎ

𝑑𝑡
=∑�̇�𝑗ℎ𝑗 +

𝑑𝑄ℎ
𝑑𝑡

𝑗

+ 𝑝𝒱 [
1

𝑅
∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

+
1

𝑚

𝑑𝑚

𝑑𝑡
+
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝒱

𝑑𝒱

𝑑𝑡
] −

𝑑𝑚

𝑑𝑡
ℎ 

 

and now substituting equation (A.9) and rearranging yields 
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𝑚(𝐶𝑝
𝑑𝑇

𝑑𝑡
+∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

)

=∑�̇�𝑗ℎ𝑗 +

𝑗

𝑑𝑄ℎ
𝑑𝑡

+ 𝑝𝒱 [
1

𝑅
∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

+
1

𝑚

𝑑𝑚

𝑑𝑡
+
1

𝑇

𝑑𝑇

𝑑𝑡
−
1

𝒱

𝑑𝒱

𝑑𝑡
]

− ℎ
𝑑𝑚

𝑑𝑡
 

𝑚𝐶𝑝
𝑑𝑇

𝑑𝑡
− 𝑝𝒱

1

𝑇

𝑑𝑇

𝑑𝑡
=∑�̇�𝑗ℎ𝑗 +

𝑗

𝑑𝑄ℎ
𝑑𝑡

+
𝑝𝒱

𝑅
∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

+
𝑝𝒱

𝑚

𝑑𝑚

𝑑𝑡
− 𝑝

𝑑𝒱

𝑑𝑡

− ℎ
𝑑𝑚

𝑑𝑡
− 𝑚∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

 

𝑑𝑇

𝑑𝑡
(𝑚𝐶𝑝 −

𝑝𝒱

𝑇
) =∑�̇�𝑗ℎ𝑗 +

𝑗

𝑑𝑄ℎ
𝑑𝑡

+
𝑝𝒱

𝑅
∑𝑅𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

+
𝑝𝒱

𝑚

𝑑𝑚

𝑑𝑡
− 𝑝

𝑑𝒱

𝑑𝑡

− ℎ
𝑑𝑚

𝑑𝑡
− 𝑚∑ℎ𝑖

𝑑𝑌𝑖
𝑑𝑡

𝑖

 

𝑑𝑇

𝑑𝑡
(�̅�𝑝 −

𝑝𝒱

𝑚𝑇
) =∑[(

𝑝𝓋

𝑅
𝑅𝑖 − ℎ𝑖)

𝑑𝑌𝑖
𝑑𝑡
]

𝑖

+∑
�̇�𝑗ℎ𝑗

𝑚
𝑗

+
1

𝑚

𝑑𝑄ℎ
𝑑𝑡

+ 𝑝𝓋
1

𝑚

𝑑𝑚

𝑑𝑡
− ℎ

1

𝑚

𝑑𝑚

𝑑𝑡

−
𝑝

𝑚

𝑑𝒱

𝑑𝑡
 

 

The final equation is 

 

 
𝑑𝑇

𝑑𝑡
=
1

𝐶𝐴
[∑[(

𝑝𝓋

𝑅
𝑅𝑖 − ℎ𝑖)

𝑑𝑌𝑖
𝑑𝑡
]

𝑖

−
𝐶𝐵
𝑚

𝑑𝑚

𝑑𝑡

+
1

𝑚
(
𝑑𝑄ℎ
𝑑𝑡

− 𝑝
𝑑𝒱

𝑑𝑡
+∑�̇�𝑗ℎ𝑗

𝑗

)] 

(A.15) 

where 

 𝐶𝐴 = �̅�𝑝 −
𝑝𝓋

𝑇
 (A.16) 

 𝐶𝐵 = ℎ − 𝑝𝓋 (A.17) 
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APPENDIX B 

EXPERIMENTAL SETUP DETAILS 

 

 

B.1 In-Cylinder Pressure Calibration 

 

The calibration involves the entire pressure transducer system, which includes the 

amplifier. A dead weight tester from DH Budenberg was used in the calibration. It uses 

hydraulic oil as a medium to transfer pressure between the static load and the pressure 

transducer. A load was placed on top of the piston, as shown in Figure B.1, and the 

wheel was turned clockwise to transmit the hydraulic oil to the piston. The pressure 

was read using the data logger. Then, the load was changed with a different weight 

and the process repeated for all loads. Each load has different a weight with an 

equivalent static pressure stated on it and, therefore, the pressure transducer must be 

able to produce the same pressure reading as the load.  

 

Different types of loads were used for calibration, and the linear relationship was 

obtained between the static pressure from the load and the voltage from the pressure 

transducer, as shown in Figure B.2. The calibration factor for the pressure transducer 

was 10 bar/V. Multiplication of the calibration factor with voltage shows that the 

pressure reading from the pressure transducer is identical to the load’s static pressure. 

Therefore, the reading from the pressure transducer is correct. 
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Figure B.1 A dead weight tester was used for calibrating the pressure transducer, where the load was placed on top 

of the piston to measure the equivalent static pressure.  

 

 

 

Figure B.2 Linear relationships obtained between voltage reading from the pressure transducer and load tester. 
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B.2 Electronic Control Unit (ECU) 

 

The ECU is an electronic control unit that is used to optimise the engine running 

conditions by controlling various parameters. The ECU reads the data from different 

sensors such as hall effect, throttle position, intake manifold pressure, intake 

temperature and engine temperature and then compares the reading with a pre-

determined table programmed in the ECU. Then the ECU controls the Capacitive 

Discharge Ignition (CDI) and the EFI as well as the engine’s idling operation to give 

an optimised spark timing and fuel-air mixture. This is illustrated in Figure B.3, where 

it shows the communication between the ECU and different sensors. The program in 

the ECU can be changed and gives full control over the engine parameters to achieve 

different engine performance. The ECU was operated using a 12V DC power supply 

and software called ProCAL was used to modify the program as well as to read/record 

the sensors’ data. 

 

The fuel-air mixture is optimised by controlling the fuel injection rate to the air stream 

in the intake manifold. The fuel is controlled by adjusting the pulse-width of the fuel 

injector: a higher pulse-width means a longer injection time and results in more fuel 

being injected. The fuel injection rate is controlled based on a number of parameters, 

which are intake temperature and pressure, throttle position, engine load, engine 

temperature and engine speed. When the engine is cold, more fuel is required to start 

the engine and the engine will run rich during the warming-up process. Once the 

engine has been warmed up and is running at an idle speed, the engine will operate 

with a near stoichiometric mixture. The engine will run rich again if more loads are 

required. Typically, a port fuel injection system employs an injection pressure between 

3 and 4 bar. The high injection pressure is achieved by using a fuel pump installed in 

the fuel line. 
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Figure B.3 ECU configurations with different sensors. 

 

A lambda sensor is necessary to give a closed loop control between the lambda and 

the fuel injection rate. When a lambda sensor is installed, the ECU compares the 

reading from this sensor to the desired lambda table programmed in the ECU, and the 

ECU then controls the fuel injection rate accordingly. There are two types of lambda 

sensor that can be used: narrowband or wideband sensor. A narrowband sensor only 

gives a reading indicating either a rich or lean mixture, based on the output voltages. 

In this case, the narrowband sensor showed a rich mixture when the voltage was more 

than 450 mV and a lean mixture if it was less. A wideband lambda sensor, on the other 

hand, will show how rich or lean the mixture is. Real-time lambda will be recorded 

and the ECU will know the exact lambda reading. This will give more control for 

tuning the engine. In this study, a wideband lambda sensor (Bosch LSU 4.2) was used 

together with the Accurate Lambda Meter (ALM) from Ecotrons. The ALM was 

connected to the ECU to record the lambda reading. 

PS: Power supply 
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A CDI is an important addition to the ECU because it is used to control the ignition 

timing. Ignition timing is defined as the point at which the spark plug starts to fire the 

cylinder. Therefore, the combustion in an SI engine occurs at the ignition point or 

slightly retarded based on the ignition delay of the fuel. A hall effect sensor was used 

to monitor the engine speed and the crank angle position. Once the ECU knows the 

piston is at a pre-set location based on the crank angle position, the ECU starts firing 

the spark plug. If the spark timing is too early (advanced), the combustion occurs while 

the piston is moving towards the TDC. This will push the piston down while in the 

compression process, hence compression work (negative work) increases and the same 

for peak in-cylinder pressure. This leads to reduced power, high combustion 

temperatures, backfires and knocking if it is over-advanced. If the spark timing is 

retarded, the combustion occurs while the piston is moving down to the bottom dead 

centre (BDC). This will reduce the expansion work (positive work), as does the peak 

in-cylinder pressure. In this case, the energy is wasted leading to loss of power and 

incomplete combustion.  

 

To achieve optimised combustion, the ignition timing must occur at Maximum Brake 

Torque (MBT). MBT is a point where optimal combustion occurs, which gives 

maximum power and efficiency. Engine torque is reduced if the ignition timing is 

advanced or retarded from MBT. This is explained in Figure B.4 where MBT is at 30° 

before TDC (BTDC). In Figure B.4 (a), the in-cylinder peak pressure is higher if the 

ignition timing is advanced, while it is lower with retarded ignition timing. The relative 

torque, on the other hand, is at its maximum at MBT, as shown in Figure B.4 (b). In 

this study, the MBT for the engine was kept at 26° BTDC when the engine operated 

in SI mode, to comply with the manufacturer’s specification. 
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Figure B.4 a) In-cylinder peak pressure difference with advanced and retarded ignition timing. b) Relative torque 
decreases when the ignition timing is not at MBT (Gupta, 2006). 

 

B.3 Fuel Delivery System 

 

In an old engine setup, a carburettor was used to mix the air and fuel in the intake 

manifold. The carburettor uses a pressure difference concept to bring the fuel to the 

intake manifold. The air flows through a converging-diverging nozzle, called venturi, 

as shown in Figure B.5 (a) and creates a pressure difference between the throat and 

float chamber. The float chamber contains a large quantity of fuel located close to the 

intake manifold (Figure B.5a). The fuel is discharged to the air stream through the fuel 

port and atomization occurs inside the intake manifold. 

 

An EFI system, on the other hand, uses port fuel injection to inject the fuel into the air 

stream, where the fuel is injected straightaway from the fuel line (Figure B.5b). The 

EFI is electronically controlled by the ECU. In the current engine setup, the EFI was 

used to replace the carburettor due to safety reasons. 

 

The boiling point of the fuel is between 303K and 478K and the auto-ignition 

temperature is 643K. Due to the low boiling point of the gasoline, the carburettor is 

not advisable to use with a heated air stream. The carburettor body is made of 

aluminium and a high air stream temperature will increase the chances of the fuel in 

the float chamber being heated as well. This may cause a fire if not well controlled. 

a) b) 
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Because of this safety reason, an EFI system was chosen to replace the carburettor. 

The EFI has no fuel in a large quantity close to the heated body and the injector will 

be easily cooled down using the water jacket. One of the advantages of using an EFI 

system is that the likelihood of fire in HCCI mode can be reduced. Other advantages 

of EFI over carburettor systems are: 1) increased volumetric efficiency because there 

is no restriction in the mixture flow; 2) good engine response with varying throttle 

opening; 3) consistent fuel delivery in each cycle; and 4) lower fuel consumption leads 

to more efficient combustion by optimising the fuel-air mixture. 

 

In this study, the fuel injection pressure of the EFI was kept constant at 3 bar supplied 

by the fuel pump. A pressure regulator was used in the fuel line to ensure the fuel 

pressure is constant, as shown in Figure B.6 (top). The EFI, as shown in Figure B.6 

(bottom), has a characteristic flow rate of 80 g/min. The fuel temperature was kept 

constant at room temperature, about 300 K.  
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Figure B.5  The difference between the carburettor and the EFI system is in the fuel delivery system a) The 
carburettor system uses pressure difference to suck the fuel from the float chamber b) In the EFI system, the fuel is 

injected straightaway from the fuel line at a pressure of about 3 bar. 
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Figure B.6 Fuel delivery to EFI. 

 

B.4 Ignition System: TCI vs. CDI 

 

The ignition system of the old engine setup used a Transistorized Charging Ignition 

(TCI) before being replaced with a CDI for using the ECU. For small engines, usually 

the ignition module is installed next to the flywheel. Most small engines with 

carburettor systems use TCI for the ignition and many of them do not have CDI. TCI 

is an induction ignition system, where it has the ignition module installed next to the 

flywheel. The coil inside the ignition module is always charged and uses a transistor 

switch to disconnect the coil. When the magnet (in-built onto the flywheel) passes by 

the ignition module, the charge in the coil collapses and fires the spark plug via a high 
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voltage cable. The voltage stored in the coil is approximately 20,000 V. In the TCI 

system, there is no standalone pickup sensor, no throttle position sensor and no 

ambient air sensor. The only variable reported by the pickup coil is the engine speed. 

The pickup coil will then determine the spark timing based on the engine speed. 

 

A CDI, on the other hand, works in the opposite way. The coil does not store charge. 

When the pickup sensor triggers the signal, the CDI will amplify the charge to a higher 

voltage. The mechanism is similar to transformers, and typically the voltage will step 

up 100:1. The voltage from the CDI is between 250-500 V and thus the output voltage 

to the spark plug is between 25,000 and 50,000 V. The disadvantage of the CDI is a 

short high voltage pulse duration compared to TCI. However, it gives a good result at 

a high engine speed (consistent spark voltages). 

 

The CDI works with the ECU, which has a fully programmable ignition control 

system. To modify the engine from TCI to CDI, a hall effect sensor was used to replace 

the old ignition module, as shown in Figure B.7. The hall effect sensor was installed 

at the same location as the old ignition module, right next to the flywheel, as shown in 

Figure B.8. When the magnet on the flywheel passes by the sensor, the hall effect 

sensor acts as a pickup sensor that will trigger a signal to the ECU. Then, the ECU can 

control the ignition timing accordingly. 
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Figure B.7 Old ignition module using TCI system. 

 

 

Figure B.8 A hall effect sensor was installed next to the flywheel and connected to the ECU. 
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APPENDIX C 

ENGINEERING DRAWINGS 

 

 

Heater Body 

 

This appendix contains the engineering drawings of the complete installation of the 

heater in the intake manifold. The parts were fabricated in the university’s mechanical 

engineering workshop. 
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APPENDIX D 

ENGINEERING DRAWINGS 

 

 

Cooling System 

 

This appendix contains the engineering drawings of the EFI cooling system, where all 

the parts were also fabricated in the university’s mechanical engineering workshop. 
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APPENDIX E 

EXPERIMENT: SWP 

 

 

Safe Working Procedures (SWP) 

 

This appendix contains the safe working procedures for operating the engine test bed. 

All precautionary steps must be adhered to for safety reasons. 
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