
A Novel Statistical Technique for Intrusion Detection Systems

Enamul Kabir, Jiankun Hu, and Hua Wang, and Guangping Zhuo∗†‡§

Abstract

This paper proposes a novel approach for intrusion detection system based on sampling with
Least Square Support Vector Machine (LS-SVM). Decision making is performed in two stages.
In the first stage, the whole dataset is divided into some predetermined arbitrary subgroups.
The proposed algorithm selects representative samples from these subgroups such that the
samples reflect the entire dataset. An optimum allocation scheme is developed based on the
variability of the observations within the subgroups. In the second stage, least square support
vector machine (LS-SVM) is applied to the extracted samples to detect intrusions. We call the
proposed algorithm as optimum allocation-based least square support vector machine (OA-
LS-SVM) for IDS. To demonstrate the effectiveness of the proposed method, the experiments
are carried out on KDD 99 database which is considered a de facto benchmark for evaluating
the performance of intrusions detection algorithm. All binary-classes and multiclass are tested
and our proposed approach obtains a realistic performance in terms of accuracy and efficiency.
Finally a way out is also shown the usability of the proposed algorithm for incremental datasets.

keywords: Sampling, Intrusion Detection System (IDS), Network Security, Least
Square Support Vector Machine (LS-SVM).

1 Introduction

In recent years, there has been an increasing awareness of the risk associated with network

attacks as information systems are now more open to the Internet than ever before. Intru-

sion detection system (IDS) is a program that tries to find indications that the computer

has been compromised. An IDS attempts to detect an intruder breaking into computer

system or legitimate user misuses system resources. Intrusion detection is an important

issue and has captured the attention of network administrators and security professionals.

Intrusion detection is the art of detecting unauthorized, inappropriate, or anomalous

activity on computer systems. Intrusion detection systems are classified as network based,

∗Enamul Kabir is with the School of Agricultural, Computational and Environmental Sciences, University
of Southern Queensland, Toowoomba, QLD 4350, Australia. E-mail: Enamul.Kabir@usq.edu.au

†Jiankun Hu is with the School of Engineering and Information Technology, University of New South
Wales at the Australian Defence Force Academy (UNSW@ADFA), Canberra, ACT 2600,Australia. E-mail:
J.Hu@adfa.edu.au

‡Hua Wang is with Centre for Applied Informatics, Victoria University, Melbourne, VIC 8001, Australia.
E-mail: Hua.Wang@vu.edu.au

§Guangping Zhuo is with Department of Computer Science, Taiyuan Normal University, China. E-mail:
zhuoguangping@163.com

1

host based, or application based depending on their mode of deployment and data used for

analysis [1, 35]. In addition, intrusion detection systems can also be classified as signature

based or anomaly based depending upon the attack detection method. The signature-based

systems are trained by extracting specific patterns (or signatures) from previously known

attacks while the anomaly-based systems learn from the normal data collected when there

is no anomalous activity [1, 30, 31, 32, 43]. The main purpose of an IDS is to detect as many

attacks as possible with minimum number of false alarms, i.e., the system must be accurate

in detecting attacks. However, an accurate system that cannot handle large amount of

network traffic and is slow in decision making will not fulfill the purpose of an intrusion

detection system [18]. Hence it is necessary to develop a system that detects most of the

attacks, gives very few false alarms, copes with large amount of data, and is fast enough to

make real-time decisions.

Although the IDS has led to a number of valuable network security techniques [3, 4, 14,

15, 16, 17, 18, 33, 40, 41, 42], the existing solutions are limited only to static data release.

That is, in such solutions it is assumed that the entire dataset is available at the time of

release. This assumption implies a significant shortcoming, as data today are continuously

collected (thus continuously grow) and there is a strong demand for up-to-date data at all

times. One possible approach is to use the intrusion detection techniques for the entire

dataset whenever the dataset is augmented with new records. In this way, researchers are

always provided with up-to-date information. Although this can be accomplished using

existing techniques, there are two significant drawbacks. First, it requires redundant com-

putation, as the entire dataset has to be analysed even if only a few records are newly

inserted. Sometimes intrusion detection techniques might not work properly due to contin-

uously growing large dataset. Secondly, huge space will be required to store all the previous

datasets that may be sometimes impossible. So it is necessary to develop an IDS system

that can be used for static as well as for incremental datasets.

In the past few years, many researches have tried to apply different techniques for

detecting intrusions. Among them, the framework of support vector machines (SVM) is

2

becoming extremely popular in the field of statistical pattern classification. Least square

support vector machines (LS-SVM) are the modified version of support vector machines.

LS-SVM has been used different purposes such as for adaptive communication channel

equalization [19], to study the nonlinear time series prediction [20], on Morlet Wavelet

kernel function [21], for facial gender classification [22] and for measurement of soluble

solids content of rice vinegars [24]. Although LS-SVM is significant, it has not yet being

used for detecting intrusions. This paper proposes a LS-SVM technique in order to detect

intrusions for IDS both in static and incremental datasets.

From the pattern recognition point of view the key problem is to represent the large

amount of dataset for further analysis, such as classification. It is important to extract

useful features from the large datset and then use the extracted features for classification.

In the literature, numerous intrusion detection techniques are often employed for the feature

extraction and the classification stage. The main drawback of these methods is that they

do not work well when the data size is very large. They also require lengthy training time.

Table 1: Required sample size

Population Sample

99− 100% confidence interval

95% confidence 99% confidence
level level

100 99 99

1K 906 943

10K 4899 6247

100K 8763 14267

1M 9513 16369

10M 9595 16613

100M 9603 16638

1B 9604 16641

Observing this challenge, this paper proposes an optimum allocation-based least square

support vector machine (OA-LS-SVM) for IDS. The proposed approach uses the idea of

sampling as representative samples can describe the whole population. For a given pop-

ulation, if the sample size is adequately taken then it can tell the characteristics of the

population. Now a natural question arises, how many samples are required to describe the

whole population? The process of determining sample size used in this paper are described

3

in subsection 3.1. Table 1 shows the required sample size from a specified population under

99-100% confidence interval and for both 95% and 99% confidence levels using equation 3.2

in subsection 3.1.

As shown in Table 1, the increment of the sample size is not the same as the population

size. If the population size is 100 Millions, we need a sample of size 9603 under 99-100%

confidence interval and 95% confidence level whereas we need one more sample if the pop-

ulation size is 1 Billion. Thus it is a natural expectation that the sampling process can be

used for intrusion detection for large datasets. This expectation is achieved in this paper

for detecting intrusions. The OA-LS-SVM algorithm proposed in this paper consists of the

following steps:

1. Combine the training and testing dataset and determine the required size of the

sample by using the equation 3.2 in subsection 3.1 under desired confidence interval

and confidence level.

2. Determine the size of training and testing using optimum allocation (OA) scheme as

discussed in Section 3.

3. Divide the training and testing dataset into some predetermined subgroups of ar-

bitrary instances. Using OA scheme in Section 3, select instances from each group

of training and testing dataset such that the sum of these instances is equal to the

desired sizes of respective training and testing as in Step 2.

4. The selected instances in step 3 will be used as an input set in LS-SVM to detect

different intrusions.

The reminder of this paper is organized as follows. Section 2 reviews related work on

intrusion detection system. We present a description of the proposed methodology in details

in Section 3 both for static and incremental data. Section 4 shows experimental results of

the proposed method. Finally, concluding remarks are included in Section 5.

4

2 Related Work

This work is related to several topics in the area of network security in information detection

systems. Considering the risk associated with network attacks, a number of methods and

frameworks have been proposed and many systems have been developed to detect intrusions.

This section briefly discusses these techniques and framework.

Very Recently Gupta et al. [18] proposed an intrusion detection system using conditional

random fields (CRF) and Layered approach. They considered the attack categories as layers

and different features were selected for each layer. The dataset was divided into five attack

categories for training and testing purposes of each layer. The test data passed through the

cascaded layers to determine the category a record belonged to. This approach is however

effective only for the selected features but not so convincing considering all features. On

the other hand, the results from automatic feature selection is not so promising as manual

selection. Thus the feature selection is a critical issue and so the practical implementation

of this approach is limited. Data mining approaches for detecting intrusions was introduced

by Lee et al. [4, 5, 7]. It include association rules [12] and frequent episodes, which are

based on building classifiers by discovering relevant patterns of program and user behaviour.

These methods can deal with symbolic data, and the features can be defined in the form

packet and connection details. However mining of features is limited to entry level of the

packet and requires the number of records to be large and sparsely populated; otherwise,

they tend to produce a large number of rules that increase the complexity of the system

[11].

k− means [9, 34, 39] and the fuzzy c-means [10] have been applied extensively for

intrusion detection. The main drawback of these clustering based techniques are that

they are based on calculating numeric distance between the observations, and hence the

observations must be numeric and thus observations with symbolic features cannot be easily

used. On the other hand, the clustering methods consider the features independently and

are unable to capture the relationship between different features of single record, which

further degrades attack detection accuracy. Amor et al. [6] used Näıve Bayes classifiers

5

for intrusion detection. The authors make strict independence assumption between the

features in an observation resulting in lower attack detection accuracy when the features

are correlated, which is often the case for intrusion detection. Bayesian network [13] has

also been used for intrusion detection. This method tends to be attack specific and build

a decision network based on special characteristics of individual attacks. Thus the size of

a Bayesian network increases rapidly as the number of features and the type of attacks

modeled by a Bayesian network increases.

Hidden Markov models (HMMs) have also been applied for intrusion detection [23, 27,

29]. However, modeling the system calls alone may not always provide accurate classification

as in such cases various connection level features are ignored. Further, HMMs are generative

systems and fail to model long-range dependencies between the observations [28]. Debar

et al. [36] and Zhang et al [38] discussed the use of artificial neural networks for network

intrusion detection. The main drawback of these methods is that they require large amount

of data for training and it is hard to select best possible architecture for a neural network.

The idea of decision trees have also used for intrusion detection [6]. It generally has high

speed of operation and high attack detection accuracy. Kim et al. [17] used the support

vector machine for intrusion detection. Support vector machines (SVMs) map real valued

input feature vector to a higher dimensional feature space through nonlinear mapping and

can provide real-time detection capability, deal with large dimensionality of data, and can

be used for binary-class as well as multiclass classification.

The work presented in this paper uses the idea of least square support vector machine

(LS-SVM) which is a modified version of SVM. For large datasets, it is necessary to reduce

the dimension of the dataset and fed them to classifiers to detect intrusion. We first deter-

mine the required size to describe the characteristics of the whole dataset. Then we divide

the whole dataset into some predetermined subgroups and select sample from these clusters

using the derived optimum allocation scheme. We finally use these samples as an input set

of LS-SVM to detect different attacks in IDS. We compare our approaches with the most

recent methods of intrusion detection in the literature. The difference between the pro-

6

IDS training data IDS testing data

IDS data

Optimum allocation

Classification

Determine the size of

Training sample

selection selection

IDS training and

testing samples

Testing sample

training and testing

Figure 1: General architecture of the proposed methodology 1 (OA-LS-SVM 1)

posed OA-LS-SVM approach and the other methods in the literature are as follows: First,

we develop an allocation scheme that determines the size of training and testing depending

on the variability of the data. In addition, the proposed approach easily captures large

datasets and can be used as a general framework for classification in pattern recognition.

Secondly, it selects samples from each sub-group of training and testing depending on the

variability providing a reliable means of data reduction. Finally, the proposed method can

easily be implemented for incremental large datasets.

3 Proposed Methodology

In this paper, we propose a new algorithm of the optimum allocation-based least square

support vector machine (OA-LS-SVM) for IDS. This section describes the methodology of

7

IDS training IDS testing

IDS data

Optimum allocation

Optimum allocation Optimum allocation

G1 G2 G1 G2

Determine the size of

training and testing

Testing sample

selectionselection

Training sample

IDS training and

testing samples

Classification

Gh Gh

Figure 2: General architecture of the proposed methodology 2 (OA-LS-SVM 2)

the proposed algorithm both for static (i.e., the entire dataset is assumed to be available

at the time of release) and for incremental datasets.

3.1 Sample Size Determination

Sample size determination is the act of choosing the number of observations to include in

a statistical sample. The size of a sample is calculated on how many samples are needed

in order to get results that reflect the target population as preciously as needed. In this

paper we determine the required sample size in estimating population proportion by using

the following popular formula as described in [2, 8, 44, 45].

n0 =
z2 ⋆ p ⋆ q

d2
(3.1)

where, n0 = desired sample size; z = standard normal deviate (Z-value) for desired con-

fidence level (e.g. 1.96 for 95% confidence level and 1.645 for 99% confidence level);

8

p=assumed proportion in the target population estimated to have a particular character-

istic; q=1-p; and d= degree of accuracy desired in the estimated proportion (e.g., d=0.01

for 99-100% confidence interval).

If n0

N
is negligible (i.e, if the population size, N is very large), n0 is a satisfactory

approximation to sample size, n. If not (i.e., N is finite and small compared to n0), the

sample size n is obtained as

n =
n0

1 + (n0−1)
N

(3.2)

If the estimator p is not known, 0.50 (50%) is used, because for given values of z and

d, it produces the largest sample size. In this paper, we use p = 0.50 as sample size will be

then maximum.

3.2 Methodology for Static Data

The algorithm first selects a representative sample from the training and testing dataset

and then the selected sample will be used as an input set of LS-SVM. Depending on the

selection process, the algorithm consists of two types, namely

• OA-LS-SVM 1: After determining the sizes of training and testing using OA scheme,

select the training and testing representative samples directly from the respective

training and testing datasets.

• OA-LS-SVM 2: After determining the sizes of training and testing using OA scheme,

the training and testing datasets are divided into some predetermined sub-groups. OA

scheme will be used to determine the size of training and testing from each subgroup

such that the sum of theses sizes are equal to n. Select the required representative

sample from each subgroup of training and testing.

The general architecture of the proposed OA based on LS-SVM (OA-LS-SVM 1) is

shown in Figure 1. As shown in Figure 1, the training and testing data are combined

together. Then we use the optimum allocation (OA) scheme to determine the size of

training and testing. Then the training and testing samples are selected directly from the

respective training and testing sets. The dotted lines shows the required size of the training

9

and testing. Then the classification technique will be used to detect the intrusion. Here we

use LS-SVM to detect different attacks in IDS.

Classification
outcomes

Classification by

LS-SVM

Sample

(n1)

Initial IDS data
(N1)

New IDS data

(N2)

Sample

(n2) n12+n2
Classification by

LS-SVM
Classification

outcomes

n12

n123

New IDS data
N3

Sample
n123+n3

Classification by

LS-SVM

Classification

outcomes

C1

C2

C3

(n3)

Samples from C1

Samples from C1 and C2

n
123...r

Cr

(Nr)

Sample

(nr)
123...r

n
r+n Classification by

LS-SVM

Classification
outcomes

r-1

New IDS data

Samples from C1, C2, ..., C

.

.

.

.

.

.

Figure 3: Block diagram of the proposed methodology for IDS in incremental datasets

On the other hand, the architecture of the proposed OA-LS-SVM 2 is ahown in Figure

2. As we can see from from Figure 2, after determining the size of training and testing, the

training and testing data are divided some subgroups of arbitrary instances (G1, G2, ..., Gk).

The OA scheme is again applied to determine the size of training and testing from each

subgroup. Then samples are selected from each subgroup both for training and testing such

that the sum of theses sizes is equal to n. Finally LS-SVM will be used to these samples

to detect different attacks in IDS.

3.3 Methodology for Incremental Data

The block diagram of the proposed OA method based LS-SVM for incremental IDS clas-

sification is shown in Figure 3. The first block of first row and first column is the input

10

of initial IDS data and the data are continually increasing as shown in the first column of

Figure 3. For the initial data, a representative sample is taken by using equation 3.2 in

subsection 3.1. The obtained samples (second column of first row) is used for classification

through the LS-SVM classifier in the third block of first row. For each increment, the

sample selection consists of two steps. In the first step, the proposed approach employs a

technique to extract representative samples from the new incremental data and in the sec-

ond step a sub-samples is taken from each previously selected samples. Then the extracted

samples are used as the inputs to the LS-SVM classifier. Thus for incremental dataset, the

two steps are as follows:

• A representative sample from the new data. The sample size is determined using

equation 3.2 in subsection 3.1.

• A representative sample from previously selected samples. Suppose that previously

selected samples are considered as clusters, namely C1, C2, ..., Cr−1. Therefore, the

total sample size necessary for the rth incremental data is

n123...r + nr (3.1)

where, nr is the sample size required for rth incremental data; n123...r =
∑r−1

i=1 n(i) ,

r = 2, 3,; and n(i) is the required sample size for ith cluster.

More specifically, n12 = n(1);

n123 = n(1) + n(2);

n123...r = n(1) + n(2) + ...+ n(r − 1);

3.4 Optimum Allocation Scheme

Suppose that the whole dataset consists of h subgroups. The variability of the observations

within the subgroups is an important consideration in the allocation of sample sizes: the

more homogeneous the subgroups are made, the greater will be the precision of this grouping

process. Of course, the precision of the grouping sample largely depends on the choice of

11

Table 2: Size of training and testing for different pairs of attacks using OA scheme

Training Testing

DOS vs NORMAL DOS NORMAL DOS NORMAL

All features 9599 9345 6608 5709

Selected features 9580 9278 6627 5776

U2R vs NORMAL U2R NORMAL U2R NORMAL

All features 52 9345 68 5709

Selected features 52 9052 68 6002

R2L vs NORMAL R2L NORMAL R2L NORMAL

All features 1126 9345 7398 5709

Selected features 1066 9278 7458 5776

PROBE vs NORMAL PROBE NORMAL PROBE NORMAL

All features 2643 9345 2883 5709

Selected features 2643 9278 2883 5776

Table 3: NORMAL and DOS (all features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 99.92 97.58 98.67
OA-LS-SVM 1 Avg. 99.85 97.31 98.56 79.36 5.98

Worst 99.78 96.95 98.37

Best 99.89 97.64 98.74
OA-LS-SVM 2 Avg. 99.86 97.33 98.50 78.49 5.93

Worst 99.83 97.07 98.39

Best 99.82 97.11 98.43
CRF Avg. 99.78 97.05 98.10 256.11 64.42

Worst 99.75 96.99 98.37

Näıve Best 99.40 97.00 98.20
Bays Avg. 99.32 97.00 98.17 1.79 26.28

Worst 99.30 97.00 98.10

Decision Best 99.90 97.20 98.60
Trees Avg. 99.90 97.00 98.46 6.09 9.04

Worst 99.90 96.70 98.30

the sample size, n which can be determined by using the equation 3.2 in subsection 3.1.

We would like to select sample from each subgroups such that the variance in the grouping

process is minimum.

Let yijl is the value of lth unit of the jth variable in the ith subgroup in sample; i =

1, 2, ..., h; j = 1, 2, ..., k; and l = 1, 2, ..., ni; ni is the sample size of ith subgroup. Yijl is the

corresponding value in the population; l = 1, 2, ..., Ni.

In order to find out the variability of mean in this grouping process, we assume that

the samples are drawn independently in different subgroups and the sample mean is an

unbiased estimator of population mean Ȳ . The mean during the grouping process is

ȳ =

∑h
i=1

∑k
j=1

∑ni

l=1 yijl

n1k + n2k + ...+ nhk
=

∑h
i=1

∑k
j=1 niȳij

nk

where, ȳij is the sample mean of the jth variable in the ith subgroup. Similarly the corre-

sponding mean from population is

12

Table 4: NORMAL and DOS (selected features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 99.74 97.30 98.50
OA-LS-SVM 1 Avg. 99.66 97.07 98.34 75.096 5.61

Worst 99.57 96.89 98.26

Best 99.66 97.31 98.47
OA-LS-SVM 2 Avg. 99.60 96.82 98.19 77.02 5.97

Worst 99.52 96.50 98.02

Layered Best 99.99 97.12 98.53
CRF Avg. 99.98 97.05 98.50 26.59 15.17

Worst 99.97 97.01 98.48

Layered Best 99.40 97.00 98.20
Näıve Avg. 99.39 97.00 98.19 0.68 6.50
Bayes Worst 99.30 97.00 98.10

Layered Best 99.90 97.30 98.60
Decision Avg. 99.90 97.10 98.50 1.31 3.87
Trees Worst 99.90 96.00 98.40

Ȳ =

∑h
i=1

∑k
j=1

∑Ni

l=1 Yijl

n1k + n2k + ...+ nhk
=

∑h
i=1

∑k
j=1NiȲij

nk

Thus, ȳ − Ȳ = 1
k
[
∑h

i=1

∑k
j=1

Ni

N
(ȳij − Ȳij)], assuming the sampling fraction is the same in

all subgroups, i.e., ni

n
= Ni

N
, where, n = n1 + n2 + ... + nh and N = N1 + N2 + ... + Nh.

Therefore the variability of the mean during the grouping process is

V (ȳ) = E[ȳ − E(ȳ)] = E[ȳ − Ȳ]

=
1

k2
E[

h
∑

i=1

k
∑

j=1

Ni

N
(ȳij − Ȳij)]

=
1

k2
[

h
∑

i=1

k
∑

j=1

N2
i

N2
E(ȳij − Ȳij)]

=
1

k2

h
∑

i=1

k
∑

j=1

N2
i

N2
V (ȳij) (3.1)

Here, ȳij is the mean of the simple random sample in the jth variable of the ith subgroup,

whose variance is given by [2]

V (ȳij) =
Ni − ni
Ni

s2ij
ni

By substitution of this value in equation 3.1, we obtain

V (ȳ) =
1

k2

h
∑

i=1

k
∑

j=1

N2
i

N2

Ni − ni
Ni

s2ij
ni

(3.2)

where, Ni is the size of ith subgroup; ni is the required sample taken from ith subgroup; sij

is the standard deviation of the jth variable of ith subgroup; n is the total sample size in

the grouping process. Specifically, n = n1 + n2 + ...+ nh and N = N1 +N2 + ...+Nh.

13

Our problem here is to see how a given total sample size, n, should be allocated among

different subgroups so that the grouping estimator, ȳ will have the smallest possible vari-

ability. Formally, the problem is to determine n1, n2, ..., nh so as to minimize, V (ȳ), subject

to the constraint that the total size equals n = n1+n2+ ...+nh. This is equal to minimizing

the function

ψ = V (ȳ) + λ(

h
∑

i=1

ni − n)

=
1

k2

h
∑

i=1

k
∑

j=1

N2
i

N2

Ni − ni
Ni

s2ij
ni

+ λ(
h

∑

i=1

ni − n) (3.3)

For ni, λ being an unknown Lagrange’s multiplier. For an extremum of the function, we

have δψ
δni

= 0, and δ
2ψ

δn2

i

> 0. Now differentiating the function ψ with respect to ni and

equating the derivative to 0, we have

δψ

δni
= − 1

k2

h
∑

i=1

k
∑

j=1

Ni − ni
Ni

s2ij
ni

+

h
∑

i=1

λ = 0

⇒ ni =
Ni

Nk
√
λ

√

√

√

√

k
∑

j=1

s2ij (3.4)

Summing,
∑h

i=1 ni = n = 1
kN

√
λ

∑h
i=1(Ni

√

∑k
j=1 s

2
ij). Therefore,

√
λ =

∑h
i=1

(Ni

√

∑k
j=1

s2ij)

kNn

and putting the value of
√
λ in equation 3.4, we have

ni =
Ni

√

∑k
j=1 s

2
ij

∑h
i=1(Ni

√

∑k
j=1 s

2
ij)

× n (3.5)

For incremental dataset, Let yijl be the value of l
th unit of the jth variable in the ith cluster

in sample; i = 1, 2, ..., r − 1; j = 1, 2, ..., k; and l = 1, 2, ..., n(i);n(i) = sample size from

ith cluster. Then according to the derivation above, the required sample size n(i) for ith

cluster is

n(i) =
ni

√

∑k
j=1 s

2
ij

∑r−1
i=1 (ni

√

∑k
j=1 s

2
ij)

× n123...r (3.6)

where, ni is the size of the ith cluster; s2ij is the variance of jth variable of ith cluster, and

n123...r is the total required size of sample from previously selected clusters.

14

Table 5: NORMAL and U2R (all features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 96.88 48.53 62.00
OA-LS-SVM 1 Avg. 85.47 42.11 57.14 12.04 5.30

Worst 82.76 35.29 49.48

Best 100 39.71 56.85
OA-LS-SVM 2 Avg. 95.04 38.24 54.51 11.68 5.97

Worst 89.29 38.76 52.08

Best 58.62 60.29 56.74
CRF Avg. 52.16 55.02 53.44 8.35 13.45

Worst 47.30 50.00 49.30

Näıve Best 5.30 91.20 10.00
Bays Avg. 3.94 85.88 7.54 0.31 5.90

Worst 3.20 82.40 6.20

Decision Best 24.80 63.20 34.90
Trees Avg. 12.93 57.49 20.42 0.37 2.22

Worst 6.30 51.50 11.20

Table 6: NORMAL and U2R (selected features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 100 39.71 55.67
OA-LS-SVM 1 Avg. 92.74 38.09 53.84 10.62 1.19

Worst 87.10 33.83 50.00

Best 100 39.71 56.85
OA-LS-SVM 2 Avg. 92.17 36.44 52.17 10.68 1.20

Worst 86.21 30.88 46.15

Layered Best 58.62 60.29 56.74
CRF Avg. 52.16 55.02 53.44 0.85 2.67

Worst 47.30 50.00 49.30

Layered Best 5.30 91.20 10.00
Näıve Avg. 3.94 85.88 7.54 0.25 1.83
Bayes Worst 3.20 82.40 6.20

Layered Best 24.80 63.20 34.90
Decision Avg. 12.93 57.49 20.42 0.29 0.93
Trees Worst 6.30 51.50 11.20

3.5 Least square support vector machine (LS-SVM) for binary classifica-
tion

Recently LS-SVMs are becoming increasingly popular as a powerful tool for data classi-

fication and function estimation. The LS-SVM was originally proposed by Suykens and

Vandewalle [26] and corresponds to a modified version of a support vector machine (SVM)

[51]. The LS-SVM solves a set of linear equations instead of a quadratic programming prob-

lem and all training points are used to model the LS-SVM. In this paper, for the detection

of intrusions in incremental datasets, an LS-SVM is used as a detector. The extracted

samples obtained by the OA approach are the input to the LS-SVM. The concept of the

LS-SVM is briefly introduced as follows [26]:

Consider a training set {xi, yi}i=1,2,...,N where xi is the ith input features vector of d-

dimension, and yi is the class label of xi, which is either +1 or −1. In the feature space,

the classification function can be described as

15

y(x) = sign[wTφ(x) + b] (3.1)

where w is the weight vector, b is the bias term and φ(x) is nonlinear function, which is

not explicitly constructed, maps the input into higher dimensional feature space (can be

infinite dimension) [26]. The weight vector, w, and the bias term, b, need to be determined.

In order to obtain w and b, the optimization problem to be solved is as follows

Min J(w, b, e) =
1

2
wTw +

1

2
γ

N
∑

i=1

e2i (3.2)

subject to the equality constraint

yi[w
Tφ(xi) + b] = 1− ei, i = 1, 2, ..., N (3.3)

Here γ is the regularization parameter, ei is the classification error variable and J is the

cost function which minimizes the classification error. The Lagrangian can be defined for

Equation 3.2 as

L(w, b, e;α) = J(w, b, e) −
N
∑

i=1

αi{yi[wTφ(xi) + b]

− 1 + ei} (3.4)

where the αi(i = 1, 2, ..., N) denote Lagrange multipliers. The solution of Equation 3.4 can

be obtained by partially differentiating L with respect to w, b, ei, αi and considering the

resulting equations minimizing to zero. The detailed derivation is available in the reference

[26]. After solving Equation 3.4, the LS-SVM classifier can be obtained as

y(x) = sign(

N
∑

i=1

yiαiK(x, xi) + b) (3.5)

This paper uses the radial basis function (RBF) as the kernal function, which is defined

[26] as

K(x, xi) = φ(x)Tφ(xi) = exp(
−(||x− xi||)2

2σ2
)

where σ is the bandwidth parameter.

16

Table 7: NORMAL and R2L (all features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 82.82 72.98 77.46
OA-LS-SVM 1 Avg. 82.37 71.48 76.54 15.62 3.42

Worst 81.93 69.38 75.13

Best 84.15 72.15 77.65
OA-LS-SVM 2 Avg. 83.45 69.88 76.93 15.53 3.40

Worst 82.40 66.38 76.09

Best 93.67 16.81 28.42
CRF Avg. 92.35 15.10 25.94 17.16 17.16

Worst 90.54 12.42 21.89

Näıve Best 74.10 7.40 13.40
Bays Avg. 70.03 6.63 12.12 0.38 7.33

Worst 61.30 5.40 10.00

Decision Best 98.30 37.10 53.20
Trees Avg. 84.68 23.29 35.62 0.60 2.75

Worst 63.70 10.40 18.30

Table 8: NORMAL and R2L (selected features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 81.00 70.00 75.60
OA-LS-SVM 1 Avg. 80.05 68.97 74.19 14.42 3.29

Worst 79.60 66.31 72.60

Best 83.85 74.48 78.84
OA-LS-SVM 2 Avg. 83.12 70.71 76.40 15.36 3.50

Worst 81.11 68.22 74.60

Layered Best 95.84 31.67 47.52
CRF Avg. 94.70 27.08 42.08 5.30 5.96

Worst 91.37 24.98 39.23

Layered Best 88.30 7.20 13.30
Näıve Avg. 81.81 6.47 11.98 0.31 2.99
Bayes Worst 78.20 4.10 7.80

Layered Best 89.70 14.50 24.90
Decision Avg. 85.48 10.39 18.43 0.036 1.53
Trees Worst 78.80 7.30 13.50

3.6 Multiclass LS-SVM Classifiers

Multiclass LS-SVM is a straightforward extension of LS-SVM proposed by Suykens and

Vandewalle [25]. This method is very popular in machine learning community because it is

nicely deals with high dimensional data and provides good generalization properties. The

method also determines the classifier architecture once kernel function and the parameters

are chosen by user [51]. In this paper we employ the Multiclass with radial basis function

(RBF) as a classifier. Consider a training set {y(i)k , xk}i=1,2,...,m
k=1,2,...,N where xi is the ith input

features vector of d-dimension, and y
(i)
k is the class level of the ith class for features k. The

derivation of the multiclass LS-SVM [25] is based upon the formulation

min
wi,bi,ek,i

ℓ
(m)
LS (wi, bi, ek,i) =

1

2

m
∑

i=1

wTi wi

+ γ
1

2

N
∑

i=1

m
∑

i=1

e2k,i (3.1)

17

subject to equality constraints;

y
(1)
k [wT1 φ1(xk) + b1] = 1− ek,1, k = 1, ..., N

y
(2)
k [wT2 φ2(xk) + b2] = 1− ek,2, k = 1, ..., N

...

y
(m)
k [wTmφm(xk) + bm] = 1− ek,m, k = 1, ..., N

The Lagrangian can be defined for Equation 3.1 as

L(m)(wi, bi, ek,i;αk,i) = ℓ
(m)
LS −

∑

k,i

αk,i{y(i)k [wTi φi

(xk) + bi]− 1 + ek,i}

the discrimination of the Multiclass LS-SVM is obtained as below:

yi(x) = sign{
N
∑

k=1

yikαkiKi(x, xk) + bi}; i = 1, 2, ...,m (3.2)

where yi(x) is the predicted class on the basis of the input index x, bi is the bias term, αij

denote Lagrange multipliers called support values, and Ki(x, xk) is the RBF kernel defined

[25] as Ki(x, x−k) = exp(−(‖ x−xk ‖)2/2σ2). There are four approaches for the multiclass

classification such as: versus One; One versus All; Minimal Output Coding (MOC); and

Error Correcting Output Codes (ECOC). The detailed description of those coding system

is available in reference [26]. In this paper, the first three classification systems are used to

compare the reliability of the proposed algorithm.

Table 9: NORMAL and PROBE (all features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 98.25 92.09 93.86
OA-LS-SVM 1 Avg. 96.16 90.08 93.01 21.78 2.41

Worst 93.25 88.17 92.70

Best 98.30 94.00 95.73
OA-LS-SVM 2 Avg. 97.64 90.89 94.14 22.49 2.44

Worst 96.69 89.21 93.32

Best 84.60 89.94 86.73
CRF Avg. 82.53 88.06 85.21 200.6 14.53

Worst 80.44 86.13 83.19

Näıve Best 73.20 97.00 83.30
Bays Avg. 72.26 96.65 82.70 1.08 6.31

Worst 71.20 96.30 81.90

Decision Best 93.20 97.70 95.40
Trees Avg. 87.36 95.73 91.34 2.04 2.40

Worst 85.50 90.90 88.80

18

Table 10: NORMAL and PROBE (selected features)

Precision Recall F -Value Train Test
(%) (%) (%) (sec.) (%)

Best 98.70 77.80 86.85
OA-LS-SVM 1 Avg. 98.30 77.28 86.50 22.66 2.56

Worst 97.72 76.38 86.12

Best 98.94 77.38 86.84
OA-LS-SVM 2 Avg. 98.43 77.15 86.50 22.69 2.58

Worst 98.06 76.90 86.31

Layered Best 89.72 98.03 93.68
CRF Avg. 88.19 97.82 92.73 6.91 2.04

Worst 82.92 96.48 89.82

Layered Best 78.80 21.30 33.60
Näıve Avg. 77.23 19.57 31.22 0.45 1.13
Bayes Worst 74.70 17.00 27.70

Layered Best 87.50 97.70 92.30
Decision Avg. 87.04 97.41 91.93 0.54 1.00
Trees Worst 86.60 95.20 90.80

4 Experimental results

The objective of our experiment is to investigate the recital of our approach in terms of de-

tection accuracy and computational efficiency. In this paper the KDD 99 intrusion detection

dataset [52] is used which is based on the 1998 DARPA initiative, which provides design-

ers of intrusion detection systems (IDS) with a benchmark on which to evaluate different

methodologies. To do so, a simulation is made of a factitious military network consisting

of three target machines running various operating systems and services. Additional three

machines are then used to spoof different IP addresses to generate traffic. Finally, there is

a sniffer that records all network traffic using the TCP dump format. The total simulated

period is seven weeks. Normal connections are created to profile what is expected in a

military network and attacks fall into one of four categories:

• Denial of Service (DOS): Attacker tries to prevent legitimate users from using a ser-

vice, e.g., syn flood;

• Remote to Local (R2L): Attacker does not have an account on the victim machine,

hence tries to gain access, e.g., guessing password;

• User to Root (U2R): Attacker has local access to the victim machine and tries to gain

super user privileges, e.g., various “buffer over flow” attacks;

• PROBE: Attacker tries to gain information about the target host, e.g., port scanning.

19

Table 11: Comparison of Results (PD)

DOS U2R R2L PROBE

OA-LS-SVM 1 PD 97.30 14.08 9.46 88.03
(One vs One) FAR 0.06 0.37 0.10 1.13

(γ = 10, σ2 = 10)

OA-LS-SVM 1 PD 98.50 67.16 9.61 93.93
(One vs All) FAR 0.023 0.18 0.032 3.17

(γ = 10, σ2 = 10)

OA-LS-SVM 1 PD 98.08 63.89 9.60 91.20
(MOC) FAR 2.00 0.22 0.39 0.67

(γ = 10, σ2 = 10)

OA-LS-SVM 2 PD 97.86 17.65 12.60 88.32
(One vs One) FAR 0.05 0.17 0.07 0.80

(γ = 10, σ2 = 10)

OA-LS-SVM 2 PD 98.77 65.60 13.46 93.58
(One vs All) FAR 0.04 0.04 0.05 3.5

(γ = 10, σ2 = 10)

OA-LS-SVM 2 PD 98.92 72.06 13.51 94.50

(MOC) FAR 0.74 0.15 0.30 0.60
(γ = 10, σ2 = 10)

OA-LS-SVM 1 PD 89.33 61.47 68.98 93.97
(One vs One) FAR 0.07 0.003 0.05 21.42

(γ = 10, σ2 = 100)

OA-LS-SVM 1 PD 97.27 66.47 70.87 90.00
(One vs All) FAR 0.045 0.007 0.028 17.82

(γ = 10, σ2 = 100)

OA-LS-SVM 1 PD 97.40 62.50 69.65 89.46
(MOC) FAR .11 0.04 0.27 20.91

(γ = 10, σ2 = 100)

OA-LS-SVM 2 PD 91.64 59.41 68.65 94.26
(One vs One) FAR 0.10 0.018 0.04 18.85

(γ = 10, σ2 = 100)

OA-LS-SVM 2 PD 97.20 66.77 69.60 90.64
(One vs All) FAR 0.06 0.018 0.03 18.20

(γ = 10, σ2 = 100)

OA-LS-SVM 2 PD 97.62 67.94 71.65 89.65
(MOC) FAR 0.16 0.04 0.34 18.43

(γ = 10, σ2 = 100)

KDD’ 99 PD 97.10 13.20 8.40 83.30
Winner FAR 0.30 0.003 0.005 0.60

Multi PD 97.30 29.80 9.60 88.70
Classifier FAR 0.40 0.40 0.10 0.40

Multi Layer PD 97.20 13.20 5.60 88.70
Perception FAR 0.30 0.05 0.010 0.40

Gaussian PD 82.40 22.80 9.60 90.20
Classifier FAR 0.90 0.50 0.10 11.30

K-Means PD 97.30 29.80 6.40 87.60
Clustering FAR 0.40 0.40 0.10 2.60

Nearest Cluster PD 97.10 2.20 3.40 88.80
Algorithm FAR 0.30 0.0006 0.010 0.50

Incremental Radial PD 73.00 6.10 5.90 93.20
Basis Function FAR 0.20 0.04 0.30 18.80

Leader PD 97.20 6.60 0.10 83.80
Algorithm FAR 0.30 0.03 0.003 0.30

Hypersphere PD 97.20 8.30 1.00 84.80
Algorithm FAR 0.30 0.009 0.005 0.40

Fuzzy PD 97.00 6.10 3.70 77.20
ARTMAP FAR 0.30 0.001 0.004 0.20

C4.5 PD 97.00 1.80 4.60 80.80
(Decision Trees) FAR 0.30 0.002 0.005 0.70

Nearest Neighbour with PD 97.32 64.04 2.51 86.13
Principle Component FAR 0.23 0.0001 0.001 .27
Analysis (4 axis)

Decision Trees with PD 97.58 7.02 0.070 70.40
Principle Component FAR 0.12 0.0001 0.030 0.85
Analysis (2 axis)

Support Vector PD 91.60 12.00 22.00 36.65
Machines FAR - - - -

Layered Conditional PD 97.05 55.03 15.10 88.06
Random Fields (all features) FAR - - - -

20

4.1 Results for Static Data

The data set contains about five million connection records as the training data and about

two million connection records as the test data. In our experiments, we use 10% of the

total training data and 10% of the test data (with corrected labels), which are provided

separately. This leads to 494,021 training and 311,029 test instances. Each in the data set

represents a connection between two IP addresses, starting and at some well defined times

with a well-defined protocol. Further every record is represented by 41 different features

(variables). Each record represents a separate connection and is hence considered to be

independent of any other record. The training data is either labeled as NORMAL or as

one of the 24 different kinds of attack. These 24 attacks can be grouped into four classes;

Probing, DOS, R2L, and U2R. Similarly, the test data is also labeled as either NORMAL

or as one of the attacks belonging to the four attack groups. It is important to note that the

test data is not from the same probability distribution as the training data, and it includes

specific attack types not present in the training data. This makes the intrusion detection

task more realistic [52]. In this paper, the classification by the LS-SVM is carried out in

MATLAB (ver. 7.14, R2012a) using the LS-SVMlab toolbox (ver. 1.8) [53]. We perform

experiments on a desktop running with Intel(R) Core(TM) i7-2600, CPU 3.40 GHz,and

8-Gbyte RAM under the same conditions.

For our results, we give the Precision, Recall, and F-Value as of [18] and not the accuracy

alone as with the given data set, it is easy to achieve very high accuracy by carefully selecting

the sample size. The Precision, Recall, and F-Value are defined as follows:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F-value =
(1 + β2)× Recall× Precision

β2 × (Recall+Precision)

where TP, FP, and FN are the number of True Positives, False Positives, and False Nega-

tives, respectively, and β corresponds to the relative importance of precision versus recall

and is usually set to 1.

21

Table 12: Comparison of Results (PCD)

DOS U2R R2L PROBE

OA-LS-SVM 1 PCD 97.22 3.20 7.81 70.20
(One vs One) FAR 0.06 0.37 0.10 1.13

(γ = 10, σ2 = 10)

OA-LS-SVM 1 PCD 97.24 3.92 7.48 69.27
(One vs All) FAR 0.023 0.18 0.032 3.17

(γ = 10, σ2 = 10)

OA-LS-SVM 1 PCD 97.80 17.35 7.05 71.31
(MOC) FAR 2.00 0.22 0.39 0.67

(γ = 10, σ2 = 10)

OA-LS-SVM 2 PCD 97.46 5.59 11.19 77.76

(One vs One) FAR 0.05 0.17 0.07 0.80
(γ = 10, σ2 = 10)

OA-LS-SVM 2 PCD 97.55 4.78 11.14 75.55
(One vs All) FAR 0.04 0.04 0.05 3.5

(γ = 10, σ2 = 10)

OA-LS-SVM 2 PCD 98.24 16.18 10.97 73.55
(MOC) FAR 0.74 0.15 0.30 0.60

(γ = 10, σ2 = 10)

OA-LS-SVM 1 PCD 89.20 37.24 5.80 84.29
(One vs One) FAR 0.07 0.003 0.05 21.42

(γ = 10, σ2 = 100)

OA-LS-SVM 1 PCD 87.60 37.35 2.65 75.67
(One vs All) FAR 0.045 0.007 0.028 17.82

(γ = 10, σ2 = 100)

OA-LS-SVM 1 PCD 97.30 32.72 3.28 75.10
(MOC) FAR .11 0.04 0.27 20.91

(γ = 10, σ2 = 100)

OA-LS-SVM 2 PCD 91.13 36.47 8.05 86.36

(One vs One) FAR 0.10 0.018 0.04 18.85
(γ = 10, σ2 = 100)

OA-LS-SVM 2 PCD 86.52 35.30 3.38 76.82
(One vs All) FAR 0.06 0.018 0.03 18.20

(γ = 10, σ2 = 100)

OA-LS-SVM 2 PCD 97.27 34.21 4.42 76.28
(MOC) FAR 0.16 0.04 0.34 18.43

(γ = 10, σ2 = 100)

Bernhard [47] PCD 97.10 13.2 8.4 83.30
FAR - - - -

Y.Liu [48] PCD 56.00 66.00 78.00 44.000
FAR - - - -

Kayacik [49] PCD 95.10 10.00 9.9 64.3
FAR - - - -

Ambwani [50] PCD 96.8 4.2 5.3 75
FAR - - - -

22

We divide the training and testing data into different groups; DOS, U2R, R2L, PROBE

and NORMAL. The LS-SVM classifier is trained with the training set and performances

are assessed with the testing set for different pairs of the two-class data. For detecting DOS

attacks, we train and test the system with DOS and NORMAL data only. Similarly, for

detecting U2R attacks, we train and test the system with U2R and NORMAL data only.

Thus we have four pairs of binary class which are as follows:

DOS versus NORMAL

U2R versus NORMAL

R2L versus NORMAL

PROBE versus NORMAL

We combine the training and testing for each of the pairs and determine the total sample

size required that describe the characteristics of training and testing. As mentioned before

we use equation 3.2 of subsection 3.1 to determine the sizes using 99% confidence level and

99%-100% confidence interval. The determination of training and testing set are discussed

in Section 3.2. As indicated by Gupta et.al [18] selected features may be useful for detecting

certain type of attack. Thus we compare our results with the selected features as well. Table

2 presents the required size of training and testing for all features as well as for selected

features using the OA scheme as described in Section 3.4. It should be noted that the

training and testing for U2R attack is very small and thus we consider all of these instances

for classification. For PROBE attack we determine the size training and testing considering

each feature separately and then take the average. We perform 10 experiments for each

attack class by randomly selecting data corresponding to that attack class and normal data

only and recorded best, average and worst value. We compare our results with Conditional

Random Field (CRF), Näıve Bayes and Decision Trees. The Precision, Recall and F-value

for these algorithms for the KDD 99 dataset are quoted from [18].

4.1.1 Detecting DOS attack

As discussed in Section 3.2, using OA scheme we randomly select 9345 NORMAL records

and 9599 DOS records from the training data as the training for detecting DOS attacks.

23

Using the same scheme, we randomly select 5709 NORMAL and 6608 records from the test

data for testing. Hence, we have 18,944 training instances and 12,317 testing instances.

Table 3 gives the results for the experiment. In this paper, the stability of performance of

the proposed OA-LS-SVM classifier is assessed based on different statistical measurements,

such as Precision, Recall and F value. The RBF kernel function is employed for the LS-

SVM as an optimal kernel function over different kernel functions that were tested. The

LS-SVM has two important parameters γ and σ2, which should be appropriately chosen

for achieving the desired performance. In order to obtain the best results, the LS-SVM

is trained with different combinations of the parameters γ and σ2. For detecting DOS

attack, the optimal detection results are obtained for OA-LS-SVM 1 and OA-LS-SVM 2

as γ = 1000 and σ2 = 10 and γ = 10 and σ2 = 10 respectively. We observe that the

OA-LS-SVM 2 takes only 5.93 seconds to label all the test instances. We further observe

that F-value is higher for OA-LS-SVM 1, Recall is higher for OA-LS-SVM 2 and Precision

is higher for Decision Trees. Thus from this experiment, we conclude that the OA-LS-SVMs

are better choice for detecting DOS attack. The highest average values of Precision, Recall

and F-value are shown in bold face. We also perform experiments of using feature selection

and the results are given in Table 4. For OA-LS-SVM 1 and OA-LS-SVM 2, the optimum

parameters are selected as γ = 1000 and σ2 = 10. As we can see from Table 4, the precision

and F-value are higher for Layered Conditional Random Field whereas Recall is higher for

OA-LS-SVM 1. It should be noted that the feature selection is a subjective process and

may not uniformly perform better for other datasets. In real scenario, it is ideal to deal with

all features. Thus although using feature selection, Layered CRFs may be better choice for

DOS attack in this particular dataset but there is no guarantee that it will perform better

for any other datasets.

4.1.2 Detecting U2R attack

Using the OA scheme, we randomly select 9345 NORMAL records as the training and 5709

records for the testing for detecting U2R attacks. We use all the training and testing records

of U2R as the number of instances are small. Hence, we have 9,397 training instances and

24

5,777 testing instances. Table 5 gives the results for the experiment. For detecting U2R

attack, the optimal detection results are obtained for OA-LS-SVM 1 and OA-LS-SVM 2

as γ = 1000 and σ2 = 1000 and γ = 10 and σ2 = 1000 respectively. We observe that the

OA-LS-SVM 1 takes 5.30 seconds to label all the test instances. We further observe that the

highest precision and F-value occurs for OA-LS-SVM 2 and for OA-LS-SVM 1 respectively

whereas Näıve Bays has the highest Recall. CRF is not at all suitable for detecting U2R

attack. Similar as DOS, the experimental results show that the OA-LS-SVMs are better

choice for detecting U2R attack. Using the feature selection, the experimental results are

given in Table 6. In this scenario, the parameters for both OA-LS-SVM are chosen as

γ = 100 and σ2 = 1000. Similar to all features, the proposed OA-LS-SVM performs better

for selected features as well.

4.1.3 Detecting R2L attack

Using the OA scheme, we randomly select 9345 NORMAL records as the training and 5709

NORMAL records for the testing for detecting R2L attacks. As the training data of R2L

is small, we use all the 1126 R2L instances as training and the rest 7398 R2L instances as

testing. Hence, we have 10,471 training instances and 13,107 testing instances. Table 7

gives the results for the experiment. For detecting R2L attack, the optimal detection results

are obtained for both OA-LS-SVM 1 and OA-LS-SVM 2 is γ = 1000 and σ2 = 100. The

testing time for OA-LS-SVM 2 is 3.40 seconds to label all the test instances. The highest

precision and F-value for detecting R2L attack obtained for OA-LS-SVM 2 and the highest

Recall are obtained fror OA-LS-SVM 1. The CRF, Näıve Bays and Decision Tress are not at

all suitable for detecting R2L attack. Thus similar to DOS, U2R, the experimental results

show that the OA-LS-SVMs are better choice for detecting R2L attack. Table 8 shows

the experimental results for detecting R2L attack using selected features. The required

instances for training and testing are obtained by using OA scheme. After several trials

and errors, the parameters for both OA-LS-SVM are chosen as γ = 1000 and σ2 = 100.

The highest Precision are obtained for Layered CRFs but the other measures (Recall and

F value) are obtained for OA-LS-SVM 2.

25

Sample

DOS

Sample

attack
Initial

data

1st
incre
ment

2nd

incre
ment

3rd

incre
ment

4th

incre
ment

5th

incre
ment

6th

incre
ment

7th

incre
ment

8th

incre
ment

9th

incre
ment

10th

incre
ment

883370 300K 300K 300K 300K 300K 300K 300K 300K 300K 300K

R2L

Sample

PROBE

Sample

NORMAL

Sample

472781 50K 50K 50K 50K 50K 50K 50K 50K 50K 50K

9501 9306 9306 9306 9306 9306 9306 9306 9306 9306 9306

12 4 4 4 4 4 4 4 4 4 4

12 4 4 4 4 4 4 4 4 4 4

226 90 90 90 90 90 90 90 90 90 90

221 89 89 89 89 89 89 89 89 89 89

11102 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K

5150 2280 2280 2280 2280 2280 2280 2280 2280 2280 2280

9413 8057 8057 8057 8057 8057 8057 8057 8057 8057 8057

U2R

Figure 4: Block diagram of the proposed methodology for 10th incremental data

26

4.1.4 Detecting PROBE attack

we randomly select 2643 PROBE records as the training and 2883 PROBE records for the

testing for detecting PROBE attacks. On the other hand, the respective training and testing

for NORMAL records using OA scheme are 9345 and 5709. The experimental results are

given in Table 9. For detecting PROBE attack, the optimal detection results are obtained

for both OA-LS-SVM 1 and OA-LS-SVM 2 is γ = 1000 and σ2 = 1000. The testing time

for OA-LS-SVM 1 is 2.41 seconds to label all the test instances. The highest precision and

F-value for detecting PROBE attack are found for OA-LS-SVM 2 and the highest Recall are

obtained for Näıve Bays. The CRF and Decision Tress are not at all suitable for detecting

PROBE attack. Thus similar to DOS, U2R and the R2L, the experimental results show

that the OA-LS-SVMs are better choice for detecting R2L attack. Table 10 shows the

experimental results for detecting PROBE attack using feature selection. The optimum

parameters for both OA-LS-SVM in this situation are chosen as γ = 10 and σ2 = 10.

The highest Precision are obtained for the OA-LS-SVM 2 whereas the highest Recall and

F-value are obtained for Layered CRFs. From the experimental results from Section 4.1.1

to 4.1.4, there is no evidence that the selected features are effective for detecting attacks.

Thus for further consideration of detecting attacks, we will consider all the features in the

dataset.

4.2 Multiclass Comparison for Static data

This section shows the performance analysis of the proposed OA-LS-SVM in comparison

with the other algorithms. We use the same dataset for multiclass comparison. The number

of training and testing records for different attack are the same as in Table 2. The test

performance for a given classifier of a specific category can be determined by the compu-

tation of Probability of Correct Detection (PCD), the Probability of Detection (PD) and

False alarm rate (FAR). The PCD, PD and the FAR are defined as follows:

• PCD: the number of cases that are correctly detected divided by the total number of

cases in that attack category;

27

• PD: the number of cases that are detected as attack/attacks divided by the total

number of cases in that attack category;

• FAR: the number of NORMAL cases that are detected as intrusions in a specific

category divided by the total number of NORMAL cases.

There are four approaches for multiclass classification such as: One versus One; One

versus All; Minimal Output Coding (MOC); and Error Correcting Output Codes (ECOC).

However, ECOC does not provide new information in this particular dataset that we used

in this paper to evaluate the proposed algorithm. Thus in this paper we use first three

approaches for OA-LSSVM. We perform the experiments for different values of the param-

eters γ and σ2 and finally present results for γ = 10, σ2 = 10 and γ = 10 and σ2 = 100.

We repeat all experiments five times and average values are recorded in Table 12 and Table

11. Table 12 shows the results of PCD whereas and Table 11 shows the results of PD.

We compare our work with other well-known methods based on the anomaly intrusion

detection principle using PD. For anomaly detection, standard technoques such as CRF,

decision trees and Näıve Bays are known to perform well. However, our experiments show

that the OA-LS-SVM performs far better than these techniques. The main reason for this is

that the OA-LS-SVM uses the training and testing set that best describe the characteristics

of whole population. Sabhnani et al. [46] present a comparative study of various classifiers

when applied to the KDD’99 dataset. Bouzida et al. [37] proposed to use Principle Compo-

nent Analysis (PCA), before applying a machine learning algorithm. Use of support vector

machines is discussed in [17] and the idea of Layered and CRF are used in [18]. We compare

our results from the results presented in these papers in Table 11. The table represents the

Probability of Detection (PD) and False Alarm Rate (FAR) in percent for various methods

including the KDD 99 cup winners. On the other hand, we have reported and compare the

Probability of correct detection (PCD) in Table 12. In respect of PCD, the Table 12 shows

that our proposed OA-LS-SVM performs better than the other methods in the literature.

28

Table 13: Total required samples for KDD 99 dataset in 10th increment

Attack Total size Samples Size of 10th Samples Total
of previously from incremental from

selected samples column 2 data column 4

DOS 93255 8707 300000 9306 18013
U2R 48 48 4 4 52
R2L 1022 924 90 89 1083

PROBE 25724 6993 3000 2286 9279
NORMAL 81926 8596 50000 8057 16653

Table 14: Classification accuracy and false alarm rate for DOS vs NORMAL for five repeats

Repeat Training Testing CA (%) FAR (%)

DOS NORMAL DOS NORMAL

1 10000 10000 8012 6654 100 0

2 10000 10000 8015 6652 99.99 0.015

3 10000 10000 8012 6654 99.99 0

4 10000 10000 8014 6654 100 0

5 10000 10000 8012 6652 99.98 0

4.3 Results for Incremental Data

In this experiment, we use the whole dataset of about five millions connection records of

the training data. Although there about two millions connection records of test data but

they are not labeled. Thus we consider the five millions training data as the whole set and

use about 50% of them as the testing for detecting intrusions. In this particular situation,

we consider 10th occasion. That means we have the whole dataset for 10th occasion and

also the datasets that were used in previous occasions. We use equation 3.2 in subsection

3.1 for determination of required sizes in the most recent occasion as well as from previous

occasions. The test performance for the classifier of a specific category is determined by

the computation of classification accuracy and total False Alarm Rate (FAR) are defined

as follows:

• Classification Accuracy (CA): the number of cases that are correctly detected divided

by the total number of cases in that attack category, same as PCD;

• total FAR: the number of NORMAL cases that are detected as intrusions divided by

the total number of NORMAL cases.

29

Table 15: Classification accuracy and false alarm rate for U2R vs NORMAL for five repeats

Repeat Training Testing CA (%) FAR (%)

U2R NORMAL U2R NORMAL

1 28 10000 24 6655 99.87 0

2 28 10000 24 6653 99.96 0.015

3 28 10000 24 6653 99.96 0

4 28 10000 24 6653 99.93 0.03

5 28 10000 24 6652 100 0

Table 16: Classification accuracy and false alarm rate for R2L vs NORMAL for five repeats

Repeat Training Testing CA (%) FAR (%)

R2L NORMAL R2L NORMAL

1 550 10000 440 6652 99.84 0.03

2 550 10000 441 6653 99.76 0.03

3 550 10000 441 6652 99.68 0

4 550 10000 430 6654 99.86 0.03

5 550 10000 425 6655 99.73 0.045

4.3.1 Samples for 10th increment

Figure 4 shows the block diagram of the proposed methodology for 10th incremental data.

In each attack type and each increment, the data are selected on the basis of the following

rule

N0 + 10n = N (4.1)

where N is the total dataset of a particular attack type, N0 is the most recent data for

that attack, and n is the size of data of that attack for each increment. The block diagram

also shows the required sample sizes for most recent as well as for incremental data of each

attack. The required samples in the 10th increment for each attack are given in Table

13. We use 95% confidence level and 99-100% confidence interval for selecting sizes in this

situation. We assume that the samplers that were used in previous occasions are available

at the final occasion.

In this paper, we investigate the potentials of applying the optimum allocation algorithm

for obtaining representative samples from all dataset and these samples are used as inputs

to the LS-SVM algorithm. The RBF kernal function is employed for the LS-SVM as an

optimal kernel function over different kernel functions that were tested. The LS-SVM has

two important parameters γ and σ2, which should be appropriately chosen for achieving

the desired performance. In order to obtain the best results, the LS-SVM is trained with

different combinations of the parameters γ and σ2. The proposed method is conducted on

30

Table 17: Classification accuracy and false alarm rate for PROBE vs NORMAL for five
repeats

Repeat Training Testing CA (%) FAR (%)

PROBE NORMAL PROBE NORMAL

1 5200 10000 4079 6652 99.72 0.11

2 5200 10000 4078 6653 99.80 0.015

3 5200 10000 4078 6653 99.70 0.03

4 5200 10000 4079 6654 99.69 0.12

5 5200 10000 4078 6653 99.79 0.045

Table 18: Training and Testing dataset for each attack in multiclass classification

Training Testing

DOS 10050 7963

U2R 28 24

R2L 565 424

PROBE 5300 3977

NORMAL 9900 6754

different pairs of two-class of KDD 99 data.

4.3.2 Detecting DOS for 10th increment

As shows in Table 13 we need to select 8707 instances for DOS and 8596 for NORMAL from

previously selected clusters for detecting DOS attacks. Using the OA scheme in equation

3.6, we select the samples from previously selected clusters. In addition, the respective size

for the most recent datasets are 9306 and 8057 respectively. Thus for 10th increment, the

required sizes of DOS and NORMAL are 18313 and 16653 for detecting DOS attacks. In

order to obtain the best results, the LS-SVM is trained with different combinations of the

parameters γ and σ2. For detecting DOS attack in 10th increment, the optimal detection

results are obtained for γ = 100 and σ2 = 100. For consistency of the proposed approach,

we repeat the experiment (DOS vs NORMAL) five time for the parameters γ = 100 and

σ2 = 100 and their results are given in Table 14. As shows in Table 14 the proposed model

is very accurate in the terms of classification accuracy and FAR. The performance of the

classification is due to the large number of instances in both DOS and NORMAL. That

Table 19: Classification accuracy for multiclass classification (One vs all) for five repeats

Repeat DOS (%) U2R (%) R2L (%) PROBE (%) NORMAL (%) Overall (%)

1 99.96 83.33 98.35 99.35 99.64 99.67

2 99.94 87.50 98.11 99.32 99.67 99.66

3 99.96 91.67 98.58 99.35 99.70 99.70

4 99.92 87.50 97.41 99.30 99.66 99.63

5 99.94 91.67 97.17 99.25 99.72 99.64

31

Table 20: Classification accuracy for multiclass classification (One vs One) for five repeats

Repeat DOS (%) U2R (%) R2L (%) PROBE (%) NORMAL (%) Overall (%)

1 99.94 87.50 96.7 99.62 99.61 99.67

2 99.99 83.33 97.88 99.65 99.67 99.75

3 99.95 79.17 97.64 99.57 99.64 99.69

4 99.97 91.67 98.35 99.74 99.69 99.78

5 99.89 91.67 97.17 99.35 99.64 99.62

means, we can expect better accuracy considering the required sample as proposed in this

paper even if the size of the population is large enough.

4.3.3 Detecting U2R for 10th increment

We randomly select 16653 (8057 from 10th increment and 8596 from previously selected

clusters) NORMAL records and all U2R for detecting U2R attacks. We use OA scheme

to determine the sizes from previously selected clusters as described in equation 3.6. The

performance of the detection is best for the parameter γ = 1000 and σ2 = 100. For

consistency of the proposed approach, we repeat the experiment (U2R vs NORMAL) five

time for the parameters γ = 1000 and σ2 = 100 and their results are given in Table 15. It

shows from Table 15 that the results are consistent during repeating process.

4.3.4 Detecting R2L for 10th increment

For detecting R2L, the required sizes of R2L and NORMAL are 1083 and 16653 respectively

for detecting R2L attacks of which 924 R2L records are from previously selected clusters

and 89 from 10th increment. On the other hand the respective sizes of Normal records

from previously selected clusters and 10th increment are 8596and 8057. Same as before, the

determination of sample sizes from each of the previously selected clusters are calculated

by using equation 3.6. We randomly select 9900 NORMAL records and 565 R2L records

as the training for detecting R2L attacks. On the other hand, we randomly select 6754

NORMAL and 424 R2L records for testing. The best performance for detecting R2L in

10th increment is achieved for the parameters γ = 100 and σ2 = 10. For consistency of

the proposed approach, we repeat the experiment (R2L vs NORMAL) five time for the

parameters γ = 100 and σ2 = 10 and their results are given in Table 16. Table 16 shows

the classification accuracies are very consistent.

32

4.3.5 Detecting PROBE for 10th increment

Using the OA scheme as described in Section 3.3 (equation 3.6), we randomly select 10,000

NORMAL records and 5,300 PROBE records as the training for detecting PROBE attacks.

In addition, we randomly select 6754 NORMAL and 3977 PROBE records for testing. The

performance of the detection is best for the parameter γ = 100 and σ2 = 10. Same as

before, for consistency of the proposed approach, we repeat the experiment (PROBE vs

NORMAL) five time for the parameters γ = 100 and σ2 = 10 and their results are given in

Table 17. It shows from Table 17 that the results are consistent during repeating process.

4.3.6 Multiclass Classification for the 10th increment

Multiclass is an extension of binary classification. There are several approaches for mul-

ticlass LS-SVM, One versus One, One versus All, MOC and ECOC. We use first two

approaches in this paper for the 10 th increment to show the classification accuracy of our

proposed approach. Table 18 shows the training and testing dataset for each class in multi-

class classification. The highest classification accuracy occurs at γ = 1000 and σ2 = 10 for

multiclass classification of One versus All. For consistency of the proposed approach, we

repeat the multiclass experiment (One vs All) five time for the parameters γ = 1000 and

σ2 = 10 and the results are given in Table 19. Table 19 shows the classification accuracies

are very consistent for multiclass LSSVM. Thus the proposed OA based LS-SVM is very

effective for detecting intrusions for incremental datasets. We also validate our approach

with the approaches of One versus One. The highest classification accuracy for One versus

One occurs at γ = 100 and σ2 = 10. For consistency of the proposed approach, we repeat

the multiclass experiment (One vs One) five time for the parameters γ = 100 and σ2 = 10

and for the same training and testing dataset. The results of the repeated experiment are

given in Table 20.

5 Conclusion

Accurate detection of various types of attack in IDS is a complicated problem, requiring

the analysis of large sets of IDS data. Representative samples from a large data set play

33

an important role to detect intrusions in the field of network security. However the current

solutions for detecting intrusions is only for static datasets. This paper proposes an IDS

that can be used both for static and incremental data. The proposed IDS uses the idea of

sampling and we refer to this as the optimum allocation based least square support vec-

tor machine (OA-LS-SVM). The proposed methodology is discussed and validated through

KDD 99 dataset which is considered as a benchmark for testing any IDS approach. The

experimental results show that the proposed method is every effective for detecting intru-

sions for static (i.e., the entire dataset is assumed to be available at the time of release) as

well as for incremental datasets.

References

[1] J.Hu, Host-Based Anomaly IDS. Springer Handbook of Information and Communica-

tion Security, Springer Verlag, 2010, ISBN978-3-642-04116-7 (Print), 978-3-642-04117-4

(Online).

[2] W.G. Cochran, Sampling Techniques. Wiley, New York, 1977.

[3] C. Dartigue, H. I. Jang and W. Zeng, “A New Data -Mining Based Approach for

Network Intrusion Detection,” Proc. 7th Annual Communication Networks and Services

Research Conference, pp. 372–377, 2009.

[4] W. Lee and S.J. Stolfo, “Data mining approaches for intrusion detection,” Proc. 7th

USENIX Security Symposium pp. 79–94, 1998.

[5] W. Lee, S. Stolfo, and K. Mok, “Mining Audit Data to Build Intrusion Detection

Models,” Proc. Fourth Intl Conf. Knowledge Discovery and Data Mining (KDD 98),

pp. 66-72, 1998.

[6] N.B. Amor, S. Benferhat, and Z. Elouedi, “Näıve Bayes vs. Decision Trees in Intrusion

Detection Systems, Proc. ACM Symp. Applied Computing (SAC 04), pp. 420-424, 2004.

[7] W. Lee, S. Stolfo, and K. Mok, “A Data Mining Framework for Building Intrusion

Detection Model,” Proc. IEEE Symp. Security and Privacy (SP 99), pp. 120–132, 1999.

34

[8] M.N. Islam, An Introduction to Sampling Methods: Theory and Applications. Book

World, Dhaka, 2007.

[9] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion Detection with Unlabeled Data Using

Clustering, Proc. ACM Workshop Data Mining Applied to Security (DMSA), 2001.

[10] H. Shah, J. Undercoffer, and A. Joshi, “Fuzzy Clustering for Intrusion Detection, Proc.

12th IEEE Intl Conf. Fuzzy Systems (FUZZ-IEEE 03), vol. 2, pp. 1274–1278, 2003.

[11] T. Abraham, IDDM: Intrusion Detection Using Data Mining Techniques,

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA392237, 2012.

[12] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of

Items in Large Databases, Proc. ACM SIGMOD, vol. 22, no. 2, pp. 207-216, 1993.

[13] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Bayesian Event Classification for

Intrusion Detection,” Proc. 19th Ann. Computer Security Applications Conf. (ACSAC

03), pp. 14–23, 2003.

[14] K. Hwang, M. Cai, Y. Chen and M. Qin, “Hybrid Intrusion Detection with Weighted

Signature Generation over Anomalous Internet Episodes,” IEEE Transactions on De-

pendable and Secure Computing, vol. 4, no. 7, pp. 1–15.

[15] S. Kumar, Classification and detection of computer intrusions. Ph.D. thesis, Purdue

Univ., West Lafayette, IN, 1995.

[16] W. Lee and D. Xiang, “Information-theoretic measures for anomaly detection,” Proc.

2001 IEEE Symposium on Security and Privacy, pp. 130–143, 2001.

[17] D.S. Kim and J.S. Park, “Network-Based Intrusion Detection with Support Vector Ma-

chines, Proc. Information Networking, Networking Technologies for Enhanced Internet

Services International Conference (ICOIN 03) pp. 747–756, 2003.

35

[18] K.K. Gupta, B. Nath and R. Kotagiri, “Layered Approach Using Conditional Random

Fields for Intrusion Detection,” IEEE Transactions on Dependable and Secure Comput-

ing, vol. 7, no. 1, pp. 35–49, 2010.

[19] C.J. Lin, S.Y. Hong, and C.Y. Lee, “Using Least Squares Support Vector Machines

for Adaptive Communication Channel Equalization,” International Journal of Applied

Science and Engineering, vol. 3, no. 1, 51-59, 2005.

[20] X. Rui-Rui, B.G. Xing, G. Chen-Feng, and C.T. Lun, “Discussion about Nonlinear

Time Series Prediction Using Least Squares Support Vector Machine,” Commun. Theor.

Phys., vol. 43, no. 6, pp. 1056–1060, 2005.

[21] F. Wu, and Y. Zhao, “Least Square Support Vector Machine on Morlet Wavelet Kernal

Function and its Application to Nonlinear System Identification,” Information Technol-

ogy Journal, vol. 5, no. 3, pp. 439–444, 2006.

[22] C. Quanhua, L. Zunxiong, and D. Guoqiang, “Facial Gender Classification with Eigen-

faces and Least Squares Support Vector Machine,” Journal of Artificial Intelligence, vol.

1, no. 1, pp. 28-33, 2008.

[23] X.D. Hoang, J. Hu, and P. Bertok, “A program based anomaly intrusion detection

scheme using multiple detection engines and fuzzy inference, Journal of Network and

Computer Applications, vol.32, Issue 6, pp. 1219-1228, 2009.

[24] F. Liu, Y. He, and L. Wang, “Application of Least Squares Support Vector Machine for

Measurement of Soluble Solids Content of Rice Vinegars Using Vis/NIR Spectroscopy,”

Proc. International Conference on Computational Intelligence and Security, pp. 1044–

1047, 2007.

[25] J. A. K. Suykens, and J. Vandewalle, “Multiclass least squares support vector ma-

chines,” Proc. International Joint Conference on Neural Networks, pp. 900–903, 1999.

[26] J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, B.D. Moor, and J. Vandewalle, Least

Square Support Vector Machine, World Scientific, Singapore, 2002.

36

[27] J. Hu, D. Qiu, H.H. Chen, and X. Yu, “A simple and efficient data processing scheme

for HMM based anomaly intrusion detection. Special Issue of Advances on Network

Intrusion Detection. IEEE Network, vol. 23, no. 1, pp.42–47, 2009.

[28] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields: Probabilistic

Models for Segmenting and Labeling Sequence Data,” Proc. 18th Intl Conf. Machine

Learning (ICML 01), pp. 282-289, 2001.

[29] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting Intrusions Using System

Calls: Alternative Data Models,” Proc. IEEE Symp. Security and Privacy (SP 99), pp.

133-145, 1999.

[30] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, and K. Kim, ”Identity-based chameleon

hashing and signatures without key exposure.” Information Sciences, vol. 265, no. 1,

pp. 198–210, 2014.

[31] X. Huang, Y. Xiang, E. Bertino, J. Zhou, and L. Xu, ”Robust Multi-Factor Authen-

tication for Fragile Communications. IEEE Transactions on Dependable and Secure

Computing, vol 11, no. 6, pp. 568–581, 2014.

[32] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, ”Targeted Online Password

Guessing: An Underestimated Threat,” ACM Conference on Computer and Communi-

cations Security, pp. 1242-1254, 2016

[33] J. Huang, M. Peng, H. Wang, J. Cao, G. Wang, X. Zhang, ”A Probabilistic Method for

Emerging Topic Tracking in Microblog Stream,” World Wide Web, doi:10.1007/s11280-

016-0390-4, pp. 1-26, 2016

[34] M.E. Kabir, H. Wang, and E. Bertino, ”Efficient systematic clustering method for

k-anonymization,” Acta Informatica, vo. 48, no. 1, pp. 51-66, 2011.

[35] H Wang, J Cao, and Y Zhang, ”A flexible payment scheme and its role-based access

control”, IEEE Transactions on knowledge and Data Engineering, vo. 17, no. 3, 425–436,

2005.

37

[36] H. Debar, M. Becke, and D. Siboni, “A Neural Network Component for an Intrusion

Detection System, Proc. IEEE Symp. Research in Security and Privacy (RSP 92), pp.

240-250, 1992.

[37] Y. Bouzida and S. Gombault, “Eigenconnections to Intrusion Detection,” Security and

Protection in Information Processing Systems, pp. 241-258, 2004.

[38] Z. Zhang, J. Li, C.N. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE: A Hierarchical

Network Intrusion Detection System Using Statistical Preprocessing and Neural Net-

work Classification,” Proc. IEEE Workshop Information Assurance and Security (IAW

01), pp. 85-90, 2001.

[39] E. Kabir, A. Mahmood, H. Wang, A. Mustafa, “Microaggregation Sorting Framework

for K-Anonymity Statistical Disclosure Control in Cloud Computing,” IEEE Transac-

tions on Cloud Computing, vol. PP, no.99, pp.1-1.

[40] Y. Zhang, Y. Shen, H. Wang, J. Yong, X. Jiang, “On Secure Wireless Communications

for IoT under Eavesdropper Collusion,” EEE Transactions on Automation Science and

Engineering, Vol. 13, pp: 1281-1293, 2016.

[41] J. Ma, L. Sun, H. Wang, Y. Zhang and U. Aickelin, “Supervised Anomaly Detection in

Uncertain Sensor Data Streams,” ACM Transactions on Internet Technology (TOIT),

16, 1, Article 4 (January 2016), 20 pages. DOI= http://dx.doi.org/10.1145/2806890

[42] J. Zhang, H. Li, X. Liu, Y. Luo, F. Chen, H. Wang, L. Chang, “On Efficient and Robust

Anonymization for Privacy Protection on Massive Streaming Categorical Information,”

IEEE Transactions on Dependable and Secure Computing, no.1, pp. 1, 01/2015.

[43] Y. Zhang, Y. Shen, H. Wang, Y. Zhang, X. Jiang, “On Secure Wireless Communica-

tions for Service Oriented Computing,” IEEE Transactions on Services Computing, no.

1, pp. 1.

[44] S. Siuly, and Y. Li, Y., ”A novel statistical algorithm for multiclass EEG signal classi-

fication”, Engineering Applications of Artificial Intelligence, vol. 34, pp.154–167, 2014.

38

[45] S. Siuly, Y. Li, and P. Wen, ”Identification of motor imagery tasks through CC-LR al-

gorithm in brain computer interface”, International Journal of Bioinformatics Research

and Applications, vol. 9, no. 2, pp.156–172, 2013.

[46] M. Sabhnani and G. Serpen, “Application of Machine Learning Algorithms to KDD In-

trusion Detection Dataset within Misuse Detection Context,” Proc. Intl Conf. Machine

Learning, Models, Technologies and Applications (MLMTA 03), pp. 209-215, 2003.

[47] Results of the KDD99 Classifier Learning Contest,

http://www.cse.ucsd.edu/users/elkan/clresults.html, 2012.

[48] Y. Liu, K. Chen, X. Liao, and W. Zhang: “A Genetic Clustering Method for Intrusion

Detection”, Pattern Recognition, Vol. 37, Issue 5, pp. 927-942. 2004.

[49] H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood: “On the capability of an SOM

based intrusion detection system”, Proceedings of the International Joint Conference on

Neural Networks, Vol. 3, pp. 1808–1813, 2003.

[50] T. Ambwani, “Multi class support vector machine implementation to intrusion detec-

tion”, Proceedings of the International Joint Conference on Neural Networks, Vol. 3,

pp. 2300-2305, 2003.

[51] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York,

1995.

[52] KDD Cup 1999 Intrusion Detection Data, http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html, 2012.

[53] LS-SVMlab Toolbox (Version 1.8), http://www.esat.kuleuven.ac.be/sista/lssvmlab/,

2012

39

