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ABSTRACT 

Arc suppression coils provide a low cost method of increasing both the reliability 

and safety of high voltage transmission and distribution systems. Although the 

concept is not new, the advent of modern control equipment allows fresh 

opportunities for them to be used to save lives and to decrease the cost and 

inconvenience to industry and the community in general that is caused by electricity 

supply interruptions without incurring large expenditure. Earth fault currents are 

reduced to almost zero, thus eliminating many short time power supply interruptions 

and preventing damage to the electricity supply system at the time of the initial fault. 

Because of the reduction in damage at the time of the fault, many longer duration 

interruptions are avoided. It is common for live high voltage conductors to be close 

to the ground and for the fault not to be detected by conventional power system 

protection equipment. Arc suppression coil systems can detect high impedance earth 

faults and broken conductors which cannot be detected by conventional protection 

systems. 

There are many system abnormalities which can cause neutral voltages in arc 

suppression coil systems. The appropriate action to be taken by the protection system 

depends on the type of system abnormality. The causes of neutral voltages in arc 

suppression coil systems are analysed and criteria are developed to differentiate 

between them based on the phase angle and magnitude of the neutral voltage. Fully 

computerised power system protection systems are now being implemented. These 

modern protection systems will be able to utilise the criteria developed in this 

research to take immediate appropriate action based on the neutral voltage caused by 

the system abnormality. 

In existing distribution systems there is a widespread use of two single phase pole 

mounted auto-transformers connected in open-delta configuration to provide 

economic in-line three phase voltage regulation. An original method of representing 

open delta regulators in symmetrical component analyses is developed. It is shown 

that when open-delta regulators are used in a power system equipped with an arc 

suppression coil very high voltages can occur. A solution is proposed whereby three 

single phase pole mounted auto-transformers connected in a closed-delta 

arrangement are used.  

One of the potential problems with these systems is cross country faults caused by 

the neutral voltage displacement combined with the transient voltages at the time of 

the initial earth fault. These transient over-voltages are analysed in detail and a 

method of testing the capability of existing system components to withstand the 

over-voltages is developed. Simple methods to estimate the transient voltages on 

overhead power systems are derived. A new method of minimising the transient 

over-voltages is proposed. 
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Chapter 1  JUSTIFICATION FOR THE PROJECT 

1.1  Principle of operation of arc suppression coils 

Arc suppression coil systems are based on the Petersen coil principle that was 

invented in 1917 [1]. The high voltage system supply point neutrals are earthed 

through inductors which are tuned to the total line to earth capacitance of the system. 

When an earth fault occurs there is very little voltage on the faulted phase line and 

the voltages on the other phases and the neutral are displaced accordingly. This 

results in the normal line to line voltage being applied between the two healthy phase 

lines and earth for the duration of the fault. If the inductor is properly tuned the 

capacitive current resulting from the voltage displacement is equal and opposite to 

the current in the earthing inductor. The residual fault current will be very small and 

will not be sufficient to maintain an arc. There is therefore no arc or thermal damage 

at the point of the fault and many faults self extinguish. This can result in a 

significant increase in system performance [2, 3]. Many high impedance line to earth 

faults cannot be detected by conventional power system protection schemes. In arc 

suppression coil systems a high impedance line to earth fault will cause a rise in the 

neutral voltage. By monitoring the neutral voltage these high impedance faults can 

be detected. This can greatly improve the system safety. 

1.2  Reasons for using arc suppression coils 

Reliability of electricity supply especially in rural areas is now becoming an 

important issue because of the greater dependence on computers, internet access and 

general electrical equipment. 

Arc suppression coil systems can greatly improve the reliability of supply for two 

main reasons.  

1. Many faults on overhead high voltage distribution systems are single line to earth 

faults. In a large proportion of these cases, once the power supply has been 

interrupted it can immediately be restored successfully. These faults include 

lightning flash over with power follow current, conductors clashing in high wind, 

branches falling on the lines without breaking them, and so on. Restoration is 

currently achieved using automatic reclosing of circuit breakers within about 5 

seconds. These short duration outages are very inconvenient for many users. 

Most personal computers shut down and lose data. Electric clocks need to be 

reset. Many industrial processes are disrupted and considerable work time is 

required to enable them to be restarted. With an arc suppression coil in use, these 

short time power interruptions caused by single line to earth faults are avoided 

and the supply of power continues uninterrupted during the fault. 
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2. Many of the line to earth faults develop into permanent faults because of the 

damage caused by the fault current. These include distribution transformer fuses 

being blown by power arc current following lightning flashover and conductors 

being heated to the extent that they part under the normal line tension, and so on. 

These faults are avoided when an arc suppression coil system is installed because 

there is no significant fault current. There is a corresponding decrease in the cost 

of power system emergency repairs. 

 The community is regarding electricity safety as being of increasing importance 

because of a decreasing acceptance of accidental serious injury and death together 

with a greater reliance on the convenience of electrical appliances. Many situations 

where a live high voltage overhead conductor has come within reach of people on 

the earth cannot be detected by conventional protection systems that depend on a 

significant flow of current to earth. A large proportion of these faults can be detected 

in power systems incorporating arc suppression coils because there is a neutral 

voltage present for most broken conductor or high earth fault impedance faults.  

In response to a large loss of life and property in Victoria, Australia, in February 

2009, caused by bushfires that were allegedly started by high voltage power line 

faults, the Victorian government has amended  the relevant acts of parliament to 

mitigate the risks of bushfires being started by electric lines. As reported in [4], part 

of the Victorian government‟s submission to the Victorian Bushfires Royal 

Commission included a recommendation for changes to power lines and distribution 

feeders which include “current and emerging methods of fault detection and fault 

level reduction‟. Arc suppression coils improve fault detection and also reduce fault 

levels.  

1.3 Current Usage of arc suppression coils 

Although the concept of arc suppression coils is not new there is renewed interest in 

them as a result of the increased emphasis on safety and reliability together with 

some of the enhancements now possible because of the use of solid state technology. 

Arc suppression coil systems have been used in some parts of continental Europe, 

but they have had very limited use in other places. The writer has personal 

experience of an arc suppression coil installation in a 66 kV sub-transmission system 

in Queensland, Australia, being permanently taken out of service because of the 

incidence of cross-country faults. 

In Australia there is currently only one arc suppression coil installed in Victoria on a 

trial basis. It is vital that trial installations are such that all of the potential problems 

and advantages are properly understood so that the trials will be successful and full 

installations can proceed in an effective manner. 
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1.4  Aim of the research 

The aim of the research is to improve both reliability and safety of the power supply 

systems by enhancing the prospect of a wider application of the arc suppression 

coils. This involves;  

a) Developing new ways for modern automatic protection systems to be 

programmed to take the appropriate action depending on the nature of the 

fault so as to gain further benefit from the installation of arc suppression coil 

systems. 

b) Identifying various obstacles to the successful implementation of arc 

suppression coils systems and providing power system designers with 

practical tools and suggestions to design arc suppression coil systems which 

will operate successfully.  

1.4.1  Analysis of neutral voltages and appropriate responses. 

Objective 1 -  Evaluate the causes of a sudden increase in the neutral voltage in 

high voltage systems fitted with arc suppression coils and show how this 

information can be used to facilitate appropriate action by the automatic high 

voltage protection systems. 

There are several types of abnormal power system conditions which can give rise to 

a sudden increase in the power system neutral voltage. It is shown that, in general, 

the type of abnormal system condition can be identified by the magnitude and the 

phase angle of the neutral voltage. By using the criteria developed in this research, 

power system protection engineers will be able to design the automatic protection 

systems to monitor the neutral voltage and to take appropriate action immediately.  

 1.4.2  In-line single phase voltage regulators 

Objective 2 - Evaluate the likely over-voltages on high voltage distribution 

systems fitted with arc suppression coils when open delta connected single phase 

auto-transformers are used to provide in-line voltage regulation and seek an 

economic alternate method of providing in-line voltage regulation.  

One of the difficulties to be overcome when installing arc suppression coils in rural 

high voltage distribution systems is the issues which arise with in-line auto-

transformer voltage regulation. 

The use of two auto-transformers connected in open-delta to regulate the voltage in 

three phase high voltage distribution systems, as shown in Figure 1.1, has now 

become common practice because of cost savings.  
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Figure 1.1 Connection diagram of a high voltage open-delta voltage regulator. 

Open-delta voltage regulators increase the line to earth voltage in two phases only. 

Because the line to earth voltages are no longer equal in magnitude, the line to earth 

capacitance currents will no longer add to zero. Current will therefore flow through 

the earthing inductor. As the inductance of the earthing coil is cancelled by the line 

to earth capacitances, the magnitude of current will only be limited by the resistance 

in the circuit and saturation of the magnetic core of the earthing inductor. This can 

result in excessive neutral voltage displacement and corresponding over-voltages in 

one or more of the phases. Depending on the system configuration the voltages can 

be high enough to cause insulation failures.  

The older, more expensive, three phase auto-transformers cannot be used without 

impairing the effectiveness of the arc suppression coil system. Various options for 

providing in-line voltage regulation are analysed and a solution is proposed. 

1.4.3   Minimising cross-country faults caused by voltage transients 

Objective 3. - Research the causes of cross-country faults in high voltage power 

systems fitted with arc suppression coil systems and seek methods of reducing 

the incidence of them.  

Cross-country faults have previously prevented the successful implementation of arc 

suppression coil systems. When a single phase line to earth fault occurs in a power 

supply system fitted with an arc suppression coil, the insulation on the other two 

phase lines is stressed. Typical voltages before and after a single phase to earth fault 

in an 11 kV distribution system with an arc suppression coil, as simulated 

mathematically, are shown in Figure 1.2. 
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Figure 1.2 Typical line voltages before and after a single phase to earth fault on 

an 11 kV distribution system fitted with an arc suppression coil. 

If a second earth fault occurs on another phase line there are then two faults usually 

on remote parts of the system. This is a phase to phase to earth fault. The earth 

component can be neutralised by the arc suppression coil but the line to line 

component of the fault cannot be neutralised. There are then two parts of the system 

affected by faults and the situation is worse than it would have been if an arc 

suppression coil had not been installed. 

A previous installation of an arc suppression coil system in Queensland, Australia 

was permanently taken out of service because of simultaneous faults caused by the 

increased voltage on the two healthy phase lines, together with transient voltages, at 

the time of the fault. 

The characteristics of high transient voltages caused by the occurrence of line to 

earth fault in power systems with arc suppression coils are analysed. Simple 

techniques for estimating the likely maximum transient voltages are provided. A 

method of assessing the ability of the existing line insulation to withstand the high 

transient voltages is developed. A means of reducing the peak transient voltages is 

proposed. 
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1.5  Outline of dissertation 

1.5.1  Analysis of neutral voltages 

The neutral voltages which occur when a fault occurs in a power system fitted with 

an arc suppression coil are analysed in detail to find out whether the neutral voltage 

phase magnitude and phase angle can provide sufficient information for 

computerised automatic protection systems to take appropriate action depending on 

the fault type.   

1.5.2  In-line single phase voltage regulators 

The over voltages that can occur during normal operation when two single phase 

auto-transformers connected in open-delta are used in a power system fitted with an 

arc suppression coil are analysed in detail and other methods of using single phase 

auto-transformers to provide in-line voltage regulation are assessed. 

1.5.3 Minimising cross-country faults caused by voltage transients 

The high transient voltages which can occur when a fault occurs in a power system 

fitted with an arc suppression coil are analysed in detail. Methods of reducing the 

cross-country faults caused by these transient voltages are proposed. 

1.6  Summary of research outcomes 

1.6.1  Analysis of neutral voltages 

It is shown that, for power systems fitted with an arc suppression coil, the type of 

fault can be determined by monitoring the neutral voltage magnitude and phase 

angle. On the basis of this information, computerised protection systems can be 

programmed to take appropriate action automatically. A possible logic sequence for 

the automatic operation is proposed. 

1.6.2  In-line single phase voltage regulators 

It is shown that neither open-delta nor star connected auto-transformers should be 

used to provide in-line voltage regulation in a power system fitted with an arc 

suppression coil. The use of three single phase auto-transformers connected in delta 

is proposed. 
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1.6.3 Minimising cross-country faults caused by voltage transients 

Simple methods of estimating the transient over voltages are provided. A simple 

method of testing the capability of existing system components ability to withstand 

the transient over voltages is shown. Equipment to reduce the magnitude of the over-

voltages is proposed. 
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Chapter 2  LITERATURE REVIEW AND SCOPE 

The principle of arc suppression coils has been known since 1917 [5]. Improvements 

in system performance with the use of the system have been documented [3, 4].  

2.1 Usage of arc suppression coils  

Experience in the United States of America in the 1930s was that arc suppression 

coils could improve the performance of the transmission system[6].  It is reported in 

[7]  that as the transmission system grew the expense of upgrading the arc 

suppression coil systems was not warranted because more duplicate supplies were 

available. 

As set out in [8], the reasons arc suppression coils have not been more widely used 

in Continental Europe include; 

 The reliability and sensitivity of conventional protection systems is 

decreased. 

 Permanent faults are more difficult to locate. 

 There is a need for a higher level of insulation. 

 There will be more cross-country faults. 

Although arc suppression coils have had limited use there is now renewed interest.  

The availability of digital control, high voltage thyristors and other power electronic 

devices has led to the development of automatic tuning systems to ensure that the 

residual fault current is minimised [9-17].  Swedish Neutral AB have developed a 

scheme whereby a current is injected into the neutral to neutralise any remaining 

earth fault current [18]. A method of automatically determining the system 

parameters by injecting current into the transformer neutral at two different 

frequencies has been proposed [19]. Over-voltages during a fault caused by zero 

sequence line inductance in series with line capacitance has been analysed [20]. 

There have also been significant developments in methods to locate a permanent 

fault [21-30]. A method of minimising the effect transient DC offset currents have on 

the extinction of the arc has also been proposed, whereby the neutral is left unearthed 

and the arc suppression coil is then switched in at the time of the first neutral voltage 

peak after the fault [31]. This method will reduce the sensitivity of the system to high 

impedance faults. A method of identifying the system parameters by evaluating the 

records of actual system faults has been proposed [32]. The phenomenon of high 

voltages as a result of unequal capacitances to earth has been investigated [33, 34] 

and a compensation mode to reduce the voltage levels has been proposed[35]. 
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2.2 Analysis of neutral voltages 

Two common fault types which cannot easily be detected using conventional 

methods are: 

1. High impedance earth faults, and  

2. An open circuit in a conductor.  

Arc suppression coil systems can detect high impedance faults because it takes only 

a small earth current to cause a voltage to appear across the tuned arc suppression 

coil. There has been recent work on detecting and locating high impedance faults. A 

means of detecting high impedance faults in unearthed and compensated systems by 

analysing transient fault currents has been proposed [36]. A method of detecting high 

impedance faults using distance relays has also been proposed but the method 

depends on having relays at each end of the line [37].  

There has been considerable work on methods of detecting the faulty feeder when 

there is a permanent earth fault, but detecting the faulty feeder when there is an open 

circuit is not mentioned [21, 23-25, 28-30, 38, 39]. Methods of detecting these types 

of faults using the significant load currents have been investigated[40, 41]. When the 

line is part of a ring system an open circuit can be detected by comparing load 

currents as in [42]. 

The human safety aspects of speed and sensitivity in detecting and clearing earth 

faults have been analysed and are well documented [43]. 

None of the previous work provides a means of detecting the dangerous situation of 

a broken overhead conductor in a lightly loaded radial feeder with the load side end 

on the earth or a broken end not making contact with the earth.  A common 

dangerous situation is where a motor vehicle collides with a pole and a broken 

conductor end rests on the top of the vehicle but is insulated from the earth by the 

vehicle tyres. In at least one case, an open circuit with no earth fault was wrongly 

diagnosed as a permanent earth fault and resulted in considerable damage to 132 kV 

equipment before the fault was isolated [33]. 

It is shown in this dissertation that it is possible to differentiate between most of the 

various types of faults by monitoring the neutral voltage magnitude and phase angle. 

In particular, in the case of a broken conductor it is possible to detect the fault when 

there is only a small amount of load past the fault point. The amount of load required 

depends on the total system parameters. This phenomenon is fully analysed to 

determine the effectiveness of arc suppression coil systems in mitigating this risk to 

the public. Criteria are developed to determine the type of fault in many cases.  
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It is envisaged that future power system protection will be based on the widespread 

computerised control of the system or substation using methods such as that being 

implemented in The Netherlands that is described in [44-46] rather than on 

individual protection relays. These protection systems will facilitate intelligent 

decision making which may utilise the measured magnitude and phase angle of the 

neutral voltage as proposed in this dissertation.  

2.3 In-line single phase voltage regulators 

Using two single phase regulators connected in open-delta provides an economical 

means of in-line voltage regulation in high voltage distribution lines. 

Previous detailed analyses of open-delta voltage regulators provide a base for further 

work [47-49]. The phenomena of neutral voltages as a result of the use of open-delta 

connected single phase voltage regulators in power systems with arc suppression 

coils has been  recognised [50]. However none of this previous work used 

symmetrical components in the analysis. The interaction between neutral voltages 

and earth currents in complex three phase power systems can best be understood and 

evaluated by using symmetrical components. Many modern protection systems use 

zero sequence current measurements as one of the criteria for correct operation. A 

search of the published literature did not find a method of representing open-delta 

voltage regulators using symmetrical components. A model to represent open-delta 

voltage regulators using symmetrical components is developed. This model is then 

used to evaluate the over-voltages that can occur when arc suppression coil systems 

are used in conjunction with open-delta voltage regulators. Although arc suppression 

coils have been in use for many years, the widespread use of open-delta voltage 

regulators is relatively new. There does not appear to be significant experience in the 

use of both on the same distribution system. In particular, no quantitative analysis of 

the use of open-delta voltage regulators and arc suppression coils in the same high 

voltage power system has been reported. 

Methods of providing in-line voltage regulation in power systems fitted with arc 

suppression coils are analysed and a solution is proposed. 

2.4 Minimising Cross Country Faults 

 

The phenomenon of  transient voltages resulting from a single line to earth fault 

adding to the increased line to earth voltages and thus increasing the strain on the 

insulation of the other two phase lines has long been recognized [51].  
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Experience has shown that there is likely to be an increased incidence of 

simultaneous faults when arc suppression coil systems are used [52-54]. The 

transient voltages are the result of high frequency voltage and current oscillations. 

To calculate the magnitude and frequency of the voltages it is necessary to allow for 

the skin effect on the line resistance and inductance parameters. The method 

proposed by Gatous and Pissolato [55] to allow for the skin effect and the well 

known complex depth of return method as reiterated by Wang and Liu [56] are 

useful for calculating the zero sequence line parameters. The work by Marti [57] on 

modelling transients oscillations using frequency dependent parameters is the basis 

for the ElectroMagnetic Transients Program (EMTP) which is used to confirm the 

analytical calculations and to carry out more detailed studies of transient phenomena. 

EMTP is well proven commercially available software.  There has been further work 

on transient oscillations in high voltage transmission lines but no detailed analysis on 

systems fitted with arc suppression coils [58-62]. 

The transient voltages are analysed in detail and strategies to minimise cross country 

faults are proposed. 
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Chapter 3  METHODOLOGY 

In general the adopted research method is to; 

 Search the available literature for previous work that can be built on. 

 Use an analytical approach to estimate the effects. 

 Confirm the analytical results using commercially available power 

system software. 

 Propose solutions or enhancements to existing systems where 

feasible. 

 Confirm the effectiveness of the proposed solutions or enhancements 

using the analytical approach and commercially available software. 

 Build a physical model as further confirmation of the results where 

feasible. 

3.1 Analysis of neutral voltages 

Properly tuned arc suppression coil systems are very sensitive to high impedance 

earth faults. In the case of a broken conductor with the load side on the earth the 

limiting factors in detecting a fault are the earth fault impedance and the impedance 

between the healthy conductors and the faulted conductor on the load side. That 

impedance between the healthy conductors and the faulted conductor on the load 

side is determined not only by the actual load connected at the time, but also by the 

no-load impedance of the transformers connected on the load side. An analytical 

approach is utilised to determine the detection limits in terms of the transformer no 

load impedances, the load connected and the fault impedance. The calculations are 

then confirmed using the ElectroMagnetic Transients Program (EMTP) software.  

 One possible logic diagram for automatic protection operation is developed. 

3.2 In-line single phase voltage regulators 

A means of representing an open-delta regulator using symmetrical components is 

derived to analyse the neutral voltages and currents when an open-delta regulator is 

used in a system earthed through an arc suppression coil.  This representation is then 

used to calculate the resultant voltages. The results are confirmed using EMTP 

software. It is found that severe over-voltages can occur when there is no fault if 

open-delta regulators were to be used in power systems fitted with arc suppression 

coils.  
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The use of three star connected auto-transformers is investigated. It is determined 

that this is not a suitable arrangement. The arc suppression coil system would not 

operate correctly because of the lack of a zero sequence current path through the star 

connected auto-transformers arrangement.  

The use of three auto-transformers connected in a closed-delta arrangement is then 

analysed. A method of calculating the zero sequence neutral voltage introduced if the 

ratios of the auto-transformers becomes out of step is derived. The calculations are 

confirmed using EMTP software. 

3.3  Minimising cross country faults  

The transient voltages and current oscillations that result when an earth fault occurs 

are investigated using analytical methods. These calculations are confirmed using 

EMPT software and a physical model. A method of reducing the transient voltages is 

proposed. Testing of power system components is recommended. A practical test 

arrangement has been trialled in a high voltage laboratory. 
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Chapter 4  ANALYSIS OF NEUTRAL VOLTAGES 

4.1  An accurately tuned simple system 

 

To illustrate the methods of evaluating the type of system abnormality based on the 

neutral voltage a simple high voltage power system, as shown in Figure 4.1, was 

analysed. The same principles can be applied to any practical power system.  

50 km -11 kV Overhead line

Arc 

Suppression 

Coil

 

Figure 4.1 Simple single line power system. 

The system simulated comprised 50 km length of typical 11 kV overhead line 

supplied by a transformer with a star connected secondary winding. 

Although in this model a single length of line was used, the results are similar for 

any configuration of the network with various branches. The following realistic 

parameters were used for the simulations: 

The positive sequence line resistance 
LR = 0.5 Ω per km. 

The positive sequence line inductance 
LL  = 1.75 mH per km. 

The positive sequence line capacitance 
LC  = 0.00625 uF per km. 

The negative sequence line resistance 
LR  = 0.5 Ω per km. 

The negative sequence line inductance 
LL  = 1.75 mH per km. 

The negative sequence line capacitance 
LC  = 0.00625 uF per km. 

The zero sequence line resistance 0

LR  = 0.5 Ω per km. 

The zero sequence line inductance 0

LL  = 5 mH per km. 
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The zero sequence line capacitance 0

LC  = 0.00425 uF per km. 

The positive sequence source voltage 
SV   = 1 pu. 

In accordance with the principle of operation of arc suppression coil systems, the arc 

suppression coil inductance, (
CL ) is tuned to the total line to earth capacitance of the 

system as given by the equation: 

0

1

3
C

L

L
C

 


         (4.1) 

The arc suppression coil was assumed to be perfectly tuned with 2% series resistance 

losses and 2% magnetising losses as shown below in equations (4.2) and 4.3): 

The arc suppression coil resistance 0.02C CR L 
    (4.2)

 

The arc suppression coil magnetising resistance
0.02

C
CE

L
R


    (4.3) 

An infinite source was assumed, as the source impedance will have minimal effect 

on the result. In practice the inductance of the arc suppression coil is selected so as to 

allow for the zero sequence inductance of the source transformer. 

The well known arrangement of the symmetrical component network for a single 

line to earth fault is then as shown in Figure 4.2. Although the capacitances are 

distributed along the line, they are shown here as half at each end. This provides 

accurate results for short lines. 
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Figure 4.2 Symmetrical component network for the simple system with a single 

line to earth fault at the load end. 

 

To illustrate the effect of tuning of the arc suppression coil on fault currents, the 

simple system was analysed for a range of values of the arc suppression coil 

parameters and the corresponding fault current values were plotted as shown in 

Figure 4.3. 
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Figure 4.3 Fault currents for the simple system with a low impedance single line 

to earth fault and with various values of arc suppression coil parameters. 

As expected, the fault current is least when the system is perfectly tuned. The value 

of the minimum fault current depends on the fault impedance and the equivalent 

series resistance of the tuned circuit. The equivalent series resistance includes the 

losses in the arc suppression coil, the zero sequence resistance of the source 

transformer as well as the zero sequence resistance of the power line. 

To illustrate the effect of tuning of the arc suppression coil on the detection of high 

impedance faults, the simple system was analysed for a range of values of high 

impedance line to earth faults and arc suppression coil parameters. The 

corresponding neutral voltage values were plotted as shown in Figure 4.4. 

2 03 C LL C
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Figure 4.4 Neutral voltages for the simple system with various resistances of 

single line to earth faults and with various values of arc suppression coil 

parameters. 

The curves show that faults with an impedance as high as 500,000 ohm can easily be 

detected by monitoring the neutral voltage. Conventional earth fault protection is 

limited to only detecting earth faults with impedances less than about 1,000 ohm or 

so. They also show that the ability of the system to detect high impedance earth 

faults is enhanced by keeping the system accurately tuned. 

Traditionally, tuning of arc suppression coils was achieved by taps on the inductor 

winding. This made accurate tuning difficult to achieve. However, there have been 

significant developments in methods of automatically determining the system 

parameters [19] and automatic tuning systems [9-12]. These have become economic 

methods of enhancing the performance of arc suppression coil systems.   

The advantages of keeping the system accurately tuned are: 

 The reduced fault current will minimise the damage caused. 

 The reduced fault current will increase occurrence of the extinction of the 

power follow arc following a lightning flash-over.  

 More of the high impedance line to earth faults will be detected. 
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For these reasons the following analyses assume that the system is accurately tuned 

at the time of occurrence of the system abnormality.  

4.2 Causes of abnormal neutral voltages 

Three reasons for abnormal neutral voltages being generated in arc suppression coil 

systems that have been identified are: 

 A line to earth fault 

 Out of balance in the line to earth capacitance. 

  An open circuit in one phase line 

4.2.1 A line to earth fault. 

For low impedance line to earth faults the neutral voltage will be 1.0 pu. For high 

impedance line to earth faults the neutral voltage will be less than 1.0 pu. 

4.2.2 Out of balance in the line to earth capacitance. 

An out of balance in the line to earth capacitances will cause a neutral voltage 

because of the out of balance capacitive current flowing through the arc suppression 

coil. Out of balance capacitances can be caused by the placement of conductors on 

the structures, by single phase spur lines, or by some sudden system abnormality. In 

most distribution systems it would be expected that the out of balance capacitance 

would be small. In transmission lines the normal phase transposition of the 

conductors would reduce the imbalance in the line to earth capacitance. Any sudden 

change in the out of balance capacitance which does not coincide with planned 

switching could indicate a system abnormality. 

4.2.3 An open circuit in one phase line 

It is shown that when there is an open circuit in one phase with significant load 

connected on the load side of the open circuit, the neutral voltage can exceed 1.0 pu. 

The lack of immediate recognition of this type of event has led to severe over-

voltages and equipment damage [33]. 

4.3 A line to earth fault 

The system as shown in Figure 4.1 was analysed, using the symmetrical component 

network as shown in Figure 4.2, for a range of fault resistances continuously varying 

from zero to 1 MΩ, and with faults on each phase line in turn. The resulting neutral 

voltages were plotted as shown in Figure 4.5. 
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Figure 4.5 Neutral voltage for a simulated single line to earth fault varying from 

zero to 1 MΩ, and with faults on each phase line in turn. The reference phase 

angle is A to N. 

The voltages for several earth fault values were checked using the ElectroMagnetic 

Transient Program (EMTP) software and the values were almost identical. Whereas 

the analysis used to derive Figure 4.5 used symmetrical components, the EMTP 

software does not use symmetrical component analysis. 
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A typical urban zone substation 11 kV network as shown in Figure 4.6 was then 

modelled using EMTP. As evaluated in Appendix A2, the distribution transformers 

connected to the system also contribute some zero sequence capacitance. A single 

line to earth fault was simulated on various places in the network. The results 

obtained with the EMTP analysis were similar to those shown in Figure 4.5.

7 km 2 km 1 km 1 km

7 km

5 km

7 km

1 km

2 km

3 km

7 km

1 km

1km

2 km

1 km

7 km

100 MVA

11 kV Busbar

 

Figure 4.6 Urban Zone substation area 11 kV network. 

It can be seen that the neutral voltage magnitude is never greater than 1 pu and the 

phase angle is close to 60
0
, 180

0
 or -60

0
 depending on the which phase line is 

affected. This is to be expected as the tuned circuit with some losses would behave 

as a resistance. Because of the effect of the line reactance there is a small change in 

phase of the voltage for faults with significant impedance. 

4.4 A disturbance in the line to earth capacitance balance. 

As sudden system abnormalities which would cause a disturbance in the capacitance 

to earth balance would seem to be limited to events which would affect only a small 

part of the system, it is reasonable to limit the analysis to changes of up to 10%.  The 

exception is where there are star connected capacitor banks with the star point 

earthed. An out of balance in delta connected capacitor banks will change the 

positive and negative sequence currents and voltages only.  
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Using the simple system shown in Figure 4.1, a change in line to earth capacitance in 

one phase was simulated. The symmetrical component network can then be 

represented as shown in Figure 4.7, where the change in line to earth capacitance in 

one phase is represented by 0C . This is in accordance with the symmetrical 

component representation of an out of balance capacitance shown in [63]. An 

increase on the capacitance to earth in one phase would be represented by an 

increase in 0C and a decrease on the capacitance to earth in one phase would be 

represented by decrease or a negative value for 0C . Where there is a decrease in 

the capacitance to earth in two phases the effect is represented by a decrease in the 

zero sequence capacitance and an increase in 0C .  
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3LC

Positive Sequence

Negative Sequence
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0
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+
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+
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--

0
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Figure 4.7 Symmetrical component network for the simple system with an out 

of balance line to earth capacitance. 

The neutral voltage was calculated for values of 0C  varying between plus and 

minus 10% of 0

LC . The out of balance capacitance was introduced into each phase 

line in turn. The resulting neutral voltages were plotted as shown in Figure 4.8. 
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Figure 4.8 Neutral voltage for a simulated out of balance capacitance varying 

from plus 10% of 0

LC  to minus 10% of 0

LC on each phase line in turn. The 

reference phase angle is A to N. 

The voltages for several out of balance capacitance conditions were checked using 

the EMPT software and the resulting neutral voltages were almost identical to those 

shown in Figure 4.8. 

Using EMTP software the out of balance capacitances were also checked for the 

more representative urban zone substation network shown in Figure 4.6 with out of 

balance capacitances introduced at various points in the system in turn. The results 

were similar to those shown in Figure 4.8. 

 It can be seen that the neutral voltage does not have a magnitude of greater than 1 

p.u, and that the voltage does not have a phase angle of 60
0
, 180

0
 or -60

0
 for any of 

these out of balance conditions. On the basis of the phase angle we can distinguish 

between an out of balance capacitance condition and a line to earth fault.  

The circular shape of the plot can be understood by ignoring the line impedances and 

representing the arc suppression coil losses as a single resistor in parallel with the 

coil.  The symmetrical component representation then reduces to that shown in 

Figure 4.9 where 
CLR represents the arc suppression coil losses. 
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Figure 4.9 Symmetrical component network for the simple system with the line 

impedances ignored, the arc suppression coil losses represented by a single 

resistor and out of balance line to earth capacitance. 

As the admittance of the coil and that of the zero sequence capacitance add to zero, 

we have the classic case of a capacitance in series with a resistance. The voltages 

across the resistor and the capacitor will always be displaced by 90
0
. 

The plot as 0C  is varied will then be part of a circle as shown in Figure 4.10 where 

VR and VC represent the voltages across 3 CLR and 0 / 3C  respectively. 
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Figure 4.10 Neutral voltage for the simple system with the line impedances 

ignored, the arc suppression coil losses represented by a single resistor and out 

of balance capacitance varying from zero to infinity. The reference phase angle 

is A to N. 

4.5  An open circuit 

An open circuit can occur with or without a simultaneous earth fault. The fault could 

be an open circuit bridge, or it could be a broken conductor with the ends clear of the 

earth, insulated from the earth or in contact with the earth. 
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The effects of distributed generation need to be considered in many cases. Both 

single phase and three phase distributed generation installations are becoming more 

common.  

4.5.1 An open circuit in one phase with no earth fault 

The simple system as shown in Figure 4.1 was used to analyse the effect of an open 

circuit in one conductor with no earth fault. 

 Using the method given in [53], the system can be represented by  symmetrical 

components, as shown in Figure 4.11, where the subscripts “M” and “N” refer to the 

sections  of the network on the supply side and on the load side of the open circuit 

respectively. 
LdR  and 

LdR  refer the positive and negative sequence resistances 

representing a 100 kW delta connected load. 
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Figure 4.11 Sequence network for the simple system as shown in Figure 4.1 with 

an open circuit in one conductor. 
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This system was analysed for an open circuit with the proportion of the network on 

the source side of the open circuit varying continuously from 0% to 100% and on 

each phase line in turn. The resulting neutral voltages were plotted as shown in 

Figure 4.12. 

 

Figure 4.12 Neutral voltage for a simulated open circuit on each phase line in 

turn, with the proportion of the network on the load side of the open circuit 

varying continuously from 0% to 100% and with 100 kW of connected load on 

the load side. The reference phase angle is A to N. 

It can be seen that depending on the position of the open circuit the neutral voltage 

can be higher than 1 pu. The phase angle is very close to 90
0
, -150

0
 or -30

0
 

depending on which phase line is affected. 

For several values the results were confirmed with EMTP software using the both 

the simple system model of Figure 4.1, and an urban zone substation model, as 

shown in Figure 4.6. 

A clearer understanding of the issue may be gained by considering a simplified 

system with line inductances and all losses ignored. 

The sequence network then resolves to that shown in Figure 4.13. 
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Figure 4.13 Sequence network of the simple system with an open circuit in one 

conductor and with line inductances and all losses ignored. 

Let 0

CY  be the zero sequence admittance of the arc suppression coil. 

Let 0

LMY  be the zero sequence admittance of the capacitance to earth of the network 

on the source side of the open circuit. 

Let 0

LNY  be the zero sequence admittance of the capacitance to earth of the network 

on the load side of open circuit. 

If the arc suppression coil is correctly tuned to the line to earth capacitances then the 

sum of the admittances will be zero. Therefore: 

0 0 0 0C LM LNY Y Y           (4.4)  

0 0 0

C LM LNY Y Y           (4.5) 

Let I
0
 be the total zero sequence current. Then:  



28 

 

0

0 0 0

1

1 1

1 1

S

Ld

Ld

C LM LN

V
I

R

R

Y Y Y










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  

  
   

      (4.6) 

However the impedance of the zero sequence branch is given by: 

 0

0 0 0

1 1
0

C LM LN

Z
Y Y Y

  


       (4.7) 

Therefore 
LdR  can be ignored and: 

0 S

Ld

V
I

R




          (4.8) 

The zero sequence current is limited only by the impedance of the connected load 

and: 

0 0

1S
n

Ld C LM

V
V

R Y Y





 
  

 
         (4.9) 

From (4.5) and (4.9) we get:  

0

S
n

Ld LN

V
V

R Y




           (4.10) 

Equation (4.10) explains the + 90
0
 phase shift of the neutral voltage for an open 

circuit in A phase, as shown in Figure 4.12. 

4.5.2  The effect of distributed generation. 

In modern power systems, there are increasing numbers of distributed generation 

installations. Many of these use single phase inverters connected to the low voltage 

side of the delta-star distribution transformers. In the event of an open circuit in the 

high voltage network, the voltages on the load side of the two affected phase lines 

will be reduced to about half the normal values, as illustrated in Figure 4.14.   
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Figure 4.14 Delta-star connected transformer with an open circuit in one line. 

The inverters connected to the affected low voltage phase lines will shut down on 

under voltage. 

The remaining inverters will be injecting power in single phase mode between the 

two intact high voltage lines. These will not significantly affect the neutral voltage 

because the zero sequence network is not affected. In situations where there is three 

phase distributed generation, there may be a positive sequence voltage source on the 

load side of open circuit. As shown in Figure 4.15, and Figure 4.16, the isolated 

generation voltage source, IV  , will be in parallel with the load impedance, 
LdR .  
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Figure 4.15 Sequence network for the simple system with an open circuit in one 

conductor and with isolated three phase generation on the load side. 
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Figure 4.16 Sequence network for the simple system with an open circuit in one 

conductor, with line inductances and all losses ignored and with isolated three 

phase generation on the load side. 

If the distributed generation is in phase with the main source it will cause a reduction 

in the neutral voltage with no change in phase angle. Because it is likely to be 

slightly out of phase, distributed generation will cause a reduction in the magnitude 

of the neutral voltage together with a small change in phase angle. Networks with 

isolated three phase generation would need detailed analysis. 

The above conclusions for isolated generation have been proven using EMTP 

simulations with the system represented as shown in Figure 4.17. The arc 

suppression coil is represented by an ideal inductor of 15.8935 Henries, a resistor of 

24,9650 ohms to represent the energising equivalent resistance and a resistor of 

99.8619 ohms to represent the equivalent coil resistance. The three phase infinite 

source is represented by three ideal generators with the output phase angles displaced 

by 120
0
 from each other. The 50 km 11 kV overhead line with an open circuited 

conductor at the mid-point is represented by two 25 km lines with two  phases 

connected and the third connected through an open switch. The isolated generation is 

represented by three delta connected ideal generators in series with suitable 

impedances and with output phase angles to match the output of the three phase 

source. The delta connected load is represented by three resistors with values chosen 

to equate to a total load of 100 kW. 
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Figure 4.17 EMTP representation of an open circuit in one phase line and 

isolated generation. 

4.5.3  Open circuit with a line to earth fault 

To simulate a simultaneous open circuit and line to earth fault at the same location, 

such as could occur when an overhead conductor breaks and one end falls to the 

earth, the symmetrical component network, with magnetic coupling, as shown in 

Figure 4.18 can be used, where 
FMR  and 

FNR  represent the resistance of the line to 

earth faults on either side of the open circuit. This network is based on the work done 

by Mortlock on representing simultaneous faults using magnetic coupling[64]. 

The mathematical calculation of neutral voltage for this network involved solving 

eighteen simultaneous equations, with eighteen unknown quantities, using a matrix 

analysis, as set out in Appendix A1. 
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Figure 4.18 Sequence network for the simple system with an open circuit and 

simultaneous single line to earth faults at the same location and in the same 

conductor. 

This system was analysed for open circuits at three locations in turn for a range of 

fault resistances, continuously varying from zero to1 MΩ, on either side of the open 

circuit, and on each phase line in turn. The resulting neutral voltages were plotted as 

shown in Figures 4.19 and 4.20. 

For each fault condition the neutral voltage and phase angle for several fault 

impedances were checked with EMPT software using both the simple model of 

Figure 4.1 and the urban zone substation model of Figure 4.6. 
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Figure 4.19 Neutral voltage for an open circuit at three locations, and a line to 

earth fault at the same location on the load side varying from zero to 1 MΩ, and 

with faults on each phase line in turn. The reference phase angle is A to N. 
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Figure 4.20 Neutral voltage for an open circuit at three locations, and a line to 

earth fault at the same location on the source side varying from zero to 1 MΩ, 

and with faults on each phase line in turn. The reference phase angle is A to N. 
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4.6 Appropriate actions to take on detecting an abnormal neutral voltage. 

When an abnormal neutral voltage is detected there are several possible protective 

actions: 

 Bypass the arc suppression coil as shown in Figure 4.21. 

 Isolate the affected feeder 

 Isolate the whole system 

 Initiate a line patrol 

A

B

C

a

b

c

Supply transformer

Arc suppression coilSingle pole 

circuit breaker

 

Figure 4.21 Bypassing of arc suppression coil. 

In the event of a low impedance earth fault which persists, there is a possibility that 

the fault could be of a type which can be cleared by bypassing the arc suppression 

coil so as to apply normal fault current and allowing conventional protection to clear 

the fault. These fault types include such things as a snake or vermin across an 

insulator. In power systems fitted with line circuit breakers, reclosers, or 

sectionalisers, it may also be necessary to apply normal fault current to cause them to 

operate. However, there is also a possibility that the fault is through a path which 

involves a human where there are no serious consequences because of the minimal 

fault current.  
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For example consider the following hypothetical scenario: 

 A vehicle has collided with a pole and as a result a conductor, while not being 

broken, has become free from its insulator. There is now a conductive path to the 

vehicle. The situation is such that, while the bypass switch is open and the fault 

current is almost zero the voltage being applied to the vehicle is minimal. When 

the bypass switch is closed high voltage is applied to the vehicle.  

In this scenario, closing the bypass switch could cause the death or serious injury to 

an occupant or to another person trying to help.  

The dilemma, for the network operator, is to set a policy for the particular 

geographic area. The data to be considered in setting a policy may include such 

factors as history of faults, proximity to populated areas, and so on.  

A high impedance earth fault which persists could be due to a tree making contact 

with the line, an insulating component beginning to fail, or it could be due to a more 

serious event. In this case, the network operator may decide that it is appropriate to 

leave the line energised and patrol the line using visual, radio interference, thermal 

imaging, corona discharge, or other techniques. 

In the event of an open circuit combined with an earth fault in an overhead system, it 

may be concluded that a conductor has broken and fallen. An open circuited bridge 

with an earth fault would seem unlikely. In the event of an open circuit without an 

earth fault, it could be a broken bridge, a broken conductor with the ends clear of the 

earth, or the fallen end insulated from the earth by vehicle tyres or other means. This 

is a situation which could result in death or serious injury. On this basis, it may be 

decided that any open circuit should be treated as a dangerous situation and the 

relevant line disconnected from supply immediately. 

In the event of a disturbance in capacitive balance without an open circuit, the 

probable causes would appear to be limited to less likely events such as a fault in star 

connected capacitor bank. In the absence of star connected capacitor banks on the 

system, it may be decided that if there is a disturbance in the capacitive balance there 

may be a dangerous situation and the relevant line should be disconnected from the 

supply immediately. 

If there are one or more star connected capacitor banks in the system, the values of 

the neutral voltage magnitude and phase angle to be expected in the event that one of 

the capacitor bank fuses operates can be pre-calculated and programmed into the 

protection computer. In this case, the appropriate action would be to send an alarm. 
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In cases where it is decided to disconnect the line from supply, it may be possible to 

determine the location of the fault based on one of the methods recently developed 

[21-27] so that only the affected line is isolated. It is worth noting that in the unlikely 

event of a turn to earth fault within the secondary winding of the star connected 

supply transformer the neutral voltage will appear the same as for a high impedance 

line to earth fault. Although this is not a dangerous situation, it is one that should be 

rectified as quickly as possible. For an internal fault, where there is arcing or high 

temperatures in one spot, the buchholz relay should initiate a trip. The methods of 

locating a permanent fault previously mentioned may be useful in eliminating a 

feeder fault as the cause. 

4.7 Evaluation of fault and appropriate actions 

By analysing the magnitude and phase angle of the neutral voltage when a fault 

occurs, it is possible to make some determinations about the type of fault. From an 

examination of the neutral voltages for various types given in Figures 4.5, 4.8, 4.12, 

4.19 and 4.20, it can be seen that the possible faults for each voltage configuration 

are as shown in Figure 4.22. 

In Figure 4.22, it is important to note that the types of faults shown are possible 

faults. Figure 4.22 can best be understood by following the logic forward and 

backwards from each possible fault type. While in many cases the fault type can be 

determined precisely, there are some cases where it can only be narrowed down to 

two alternatives. For example, it is not possible to distinguish between a low 

impedance line to earth fault without an open circuit, and a low impedance line to 

earth fault on the source side of an open circuit. Similarly, a change in line to earth 

capacitance on one phase cannot always be distinguished from an open circuit with a 

line to earth fault. Provided the consequent actions to be taken are the same for the 

indistinguishable types of faults, then this is not a serious impediment. On the other 

hand, one can categorically state that if the neutral voltage is greater than 1 pu there 

is an open circuit. 

If it is decided to bypass the arc suppression coil in the event of a low impedance 

fault, the criteria for determining the critical value for a „low‟ impedance fault would 

take into account the sensitivity of the conventional earth fault protection. There is 

no point in bypassing the arc suppression coil for faults that cannot be detected by 

the conventional protection. Therefore, the criteria for determining the critical value 

for “close to 1 pu”, may be based on the sensitivity of the conventional earth fault 

protection.  

In this analysis, for phase angles, “close to”, means within a few degrees. For 

example, in the realistic model analysed here, the appropriate value would be within 

0
0
 to -2

0
 for phase to earth faults of up to an impedance of 100,000 Ω, and within 0

0
 

to -4.5
0
 for an open circuit. In all cases the values would need to be set when the 

actual system parameters are known. 
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Simultaneous open circuit and line to earth faults are considered to be affecting the 

same phase line. The incidence of an open circuit in one phase line and a earth fault 

in another phase line as a result of the same event would appear to be rare. 
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Figure 4.22 Possible fault types and appropriate actions deduced from the 

neutral voltage. 

Automatic whole of substation or system protection equipment, such as that 

described in [44-46], will be able to take  appropriate action immediately on the 

basis of the neutral voltage using the criteria shown in Figure 4.22. 

The actions to follow would depend on the policy adopted by the network company. 

Those shown in Figure 4.22 are based on one reasonable company policy. 

On the basis of the actions set out in Figure 4.22, the logic to take action based on 

the neutral voltages resolves to that shown in Figure 4.23. 
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Figure 4.23 Logic for taking action on the basis of the neutral voltage. 

It is envisaged that the protection control computer would display and record the 

possible types of faults as set out in Figure 4.22, but initiate actions based on the 

logic of Figure 4.23 

4.8 Summary 

By using a properly tuned arc suppression coil and monitoring the neutral voltage, it 

is possible to detect high impedance line to earth faults as well as dangerous broken 

conductor situations which cannot be detected by conventional protection systems. 
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By monitoring both the phase angle and the magnitude of the neutral voltage, it is 

possible to automatically diagnose many abnormal conditions on the power system 

to the extent that decisions can be made on the appropriate action to take.  

In at least one country, automatic computerised substation and whole of system 

protection systems are currently being installed in lieu of individual numeric relays 

[44-46].  

If the substation and/or total power system is fitted with a modern overall computer 

controlled protection system, the process of diagnosing abnormal system conditions 

and taking appropriate action can be fully automated. 
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Chapter 5  IN-LINE VOLTAGE REGULATORS 

For arc suppression coil systems to be used in high voltage distribution systems it is 

necessary for the in-line voltage regulators used to be compatible with their 

operation. If the regulators provide an alternate electrical path to earth or inhibit the 

flow of zero sequence currents along the line the arc suppression coil systems will 

not operate effectively. It is also important that the in-line voltage regulators do not 

introduce a zero sequence voltage in series with the line because this can cause very 

high voltages under normal operating conditions. In this chapter these issues are 

examined in detail and a practical method of providing in-line voltage regulation is 

proposed. It is also noted that the number of in-line voltage regulators in the system 

may be economically reduced by installing distributed static VAR compensators 

using a control scheme such as that described in [65]. 

5.1 Open-delta regulators 

The use of two auto-transformers connected in open-delta to regulate the voltage in 

three phase high voltage distribution systems has now become common practice, in 

systems with the neutral of the zone substation transformer effectively earthed, 

because of cost savings.  

A new generalized sequence network representation of a system with open-delta 

regulators has been developed. This representation provides a tool to calculate the 

voltages which may occur in proposed power systems. Previous detailed analyses of 

open-delta voltage regulators did not use symmetrical components [47-49]. 

An open-delta regulator consists of two auto-transformers connected as shown in 

Figure 5.1.  

Va

Vc

Vb

VA

VB

VC

Ib

Ia

Ic

IB

IA

IC

Primary 

Side

Secondary 

Side

Vg Vg
 

 

Figure 5.1 Open-delta regulator connections. 



42 

 

Two auto-transformers can conveniently be mounted on a single pole as shown in 

Figure 5.2 

 

Figure 5.2 Pole mounted open-delta regulator. 

The phasor diagram for open-delta regulators can be represented as shown in Figure 

5.3.  
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Vb
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Figure 5.3 Voltage phasor diagram for an open-delta regulator. 

Let the transformation ratio be P such that:  

BA baV PV           (5.1) 

and:  

CA caV PV          (5.2) 

For ideal open-delta connected auto-transformers the voltage and current 

relationships can be expressed as follows; 

Ag agV V          (5.3) 

( 1)Bg bg baV V P V                  (5.4) 

( 1)Cg cg caV V P V                  (5.5) 

b BI PI          (5.6) 
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c CI PI          (5.7) 

( 1) ( 1)a A B CI I P I P I            (5.8) 

5.1.1  Modelling of open-delta regulators using symmetrical components 

To analyse the neutral voltages and currents in circuits containing open-delta 

regulators it is appropriate to use symmetrical components. 

Let 
SV  ,

SV   and 0

SV  be the positive, negative and zero sequence secondary voltages 

respectively. 

Let 
PV  ,

PV   and 0

PV  be the positive, negative and zero sequence primary voltages 

respectively. 

Let 
SI  ,

SI   and 0

SI  be the positive, negative and zero sequence secondary currents 

respectively. 

Let 
PI  ,

PI   and 0

PI  be the positive, negative and zero sequence primary currents 

respectively. 

By definition: 

0

2

2

1 1 1
1

1 .
3

1
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S Bg

S Cg

V V

V a a V

V a a V





    
    

    
    
    

           (5.9) 

From (5.3), (5.4), (5.5) and (5.9) we get: 

0

2 2

2 2

1 1 1 1 1 1 0
1 1

1 . 1 .
3 3

1 1
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S bg ba

S cg ca

V V
P

V a a V a a V

V a a V a a V





        
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         
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0
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1 1 1 0
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V
P
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
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      
    
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               (5.10) 

 0 0 1

3
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P
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
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 0 1

3
P bg ag cg ag

P
V V V V V


                   (5.11) 

However: 

0

2

2

1 1 1

1 .

1

ag S

bg S

cg S

V V

V a a V

V a a V





    
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     
    
    

         (5.12) 

Therefore from (5.11) and (5.12) we have:  

       0 0 2 21 1
1 1 1 1

3 3
S P S S S S

P P
V V a V a V a V a V    

           
   

 

 0 ( 1)P S SV P V V            (5.13) 

From (5.10) we get: 
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3
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P
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 1P PV P V   
PPV         (5.14) 

Similarly, from (5.10) we get: 
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 1P PV P V   
PPV         (5.15) 

From (5.8) we get: 

(1 )( )a A B CI I P I I     

( )A B C B CI I I P I I      

0(3 )A B C S AI I I P I I      

03 (1 )A SPI I P    

0 1
3A S

P
P I I

P

  
    

  
       (5.16) 

By definition: 
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               (5.17) 

From (5.6), (5.7), (5.16) and (5.17) we get: 
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  (5.18) 
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SI        (5.19) 
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From (5.18) we get: 

 2 0 1

3
P A B C S

P P
I I aI a I PI

P

  
     

 
 

0(1 )S SPI I P                     (5.20) 

From (5.18) we get: 

 2 0 1

3
P A B C S

P P
I I a I aI PI

P

  
     

 
 

0(1 )S SPI I P                      (5.21) 

All of the sequence equations (5.13), (5.14), (5.15), (5.19), (5.20) and (5.21) are 

satisfied by the symmetrical component model with magnetic coupling as shown in 

Figure 5.4. It is interesting to compare this symmetrical representation with the 

phasor diagram in Figure 5.3. As expected, the positive sequence voltage is 

increased by the auto-transformer ratio. A negative sequence voltage would be 

similarly increased. It can be seen from both Figure 5.3 and Figure 5.4 that the zero 

sequence voltage induced is relative to both the magnitude of the positive sequence 

voltage and the auto-transformer ratio. As would be expected from the fact that there 

is no neutral connection, the primary and secondary zero sequence currents are 

equal. 
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Figure 5.4 Symmetrical component representation of an open-delta regulator. 

5.1.2 Analysis of a simple system with open delta regulators  

Consider the simple 11 kV overhead system shown in Figure 5.5. A single length of 

line is supplied by the star winding of a transformer. The transformer neutral is 

earthed through an inductor tuned to the total system line to earth capacitance. An 

open-delta regulator with a 10% boost is installed mid way along the line. The line is 

simplified to show the distributed line to earth capacitances as combined into lumped 

capacitances at the ends of each line segment.  
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Figure 5.5 Simple 11 kV System showing zero sequence and earthing 

components. 

The arc suppression coil is tuned to the system capacitance to earth such that: 

0

1
3

L

CL
C

 


            (5.22) 

where LC represents the total of the arc suppression coil and the supply transformer 

zero sequence inductances. 

The zero sequence symmetrical components can be used to analyse the over-voltages 

as shown in Figure 5.6. The effect of the open-delta regulator is to increase the 

positive sequence voltage and also to introduce a zero sequence voltage change. 
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Figure 5.6 Symmetrical component representation of a simple system with an 

open-delta voltage regulator. 

To evaluate the over-voltages the transformers were eliminated by referring all 

impedances and the supply voltage to the zero sequence network side of the 

transformers as shown in Figure 5.7. Also, the source impedances have been ignored 

in this exercise because they are insignificant when referred to the zero sequence 

network. 
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Figure 5.7 Sequence network representation of the simple system with an open-

delta regulator referred to the zero sequence side. 

The following realistic parameter values were assumed; 

Voltage regulator boost ratio P = 1.1 

Line positive, negative and zero sequence resistance values;  



52 

 

LR , 
LR  and 0

LR  = 20 Ω 

Line positive and negative reactance values,
LL  and 

LL
 = 70 mH 

Line positive and negative capacitance values, 
LC  and 

LC
 = 0.25 µF 

Line zero sequence inductance, 0

LL  = 200 mH 

Line zero sequence capacitance, 0

LC = 0.17 µF 

Positive sequence source voltage, 
SV   = 6,350 V 

Arc suppression coil resistance, RC = 20 Ω 

From (5.22) the arc suppression coil inductance, LC = 19.8669 H 

Using these values, an analysis of the sequence network, as shown in Figure 5.7, 

gives a zero sequence voltage and thus a neutral voltage at the source transformer of 

86 kV. The three phase system with distributed line capacitances was then analysed 

using the EMTP software as shown in Figure 5.8.and the corresponding voltage 

obtained was within 1.4% of this value, thus confirming the sequence analysis and 

calculation.  

 

Figure 5.8 EMTP Representation of the simple system with an open-delta 

voltage regulator. 
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A clearer understanding of the issue may be gained by considering a theoretical 

simple system which has negligible source and line inductances and no losses. The 

sequence network then resolves to that shown in Figure 5.9. 

CL1

VS(P-1)

3LC
CL2

+

0 0

 

Figure 5.9 Sequence Network for the simple system with line inductances and 

all losses ignored.  

Let YL be the zero sequence admittance of the arc suppression coil. 

Let YC1 be the zero sequence admittance of the capacitance to earth of the line on the 

source side of the open-delta regulator. 

Let YC2 be the zero sequence admittance of the capacitance to earth of the line on the 

load side of the open-delta regulator. 

If the arc suppression coil is correctly tuned to the line to earth capacitances then the 

sum of the admittances will be zero. Therefore: 

1 2 0L C CY Y Y                   (5.23) 

1 2L C CY Y Y                           (5.24) 

Let I
0
 be the total zero sequence current. Then: 

0

1 2

( 1)

1 1
S

L C C

V P
I

Y Y Y

 





                  (5.25) 

From (5.24) and (5.25) we get: 

0

2 2

( 1)

1 1
S

C C

V P
I

Y Y

 
  




                 (5.26) 

The zero sequence current can be very large regardless of the position of the open-

delta regulator in the high voltage line, provided there is significant line to earth 

capacitance on the load side. 



54 

 

If the system is slightly detuned and/or a saturable magnetic core is used for the 

earthing inductor the voltages will be much lower but can still reach dangerous 

values. However detuning the inductor reduces the sensitivity to high impedance 

earth faults. 

Using EMTP software as shown in Figure 5.10, an earthing inductor was simulated 

having a saturable magnetic core and an air gap, a magnetizing resistance of 50 pu 

and a winding resistance 0.02 pu. The magnetising characteristic for the saturable 

core is shown in Figure 5.11. Although not apparent in the scale used, there is a 

small magnetising current up to the point of saturation of the core at about 39 

Webers.  

 

Figure 5.10 EMTP Representation of the simple system with an open-delta 

voltage regulator and a saturable magnetic cored suppression coil. 
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Figure 5.11 Magnetizing curve of the earthing inductor. 

For the simple system the resulting neutral voltage as calculated by the EMTP 

software was 7.66 kV. The phase voltages were as shown in Figure 5.12. The 

maximum phase to earth voltage was 14.2 kV. This is in excess of the rated 

insulation level of a typical 11 kV system. 
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Figure 5.12 Phase voltages for the simple system with a practical, saturable 

earthing inductor and a voltage regulator ratio of 1.1. 

An arc suppression coil and open-delta voltage regulators should not be installed in 

the same power system because of the dangerous voltages that can occur under 

normal operating conditions.  

5.2  Three star connected auto-transformers 

Let us consider the use of three star connected auto-transformers. Whereas two auto-

transformers are commonly mounted on a single pole as shown in Figure 5.13, three 

auto-transformers can also be mounted on a single pole as shown in Figure 5.14. 
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Auto

Transformer

Auto

Transformer

 

Figure 5.13 Two auto-transformers mounted on a single pole 
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Figure 5.14 Three auto-transformers mounted on a single pole. 

There are various methods of connecting the three auto-transformers. 

 

5.2.1  Three star connected single phase auto-transformers with the star 
point earthed 

Let us consider the use of three single phase auto-transformers connected in star with 

the star point earthed as shown in Figure 5.15. 
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Figure 5.15 Three star connected auto-transformer with the star point earthed 

voltage regulator connections. 

The zero sequence representation of this arrangement, with all three of the auto-

transformer ratios equal to P, is as shown in Figure 5.16. 

0

P

1

 

Figure 5.16 Zero sequence representation of a three star connected auto-

transformers with the star point earthed 

 

The use a three star connected auto-transformer with the star point earthed would 

mean that the admittance value of the line to earth capacitances as reflected on the 

other side of the auto-transformers would change by the auto-transformer ratio 

squared. To keep the system accurately tuned it would be necessary to adjust the arc 

suppression coil system inductance as the auto- transformer ratios changed. The 

auto-transformers would also need to be designed so that the energising current is 

not excessive when the line to line to voltage is applied during a line to earth fault. 
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5.2.2 Three star connected single phase auto-transformers with the star 
point unearthed 

Let us consider the use of three single phase auto-transformers connected in star with 

the star point unearthed as shown in Figure 5.17. 
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Figure 5.17 Three star connected auto-transformers with the star point 

unearthed voltage regulator connections. 

Let the transformation ratios be
aP , 

bP and
cP  such that: 

AS a aSV PV          (5.27) 

BS b bSV PV           (5.28) 

CS c cSV PV           (5.29) 

      

Let
aI , 

bI  and 
cI be the respective primary line currents. 

Let
AI , 

BI  and 
CI be the respective secondary line currents. 

For ideal transformers the current relationships can be expressed as follows: 
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a a AI P I                                          (5.30) 

b b BI P I                                           (5.31) 

c c CI P I                                           (5.32) 

Summing the currents at the star point gives; 

0 ( 1) ( 1) ( 1)a A b B c CP I P I P I                       (5.33) 

Let us consider the case where:  

a b cP P P P    

Then from (7) we get: 

0 ( )( 1)A B CI I I P                               (5.34) 

But: 

 0 1

3
S A B CI I I I           (5.35) 

where 0
SI  is the zero sequence current on the load side of the in-line regulator. 

Therefore from (5.34) and (5.35) we have: 

00 3 ( 1)SI P           (5.36) 

Therefore the zero sequence representation of three star connected auto-transformers 

with identical ratios (p), and the star point unearthed is as shown in Figure 5.18. 
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Figure 5.18 Zero sequence representation of a three star connected auto-

transformers with the star point unearthed. 

When a regulator is used in an arc suppression coil system it is important, for 

optimum arc extinction, that the configuration does not present any significant 

impedance to the zero sequence currents flowing along the line. Equation (5.36) and 

Figure 5.18 show that if the ratios of the three auto-transformers are identical and not 

equal to unity there can be no zero sequence current through this star connected auto-

transformer arrangement. Therefore the star connected auto-transformer 

configuration as shown in Figure 5.17 should not be used in arc suppression coil 

power systems. 

It is noted that unless a three phase star connected and unearthed auto-transformer 

also had a delta connected tertiary winding it would similarly hinder the optimum 

operation of the arc suppression coil system because of the zero sequence 

impedance. A three phase voltage regulator of the capacity usually needed entails the 

establishment of a earth type substation. This is considerably more expensive than 

single phase auto-transformers mounted on a single pole. 

5.3  Three delta connected single phase auto-transformers. 

An alternative method of using three auto-transformers mounted on a single pole is 

to connect them in a closed-delta arrangement as shown in Figure 5.19.  
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Figure 5.19 Three delta connected auto-transformers voltage regulator 

connections 

5.3.1 Modelling of three delta connected auto-transformers using symmetrical 

components. 

The phasor diagram for normal operation of a three delta connected auto-transformer 

voltage regulator is as shown in Figure 5.20. 
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Figure 5.20 Phasor diagram for the normal operation of a three delta connected 

auto-transformer voltage regulator. 

Let the transformation ratios be Pa, Pb and Pc such that: 

Ab a abV PV          (5.37) 

Bc b bcV PV          (5.38) 

Ca c caV PV          (5.39) 

The for ideal transformers current relationships are then as shown in Figure 5.21 
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Figure 5.21. Currents in a three delta connected auto-transformer voltage 

regulator. 

Then the current relationships can be expressed as follows: 

( 1)a a A c CI P I P I                               (5.40) 

( 1)b b B a AI P I P I                  (5.41) 

( 1)c c C b BI P I P I                              (5.42) 

To analyse the neutral voltages and currents it is appropriate to use symmetrical 

components. 

Let 0

PI  and 0

SI be the primary and secondary zero sequence currents respectively. 

By definition: 

 0 1

3
P a b cI I I I                                  (5.43) 

From (5.40), (5.41), (5.42) and (5.43) we get: 

 0 1
( 1) ( 1) ( 1)

3
P a A c C b B a A c C b BI P I P I P I P I P I P I          
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 
1

3
A B CI I I    

0

SI                  (5.44) 

This relationship is further illustrated in Figure 5.22. By inspection it can be seen 

that the sum of the primary currents is equal to three times the secondary zero 

sequence current. 
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Figure 5.22. Zero sequence currents in a three delta connected auto-

transformer voltage regulator. 

 

Let PI   and SI  be the primary and secondary positive sequence currents respectively. 

By definition: 

 21

3
P a b cI I aI a I                             (5.45) 

From (5.40), (5.41), (5.42) and (5.45) we get: 
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   21

3
P a A c C C b B a A A c C b B BI P I P I I a P I P I I a P I P I I          

 
      (5.46) 

Let us consider the case where b c bcP P P    

Then from (5.46) we get: 

2 2 21

3
P a A bc C C bc B a A A bc C bc B BI P I P I I aP I aP I aI a P I a P I a I          

 
 

      2 21
1 (1 )

3
bc A bc B bc C A a bc A B Ca P I aP I a P I a I P P a I aI a I          

 
    (5.47) 

But: 

 21

3
S A B BI I aI a I                    (5.48) 

and: 

0
AI I I I                                   (5.49) 

From (5.47), (5.48) and (5.49) we get: 

    01
( 1)

3
P S bc bc S S S a bc

a
I I P a P I I I P P   

            (5.50) 

Similarly where PI   and SI  be the primary and secondary negative sequence currents 

respectively:  

    
2

2 01
( 1)

3
P S bc bc S S S a bc

a
I I P a P I I I P P   

       
 

    (5.51) 

Equation (5.44) and Figure 5.22 show that under all auto-transformer ratio 

conditions, there is a zero sequence current path through the in-line voltage 

regulator. These equations also show that, if the auto-transformer ratios are not equal 

the zero sequence current on the secondary side will cause some positive and 

negative sequence currents to flow in the primary side of the voltage regulator. 

Provided there is no significant impediment to the primary positive and negative 

sequence currents, there will not be any significant impedance to the flow of zero 

sequence currents through the voltage regulator when the auto-transformer ratios are 

not identical. This means that, even if the ratios are not identical at the time of a line 

to earth fault on the system, this in-line voltage regulation arrangement will not 

impede the proper operation of the arc suppression coil. 
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Based on Figures 5.19 and 5.20 for ideal transformers, the voltage relationships can 

be expressed as follows: 

( 1)Ag ag ab aV V V P           (5.52) 

( 1)Bg bg bc bV V V P           (5.53) 

( 1)Cg cg ca cV V V P           (5.54) 

From (5.52) we get: 

( )( 1)Ag ag ag bg aV V V V P          

( 1)Ag ag a bg aV V P V P          (5.55) 

From (5.53) we get: 

( )( 1)Bg bg bg cg bV V V V P     

( 1)Bg bg b cg bV V P V P          (5.56) 

From (5.54) we get: 

( )( 1)Cg cg cg ag cV V V V P     

( 1)Cg cg c ag cV V P V P          (5.57) 

Let 
PV  ,

PV   and 0

PV  be the positive, negative and zero sequence primary voltages 

respectively. 

Let 
SV  ,

SV   and 0

SV  be the positive, negative and zero sequence secondary voltages 

respectively. 

By definition: 

 0 1

3
S Ag Bg CgV V V V          (5.58) 

Then from (5.55), (5.56), (5.57) and (5.58) we get: 
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0 1
( 1) ( 1) ( 1)

3
S ag a bg a bg b cg b cg c ag cV V P V P V P V P V P V P            

 
1

3

1
( ) ( ) ( )

3

ag bg cg

ag a c bg bg b a cg c b

V V V

V P P V V P P V P P

  

        
          

(5.59) 

However: 

 0 1

3
P ag bg cgV V V V          (5.60) 

Then from (5.59) and (5.60) we get: 

0 0 1
( ) ( ) ( )

3
S P ag a c bg b a cg c bV V V P P V P P V P P            (5.61) 

Let us consider the case where Pa=Pc=Pac     

Then from (5.61) we get:        

 0 0

3

ac b
S P cg bg

P P
V V V V


          (5.62) 

However: 

0

2

2

1 1 1

1 .

1

ag P

bg P

cg P

V V

V a a V

V a a V





    
    

     
    
    

       (5.63) 

Therefore from (5.62) and (5.63) we have:  

0 0 2 2( ) ( )
3

ac b
S P P P

P P
V V a a V a a V 

           

 0

3

b ac
P P P

P P
V j V V 

          (5.64) 

Equation (5.64) is illustrated in Figure 5.23. 
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Figure 5.23 Phasor diagram for a three delta connected auto-transformer 

voltage regulator with Pb greater than Pa and Pc. 

 21

3
S Ag Bg CgV V aV a V           (5.65) 

Then from (5.55), (5.56), (5.57) and (5.65) we get:  

2 21
( 1) ( 1) ( 1)

3
S ag a bg a bg b cg b cg c ag cV V P V P aV P aV P a V P a V P             (5.66) 

Let us consider the case where Pa=Pb=Pc=P   

Then from (5.66) we get:    

     2 2 21
1

3
S ag bg cg ag bg cgV P V aV a V P a V aV a V        

 
  (5.67) 

But: 

 21

3
P ag bg cgV V aV a V           (5.68) 

Therefore from (5.67) and (5.68) we have: 
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2 ( 1)S PV V P a P        

  21 1 1PV a P     
 

       (5.69) 

  
But by definition: 

2 30.5
2

a j                 (5.70) 

Therefore from (5.69) and (5.70) we have: 

 31 1.5 1
2S PV V j P    

       
        (5.71) 

Therefore: 

     
2 2

1 3 1 2.25 1 0.75 1S PV V P P P       
    

 

   
2

1 3 1 3 1PV P P            (5.72) 

An evaluation of equation (5.72) shows that the voltage boost provided by three delta 

auto- transformers provides approximately 1.5 times the voltage boost of each of the 

individual auto-transformers. This is further illustrated in Figure 5.24 and 5.25. 

These calculations were checked by using the EMTP software. 
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Figure 5.24 Positive sequence voltage ratio provided by three delta connected 

auto-transformers. 

 

 

Figure 5.25 Positive sequence voltage boost provided by three delta connected 

auto-transformers as a ratio of the voltage boost of each individual auto-

transformer. 
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5.3.2 Analysis of a simple system with delta connected auto-transformers 

Let us consider a simple system consisting of a single radial high voltage distribution 

line supplied by a delta-star transformer with the star point earthed through a tuned 

arc suppression line and a three auto-transformer voltage regulator situated M  km 

from the source and N km before the end of  the length of the line as shown in Figure 

5.26.  
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Figure 5.26 Three delta connected auto-transformers in a simple 11 kV system 

showing zero sequence and earthing components. 

The arc suppression coil is tuned to the system capacitance to earth such that: 

 0 0

1
3 C

LM LN

L
C C

 


       (5.73)  

If Pa, Pb and Pc are not equal the line to earth voltages are no longer equal in 

magnitude the line to earth capacitive currents will no longer add to zero. Current 

will therefore flow through the earthing inductor. As the inductance of the earthing 

coil is cancelled by the line to earth capacitances the magnitude of current will only 

be limited by the resistance in the circuit and saturation of the magnetic core of the 

earthing inductor. This can result in neutral voltage displacement and corresponding 

over-voltages in one or more of the phases. Depending on the system configuration 

the voltages can be high enough to cause insulation failures. 
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The zero sequence symmetrical components can be used to analyse the over-

voltages. The effect of the three delta connected auto-transformers is to increase the 

positive sequence voltage. If the three auto-transformer ratios are not identical they 

will introduce a zero sequence voltage change. As the positive and negative 

sequence impedances have negligible effect they have been ignored in this analysis. 

In accordance with equations 5.44 and 5.64 the zero sequence network then resolves 

to that shown in Figure 5.27. 
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Figure 5.27 Zero sequence network of the simple system. 

The following parameter values were assumed. 

Voltage regulator ratios;  

Pa = Pc = Pac=1.1 

Pb – Pac = 0.0125 

This corresponds with a single tap position for many voltage regulators.  

Line M zero sequence resistance values; 0 10LMR   Ω  

Line N zero sequence resistance values; 0 15LNR   Ω  

Line M zero sequence inductance, 0 100LML  mH 

Line M zero sequence inductance, 0 150LNL  mH 

Line M zero sequence capacitance, 0 0.085LMC   µF 
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Line N zero sequence capacitance, 0 0.1275LNC   µF 

From (5.18) the arc suppression coil inductance 15.8935CL  H 

The arc suppression coil was assumed to have 2% series resistance and 2% 

magnetising resistance as follows:       

Arc suppression coil resistance 0.02C CR L   

Arc suppression coil magnetising resistance
0.02

C
CE

L
R


   

From (5.64): 

0 0 0.00722 pu
3

ac b
S P P

P P
V V j V j

     

Analysis of the zero sequence network gives 0

CV , the neutral voltage at the source 

transformer, as 0.107 pu. or 679 volts in an 11 kV system. For a 10 % variation in 

tap setting the neutral voltage becomes 0.856 pu. or 5,436 volts in an 11 kV system. 

The three phase system was then analysed using the EMTP software as shown in 

Figure 5.28 and the corresponding neutral voltages were almost identical to those 

calculated from the above zero sequence calculations, thus confirming the sequence 

analysis and calculation. 
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Figure 5.28 EMTP representation of three single phase delta connected auto-

transformers in the simple system. 

If the system is slightly detuned and/or a saturable magnetic core is used for the 

earthing inductor the voltages will be lower but can still reach significant values. 

However detuning the inductor increases the fault current and reduces the sensitivity 

to high impedance earth faults. 

For a three delta connected auto-transformer type voltage regulator with one of the 

transformers out of voltage ratio and a perfectly tuned arc suppression coil system 

the phase angle of the neutral voltage will depend on which of the transformers is out 

of ratio and whether the ratio is high or low.  

This system, as shown in Figure 5.5, was then analysed, with each auto-transformer 

in turn out of ratio by plus 10%, and the proportion of the network on the load side 

of the regulator continuously varying from 0% to 100%. The resulting neutral 

voltages were plotted as shown in Figure 5.29. 
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Figure 5.29 Neutral voltage, for each auto-transformer in turn out of ratio by 

plus 10 %, and the portion of the network on the load side of the regulator 

varying continuously from 0 % to 100 %.  

The neutral voltage displacement shown in Figure 5.29 is close to that shown in 

Figure 4.5 for a single line to earth fault. The type of fault can be distinguished, to 

some extent, by the magnitude of the neutral voltage. In the case of a low impedance 

line single line to earth fault, the neutral voltage will be close to 1 pu. In the case of 

an auto-transformer being out of step, the neutral voltage will increase gradually as 

the tap changing mechanism operates. The increased voltage will therefore be 

detected well before it reaches 1 pu. However, it may not be possible to distinguish 

between a developing high impedance single line to earth fault and an out of step 

auto-transformer on the basis of the neutral voltage magnitude and phase angle 

alone. The solution is to arrange for an alarm to be sent from each in-line voltage 

regulator when an out of step condition arises. This can conveniently be transmitted 

by means of a radio link, a simple radio transmitter, or by an alarm sent over the 

mobile phone network. 

The logic diagrams for the substation protection system as shown in Figure 4.22 and 

Figure 4.23 would then be modified to those shown in Figure 5.30 and Figure 5.31 

respectively. 
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Figure 5.30 Possible fault types and appropriate actions deduced from the 

neutral voltage and in-line voltage regulator alarms. 
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Figure 5.31 Logic for taking action on the basis of the neutral voltage and in-

line voltage regulator alarms. 

5.4  Static VAR compensation 

The voltage level along the high voltage distribution may also be boosted by the use 

of static VAR compensation. When capacitors are connected between the lines the 

capacitive current flowing through the inductive lines causes an increase in the 

voltage at the location of the capacitors. The usual method of connecting these 

capacitors is on the low voltage side of a delta-star step down transformer. They will 

therefore not provide a zero sequence path to earth and will not reduce the 

effectiveness of the arc suppression coil system. Several small installations of static 

VAR compensators may provide an economic means of voltage regulation along the 

lines and so reduce the number of in-line voltage regulators needed. It has been 

shown in [65] that several of these units can successfully regulate the voltage. The 

overall arrangement of in-line regulators and static VAR compensators will need to 

be determined on a case by case basis. 
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5.5 Summary 

Open-delta voltage regulators are now widely used to provide in-line voltage 

regulation for rural high voltage distribution feeders instead of the more expensive 

ground type three phase auto-transformers.  

5.5.1  Results from modelling of open-delta voltage regulators 

A method of representing open-delta voltage regulators by symmetrical components 

has been developed. 

If arc suppression coils are used on power systems which also incorporate open-delta 

voltage regulators, dangerous voltages can occur under normal system conditions.  

Although the level of the over-voltages is reduced by the use of earthing inductors 

having a saturable magnetic core, voltages in excess of the rated insulation levels 

will still occur. Therefore open-delta voltage regulators should not be used in power 

systems fitted with arc suppression coils. 

5.5.2 Results from modelling of three star connected auto-transformers. 

It has been shown that when star connected auto-transformers are used to provide in-

line voltage regulation and the star point is not earthed there is no zero sequence 

conductivity through the arrangement apart from the transformer energising currents. 

For optimum operation of arc suppression coil systems it is necessary for there to be 

relatively high zero sequence conductivity along all of the lines. If the star point is 

earthed, the optimum tuning inductance of the arc suppression coil will change every 

time the auto-transformer ratios change. Therefore it is not appropriate to use star 

connected auto-transformers to providing in-line voltage regulation in arc 

suppression coil equipped power systems. 

5.5.3 Results from modelling of three delta connected auto-transformers. 

Three single phase delta connected auto-transformers can be used satisfactorily to 

provide three phase in-line voltage regulation in power systems with arc suppression 

coils provided arrangements are made to keep the auto-transformer ratios in step. An 

out of step ratio of about 1.25% for short periods, such is as normal during tap 

changes, will cause only a small neutral voltage which is acceptable. If, for any 

reason, the auto-transformer ratio difference becomes large the resulting voltages 

may not be acceptable. If a line to earth fault occurs at a time when the auto-

transformer ratios are out of step, the zero sequence currents will still flow through 

the in-line voltage regulator allowing the arc suppression coil system to operate 

correctly. 
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The neutral voltage resulting from an out of step auto-transformer may be similar to 

that from a high impedance line to earth fault. By utilising an alarm from the in-line 

voltage regulator, it is possible to take the correct action automatically if either a 

high impedance line earth fault or an out of step condition exists. 

The voltage boost provided by three delta auto- transformers provides approximately 

1.5 times the voltage boost of each of the individual auto-transformers. This can be 

understood by examination of Figure 5.20 or equation (5.72). 

5.5.4  Results for static VAR compensation 

Distributed static VAR compensators may also be used to provide in-line voltage 

regulation. The overall arrangement of static VAR compensators and in-line voltage 

regulators needs to be decided on a case by case basis.  

5.5.5  Summary of results for in-line voltage regulators 

For the successful operation of arc suppression coil systems, in-line voltage 

regulators need to meet two essential criteria: 

1. Under normal conditions they must not introduce a zero sequence voltage. 

2. They must not impede the flow of zero sequence current. 

Table 5.1 summarises three methods of providing in-line voltage regulation in terms 

of these criteria. 
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Table 5.1 Summary of in-line voltage regulator connections in terms of criteria 

for successful arc suppression coil operation 

 

 Two Open Delta 

Connected Auto- 

Transformers 

Three Star 

Connected Auto- 

Transformers 
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Transformers 

 
A

B
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a

b
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0

0
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1

S

Pc
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Ia

Ib

Ic
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A

B

C

a

b

c

0

0

0

Pa

1

1

1

S

Pb

Pc

g

Ia

Ib

Ic

IA

IB
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A

B

C

a

b

c

0

0

0

Pa

1

1

1

Pb

Pc

g

Ia

Ib

Ic

IA

IB
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Causes high 

neutral voltages 

during normal 

operation 

 

YES 

 

NO 

Only if the auto-

transformer ratios 

are not close to 

identical 

Inhibits the flow 

of zero sequence 

currents 

 

NO 

 

YES 

 

NO 

 

It can be seen that the delta connected auto-transformer arrangement meets the above 

criteria. 

Although three star connected auto-transformers can be used, the arc suppression 

coil ideal tuning inductance value would change depending on the ratios of the auto-

transformers and they would still need to withstand the full line to line voltage 

during a line to earth fault. They have no advantage over the use of the three delta 

connected auto-transformers. 

Distributed static VAR compensation can also be used to maintain voltage along the 

high voltage radial line. 
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Chapter 6         MINIMISING CROSS COUNTRY FAULTS 

When a line to earth fault occurs in a high voltage power system with an arc 

suppression coil there is an increase in the voltages to earth of the two healthy phase 

lines. The fault event can be associated with a step voltage injection triggered by the 

fault occurrence that excites the various propagation modes of the multi-conductor 

lines comprising the network and results in a complex high frequency 

electromagnetic transient. The wave shape of the transient depends on the input 

impedances of components connected to the line terminations. Depending on the 

timing of the fault, the addition of the transient voltages to the displaced voltages of 

the healthy phase lines can cause over-voltages that will, in some cases, cause 

insulation failure on the otherwise healthy phase lines [51-54]. There are then two 

phase to earth faults often on remote parts of the system. The arc suppression system 

cannot compensate for either of these faults. These cross country faults can cause 

disconnection of two separate lines. The phenomenon of these transient voltages 

adding to the displaced voltage and thus increasing the strain on the insulation of the 

healthy phases has long been recognized [51]. Experience has shown that there is 

likely to be an increased incidence of simultaneous faults when arc suppression coil 

systems are used [52-54]. The writer has personal experience of an arc suppression 

coil system in a 66 kV sub-transmission system in Queensland, Australia being 

permanently taken out of service because of the incidence of cross country faults.  

This history has contributed to reluctance by electricity supply authorities to install 

arc suppression coil systems in Australia. 

Existing systems that have been operated with effectively earthed neutrals for many 

years will have components which, while they can safely withstand the normal line 

to earth voltage, will not withstand the over-voltages at the time of a line to earth 

fault when the system is not effectively earthed. In Australia, and in many other 

countries, transmission and distribution systems are effectively earthed. There is 

renewed interest in arc suppression coil systems due to increasing public pressure to 

improve the safety and continuity of supply and because of recent developments in 

the arc extinguishing properties of modern systems. If proper account is not taken of 

the transient over-voltages either trial installations will be a failure and all work will 

stop or trial installations will not proceed because of the uncertainties surrounding 

the incidence of cross country faults.  

The likely magnitudes of these over-voltages are analysed in detail and the 

implications for existing power systems discussed. Simple methods for estimating 

the approximate magnitudes, frequency and durations of the transient voltages are 

given.  

 A method of replicating the transient over-voltages in a high voltage test facility is 

suggested and a new method of controlling these over-voltages is proposed. Testing 

of power system components and control of transient over-voltages are discussed as 

complementary strategies to minimise cross country faults.  
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6.1 A radial line without any branches 

 

Consider the simple system shown in Figure 6.1  

L Rf

L line

L line

L line

R line

R line

R line

Source

C0 /2 C0 /2 C0 /2 C0 /2 C0 /2 C0 /2 

Fault 

switch

 

Figure 6.1 Simple 11 kV System showing zero sequence and earthing 

components. 

A single length of line is supplied by the star winding of a transformer. The 

transformer neutral is earthed through an inductor tuned to the total system line to 

earth capacitance. As an aid to the understanding of the transient phenomena the line 

is simplified to show the distributed line to earth capacitances as combined into 

lumped capacitances at each end of the line. The practical distributed capacitance 

case is analysed later. Consider an earth fault near the transformer with a fault 

resistance of Rf. 

The symmetrical component representation of the system is as shown in Figure 6.2. 



84 

 

L1 

L2

L0

C2 /2 

C0 /2 C0 /2 

C2 /2 

C1 /2 C1 /2 

R1 

R2 

R0 

3L

3Rf 

Positive Sequence

Negative Sequence

Zero Sequence

V1

Fault 

switch

 

Figure 6.2 Symmetrical network representation of the simple system. 

Whilst this is not a general analysis, it is still valuable as it allows a physical 

understanding of the phenomena involved. The maximum voltage, the frequency of 

oscillation and the decay time can be estimated. 

6.1.1 The worst case scenario for the peak voltages 

If the source impedances are ignored and the fault is at the source, the transient 

voltages and currents will be predominantly of the common mode type affecting 

each of the phase conductors in an identical manner. The zero sequence network can 

then be used to analyse the transient voltages and currents. 

At the instant the fault is applied, provided the voltage of the faulted line is not zero, 

a step voltage will be applied across the zero sequence network at the fault point. 

The resultant current will flow to charge the line to earth capacitance of the far 

section of the line and oscillation in voltage and current will follow until it decays 

because of the effect of the resistances. 

There are then three voltages being applied to the far end of the lines. 

1. The positive sequence fundamental frequency voltage, 
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2. The zero sequence fundamental frequency voltage, and 

3. A transient voltage alternating at the natural frequency of the line zero 

sequence inductance and capacitance and decaying to zero. 

Depending on the time of the fault in the fundamental frequency cycle, these voltage 

transients may cause serious over-voltages on the healthy lines.  

The positive and negative sequence source impedances can be ignored in this 

analysis because we are analysing a worst case scenario. Any source impedance will 

have the effect of reducing the magnitude of the step voltage change across the zero 

sequence network. Analysis using ElectroMagnetic Transients Program (EMTP) 

software has confirmed that, if realistic supply transformer impedances are used and 

the impedances are adjusted to typical values as seen by the transient currents, there 

will be a slight decrease in the maximum value of the peak transient voltage. 

Although the zero sequence diagram shows the line capacitances lumped at the ends 

of the line, the analysis presented in this section is also applicable to a distributed 

model. 

 In the case of distributed capacitances and a perfect system without any resistance 

either in the line or in the earth plane a step transient current/voltage wave will travel 

to the end of all three lines and be reflected back to the fault point. It will travel back 

and forth setting up a square wave oscillation. In a practical system with some 

resistance the magnitude will decay. Because the resistances as seen by the higher 

frequency components of the square wave are much higher than the resistances as 

seen by the major frequency of the square wave, the wave shape of the oscillation 

will closely approximate a sine waveform within a few cycles. The main frequency, 

magnitude and decay time will be close to but not quite equal to that given by the 

simplifying assumption of capacitances lumped at the ends of the line. 

Consider a low impedance fault to earth on the „A‟ phase at a time „
ft ‟ such that; 

ft           

 (6.1)  

Let the phase voltages at the source just before the occurrence of the fault be; 

sina fE E t                   (6.2) 

0sin( 120 )b fE E t         (6.3) 

0sin( 120 )c fE E t         (6.4) 



86 

 

Ignoring voltage drops due to load, the steady state voltages at the fault point with 

the fault in place will be: 

sinE E t            (6.5) 

0E           (6.6) 

0 sinE E t          (6.7) 

The line voltages at the fault point will then be; 

0

faE E E E              

sin sin 0E t E t           (6.8) 

2

1 2 0fbE a E aE E             

0sin( 120 ) sinE t E t           (6.9) 

2 0

fcE aE a E E            

  

0sin( 120 ) sinE t E t           (6.10) 

Neglecting the small changes in voltage as a result of the load currents and the line 

capacitive currents, these steady state voltages will appear at both ends of the line.  

In other words, at the instant of the fault all of the line to earth voltages at the source 

will change by sinE  . A current/voltage wave will travel to the end of the line. 

When it reaches the end, the voltages on each phase line at the far end will change by 

2 sinE  . Let t be the time taken for a current/voltage wave to travel from the 

fault point to the end of the line. The voltages at the end of each phase line when the 

transient pulse arrives will be: 

( ) sin( ) 2 sineaE t t E t E            (6.11) 

0( ) sin( 120 ) 2 sinebE t t E t E         

0.5sin cos 0.5cos sin

0.866cos cos 0.866sin sin 2sin

t t
E

t t

  
  

   

   

    
    (6.12) 
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0( ) sin( 120 ) 2 sinecE t t E t E         

0.5sin cos 0.5cos sin

0.866cos cos 0.866sin sin 2sin

t t
E

t t

  
  

   

   

    
    (6.13) 

However, for short transmission lines, as t  is very small, cos t  will be very 

close to unity and sin t  will be very close to zero. 

Therefore  ( ) E 0.5 sin  - 0.866 cos  - 2 sinebE t t       

      0E 2.645 sin( 19.11 )                                               (6.14) 

 ( ) 0.5 sin   0.866 cos   2 sinecE t t E          

  02.645 sin( 19.11 )E                                                (6.15) 

The four worst case scenarios are for a fault at a time such that 
 

0 090 19.11   
        

       (6.16) 

In these cases the peak voltage will be 2.645 pu. 

Allowing for the time taken for the wave to reach the far end of the line the 

maximum value will be slightly higher. The value depends on the length of the line 

and the relative phase angles of the voltages at each end of the line. The absolute 

maximum is such that the fault occurs at the time of maximum voltage on the faulted 

phase and reaches the open end of the line at the time of maximum voltage on one of 

the healthy phases. In this case, by examination of equations (6.11) to (6.13), the 

maximum transient voltage will be 3 pu. If the line length between the fault location 

and the end of the line is such that 060t  , then substituting into equation (13) 

gives: 

( ) 3 sinecE t t E           (6.17) 

 For this to occur, in the case of a purely air insulated overhead line and allowing for 

the partial conductivity of the earth plane, the length would be approximately 850 

km. For lines of this length it is usual that there will be a significant difference in the 

phase of the voltages at either end. There will also be significant attenuation of the 

wave because of the time taken. Therefore, for long lines, the likely transient 

voltages can only be analysed on an individual case by case basis for particular 

loading conditions. 
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6.1.2 Estimation of frequency and decay time for a typical 11 kV overhead 

line type. 

A single line system, consisting of 20 km of 11 kV three phase 7/3.75 AAC 

overhead line with flat construction and supplied by the star winding of a 

transformer, was modelled. The transformer neutral was earthed through a tuned arc 

suppression coil with negligible resistance. 

The line inductance and resistance parameters are affected by the higher frequency 

of the transient currents.   

The zero sequence line to earth capacitance is given by the well known formula: 

0

2

4
3

k
C

H
Ln

GMD




 
 
 

  F/m       (6.18) 

where: 

 H The conductor height 

GMD The Geometric Mean Diameter of the conductor configuration as a bundle 

for zero sequence representation. 

128.85 10k    F/m 

For the 20 km length of line where 469GMD mm and 9H m :  

0C = 0.0854 µF  

As a first approximation of the transient frequency of oscillations, the time taken for 

the current/voltage wave to travel to the end of the line and return was taken as half a 

cycle. The method proposed by Gatous and Pissolato [55] to allow for the skin 

effect, and the well known complex depth of return method as reiterated by Wang 

and Liu [56] were used to calculate 
0R  and 

0L , for this frequency. Using these 

values the frequency of oscillation for the simple model with lumped capacitances 

was revised using the formula: 

Frequency in radians per second 

2 2

0 0 0 0

0 0

8

2

L C R C

L C


     (6.19) 

New values for 
0R  and 

0L  were then found. 
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By successive iterations it was found that; 

0R  = 161.1 Ω 

0L  = 77.98 mH 

Frequency = 2803 Hz 

The time constant for the decay of the oscillations was calculated using equation 

(6.20). 

Time constant in seconds 0

0

2L

R
       (6.20) 

     = 0.968 ms 

Using the ElectroMagnetic Transients Program (EMTP) software a frequency 

dependent 11 kV line with the above physical characteristics simulated and the 

resulting time constant was almost identical. The EMTP frequency dependent line 

model is based on the work by J. Marti [57]. 

 The EMTP software was also used to check the calculation of the line capacitance. 

A simulated 1 Hz zero sequence voltage was applied to both ends of a half kilometre 

of the above 11 kV line type. By reading the capacitive current, the zero sequence 

capacitance (C
0
) was found for a 20 km length of line to be 0.0857 µF 

The EMTP software was also used to check the calculation of the line inductance 

and resistance. A three phase to earth zero impedance fault at one end of a half 

kilometre of the above 11 kV line type was simulated and a 2,803 Hz zero sequence 

sine wave source was applied to the other. By measuring the current magnitude and 

phase angle the line parameters were found to be: 

 
0R  =  153.5 Ω 

0L   = 76.88 mH 

Allowing for the approximations inherent in the methods used to find the parameters 

for the EMTP line representation, these values confirm the calculations. 

The 20 km single line model was analysed using the EMTP software. A phase to 

earth fault was applied to phase C near the source and the voltages appearing at the 

end of the line as calculated by EMTP are shown in Figure 6.3.  
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Figure 6.3 Transient voltages for the single line model as shown by EMTP. 

It can be seen that the peak voltage on a healthy phase line is 23.2 kV which is 2.58 

pu.  

Frequency = 3082 Hz 

Time constant of decay = approximately 1 ms 

These values from the distributed capacitance line model are within 10% of those 

calculated using lumped capacitances.  

The single line model was replicated by a physical model with resistors and reactors 

chosen to accurately represent the zero sequence line impedances as seen by the high 

frequency oscillating currents but with a safe voltage applied. The major difference 

was that, whereas the EMTP model used distributed line capacitance, the physical 

model used capacitances lumped at the ends of the lines.  As shown in Figure 6.4 the 

transient voltages were similar to those shown by the EMTP model. 
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Figure 6.4 Transient voltages on the un-faulted phase lines of the physical 

model. 

Both the EMTP simulation and the physical model used a full three phase system 

and not symmetrical components. The close agreement validates the assumption that 

the voltage and current transients under consideration are predominantly of the 

common mode or zero sequence type. A close study of Figure 6.4 shows the 

frequency of oscillation to be very close to 2803 Hz with a time constant of decay 

close to 1 ms as calculated using the zero sequence network. In both cases the line to 

earth capacitance is lumped at the ends of the line. The slightly higher frequency 

given by the EMTP model is as a result of correctly representing the line to earth 

capacitances as distributed along the line.  

6.1.3 Approximate methods for transient voltage estimation 

The maximum transient voltage in a non-effectively earthed system will be 3 pu. 

The time taken for a current\voltage wave to travel from the fault point to the end of 

an overhead line and return can be determined approximately. Ignoring the effects of 

insulators and the proximity to the conductive earth plane, the current/time wave will 

travel at the speed of light that is approximately 3x10
8
 metres per second. However 

the EMTP analysis in this paper shows that for a practical 11 kV overhead system, 

with a partially conductive earth plane, the speed will be reduced by a factor of 0.82. 

The calculations in [66] for a 345 kV line give a factor of 0.87. For a first 

approximation a factor of 0.85 would give sufficient accuracy. For more detailed 

analysis a full simulation using EMTP or other software would be appropriate. This 

time will correspond to half a cycle of the transient oscillation.  

 

 

Therefore: 
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Frequency 
82.55x10

4
Hz

D
             (6.21) 

Where D is the total line distance in metres. 

 

The time constant for the decay of these oscillations is given by equation (6.20). 

 

The values of 
0L and 

0R are frequency dependent. As the frequency increases,
0L

decreases and  
0R  increases. As we are interested in the worst case scenario we need 

only estimate the time constant for the minimum oscillating frequency that relates to 

the longest length of line. 

 

The method proposed by Gatous and Pissolato [55] to allow for the skin effect, and 

the complex depth of return method as reiterated by Wang and Liu [56], together 

with equation (6.20) were used to calculate the time constants for the decay of the 

transient oscillations for a range of all aluminium conductors and a typical 11 kV 

overhead line construction as shown in Figure 6.5.  

 

Figure 6.5 Time constants for the decay in transient oscillations for typical 11 

kV overhead line construction. 

It is noted that for large conductors there is close to an inverse logarithmic 

relationship between the decay time constant and the frequency. 
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This is further illustrated in Figure 6.6 that shows the transient decay time constant 

in term of the number of cycles of the transient oscillation. 

 

Figure 6.6 Time constants for the decay in transient oscillations for a typical 11 

kV overhead line construction in cycles of the transient oscillations. 

6.2 Typical zone substation distribution systems 

The above analysis is based on a single radial line without any branches or 

distribution transformers. As evaluated in Appendix 2, the distribution transformers 

connected to the system will contribute some zero sequence capacitance. In cases 

where there are branch lines and transformers, the interaction of the transient steps 

becomes more complex. At each discontinuity the transient voltage will reduce 

according to the relative surge impedances of the outgoing conducting paths. Despite 

this reduction, there are circumstances where two or more of these transient voltages 

can coincide and reinforce each other. In some situations they can add together to 

give a peak voltage slightly higher than the maximum values for a single line. For 

example in the case of a 40 km typical 7/3.75 AAC 11 kV overhead line with a 10 

km spur line mid way along there can be a peak transient voltage of up to 2.713 pu. 

Without the spur line the corresponding peak transient voltage is 2.630 pu. 

To evaluate transient over voltage effects on power distribution systems realistic 

urban and rural zone substation distribution system models were analysed using 

EMTP software. 
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The typical urban zone substation distribution system model is a shown in Figure 

6.7. 
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Figure 6.7 Urban zone substation distribution system. 

Using  EMTP software and with a tuned arc suppression coil, a phase to earth fault at 

a point 7 km from the bus bar was simulated. The transient voltages recorded at the 

far ends of the four longest feeders were as shown in Figure 6.8. The highest 

transient voltage peak was 2.69 pu. 

 

 

Figure 6.8 Transient voltages on a healthy phase of the urban distribution 

system. 
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The typical rural zone substation distribution system model is as shown in Figure 

6.9. 
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Figure 6.9 Rural zone substation distribution system. 

Using the EMTP software and with an arc suppression coil, a phase to earth fault at a 

point 15 km from the bus bar was simulated. The transient voltages recorded on 

some of the points on the system were as shown in Figure 6.10. 
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Figure 6.10 Transient voltages on a healthy phase of the rural distribution 

system. 

It can be seen that, as there are relatively long lengths of line and multiple branches, 

there are transient oscillations at multiple frequencies. 

The tuning of the arc suppression coil has little effect on these transient voltages. 

Provided the transformer neutral is not effectively earthed, transient voltages will 

occur.  

6.3 Implications for existing systems 

Where all of the equipment in service complies with the standard insulation levels 

set out in Table 2 or Table 3 of AS 1824.1 [67], which is based on IEC 71-1 (1993), 

these transient over-voltages will not cause a cross country fault. In practice there are 

many high voltage distribution systems with components that have not been 

manufactured to meet current standards and that have not been tested to the current 

standards. There are also likely to be many components that have deteriorated to the 

extent that, while they can still withstand 1.0 pu voltage with a safety margin, they 

will not withstand these transient over-voltages. It may not be feasibly to upgrade all 

components in the system. 

Similarly metal oxide surge arrestors suitably rated at 1.732 pu and in specified 

working order will not reach a thermal run away condition with short duration 3 pu 

voltages. However, in many high voltage systems there are likely to be surge 

arrestors which have deteriorated to the extent that they will allow arcing and power 

follow currents to flow resulting in cross country faults. 
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The implications for existing high voltage distribution systems can be determined by 

removing samples of the insulators and surge arrestors for withstand voltage tests 

using waveforms similar to these transient voltage waveforms. An economic way of 

carrying out this type of analysis initially may be to test all apparently healthy 

components removed from service for other reasons. The percentage failure of the 

components that are tested will provide a good indication off the likelihood of cross 

country faults. 

6.4 Testing of system components 

The system shown in Figure 6.11 was set up in a high voltage testing facility to 

illustrate one simple method of testing the ability of power system components to 

withstand the transient over-voltages.  
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0
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0 – 240 V

50 Hz

120
0

 240V \ 11kV, 10 kVA

 240V \ 11kV, 10 kVA
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Circuit 

breaker

Circuit 
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200 Ω

 

Figure 6.11 Arrangement for testing network system components. 

The input voltages were adjusted to provide the steady state voltages of the power 

system. The test transformers were found to have adequate leakage inductance, shunt 

capacitance and resistance.  The resultant test voltage waveform was typical of that 

to be found in practice.  No attempt was made to synchronise the closing of the test 

switch with the input voltage waveform. The test switch was closed and opened 

several times and the resulting voltages recorded. In a practical test system, point of 

wave switching can be arranged so that the worst case scenario is replicated for each 

test. A sample of the voltage applied to the component under test is shown in Figure 

6.12. 
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Figure 6.12 Test voltage applied to power system components. 

6.5 Proposed method of controlling transient over-voltages 

A new method has been developed for controlling the transient over-voltages. A 

bipolar thyristor bank is connected in parallel with the arc suppression coil to 

effectively earth the neutral of the supply transformer from the time of the fault to 

the first current zero as shown in Figure 6.13. 
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Figure 6.13 Thyristor bank to control transient over-voltages. 

The thyristors are triggered by the rate of rise of the neutral voltage. When a single 

line to earth fault occurs in a non-effectively earthed system, the rate of change of 

the neutral voltage is very rapid. The derivative of the neutral voltage can then be 

used to  trigger the thyristors very close to the instant of the fault and before the 

transient oscillations have been established. By then interrupting the current at a 

current zero, the resultant oscillations are much smaller. In the worst case scenario a 

half cycle of the 50 Hz normal solidly earthed fault current will flow. A resistor is 

connected in series with the thyristor bank to limit the maximum current and to 

reduce the oscillations at the time of the current interruption. One effect of this series 

resistance is that there are some remaining oscillations in the voltages at the time of 

the fault. Two thyristor banks of opposite polarity are used to cater for faults 

occurring at any time in the cycle. The minimum rate of rise of the neutral voltage 

used to trigger the thyristor banks is selected such that triggering will occur for a 

single line to earth fault at any location in the distribution system but such that 

triggering will not occur at the maximum rate of rise of the transient oscillating 

voltages. 

The resulting transient voltages for the previously analysed fault conditions on the 

urban distribution system are shown in Figure 6.14. 
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Figure 6.14 Transient voltages on a healthy phase of the urban distribution 

system with thyristor control. 
 

The resulting transient voltages for the previously analysed fault conditions on the 

rural distribution system are shown in Figure 6.15. 

 

Figure 6.15 Transient voltages on a healthy phase of the rural distribution 

system with thyristor control. 
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6.6 Summary 

The evaluation methods used confirm that there will be significant over-voltages as a 

result of transients at the time of the fault in distribution systems using arc 

suppression coils. Although these transient voltages would not cause cross country 

faults in a power distribution system that is properly designed and using equipment 

that is in good condition and which complies with modern standards, there are many 

distribution systems that have been built many years ago with equipment that has 

never been tested to the current standards. The equipment may also have 

deteriorated. A second fault means that there are then two faults that cannot be 

protected by the arc suppression coil system with possible resultant arcing damage 

and an increase in the number of permanent faults. A new method to eliminate the 

over-voltages caused by the transient oscillations is proposed. 

It is recommended that network companies considering the installation of arc 

suppression coil systems in long established solidly earthed systems begin a program 

of testing existing components to find the capability of the system to withstand these 

transient over-voltages. In the first instance this can be carried out at low cost by 

returning for test all otherwise apparently healthy insulating components removed 

from service for other reasons.  

Testing of system components and controlling the magnitude of the transient over-

voltages should both be considered as part of the strategy for implementing arc 

suppression coil systems in power networks that were previously effectively earthed. 
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Chapter 7  CONCLUSIONS AND FURTHER WORK 

Arc suppression coil systems have the potential to improve high voltage power 

distribution systems in terms of both reliability and safety.  

7.1  Analysis of neutral voltages 

There is potential for using modern computerised protection systems to determine 

the type of fault by monitoring the neutral voltage, so that in many cases the 

appropriate action can be taken automatically. This can provide benefits over and 

above those of the conventional arc suppression coil installations. 

While the relationships between the type of earth fault and resulting neutral voltage 

has been explored in this dissertation the actual actions taken need to be set out in 

accordance with policies adopted by the particular electricity network operator. 

There are good reasons for the various network operators to have different policies. 

The policies will depend on the most common causes of faults which in turn depend 

on the design of the network, the incidence and types of weather and human related 

events. The network operators also need to consider the attitudes of the community 

to safety and reliability together with the population density of the area in which the 

power system is situated. 

The neutral voltage criteria and appropriate actions need to be incorporated into the 

further development of intelligent substation and network wide protection systems. 

 

7.2  In-line single phase voltage regulators 

A new method of analysing the neutral voltages and currents in systems which 

include open-delta voltage regulating auto-transformers by the use of symmetrical 

components has been developed as part of this research. It has been shown in this 

dissertation that open-delta connected single phase auto-transformers should not be 

used for in-line voltage regulation in systems fitted with arc suppression coils. Three 

star connected auto-transformers cannot be used for in-line voltage regulation 

without impairing the effectiveness of the arc suppression coil system. 

In-line voltage regulation can be provided by using three delta connected single 

phase auto-transformers with the control equipment arranged to keep the three tap 

change mechanisms in step with each other. The use of distributed static VAR 

compensation should also be considered as a part of the overall strategy for 

achieving voltage regulation. 
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The commonly used single phase auto-transformers connected in open-delta 

configuration operate independently of each other. Work needs to be carried out in 

conjunction with the manufacturers to arrange for the control of the three automatic 

tap changers so that they will remain in step with each other. It would be also 

advantageous for an out of step alarm to be sent. 

The use of three delta connected auto-transformers provides a higher overall voltage 

boost than that provide by open delta or star connected auto-transformers by a factor 

of more than 1.5. A common current practice is to provide step voltage increases of 

1.25 percent this being the maximum step increase which cannot be easily observed 

when looking at an incandescent bulb. With the decreasing usage of incandescent 

lamps, it may be decided that an increase in the step voltage change is acceptable in 

the rural areas, or it may be decided to arrange for changes in the ratios of the 

associated auto-transformers be deliberately separated in time by a few seconds. It 

may also be decided that the increase in the total voltage boost available may be 

advantageous taking into account the increasing loads in rural areas. If an increase in 

the total voltage boost is not needed, a redesign of the auto-transformers would 

produce a smaller core size. Work is needed with the distribution companies and 

manufacturers to decide whether new standard auto-transformer designs are needed 

and what sized voltage steps would be appropriate. 

7.3  Minimising cross country faults 

Provided the insulation capabilities of the existing power systems are properly 

assessed and the necessary corrective measures taken the incidence of cross country 

earth faults can be eliminated. In this dissertation simple methods of estimating the 

likely maximum transient voltages have been provided along with a suggested 

method of testing to determine whether the existing power system insulation levels 

are adequate. A new method of reducing the transient voltages is proposed. Any 

network owner considering the installation of arc suppression coil systems needs to 

investigate the status of the existing system and allow for the cost of improving the 

integrity of the existing line to earth insulation of the power system where necessary. 

Installation of equipment to reduce the maximum magnitude of the transient voltage 

peaks should also be considered in arriving at an overall plan where the integrity of 

the existing insulation is found to be deficient. 

Detail design of the proposed switched thyristor equipment to reduce the peak 

transient voltages is needed. This is best carried out in conjunction with equipment 

manufacturers. 

7.4  Cost benefit analyses 

This dissertation has looked at some of the technical aspects of arc suppression coil 

systems. Network owners considering the installation of arc suppression coil systems 

need to compare the costs with the benefits. 
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The financial costs can be estimated in conjunction with the commercial suppliers of 

the equipment together with estimates of the cost of any power system insulation 

upgrading that is necessary. At present there appears to be only one manufacturer of 

arc suppression coil systems active in the Australian/New Zealand market. It may be 

beneficial for network companies in these areas to seek out suppliers of modern arc 

suppression equipment from elsewhere. 

The benefits in power system reliability and safety are less tangible. In order to make 

a meaningful comparison with the costs they need to be expressed in financial terms.  

 In economic terms, the cost to the community of a power system interruption can be 

assessed as the amount members of the community would be prepared to pay to 

avoid an outage if they had the opportunity to do so. There has been very little 

research in this area. The issue is further complicated by community cost versus the 

length of the interruption. The relationship is not linear. For example, at the time 

when the temperatures inside a domestic refrigerator will no longer be low enough to 

safely keep food, the cost to the community begins to rise sharply. On the other end 

of the scale, the cost per minute for the very short duration outages associated with 

an automatic successful reclose of a feeder is very high.  

Some guidance on the costs per minute per consumer of an outage can be obtained in 

some countries by the financial penalties being imposed on the electricity network 

owners under the competitive electricity market regime. However in many cases the 

short term interruptions associated with successful recloses are ignored in these 

penalty calculations. One of the major advantages of arc suppression coil systems is 

the elimination of most of these short term interruptions. 

The amount the community is prepared to pay to avoid a loss of life or serious injury 

is even more difficult to assess. A study could be made of the various damages 

awarded by the courts in accidental personal injury or death cases as a basis for some 

kind of assessment. 

An evaluation of the improvement in reliability to be obtained by installing arc 

suppression coil systems will involve an extensive analysis of the historical fault 

events for the particular network. These need to be analysed in terms of the actual 

causes of the faults so that the alternative scenarios of what would have happened if 

an arc suppression coil had been installed can be arrived at. In many cases it appears 

that the existing fault reporting systems do not provide sufficient detail. Short term 

outages associated with a successful reclosing of a circuit breaker may not be 

reported at all.  
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APPENDIX A1 

ANALYSIS OF AN OPEN CIRCUIT COMBINED WITH LINE TO EARTH 

FAULTS. 

A1.1  Unknown quantities and equations 

The sequence network for the simple system with an open circuit and simultaneous 

single line to earth faults at the same location and in the same conductor as shown in 

Figure 4.18 can be rationalised to that shown in Figure A1.1, where Rfs, and Rfl are 

the fault impedances on the source and load sides of the open circuit respectively. 
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Figure A1.1 Symmetrical component representation of an open circuit with a 

single line to earth fault on either side of the open point and on the same phase 

line. 

There are 18 unknown quantities as listed in Table A1.1. 
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Table A1.1 Unknown symmetrical component quantities in a system with a 

single line to earth fault on either side of the open point and on the same phase 

line. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1I


 

1I


 

0

1I

 

2I 

 

2I 

 

0

2I

 

3I 

 

3I 

 

0

3I

 

4I 

 

4I 

 

0

4I

 

SV 

 

SV 

 

0

SV

 

LV 

 

LV 

 

0

LV

 
 

There are 18 simultaneous equations as follows: 

4 0L LV Z I            (A1.1) 

4 0L LV Z I            (A1.2) 

0 0 0L LV Z           (A1.3) 

1L L SV I Z E            (A1.4) 

1 0L LV I Z             (A1.5) 

0 0 0

1 0L LV I Z           (A1.6) 

4 0S L S LV I Z V V               (A1.7) 

0 0

4 0S L S LV I Z V V             (A1.8) 

0

1 2 0
3 3 3

S S S

fS fS fS

V V V
I I

R R R

 
            (A1.9) 

0

3 4 0
3 3 3

L L L

fL fL fL

V V V
I I

R R R

 
            (A1.10) 

0

2 2 2 0I I I            (A1.11) 

0

3 3 3 0I I I            (A1.12) 
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0

1 2 0
3 3 3

S S S

fS fS fS

V V V
I I

R R R

 
            (A1.13) 

0
0 0

1 2 0
3 3 3

S S S

fS fS fS

V V V
I I

R R R

 

           (A1.14) 

0

3 4 0
3 3 3

L L L

fL fL fL

V V V
I I

R R R

 
            (A1.15) 

0
0 0

4 3 0
3 3 3

L L L

fL fL fL

V V V
I I

R R R

 

            (A1.16) 

2 3 0I I            (A1.17) 

2 3 0I I            (A1.18) 

A1.2  A matlab script to solve the equations 

A matlab script to solve these equations and produce the matrix U for the unknown 

quantities in the order given in the above table is as follows: 

Firstly the values for the impedances and the source voltage (ES ) need to be 

stipulated, then:- 

M=zeros(18,18); 

S=zeros(18,1); 

M(16,16)=1; M(16,10)=-ZposL; % Equation A1.1 

M(17,17)=1; M(17,11)=-ZnegL; % Equation A1.2  

M(18,18)=1; M(18,12)=-ZzeroL; % Equation A1.3   

M(13,13)=1; M(13,1)=ZposS; S(13)=Es; % Equation A1.4 

M(14,14)=1; M(14,2)=ZnegS; % Equation A1.5 

M(15,15)=1; M(15,3)=ZzeroS; % Equation A1.6 

M(10,13)=1; M(10,10)=-ZposL; M(10,14)=-1; M(10,17)=1; % Equation A1.7 
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M(11,14)=1; M(11,11)=-ZnegL; M(11,15)=-1; M(11,18)=1; % Equation A1.8 

M(1,1)=1; M(1,4)=-1; M(1,13)=-1/(3*RfS); M(1,14)=-1/(3*RfS);  

M(1,15)=-1/(3*RfS); % Equation A1.9 

M(7,7)=1; M(7,10)=-1; M(7,16)=-1/(3*RfL); M(7,17)=-1/(3*RfL);  

M(7,18)=-1/(3*RfL); % Equation A1.10 

M(6,6)=1; M(6,5)=1; M(6,4)=1; % Equation A1.11 

M(9,9)=1; M(9,7)=1; M(9,8)=1; % Equation A1.12 

M(2,2)=1; M(2,5)=-1;M(2,13)=-1/(3*RfS); M(2,14)=-1/(3*RfS);  

M(2,15)=-1/(3*RfS);  % Equation A1.13 

M(3,3)=1; M(3,6)=-1;M(3,13)=-1/(3*RfS); M(3,14)=-1/(3*RfS);  

M(3,15)=-1/(3*RfS);  % Equation A1.14 

M(8,8)=1; M(8,11)=-1;M(8,16)=-1/(3*RfL); M(8,17)=-1/(3*RfL);  

M(8,18)=-1/(3*RfL);  % Equation A1.15 

M(12,12)=-1; M(12,9)=1;M(12,16)=-1/(3*RfL); M(12,17)=-1/(3*RfL);  

M(12,18)=-1/(3*RfL);  % Equation A1.16 

M(4,4)=1; M(4,7)=-1; % Equation A1.17 

M(5,5)=1; M(5,8)=-1; % Equation A1.18 

U=M^-1*S; 
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APPENDIX A2  

ZERO SEQUENCE CAPACITANCE OF TRANSFORMERS CONNECTED 

TO THE LINE 

Tests were carried out to evaluate the likely influence of the zero sequence 

capacitance of distribution transformers connected along the line. A typical 200 

kVA, 11 kV/415 V, Dy11, outdoor type transformer was tested with the terminals 

connected as shown in Figure A2.1. 

11 kV winding 415 V winding

 

Figure A2.1 Connections for testing the zero sequence capacitance of a typical 

transformer 

To accurately simulate the conditions in service the actual load should be connected 

to the 415 volt terminals. However, because of the relative impedances, it was found 

in the following tests that the same readings were obtained with and without the low 

voltage terminals shorted to earth.  

The capacitance between the high voltage winding, and the earthed low voltage 

winding was measured with a capacitance meter. The value was found to be 0.0089 

  . As this is the total capacitance of all three phases it follows that the zero 

sequence capacitance is: 

0

0.0089
0.00297

3
C       

A test voltage of 11kV at 50 Hz was then applied the high voltage winding and the 

earthed low voltage winding. The current flow was found to be 32 mA. 

Using these figures and ignoring any losses the zero sequence capacitances is 

calculated as: 

0 0.0031C       
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Although the difference in impedance may have been due to winding inductance, the 

result is within the accuracy limits of the measurements taken. 

A typical 11 kV overhead line has a zero sequence capacitance of about 0.00425 µF 

per km. This transformer zero sequence capacitance equates to about 700 metres of 

line. For smaller transformers the zero sequence capacitance will be a lower value. 

A sample of typical 11 kV/415 V, 3 phase transformers were connected as shown in 

Figure A2.1 and tested with a capacitance meter. The results are shown in Table 

A2.1. 

Table A2.1 Capacitance of HV winding to LV winding and earth for a sample of 

typical 11 kV to 415 V transformers. 

Size Make Capacitance  

(nF) (kVA) 

25 PLC 2.02 

63 ABB 4.14 

100 Wilson 4.63 

200 ABB 9.62 

200 ABB 9.84 

200 Wilson 7.58 

500 ASET 5.45 

 


