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Abstract 

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most successful 

selective herbicides used in agriculture to control broadleaf weeds. Unfortunately, 

cotton crops are highly susceptible to 2,4-D, and they are often damaged by the off-

target movement of the active ingredient when sprayed as a herbicide on surrounding 

farms. This action, referred to as herbicide drift, affects the cotton industry every 

season, causing losses of millions of dollars. Although the economic repercussions on 

the industry are high, the traditional (visual) assessment of damage is often imprecise 

and inaccurate. Crop sensing tools can offer alternative and reliable methods to 

overcome the typical limitations of visual assessments by providing accurate 

estimations of crop performance. The aim of this research project was to assess the 

capabilities of crop sensing techniques of providing spatial and quantitative 

information of cotton yield after being affected by 2,4-D herbicide drift. This 

information is valuable to agronomic planners for evaluating their crop management 

strategies in order to maximise cotton production while safeguarding the environment 

in the affected area. 

The research area was located in a cotton-growing region in Jondaryan, Queensland, 

Australia. Two study cases and three remote/proximal sensing approaches were tested. 

The first study case consisted of controlled doses to simulate accidental exposure to 

2,4-D, where three doses (D) and three timing of exposures (S) were examined at four 

different dates after the exposure (DAE): 2, 7, 14 and 28 DAE. In this case, a 

hyperspectral sensor and a terrestrial laser scanner (TLS) were evaluated to assess their 

ability to predict yield loss, dose and canopy structure variability. The second case 

examined the potential capabilities of satellite imagery for yield loss assessment in an 

uncontrolled exposure of cotton crops to 2,4-D. For this case, several multispectral 

(Landsat 8 Operational Land Imager - OLI) images were analysed and a 

comprehensive approach was developed to overcome the potential limitation of 

moderate resolution imagery at the field level. 

The controlled case revealed that hyperspectral data can be used to predict yield loss 

with high accuracy (R2 = 0.88) regardless of the timing of exposure and dose, and that 

7 DAE and 28 DAE (RMSECV: 2.6 bales/ha; R2 = 0.88 and RMSECV: 3.2 bales/ha; 
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R2 = 0.84, respectively) were the best times for data collection purposes. The main 

difference in the model performance between the best (7 DAE) and the worst (14 DAE) 

prediction model was the inclusion of the NIR range, as the 14 DAE was the only 

model with no significant wavelengths in this range. 

Through this case, it was possible to better understand how the internal changes of the 

contaminated leaves, that is photosynthesis, stomatal conductance and hormone 

contents, influenced their spectral response and the lint quality of the cotton. Most of 

the variables analysed in this study manifested a significant relationship with 

hyperspectral data (p-value < 0.05). The harvested yield was severely affected by the 

herbicide, with losses recorded as high as 98%, while the fibre quality remained 

relatively unaffected. The prediction capabilities for the simulated dose were also 

tested by implementing Canonical Powered PLS (CPPLS) and Sparse PLS 

Discriminant Analysis (sPLS-DA). High accuracies (> 70%) were obtained regardless 

of the method, D or S. However, the timing of exposure (S) resulted in being a 

determinant to improve the classification accuracy to more than 90%. 

The analysis of laser scanner-derived data provided accurate information about the 

canopy height and canopy volume that could be strongly correlated (r > 0.88) with 

yield at different times of assessment (2 DAE, 7 DAE and 14 DAE). High R2 (> 0.90) 

between measured and estimated canopy height validates the height values estimated 

from the TLS-derived data. Furthermore, the weak relationship (R2 =0.39, p-value > 

0.05) between point density and estimated canopy volume provided an insight that the 

approach implemented to estimate cotton canopy height and volume overcame the 

reported limitations of terrestrial laser scanners in the field. 

The uncontrolled case (i.e. Landsat 8 imagery) tested six different dates for optimal 

data collection purposes. The results demonstrated that traditional vegetation indices 

(VI) and individual multispectral bands were incapable of predicting yield in neither 

affected nor unaffected cotton areas (R2 < 0.27). However, PLS-R models optimised 

the information provided by the multispectral bands. As a result, the R2 increased, in 

some cases, by more than 60%. From the PLS- model results, it was determined that 

one week after the exposure was the best time for the prediction of yield in affected 

areas (RMSEP = 1.19 bales/ha and R2 = 0.60). Satellite imagery could be then 

implemented to support targeted monitoring programs in 2,4-D-injured areas. 
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The technologies implemented in this study were proven to be reliable for damage 

assessment after an accidental spray drift by accurately predicting yield and dose and 

also by estimating canopy structure variables strongly correlated with yield in 2,4-D-

affected areas. These comprehensive analytical approaches also provided information 

on temporal windows for optimal data collection after an incident, and also on less-

recommended dates for the same purpose. These methods indicated an optimal 

window between seven and 14 days, or more than 28 days after the exposure, for the 

prediction of damage. However, as soon as two days after the cotton plant was 

exposed, hyperspectral measurements and TLS-derived data recorded significant 

differences in comparison with unaffected control plants. 
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Chapter 1  

INTRODUCTION 
 

1.1. Introduction 

The need for herbicide use causes several numbers of incidents of spray drift affecting 

non-target crops every season with consequences that vary from yield delays to yield 

reductions (Cowell 2007). Furthermore, lawsuits and expensive fines may be involved, 

because herbicide drift events are generally considered illegal. These spray drifts can 

result in prohibited residues present in adjacent areas, environmental concerns, and 

human exposure (Clemson University Cooperative Extension 2013b; Department of 

Economic Development 2016; Rhodes, Israel & Steckel 2012). 

Damage caused by herbicide drift on non-target crops cannot be accurately related to 

yield reduction by applying traditional (visual) assessments as they relay in the 

physical appearance of the crop without taking in consideration the recovery 

capabilities of the plants. Sub-lethal doses capable of causing yield loss might only be 

evident 2-3 weeks after the event. The time lost, between the spray drift event and the 

appearance of symptoms, could have been used to mitigate injuries that may affect the 

expected yield by properly adjusting crop management practices. In addition, 

traditional or visual assessment does not to supply comprehensive spatial information 

about the distribution and degree of the damage in the field (Cotton Australia 2012, p. 

4; Cowell 2007). It would, therefore, be of value to implement new technologies 

capable of providing reliable information about the condition of crops exposed to, and 

injured by, unintentional herbicide damage. A new method of damage estimation that 

allows the information to be available as soon as the event happens could be of great 

benefit, in order to maximise the opportunity to minimise damage to the crop, as the 

movement and translocation of herbicides in crops is rapid (Munk et al. 2014). 

Cotton crops are highly susceptible to phenoxy herbicide drifts, and particularly to 2,4- 

D, a herbicide widely used in other agricultural crops to control broadleaf weeds. 

Phenoxy herbicide drifts onto cotton still occur, despite many efforts having been 
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made to minimise this risk. These drifts result in industry losses of millions of dollars 

every season, as the assessment of damage to the cotton crop remains unreliable and 

the damage cannot be economically mitigated due to the lack of accurate information 

on degree of damage and potential yield loss. 

Over the past several years, remote sensing techniques have had extensive use in 

agriculture (Goel, P. K et al. 2003; Mewes, Franke & Menz 2009; Moran, Inoue & 

Barnes 1997) . Specifically, it has been shown that these techniques can detect changes 

in stressed crops following a herbicide drift incident, when external symptoms were 

not yet evident. Yield variability has also been estimated to a high degree of accuracy 

(Buehring 2004; Henry et al. 2004). It is therefore pertinent to test these tools to 

accurately and rapidly assess, quantify and detect damage caused by sub-lethal doses 

of 2,4-D on cotton crops. 

Recent improvements in hyperspectral, multispectral and LiDAR sensors could allow 

enhanced detection and assessment of such damage. The improvements also include 

the reduced cost of some of these technologies. There are currently multispectral 

satellite sensors with high spatial resolution and free access, while hyperspectral 

imagery is becoming commercially accessible. Similarly, LiDAR, which is highly 

applicable in research, is tending to become commercially available due to its 

enormous potential in crop structural estimations. Individually, these techniques have 

been shown to be precise and reliable. Hyperspectral sensors are capable of detecting 

changes in plant pigment (Blackburn 2007), moisture content (Chen et al. 2011), and 

leaf internal structure (Martinez-Morales 2012), all of which are potentially affected by 

2,4-D herbicide drift, while multispectral satellite sensors, in addition to the benefits 

of hyperspectral sensors, have the capability to monitor the crop regularly and provide 

spatial information on yield variability (Yang, Everitt & Bradford 2009). LiDAR 

scanners, on the other hand, have the ability to quantify canopy attributes, such as 

canopy height, percent crown cover, vegetation density and canopy volume, which are 

also expected to change after a herbicide drift event (Sun, Li & Paterson 2017). 

The proposed methodology for this study has been designed to examine different 

alternatives for 2,4-D damage assessment, from the reflectance-based and canopy 

structure perspectives. This study therefore applied different approaches to assessing 

damage and to documenting the internal and canopy structural changes that could 
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occur in the plant after a 2,4-D drift event, in order to understand how these changes 

are reflected in: 

 the spectral response, 

 the growth regulator hormones, 

 the biophysical and the physiological changes, and 

 yield. 

Specific analyses of leaf tissues are desirable to characterise changes in the plant in 

relation to dosage rates of the chemical and the growth stage of the crop at the time of 

exposure. This is in addition to measuring physiological variables (e.g. photosynthesis 

and stomatal conductance) and biophysical attributes (e.g. canopy height, canopy 

volume and yield). The objectives proposed for this research are steps towards being 

able to map and quantify 2,4-D damage in cotton crops, which will help to anticipate 

and estimate yield loss in relation to the spectral changes and canopy variability 

observed over the time after exposure. 

1.2. Statement of the problem 

Crops are susceptible to unintentional damage caused by management practices in 

surrounding farms as particles of chemicals can drift or produce volatile vapours, and 

move through the air far from the target site. Soybean, corn or wheat can, for example, 

be injured by glyphosate or paraquat, while cotton can be damaged by 2,4-D, 

glyphosate, glufosinate, dicamba or bromoxynil (Buehring 2004; Clemson University 

Cooperative Extension 2013a; Everitt & Keeling 2009; Henry et al. 2004; Huang & 

Thomson 2010; Liu, Zhao & Guan 2013). Such management practices can be 

controlled or regulated but it is unlikely that accidents will never happen due to the 

difficulties encountered in controlling every factor that interferes with “good” 

management practices. Sensitive crops subjected to sub-lethal doses of herbicides are, 

in addition, at high risk of commercially significant damage as even the smallest dose 

can cause considerably injuries (Birch & Moree 2004; Munk et al. 2014). All 

agrochemicals, including herbicides, are regulated in Australia, and some states 

prohibit the application of specific chemicals, as they can cause harm to humans and/or 

the environment (Australian Pesticides and Veterinary Medicines Authority 

[APVMA] 2005). 
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The chemical 2,4-D is a phenoxy herbicide that can be used to control broadleaf weeds 

species at low cost. Industries such as horticulture, rangeland and food crop systems 

(corn and other small grains) have widely adopted this chemical due to its high 

effectiveness in controlling weeds (Industry Task Force II on 2-4-D Research Data 

2013; Munk et al. 2014). Broadleaf crops such cotton, grapevines and many tree crops 

are, however, affected every season by 2,4-D applied in surrounding farm systems. 

The Australian Pesticides and Veterinary Medicines Authority (APVMA), in an effort 

to find a balance between the interests of conflicting industries, and also to protect 

humans against potential exposure and reduce its impacts on waterways, cancelled the 

registration of selected 2,4-D high volatile esters (HVE). The de-registered esters have 

particles that produce a vapour that can drift many kilometres away from the target 

crop and reach susceptible systems (APVMA 2013; Department of Economic 

Development, Jobs, Transport and Resources [DEDJTR] 2016). 2,4-D products still 

represent between 7-8% of all herbicides sales in Australia, even with this cancellation, 

a situation that illustrates the need for action to prevent and mitigate its impacts 

(APVMA 2013). 

Cotton, the summer crop most susceptible to 2,4-D, grows at the same time that this 

herbicide is used to control weeds in cereals during warmer months. Cotton regions in 

Australia are mainly located in New South Wales (NSW) and Queensland (QLD), 

where there are restrictions on herbicide uses, specifically to 2,4-D. However, these 

are only based on temperature, wind speed, size of nozzles and other specifications, 

which are insufficient to prevent all drift (APVMA 2005; 2013; Cotton Australia 

2012). Genetic improvements to cotton’s resistance to sub-lethal doses of 2,4-D are 

being investigated (Charles et al. 2007), but have so far had no practical outcome and 

the annual cost resulting from cotton’s susceptibility to 2,4-D is very high (Cotton 

Australia 2013b, 2015a; Cotton Australia & Grains Growers 2016). There are also 

limitations to current ability to detect damage soon after an accident in the field. 

Inaccurate predictions of yield loss based on traditional visual assessments is another 

aspect of a group of problems that exacerbate the impacts of herbicide drifts on cotton 

crops claiming to the cotton industry losses of millions of dollars every season not only 

in Australia but around the world (Charles 2011; Charles et al. 2007; Pimentel, Greiner 

& Bashore 1998; Rhodes, Israel & Steckel 2012). 
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There is currently a lack of research exploring a method that is different from visual 

assessments based on external symptoms, to detect and assess the damage (yield 

reductions) due to 2,4-D herbicide drift on cotton crops. Relatively new remote sensing 

techniques have proven their potential for assessing injuries caused by other herbicides 

such as glyphosate, glufosinate, paraquat and many others on corn, soybean, wheat 

and even cotton (Buehring 2004; Everman et al. 2008; Henry et al. 2004; Trenton 

2012). 2,4-D damage has, however, yet to be explored using those techniques. 

Multispectral, hyperspectral and LiDAR sensors can supply useful information about 

the internal structure of the leaf and canopy structure through the measurement of 

radiance captured in broadband or narrowband spectra, and three-dimensional (3D) 

readings, respectively (Hosoi & Omasa 2009; Tian, Zhu & Cao 2005). Small atypical 

changes in radiance or canopy structure are indicative that something is happening 

within the plant and these sensors are able to capture such small changes. The potential 

applicability, accurate results, and the ability to detect small changes even if the 

external damage is not evident (Everman et al. 2008) are the main reasons to explore 

those techniques in this research study, and hopefully, resolve the problems associated 

with traditional assessments of crop injuries caused by herbicide drifts. 

This research project addresses the question of how to detect, assess and map damage 

caused by 2,4-D drift over cotton crops soon after the drift has occurred, taking into 

consideration internal changes in the plant and their relationship with yield, spectral 

responses and canopy structure, using remote sensing techniques. 

1.3. Significance of the study 

Technological developments have impacted the way in which society interacts and 

resolves problems within itself. Such developments are in a continuous state of 

evolution but are not necessarily being utilised by all sectors of society in which they 

have potential benefits. This project explored different remote sensing technologies to 

resolve a major problem: detection and quantification of damage caused by 2,4-D 

herbicide drift in cotton as a non-target crop. One incentive for this project is that the 

technology has been available, but unused, for many decades, to potentially resolve a 

problem that has existed since the early 1940s (Charles et al. 2007; Price 1998). The 

outcomes of this research could provide useful information to various users in the 

following ways: 
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 Scientists – The technical knowledge will be of value in a) improving or designing 
new sensors better suited to the detection of herbicide spray drift in cotton, 
regardless of what platform is to be implemented and b) providing a better 
understanding of the response of the non-target cotton plant to herbicide drifts over 
time.  

 Farmers – The knowledge will be useful in a) assessing the damage caused by 
herbicide spray drift, for various crop management purposes, b) documenting the 
damage if compensation for loss is to be pursued and c) understanding when it is 
possible for neighbouring farms to spray with a lower risk of damage. 

 Extension agents – The information will be useful in providing advice with regards 
to designing management plans, crop protection, yield optimisation, etc. 

 Other related industries (aerial spraying companies, crop insurance, among others) 
– Relevant to the conduct of their particular business, e.g. awareness to better flight 
planning to avoid crop damage; providing an objective tool to crop loss assessors, 
etc. 

Overall, this study is not only geared to “improving farmers' capacity, knowledge & 

adoption of techniques to successfully protect the cotton crop” (Cotton Research and 

Development Corporation [CRDC] 2013), but also to generating knowledge for other 

users contributing to the cotton industry in Australia and the entire world. 

1.4. Research questions 

This research project sought to answer the research questions listed below in order to 

supply scientific knowledge and different tools to approach the problems stated above: 

a) Is it possible to detect herbicide-damaged cotton plants using hyperspectral data? 
What spectral bands maximise the chance of detection considering the variation 
in the degree of injuries at different crop growth stages? What is/are the plant 
variable(s) that best explains spectral variability in affected cotton?  

b) Can satellite imagery accurately detect cotton crops damaged by 2,4-D herbicide 
drift? What spectral bands or indices will optimise detection? 

c) Is it possible to detect changes in the cotton canopy caused by 2,4-D herbicide 
drift using LiDAR-derived metrics? Are the canopy structure variables estimated 
using LiDAR-derived metrics related to cotton yield? 
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1.5. Research aim and objectives 

The aim of this study was to assess the utility of hyperspectral, multispectral and 

LiDAR sensors in detecting and assessing injuries or damage caused by 2,4-D 

herbicide drift on cotton as a non-target crop. The following specific objectives have 

been defined to achieve the proposed aim: 

1. To understand the variability in the hyperspectral response of cotton plants 
affected by 2,4-D drift, in varying doses and at different crop growth stages.  

2. To assess the accuracy of multispectral satellite imagery in detecting herbicide 
drift damage to cotton crops. 

3. To identify and assess the effect of 2,4-D on the cotton canopy using terrestrial 
LiDAR sensors, with varying amounts of chemical and at different crop growth 
stages. 

The underlying assumptions of the approach are the following: 

i. The integration of multiple wavelengths is a powerful tool to accurately predict 
yield (Plant et al. 2000; Suarez, Apan & Werth 2016; Thenkabail, Smith & De 
Pauw 2000). 

ii. Yield can be predicted from vegetation indices (VI) due to their direct relationship 
to water or nutrient stress, canopy structure and pigment concentrations (Zarco-
Tejada, Ustin & Whiting 2005). 

iii. There is a spatial-temporal relationship between yield and reflectance data (Zarco-
Tejada, Ustin & Whiting 2005; Zhao et al. 2007b). 

iv. LiDAR data supplies valuable information to analyse diverse architectural 
parameters as indicators of crop performance and yield (Confalonieri et al. 2011; 
Friedli et al. 2016; Zub, Arnoult & Brancourt-Hulmel 2011). 

1.6. Scope of project and limitations 

The objective of this project was to examine the use of hyperspectral, multispectral 

and LiDAR sensors for the early characterisation, detection and quantification of 

damage of cotton crops due to 2,4-D herbicide spray drifts. The deployment of LiDAR 

scanners and hyperspectral sensors for this study was ground-based, i.e. as “proximal 

sensing” devices, while multispectral imagery was satellite-based, i.e. a “remote 

sensing” system. Recognising the lack of tools for assessing 2,4-D herbicide damage, 

this study aimed to provide different alternatives, from within the crop sensing options, 
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that do not rely on the physical appearance of the crop. The methods implemented and 

described in the following sections were designed in relation to the technology and 

case under study. 

Crop injuries could vary due to chemical dose and timing of exposure. The rationale 

and main considerations in the experimental design for the timing of exposure and 

dose were based on the most susceptible stage of growth for the production and 

development of cotton bolls. The rates of the chemical were selected based on the 

essential need to capture changes caused by herbicide in the controlled sub-study 

discussed below. 

Two sub-studies (controlled and uncontrolled) were designed in order to get a 

comprehensive understanding of spectral and canopy changes in the plant, and also to 

include one of the most common remote sensing techniques, multispectral satellite 

imagery, in the development of remote sensing methods to predict potential yield loss. 

The controlled sub-study used an experimental design with three different doses (0%, 

5% and 50% of the recommended commercial label rate) and three different times of 

exposure (4-5 nodes, 7-8 nodes and 11-12 nodes) as factors analysed during four 

different sampling dates after exposure (two, seven, 14 and 28 days after exposure – 2 

DAE, 7 DAE, 14 DAE and 28 DAE, respectively). The uncontrolled sub-study, on the 

other hand, had one timing of exposure and dose rate, but six sampling dates relative 

to the single day of the exposure (-42 DAE, -10 DAE, 6 DAE, 38 DAE, 54 DAE, and 

70 DAE). 

This approach allowed the development of models for each reflectance-based 

technique, that is, hyperspectral and multispectral, to be constructed to quantify and 

map the yield as a function of damage. The three sensors were treated statistically as 

being independent and separate from each other, i.e. they can be used independently 

to acquire the necessary data, with their respective data processing workflow. This 

approach was advantageous insofar as it allowed more alternatives for assessing the 

damage to cotton crops, according to available resources. 

Measurements of physiological aspects and hormone contents, such as photosynthesis, 

stomatal conductance, indole acetic acid (IAA) and abscisic acid (ABA), were taken 

to understand what was happening internally in the 2,4-D-contaminated plants and 
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consider discuss how these changes affected spectral responses, canopy structure, and 

yield. One of the potential limitations of the proposed analyses of the IAA and ABA 

hormone contents was the limited number of plant physiology laboratories in Australia 

that could process the samples. A laboratory at the University of Tasmania was willing 

to analyse the leaf samples from this project. 

Environmental conditions during the summer of 2014-2015 caused, in some cases, 

delays of up to five days in the proposed field work schedule in the controlled sub-

study. The delays were, however, always considered to be in the acceptable range, 

except for the LiDAR experiments where it was only possible to do field work for the 

first two out of three proposed timings of exposure, and the first three dates out of four 

after exposure. 

A substantial effort went into looking for real cases of 2,4-D-herbicide drifts between 

2009 and February 2015, after which the data collection stage of this research study 

ceased. Unfortunately, there was insufficient information available to assess the 

capabilities of multispectral satellite imagery for the detection and mapping of the 

degree of herbicide drift damage in cotton crops across a range of farms or locations 

during this period. However, there was a reported accidental exposure to 2,4-D in a 

commercial cotton farm in January 2015, on which the Objective 2 of this thesis could 

be developed. There were massive drifts reported in three other growing regions across 

Australia during the following growing season, in January 2016, but the data collection 

stage of this thesis was completed by then, and there was insufficient time remaining 

to process and analyse the new satellite data from these events. It was therefore not 

possible to include them in this research project. 

The spatial resolution of the multispectral sensor Landsat-8 Operational Land Imager 

(OLI) is 30 m by 30 m, potentially imposing a limitation when examining the 

relationships between multispectral bands and canopy reflectance. The statistical 

approach used in this study was, however, able to overcome this potential limitation.  

1.7. Thesis organisation 

This thesis presents different alternatives for assessing damage to 2,4-D-contaminated 

cotton crops from the agricultural remote sensing perspective. The organisation of this 

thesis is as follows, and is summarised in Figure 1-1. 
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Figure 1-1. The schematic layout of the thesis 

Chapter one discusses the background to the research study, reviewing the extent of 

the problem, and its agronomic and economic significance, and the scope and 

limitations of the methods implemented in this study. 

Chapter two describes the cotton industry and the significant aspects of yield 

production, the implications of crop stress caused by herbicide drifts in agricultural 

crops, particularly in cotton crops affected by off-target movements of the phenoxy 

herbicide 2,4-D. The traditional assessment of 2,4-D spray drift in cotton and its 

limitations are also discussed. Agricultural remote sensing or crop sensing are also 

reviewed. 
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Chapter three describes the general aspects of the research methods used in this study. 

Chapter four is the first technical chapter and covers the use of hyperspectral sensors 

for the detection and prediction of yield loss caused by herbicide drift. It also presents 

a comprehensive description and analysis of the physiological and hormone content 

changes in relation to the timing of exposure, the dose and the time after the exposure, 

and their relationship with reflectance changes. This chapter addresses the first 

objective of the research study presented in this thesis. 

Chapter five, the second technical chapter, covers the use of multispectral satellite 

sensors and the analysis of their data in unaffected and 2,4-D-affected areas. It explores 

the applicability of individual multispectral bands, vegetation indices and the 

integration of all multispectral bands in the prediction models of yield in both 

unaffected and affected areas. The content of this chapter covers the second objective. 

Chapter six explores the capabilities of LiDAR for the characterisation of canopy 

structure in different treatments of cotton plants affected by 2,4-D. Canopy height and 

canopy volume are analysed and the potential limitations of LiDAR are also presented. 

This chapter covers the third objective of this study. 

Chapter seven concludes the main results and discusses their relevance in the context 

of the traditional methods of assessing crop damage, followed by recommendations 

for the implementation of each technique. Their potential limitations are also 

discussed.
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Chapter 2  

LITERATURE REVIEW 
 

2.1. Introduction 

This chapter reviews the state-of-the-art technologies available for the detection of 

herbicide drift by the use of remote and proximal sensing. Herbicide drift or spray drift 

is defined by the APVMA as “the physical movement of spray droplets (and their dried 

remnants) through the air from the nozzle to any non- or off-target site at the time of 

application or soon thereafter” (APVMA 2008, p. 4). Herbicide drift, therefore, can 

cause damage to crops that are susceptible to the active ingredient of the sprayed 

chemical. 

This chapter presents basic information on remote sensing of crop growth and 

productivity (Section 2.2), the different aspects impacting crop performance (Section 

2.3), the consequences of herbicide drift in agricultural crops (Section 2.4), while the 

specific effects of 2,4-D contamination in cotton crops are presented in Section 2.5. 

The applicability of remote sensing to agricultural crops, and in particular to those 

crops affected by herbicide drift is discussed in Sections 2.6 and 2.7, respectively. 

Specific and more detailed literature reviews are presented in chapters 4, 5 and 6, 

according to the objectives defined in each of those chapters. 

2.2. Agriculture remote sensing 

Precision Crop Management (PCM) or Precision Agriculture (PA) practices reduce 

inputs, maximise profitability, and tend to protect the environment (Barnes et al. 2000; 

János 2011). Detailed information about crops, including the spatial variability of 

physiological status, healthiness and stress conditions, is required to implement PCM 

or PA, and remote sensing techniques are one of the effective approaches that can be 

used to supply that information, due to their capacity to integrate spatial variability 

into crop status analysis (Huang & Thomson 2010; Zhao et al. 2007a). It is possible, 

using remote sensing data, to measure canopy structure, estimate yield, and detect 

stress (caused by different factors) many times during the growing season, supplying 

detailed information to farmers that can be used to improve the effectiveness of their 
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crop management strategies (Jensen et al. 2008; Liu, Zhao & Guan 2013). Early 

detection of crop stress offers the opportunity to mitigate losses and secure profitability 

for farmers. This study examined three remote sensing techniques to detect, assess and 

map the extent of crop stress caused by herbicide drift, as a potential tool to detect 

damage as soon as an accident has occurred, and particularly before any visual 

symptoms are evident. 

2.3. Cotton crops and yield production 

Good lint quality and high yield depend on specific agricultural management practices 

tailored to the unique characteristics of the growing areas. Achieving a successful 

cotton crop, that is good quality and quantity, is challenging. Such cotton crops depend 

to a large extent on specific conditions of temperature, water and soils; these are 

environmental variables that, with the possible exception of water in irrigated crops, 

can be predicted to some extent, but not controlled. (National Cotton Council of 

America 2013b; Ritchie et al. 2004). Small changes in these variables can, 

additionally, affect yield and have a significant impact on expected profitability 

(Cotton Australia 2013d; Ritchie et al. 2004). Much research has been undertaken to 

understand and optimise the production of cotton crops. Some studies, for example, 

have concluded that planting should be done when the minimum soil temperature is 

around 16°C for three consecutive days at sunrise and through the growing season 

(Quinn & Kelly, 2011). Temperatures lower than 12°C and higher than 30°C can 

adversely affect yield, (Quinn & Kelly 2011; Ritchie et al. 2004).  

Water is also a major factor affecting crop yield. Water stress causes stomatal closure 

and thereby reduces transpiration and causes an elevation of leaf temperature, and 

these effects are directly related to flower production (Detar, Penner & Funk 2006). 

Research conducted by Perumal et al. (2006) support those findings when it was 

possible to correlate transpiration rate changes with the shedding of squares and bolls 

in stressed cotton plants. Significant reductions in photosynthesis, stomatal 

conductance and transpiration rates were identified. Physiological shedding was 

highly positively correlated with transpiration rate and flower production, and 

significantly negatively correlated with stomatal resistance. The temperature of leaves 

also increased, as stomatal conductance decreased and stomatal resistance increased 

for comparatively less effective photosynthesis, and concomitantly affecting boll 
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retention (Perumal et al. 2006; Sullivan et al. 2007). This present study analysed 

photosynthesis and stomatal conductance, as they are also strongly affected by 

phenoxy herbicides (Perumal et al. 2006), and identified their relationship to the 

spectral response of the plant and yield. These results are presented in Chapter 4 as 

part of the Objective 1 of this thesis. 

2.4. Crop stress caused by herbicide spray drifts 

Crop stress can be caused by lack of water and/or nutrients, but it can also be caused 

by management practices in surrounding farms, such as those resulting in herbicide 

drifts. Herbicide drift is the movement of pesticides into non-target areas; in other 

words, drifts happen when the herbicide leaves the intended target site and moves to 

other places (Figure 2-1). There are two different types of drift: a) vapour and b) 

particle or droplet drift (Ball, Corp & Dami 2014; Wilson n.d.). The second type is the 

most common cause of off-target movement, but both are highly dependent on 

environmental conditions. Particle drift depends on several variables, such as wind 

speed, droplet size, nozzle type, sprayer pressure and formulation (DEDJTR 2016). 

Vapour drift happens when particles of the active ingredient evaporate or volatilize 

during application and depends mainly on the temperature in addition to the variables 

affecting particle or droplet size (Clemson University Cooperative Extension 2013a; 

DEDJTR 2016). 
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Figure 2-1. Potential movement of droplets to non-target areas. 

Source : (GRDC 2013; Nicolai, Stahl & Herzfeld 2015; Roseboro 2014) 

Certain environmental conditions have to be satisfied to avoid herbicide drifts, more 

rigorously when highly volatile formulations are to be applied. Some specific optimal 

conditions are: a) wind speed higher than 3 km/h and less than 15 km/h (DEDJTR 

2016) but some other organizations like Pesticide Environment Stewardship (PES) 

recommend not to spray if the wind speed is higher than 16 km/h because of the 

increased risk to downwind areas adjacent to the target site; b) moderate humidity and 

c) absence of temperature inversions in the atmosphere (DEDJTR 2016; Grain 

Research and Development Corporation [GRDC] 2013; Wilson n.d.). 

The effects in contaminated plants depend on the mode of action of the chemical 

(Table 2-1), as different herbicides affect the biochemistry of the plant in different 

ways. Photosynthetic inhibitors gradually block the photosynthetic process 

(carbohydrate production) causing slow starvation manifested by chlorosis and 

posterior necrosis within susceptible species (University of Minnesota 1999) (Figure 

2-2, left). The photosynthetic pigment inhibitors do not allow the production of 
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compounds that protect chlorophyll from destruction (Figure 2-2, right), while the 

plant growth regulators disrupt hormone balance and protein synthesis at multiple sites 

in the plant, causing rapid or uncontrolled growth abnormalities (University of 

Minnesota 1999) (Figure 2-3). 

Table 2-1. Herbicide classification based on the mode of action. 

Class Sub-classes Description 

Modes 
of 

action 

Plant growth regulators Referred as auxins. They mimic the action of naturally-occurring auxins 
causing rapid or uncontrolled growth. 

Photosynthesis 
inhibitors 

Inhibit photosynthesis in the plant. 

Photosynthetic pigment 
inhibitors 

Prevent the plant from forming photosynthetic pigments. 

Lipid synthesis 
inhibitors 

Inhibit the production of lipids causing disruption in the production of cell 
membranes until plant growth stops. 

Amino acid synthesis 
inhibitors 

Simulate specific enzymes to prevent the production of amino acids 
essential for plant growth and development. 

Seedling growth or plant 
growth inhibitors 

Interrupt new plant growth and development.  

Cell membrane 
disruptors 

Form compounds such as superoxides and hydroxyl radicals that destroy 
the cell membrane of the plant. 

Unknown Herbicides whose mode of action is not well understood. 

Note: 2,4-D herbicide is classified as a plant growth regulator. Source: (Kappler & Namuth 2004) 

 

  
Figure 2-2. Effects of herbicide’s mode of action in susceptible plants. 

Left: photosynthetic inhibitor and right: photosynthetic pigment inhibitor. Source: (Kappler & Namuth 2004; North 
Carolina State University 2015) 
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Figure 2-3. Effects of herbicide in susceptible plants: growth regulators. 

Source: (Kappler & Namuth 2004; North Carolina State University 2015) 

Herbicide drifts can cause damage not only to crops but also to animals, the 

environment and humans, as effective active ingredients of the formulation leave the 

attempted target, reaching areas susceptible to those chemicals (DEDJTR 2016; 

Wilson n.d.). 2,4-D is an effective phenoxy herbicide that is used to control weeds at 

low cost when it is used properly, but it has a history of causing drift problems. These 

two main characteristics, low cost and high effectiveness, saw the adoption of 2,4-D 

as one of the most common herbicides, not only in the cereal cropping sector but in 

many forage, forestry and food crop systems. The high and constant demand for this 

herbicide has created serious problems due to a high risk of environmental 

contamination, soil-degradation and effects on crops that are not the target 

(Department of Agriculture and Food [DAF] 2016; Industry Task Force II on 2-4-D 

Research Data 2013; Munk et al.). 

The herbicide 2,4-D is a selective plant growth regulator designed to attack broadleaf 

weeds by causing uncontrolled growth by simulating the effects of indole acetic acid 

(IAA), which is the main hormonal growth regulator of the plant (DEDJTR 2014). It 

is a systemic herbicide, and therefore affects only parts of the plant with which it is in 

direct contact. (Figure 2-3 and Figure 2-4). Particles with sub-lethal doses of the 

chemical can reach the non-target crops from any direction, increasing the difficulties 

in accurately locating damage in the entire potentially affected area. This research 

project aimed to develop approaches for applying remote sensing techniques in order 

to map damage caused by herbicide spray drift without restrictions on the size of the 

potentially affected area. These approaches are presented in Chapter 5 of this thesis; 

they address Objective 2. 
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Figure 2-4. 2,4-D-contaminated cotton crop. 
Source: (Ballew 2015; Cotton Australia 2017) 

Herbicide drifts of 2,4-D are common in Australia and around the world. Industries 

such as grapevines, tomatoes and cotton have been facing drift occurrences since 2,4-

D was first introduced in the 1940’s (Munk et al. 2014). Cotton plants are particularly 

susceptible to 2,4-D herbicide drifts, as they are broadleaf and perennial plants with a 

complex structure and well-defined patterns of growth (Cotton Australia 2013d; 

Kantartzi & Stewart 2013; North Carolina State University Extension Service 2010). 

The cotton industry in particular, due to its proximity to cereal grain producing areas, 

has had to deal with 2,4-D damage every season. Effects vary from non-yield damage 

to severe yield loss, with significant negative impact on incomes (Cotton Australia 

2012, 2013b; Munk et al. ; Zhang, H et al. 2013). Exposure of cotton crops to 2,4-D is 

thought to have caused more than 10 million dollars loss due to damage in an area of 
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approximately 200 km2 during the 2015-16 growing season. Common sense was urged 

when applying this chemical (Cotton Australia & Grains Growers 2016). Millions of 

dollars were also reported lost during the 2012-13 and 2014-15 seasons due to 2,4-D 

damage in cotton crops in Australia, with more than 12,000 ha being affected (Cotton 

Australia 2013a, 2015a). 

2.5. Cotton crops, 2,4-D herbicide drift and traditional 

assessment 

Cotton growing areas in Australia are located in two of the six states. The major area 

is located in New South Wales, and the second one in Queensland (Figure 2-5). The 

cotton industry is one of the largest export earners, with more than 1000 cotton farms 

reported by Cotton Australia (2016). The cotton industry was the only major industry 

reporting growth in production (tonnes), area (ha) and value ($) during the 2015-16 

season, compared to 2014-15 (48%, 41% and 58.6%, respectively) (Australian Bureau 

of Statistics [ABS] 2017b, 2017a). 

Cotton is a comparatively small field crop in terms of harvested hectares in Australia, 

but of the major crops, it is also the industry with the highest return per produced 

hectare (approximately A$5,410/ha). Cotton was the second highest commodities 

earner during 2009-2012 and 2013-14 in NSW. It has been the highest in Queensland 

since 2009, although there was a dramatic drop in 2012-2013 because global prices 

fell and production was higher than the years before, oversupplying the market (ABS 

2013). The highest cotton commodity values in Australia were more than 2300 million 

dollars during the 2011-2012 season. The gross value was just above A$1900 million 

in the 2012-13 season, lower than the previous season in spite of increased production. 

A similar value was achieved during 2010-2011, representing 261% more than the 

previous season (2009-2010) (ABS 2013; Cotton Australia 2016). 
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Figure 2-5. Cotton growing areas in Australia. 

Source: Land use 2005-2006 (Australian Bureau of Agricultural and Resource Economics and Sciences [ABARES] 
2010); Australian Standard Geographical Classification (ASGC) Digital Boundaries (ABS 2011) 

There have been many efforts to improve the inherent resistance of the plant to 2,4-D 

herbicide, given the importance of this crop to the Australian economy. Charles et al. 

(2007) compared non-modified cotton with transgenic cotton, and although resistance 

to unintentional damage increased, effects were still evident in the transgenic cotton. 

Regulations and annual campaigns by Cotton Australia to educate 2,4-D users have 

also reduced herbicide drifts from more than 10% in 2008 to just 3% in 2012-2013 

(Cotton Australia 2013c). Unintentional phenoxy herbicide drifts can nevertheless still 

occur at any time, and cotton growers lack the appropriate information to detect 

damage to their crops soon after the event, to allow rapid re-designing of management 
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plans and mitigate loss. The present research project was applied to cotton because of 

the economic magnitude of the problems caused by accidental 2,4-D drift in this 

industry. 

Traditional methods for the detection of 2,4-D injuries depend on the visual evaluation 

of symptoms, and can usually be applied no earlier than two to four weeks after the 

event, depending on the quantity of chemical that reaches the plants. There is, 

therefore, a substantial time interval in which mitigation plans could have been 

implemented if there were suitable early detection techniques. Many research studies 

have supplied information about physical or external changes of the plant caused by 

2,4-D drift. Some examples are Al-Khatib et al. (2004), Everitt and Keeling (2009) 

and Charles et al. (2007) where cotton plants were sprayed with 2,4-D and other 

herbicides at rates that simulated spray drift; cotton showed injuries at all proposed 

timings, even with the lowest rates of 2,4-D (0.28 g a.i/ha – 4 g a.i/ha). However, their 

results illustrate the potential inaccuracies of yield loss estimates based on visual 

symptoms. Doses as low as 0.28 g a.i/ha could visibly injure the crop in 50% of cases 

according to visual assessments 14 days after treatment (DAT), but yield was reduced 

in less than 1% of cases. Visual assessment at the end of the season (120 days after 

planting) with a higher dose (28 g a.i/ha) only detected damage in 18% of cases, with 

an accompanying yield loss of 50% (Everitt & Keeling 2009). 

The problem related to accuracy in visual estimations can be due to three variables that 

pertain to: a) the capacity of the plant to recover as the plant continues to grow after 

unintentional damage; b) how much herbicide reaches the leaves -as injuries increase 

when the dose is higher; and c) the timing of a herbicide drift in relation to key stages 

in reproductive development (Munk et al. ; National Cotton Council of America 

2013a). Remote sensing techniques are potential tools to resolve those limitations since 

visual assessment is not able to supply accurate information on potential losses or 

spatial variability in the crop status. This research used three different alternatives to 

traditional assessment equivalent to Objectives 1, 2 and 3, respectively: a) 

hyperspectral proximal sensor; b) multispectral remote sensor and c) LiDAR scanner. 

The first objective of this thesis also provides a better understanding of the internal 

response of the plant and how this affects yield and quality. 



Chapter 2  Literature Review 

22 
 

2.6. Sensing technologies for agricultural crops 

2.6.1. Reflectance-based sensors 

Remote sensing techniques are widely applied in the agriculture sector due to their 

ability to provide information about biophysical and physiological variables without 

the need to take destructive samples, and their ability to integrate the concept of spatial 

distribution, environmental conditions and soils with high accuracy (Tian, Zhu & Cao 

2005). Accurate results were obtained to identify disease or stress caused by pesticides 

(Henry et al. 2004), water (Detar, Penner & Funk 2006) (Figure 2-6), nitrogen 

(Schlemmer et al. 2013) and other nutrient insufficiencies (Chen et al. 2011; Tian et 

al. 2012) (Figure 2-7a).  

 
Figure 2-6. Spectral responses of a grapevine crop due to water deficiency. 

Source: (Rapaport et al. 2015) 

Remote sensing data have also been used to discriminate species (Ghosh et al. 2014; 

Zainol Abdullah et al. 2014) (Figure 2-7, D), canopy variables and structure (Lefsky 

et al. 2002; Rama Rao 2008) (Figure 2-7, B and C), estimate different biophysical and 

physiological variables (Figure 2-7, A) and pigmentation contents of vegetation over 

large number of crops as indicators of healthiness (Barnes et al. 2000; Li et al. 2001; 

Pinter et al. 2003) (Figure 2-7, A). Although several studies have implemented and 

tested remote sensing techniques to estimate different crop variables based on spectral 

responses over crops, the potential of these techniques for the detection and assessment 

of herbicide drift damage on cotton has yet to be explored. Objectives 1 and 2 explored 

reflectance-based sensors for detection of 2,4-D-injured cotton plants. 



Chapter 2  Literature Review 

23 
 

 
Figure 2-7. Spectral response variability due to different crop conditions. 

a) Variation in nitrogen and pigment concentrations in maize; b) maturity of red mangrove leaves; c) canopy 
structure of cotton crops and d) different crop types. 

Source : (Lagomasino et al. 2014; Schlemmer et al. 2013; Zarco-Tejada, Ustin & Whiting 2005; Zhang, H et al. 2013) 

Different remote sensing approaches have been developed to monitor crop variables, 

including vegetation indices or models that integrate the most suitable bands to 

discriminate specific variables; different approaches with highly applicable results 

confirm the potential use of those techniques. Photosynthesis is a key consideration 

when evaluating biomass production as most of the dry matter is produced by plant 

photosynthesis, so it can be used to monitor growth status (Tian, Zhu & Cao 2005). 

Carter (1998) estimated photosynthetic capacity-Amax based on reflectance of a mixed 

stand of loblolly pine (Pinus taeda L) and slash pine (P. elliottii Engelm. var elliottii), 

using hyperspectral imagery with a bandwidth of 1.0 nm. The best relationship 

between Amax and spectral responses was the ratio Near-infrared (NIR) to red edge at 

R820 and R701, and they also found that the red edge inflection point at R701 is more 

important than the NIR range, as the variability of NIR between R750 and R850 did not 

change the relationship between the ratio and Amax. Tian, Zhu and Cao (2005), in other 

research that supports the above findings, developed and tested a ratio vegetation index 

R(810/680) to estimate the leaf net photosynthesis and canopy leaf photosynthetic 
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potential in rice, with a close linear relationship between the index and the 

photosynthesis measures. It was also possible to demonstrate that the first two leaves 

at the top of the rice canopy are the best for monitoring photosynthesis and crop status. 

Both the experiments described above agree that reflectance near to R700 and R800 can 

be used to estimate photosynthetic capacity and other highly correlated variables such 

as stomatal conductance and chlorophyll content. Photosynthesis, stomatal 

conductance and hormone contents are variables that were measured and analysed as 

part of the aim of this study and presented in Chapter 4. 

Crop sensing techniques have also been used to assess water content or water stress in 

situations where these factors can affect yield. Short-wave near-infrared (SWNIR) 

range has a high correlation with water status in the plant. Tian, Zhu and Cao (2005) 

found that R810 and R1500 were strongly affected by leaf structure and water status, 

respectively, when rice crops were exposed to different water regimes. Detar, Penner 

and Funk (2006) estimated water stress based on temperature changes in cotton 

canopies. Multiple regression techniques were applied to estimate the increase in 

temperature above the temperature baseline. Several strong relationships between two 

or three combinations of bands were found (R2 > 0.93) between un-stressed and 

stressed crops around 750 nm and 960 nm, which can be explained by the stability of 

the spectral differences in that range of the spectrum. The technology that was used in 

Detar, Penner and Funk (2006) (including the SWIR bands) can be used to explain the 

level of crop stress after a spray drift event. It will be possible to detect water stress in 

the crop and relate this to photosynthesis, canopy temperature and conductivity as 

affected by an accidental spray drift. 

The time at which the imagery is captured is an important aspect to consider when 

estimating yield using remote sensing data. Zarco-Tejada, Ustin and Whiting (2005) 

demonstrated that there is a temporal and spatial relationship between NDVI – a 

structural vegetation index - and cotton yield variability associated with the time at 

which the imagery was captured. Correlation coefficients decreased significantly from 

r = 0.61 to r = 0.06, and k-mean clustering techniques used to segment the imagery 

into low, medium and high potential yield decreased from 0.36 to -0.01, with 

percentage of accuracy from 58.60% to 31.73%, from images captured at an early stage 

of crop growth as compared to those captured close to harvest. Those results can be 
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explained by the influence of canopy stage over spectral responses, and NDVI should 

therefore only be used to estimate yield at specified stages in crop growth (Figure 2-7, 

B). Yang et al. (2004), in other research, tested narrow and broadband vegetation 

indices, and individual narrow bands, to predict yield. Individual narrow bands were 

better able to explain yield variability (0.61 < R2< 0.69) compared to narrow vegetation 

indices such as BNDVI, GNDVI and NDVI, where the R2 values were between 0.06 

and 0.65. The first approach had better results than the second one, but both were 

significant. Images were captured when the crop reached its maximum canopy cover, 

which can explain the results on the basis of any of the structural indices used. The 

research described in this thesis used spectral responses from a hyperspectral sensor 

and multispectral imagery (narrow bands and broadband vegetation indices) to 

estimate cotton yield after an unintentional injury caused by 2,4-D. The above is 

approached in Objectives 1 and 2. 

2.6.2. Laser-based sensors 

Leaf area density (LAD) in individual horizontal layers can be used to represent 

vertical canopy structure in crop canopies and it has been related to yield, growth rate 

and nitrogen allocation (Hosoi & Omasa 2009). Other structural canopy variables can 

be calculated based on LAD, such as Leaf Area Index (LAI). Limitations to calculating 

LAD occur when it is not possible to distinguish between leaves, stems and other parts 

of the plant that are not part of the canopy structure. It is necessary in those cases to 

represent the canopy structure based on Plant Area Density (PAD) or Plant Area Index 

(PAI). 

LiDAR technologies have active sensors and scanners that use a laser beam to measure 

the distance between the target and the device, from which a 3-D surface can be 

created. They have been widely applied in forestry to accurately measure variables 

related to the horizontal and vertical structure of canopies (Coops et al. 2007; 

Ediriweera et al. 2011). These include vegetation height (Figure 2-8), diameter at 

breast height (DBH), biomass, LAD, PAD and LAI (Coops et al. 2007; Jensen et al. 

2008). Agricultural applications of LiDAR are relatively new and limited in scope. 

Research in wheat (Hosoi & Omasa 2009) and oil palm plantations (Tan, Kanniah & 

Cracknell 2012) have demonstrated the potential use of this technique to estimate 

canopy structure under different management conditions or growth stages. Hosoi and 
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Omasa (2009) demonstrated a near-perfect linear relationship between PAD directly 

measured in the field with LiDAR-derived PAD (R2=0.95), and also a strong 

correlation between the dry weight of stems and leaves and LiDAR-derived area of 

stems and leaves (R2=0.94). 

 
Figure 2-8. Plant height maps computed from LiDAR scans in wheat fields. 

Source: (Friedli et al. 2016) 

Canopy structure variables vary depending on management conditions and stress or 

disease, and they are highly correlated with yield in crops. Measuring those variables 

can, therefore, provide valuable information to monitor growth rates and health. State-

of-the-art LiDAR techniques in agriculture are well-defined and their potential value 

has been proved. The third objective of this thesis, therefore, addressed the use of 

LiDAR sensors to capture canopy structure variability after herbicide drift, in order 

to understand the behaviour of the canopy once it has been affected by unintentional 

injury and speculate on how this behaviour was related to yield. 

2.7. Remote sensing techniques and detection of herbicide 

drifts 

Remote sensing tools have also been applied to detect herbicide drift on crops with 

promising results. Moreover, it has been possible to map and classify damage with 

high accuracy. Robles, Madsen and Wersal (2010) used multispectral imagery to 

estimate phytotoxicity caused by two different herbicides (glyphosate and imazapyr) 
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on water hyacinth (Eichhornia crassipes). They found close linear relationships 

between phytotoxicity and spectral responses, from 760 nm to 900nm, one week after 

the event. However, when the phytotoxicity level was very low the prediction 

equations tend to underestimate or overestimate phytotoxicity. The limitation of this 

study is that the variable used to assess the damage (phytotoxicity) was based on visual 

estimation. Changes in the colour of the leaves could additionally be associated with 

causes other than to herbicide damage. Henry et al. (2004) tested the potential use of 

hyperspectral sensors to determine the type and degree of unintentional injury caused 

by glyphosate and paraquat on corn and soybean that had been treated at an early 

growth stage. It was possible to distinguish between healthy and unhealthy plants with 

classifications accuracy higher than 92% of corn. They also concluded that the most 

useful technique to distinguish between different rates or doses is wavelet analysis and 

the best ten bands between 600 nm and 670 nm, and 770 nm and 950 nm were chosen. 

The mode of action of a herbicide (Table 2-1) causes differences in spectral responses 

that can be detected by proximal sensors. Buehring (2004) tested the accuracy of 

classification methods using hyperspectral imagery as a function of herbicide damage 

based on a percentage of visual injury, yield reduction, herbicide rate and mode of 

action. They tested herbicides with three different modes of action in cotton and corn 

and found that early detection increased the accuracy of prediction of the percentage 

of yield reduction and discrimination between herbicides. However, they also 

demonstrated that the optimum vegetation index and the best spectral bands to estimate 

yield reduction varied according to the herbicide. That can be explained as being due 

to the herbicides tested in this research having different modes of action in the plant. 

Henry et al. (2004) tested two different herbicides: Glyphosate (plant growth regulator) 

and paraquat (photosynthetic inhibitor). Their study also demonstrated accuracy 

fluctuations due to the mode of action, the affected crop and the days after exposure 

(DAE) with classifications results higher than 92% for herbicide rates as low as 3% of 

the recommended label rate. 

Different studies have then demonstrated high prediction capabilities of spectral-based 

remote/proximal sensing for detection of herbicide drift damage in several crops and 

herbicide modes of action, but none of them has explored these techniques in 2,4-D-

injured cotton. Furthermore, the literature review highlighted the capabilities of 
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LiDAR in characterising crop canopy structure but no research study has been found 

testing the capabilities of LiDAR in 2,4-D-injured cotton. Objectives 1, 2 and 3 of this 

thesis addressed this particular issue. 

2.8. Summary 

This review examines the problems caused by 2,4-D and discusses how the traditional 

assessment of damage (based on visual assessment) could be improved. Remote and 

proximal sensing are tools that capture information of the objects under study without 

direct contact. The review has provided evidence regarding the potential uses of 

remote sensing techniques to assess several variables associated with crop status under 

different management and stress conditions. There is, however, a lack of research into 

the assessment of 2,4-D drift over susceptible crops using remote sensing techniques. 

The aim of this research project was to fill this information gap in the use of remote 

sensing to detect, assess and map 2,4-D herbicide drift in cotton crops using three 

methods: hyperspectral, multispectral and LiDAR sensors (Objective 1, 2 and 3, 

respectively). Factors such as growth stage of the crop, yield reduction and doses of 

2,4-D were also analysed to understand their influence on remote/proximal sensing 

data. 
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Chapter 3  

RESEARCH METHODS 
 

3.1. Introduction 

This chapter describes general aspects of the research methods used in this thesis, 

including the location of the study area (Section 3.2) and methods of data capture and 

acquisition (Section 3.3). This study comprised two sub-studies: a) controlled 

exposure and b) uncontrolled exposure to 2,4-D. The present chapter also describes 

how each sub-study area contributed to the objectives of this research as presented in 

Section 1.4. 

Objectives 1 and 3 are addressed in the controlled contamination sub-study and the 

Objective 2 is addressed in the uncontrolled sub-study. Descriptions and more detailed 

information pertaining specific methods, study area and data collection are presented 

and discussed in Chapters 4, 5 and 6 which corresponded to Objectives 1, 2 and 3, 

respectively. 

3.2. Study area 

The study area for both sub-studies was located in Jondaryan, a rural town in the 

Darling Downs region, about 140 km west of Brisbane and midway between 

Toowoomba and Dalby, Queensland, Australia. The Darling Downs has horticultural, 

oilseed, cereals and cotton industries that compete with each other for natural resources 

(Cotton Catchment Communities [CRC] 2009). Jondaryan is currently part of the 

Toowoomba Regional Council (Figure 3-1) but was one of the 23 local government 

areas where cotton was grown in Queensland in 2008 (ERIN 2008). It had a population 

of 377 according to the 2011 census. The largest part of the shire comprises black soil 

alluvial plains, with undulating basaltic uplands (Centre for the Government of 

Queensland 2015). The general soil type is black self-mulching cracking clays with 

dominant principal profile form as uniform fine cracking, smooth faced peds, and dark 

clay horizon underlain by brown/mottled clay (Department of Natural Resources and 

Mines [DNRM] 2015). 
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Figure 3-1. General location of the study area. 

The red circle marks the location of the Jondaryan shire. Source: (ABARES 2010; ABS 2011) 

The main industries of employment in Jondaryan are sheep, beef cattle and grain 

farming (Figure 3-2) which in total represent 20.1% of the employed people aged 15 

years and over (ABS 2017). The grain farming systems surrounding the cotton crops 

spray 2,4-D as an effective method to control summer weeds (Cotton Australia & 

Grains Growers 2016). The cotton crops are usually reaching key maturity stages for 

development of fruits when 2,4-D spray activity occurs. This activity, in some 

environmental conditions, results in potential risk for cotton farmers, because the 

chemical can move tens of kilometres away from the target cereal crops. 
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Figure 3-2. Study area location, irrigation management and land use. 

The yellowish area indicates the general location of the study area. The background on the bottom-left image is a 
true colour composite of a Worldview-3 image (red, green, blue bands in the RGB colour channel). Source: 

(ABARES 2010; ABS 2011) 

The cotton growing season in Australia starts in September-November for planting 

and goes until March-June for harvesting (Cotton Australia 2015b). In total, the 

growing period can last for up to 6 months and it follows a complex but well-defined 

and consistent pattern of growing under optimal conditions (National Cotton Council 

of America 2013b). Cotton is a perennial plant, so it can survive year after year. This 

characteristic allows the plant to activate a defence mechanism to improve its chances 

of survival under stress conditions by dropping or “shedding” some flowers or small 

bolls, allowing the plant to maintain vegetative growth. Once the plant has recovered 

sufficiently, it resumes reproductive growth (CottonInfo 2016). The growing cycle has 

four main stages (Figure 3-3) that overlap over time: 

1. germination and emergence, 

2. vegetative growth and canopy development, 

3. flowering and development, and 

4. maturation 
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Figure 3-3. Growing and development cycle of cotton plants. 
Source: (About Organic Cotton 2016; National Cotton Council of America 2013b) 

Germination and emergence include root development, which under optimal soil 

temperature and moisture conditions can result in emergence five to 10 days after 

sowing (DAS) (Cotton Australia 2015b). Vegetative growth is defined as starting as 

soon as the cotton seedlings emerge and the cotyledons are stable. The main stem 

consists of a series of internodes and nodes to which vegetative branches are attached. 

The vegetative branches and main stem can also produce fruit branches that will 

generally arise from nodes 6 or 7 on the main stem. The fruiting branch grows in a zig-

zag pattern with multiple fruiting positions. Flowering can last approximately seven 

days after three weeks of squaring (that is, the beginning of the flowering and boll 

development stage). A small green boll is exposed once the flower has desiccated. 

During the maturity stage, the boll will continue to grow until it matures (after 20-25 

days) and opens, approximately 50 days from flowering. This growing cycle from 

flowering to boll opening will continue in a pattern up to the plant. Crops are ready for 

defoliation applications once the last white flower is about four to five nodes from the 

terminal (that is, the top of the plant) (CottonInfo 2016). 
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Once the flowering and development stage starts, some four to five weeks after 

planting, the vegetative growth of the plant slows down, as much of its resources are 

then put into reproductive growth. Good management strategies aim at maintaining a 

balance between vegetative and fruit development (CottonInfo 2016) to maximise boll 

load. The period between squaring and flowering, is not affected by external factors or 

plant stress. However, a vigorous vegetative growth, after the sixth node, and between 

40 to 90 DAS, is important as it supports the future boll load. 

The growing season in this study area started on the 27th October 2014 and finished on 

the 24th April 2015. The crop management in both the sub-study areas was dryland 

cotton (Figure 3-2) with three irrigations scheduled during the growing season. 

Standard management practices such as control of weeds, pests and refuge cotton 

paddocks were used in the study area as part of the normal commercial management 

plan. 

3.2.1. Controlled sub-study 

The study area (Figure 3-4) for this case (Chapters 4 and 6) was located on a 

commercial cotton farm (151°32'40.0"E, 27°25'47.5"S; and 376.8 meters above sea 

level). Three doses were investigated: Nil, 28 g a.i/ha and 280 g a.i/ha of 2,4-D 

(Amicide Advance 700®; 700 g/L 2,4-D) at three different timings of exposure: 4-5 

nodes (S1), 7-8 nodes (S2) and 11-12 nodes (S3). Data was collected at two, seven, 14 

and 28 days after each exposure (days after exposure, DAE), for each timing of 

exposure and herbicide rate. Table 3-1 summarises the treatment combinations.  

Table 3-1. Controlled sub-study treatment combinations. 

Timing of 

exposure (S) 

Percentage of 

recommended label rate (%) 

Herbicide dose (g 

a.i/ha - 2,4-D) 

Day for collecting data 

(Days after exposure – DAE) 

4 – 5 nodes (S1) 0 Nil – D0 2 DAE 

7 – 8 nodes (S2) 5 0.028 – D1 7 DAE 

11 – 12 nodes (S3) 50 0.28 – D2 14 DAE 

 
  28 DAE 
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Figure 3-4. Geographic location of the controlled sub-study. 

The background on the image is a true colour composite of a Worldview-3 image (red, green, blue bands in the 
RGB colour channel). 

Each treatment plot comprised five rows, each 5.0 m long, at 1.0 m row spacing. A 

buffer zone of five rows by 5 m was established between plots to reduce the risk of 

drift between treatments (Figure 3-5). The herbicide was applied when plants reached 

the stage of growth defined as a factor, under optimal environmental conditions 

between 9 am and 10 am local time. Plants were treated only once and directly sprayed 

in two rows of the 5 rows available with a CO2 Research Sprayer provided by the 

Queensland Department of Agriculture and Fisheries (QDAF) at Toowoomba. The 

walking speed was set at 1 m/s for all treatments. The pressure was 2 bar, the nozzle 

size TTI110015, and the water volume was set at a constant rate of 143 L/ha (Figure 

3-6). 
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Figure 3-5. Controlled sub-study: an overview of the study area. 

The figure presents the rows included in a treatment (top part) and the marks delimiting the initial and final point of 
each treatment (bottom part). 

5 rows 
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Figure 3-6. Sprayer setup (top) and spraying activity in the field (bottom). 

The equipment and application method includes an accurate mix of chemical and water to simulate the proposed 
dose, and a constant walking speed for a homogeneous cover of the rows. 

3.2.2. Uncontrolled sub-study 

The study area comprised 37 ha of dryland cotton (Figure 3-7) of the high yielding 

variety Sicot 74BRF (CSIRO Cotton breeding team), located in a commercial cotton 

farm (151°32'30'' E, 27°25'35''S). Cotton was planted between the 27th and the 29th 

October 2014. Approximately 38% of the area was accidentally sprayed with a 

phenoxy herbicide 2,4-D (Amicide Advance 700®; 100 ml/ha 2,4-D) on approximately 

the 27th January 2015, three months after planting. This uncontrolled sub-study is 
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addressed in Chapter 5 and examines the effect of one dose at one timing of exposure 

(93 DAS) and six different times in relation to the exposure. 

 
Figure 3-7. Geographic location of uncontrolled sub-study. 

The background on the image is a true colour composite of a Worldview-3 image (red, green, blue bands in the 
RGB colour channel). 

3.3. Data capture and acquisition 

Data capture and acquisition dates varied according to the sub-study and the instrument 

to be used. Table 3-2 summaries the different sensors, platforms and variables analysed 

in this study, in relation to the study area and the objectives listed in Section 1.4. 

Detailed descriptions of the data capture and acquisition methods are presented in 

sections 4.3, 5.3 and 6.3. Hyperspectral measurements and LiDAR data were collected 

in the controlled experiment for each of the treatments and multispectral satellite data 
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was acquired in the uncontrolled case. Figure 3-8 presents the research framework as 

it relates to the objectives of this research project.  

 
Figure 3-8. Research framework listing the main activities. 

Table 3-2. Sensors, platform and attributes measured in this study. 

Objective Sensor and platform Sub-study Attributes to measure 

1 Handheld hyperspectral 

sensor (Proximal) 

Controlled Reflectance variability associated with 2,4-D 

contamination and internal changes in leaves. 

2 Multispectral satellite sensor 

(Landsat-8 OLI) 

Uncontrolled Reflectance changes under the influence of 2,4-D 

3 Terrestrial LiDAR sensor 

(Proximal) 

Controlled Changes in canopy attributes (canopy height and 

canopy volume). 
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3.3.1. Controlled sub-study 

Fieldwork started soon after planting and finished with hand harvesting at 169 days 

after sowing (Table 3-3). The date for harvesting was established on the basis of the 

maturity status of the control treatments. Chemical defoliation was applied to facilitate 

the harvesting process and was successful in control treatments, however, the 2,4-D-

treated treatments manifested some resistance to the chemical defoliant (Figure 3-9). 

  
Figure 3-9. Influence of 2,4-D dose in the efficacy of defoliation applications in plants treated at the latest 

stage (S3). 
Note the significant amount of green and dried leaves still in the plants after the defoliation applications. Left: lower 

dose (D1); right: higher dose (D2). 

It was not always possible to collect data or samples on the dates specified in the design 

schedule due to environmental conditions or commercial activities, such as irrigation 

and pest control, in the field. Data collection and sampling were executed a few days 

later in those instances, as indicated in Table 3-3, which lists the dates and details of 

the field activities of this sub-study. 
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Table 3-3. Dates for data collection purposes according to days after the exposure (DAE) and instruments. 

Stage Date Activity Description 

Planting 27/10/2014   

--- 31/10/2014 Delimitation of treatments  

4 nodes 19/11/2014 Spraying Wind direction ENE 

 

21/11/2014 

Destructive sampling 

2 DAE Hyperspectral 

LiCOR-6400 

26/11/2014 

Hyperspectral 

7 DAE LiCOR-6400 

LiDAR 

8/12/2014 

Destructive sampling 

16 DAE (Cancelled), 19 
DAE 

Hyperspectral 

LiCOR-6400 

LiDAR (4/12/2014) 

16/12/2014 
Hyperspectral 

28 DAE 
LiCOR-6400 

8 nodes 1/12/2014 Spraying Wind direction ENE 

 

3/12/2014 

Destructive sampling 

2 DAE 
Hyperspectral 

LiCOR-6400 

LiDAR (4/12/2014) 

8/12/2014 
Hyperspectral 

7 DAE 
LiCOR-6400 

16/12/2014 

Destructive sampling 

15 DAE Hyperspectral 

LiCOR-6400 

9/01/2015 
Hyperspectral 

40 DAE 
LiCOR-6400 

12 nodes 10/12/2014 Spraying Wind direction NE 

 

15/12/2014 

Destructive sampling 

2 DAE (Cancelled), 5 DAE Hyperspectral 

LiCOR-6400 

17/12/2014 
Hyperspectral 

7 DAE 
LiCOR-6400 

23/12/2014 

Destructive sampling 

14 DAE Hyperspectral 

LiCOR-6400 

9/01/2015 
Hyperspectral 

30 DAE 
LiCOR-6400 

14/04/2015 Full growth Hand harvesting 169 days after planting 

 

3.3.2. Uncontrolled sub-study 

Landsat-8 Operational Land Imager (OLI) images of the affected and unaffected areas 

of the crop from various dates before and after the spray damage event were 

downloaded and analysed (Table 3-4). The experimental area was harvested using a 

four-row picker supplied by the grower. A yield monitor, equipped with a GPS tracker 

was installed in the picker, calibrated in a refugee paddock prior to harvesting (Figure 

3-10), and implemented to record yield every three seconds. More details are provided 

in Chapter 5. 
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Figure 3-10. Uncontrolled sub-study: calibration process of yield monitor in a refugee paddock. 

The entire paddock was sprayed two weeks before harvest with chemical defoliant to 

accelerate defoliation and facilitate mechanical harvesting. This process was 

successful in the area of the paddock that was not contaminated by 2,4-D, but the 

defoliation rate was slower and less homogeneous in the 2,4-D-affected area, as in the 

controlled sub-study. (Figure 3-11). 

 
Figure 3-11. Visual assessment of defoliation effectiveness in the paddock. 
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Table 3-4. Uncontrolled sub-study: data acquisition schedule for Landsat-8 OLI, as days after sowing (DAS) 
and days after exposure (DAE). 

    Area 

 Date DAS DAE Unaffected Affected 

 27th-29th Oct 2014 Planting 

Acquisition 
Date 

17/12/2014 51 -42 x x 

18/01/2015 83 -10 x x 

3/02/2015 99 6 x x 

7/03/2015 131 38 x x 

23/03/2015 147 54 x x 

8/04/2015 163 70 x x 

 24th April 2015 Harvesting 

 

3.4. Summary 

The two sub-studies or cases have different approaches but seek to achieve similar 

outputs, that is, models to predict cotton yield under the influence of 2,4-D herbicide 

drifts. 

The controlled sub-study was designed to: 

i. assess the internal responses of the plant to different doses of the chemical at 
specific times of exposure throughout the growing season.  

ii. provide a better understanding of how these biological effects (internal 
changes) at the cell level were associated with treatments, yield, spectral 
variability and canopy structure. 

The second sub-study (uncontrolled) is designed to: 

i. test the usefulness of multispectral imagery in detecting and assessing damage 
in the field caused by sub-lethal doses of herbicide. 

ii. identify the potential and the respective limitations of medium spatial 
resolution satellite imagery. 
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Chapter 4  

HYPERSPECTRAL SENSING FOR 
PROXIMAL DETECTION OF HERBICIDE 
DRIFT DAMAGE ON COTTON CROPS 
 

4.1. Introduction 

The first objective of the research project is covered in this chapter, where the potential 

uses of proximal hyperspectral sensors on the detection of 2,4-D herbicide drift on 

cotton crops are explored. The potential uses of hyperspectral data focused on the 

prediction capabilities of 2,4-D herbicide reaching the crop and the yield loss caused 

by the contact with the chemical. The temporal variability of hormone contents (i.e. 

Indole Acetic Acid – IAA and Abscisic Acid – ABA) and the physiological variables 

defined by photosynthesis and stomatal conductance are analysed to understand the 

spectral changes as a function of the internal variations within the plants. Different 

pre-processing methods for hyperspectral noise removal and filtering were tested to 

investigate their influence on the prediction capabilities of the models. 

This chapter is divided into six sections starting with an introduction in Section 4.1 

about the objective of this study, after which a literature review section is presented 

(Section 4.2). Materials and Methods comprise Section 4.3 where the different 

instruments and procedures used to reach the proposed objectives are documented. 

Results are presented in the fourth section (4.4), while a comprehensive and detailed 

discussion is presented in Section 4.5. Finally, section 4.6 presents a summary of this 

chapter. 

This chapter explores the capabilities of the hyperspectral proximal sensor as an 

alternative method for assessing herbicide drift damage in cotton crops caused by the 

herbicide 2,4-D. Six specific objectives were defined: 

i) to analyse the amount and quality of yield variability due to the timing of 
exposure and dose;  
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ii) to understand the influence of dose in the temporal variability of 
photosynthesis, conductance and two hormones - IAA and ABA;  

iii) to assess if spectral pre-processing techniques can improve the robustness of 
the models;  

iv) to predict models of yield at four different time periods after the exposure to 
herbicide;  

v) to examine if herbicide dose can be accurately predicted from field 
measurements of hyperspectral reflectance; and  

vi) to determine whether prediction models can be improved by establishing the 
optimum data collection time after the exposure. 

4.2. Proximal sensors for the detection of herbicide drift 

Cotton crops are highly susceptible to 2-4-dichlorophenoxy acetic acid (2,4-D). This 

chemical is a derivative of indole acetic acid (IAA) which elicits the same type of plant 

responses as IAA, but with stronger intensity and higher stability in the plant 

(Grossmann 2010). 2,4-D, as a selective synthetic auxin herbicide, is often referred to 

as phenoxy class herbicide. The mode of action of 2,4-D is to disrupt the plant cell 

growth by an uncontrolled production of simulated IAA in broadleaf plants (Bondada 

2011). IAA is considered as a master hormone because it influences every aspect of 

plant growth and development such as cell division and elongation, floral meristem 

differentiation, leaf initiation, senescence, apical dominance and root formation 

(Grossmann 2010). Synthetic auxins, applied as herbicide, mimic the deformation and 

growth-inhibiting effects caused by IAA at a very constant and increasing 

concentration until the growth causes plant death. The biosynthesis of the 

phytohormone abscisic acid (ABA) is also over-stimulated by herbicide 2,4-D causing 

growth inhibitors, morphological abnormalities and senescence (Teixeira, Duque & 

Sá-Correia 2007). ABA is an important plant hormone for adjusting to environmental 

stress, seed development and dormancy (Straub, Shen & Ho 1994). This study explores 

the temporal variability of these two hormones and their relationships with 

hyperspectral data under the effect of 2,4-D. 

Several efforts to remediate cotton from spray drifts have been limited mainly because 

the extent of injury depends upon the climate and proximity to thousands of cereal and 

fallow fields where 2,4-D is sprayed to control broad-leaved weeds (Bondada 2011) 
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while significant inconsistencies in the traditional assessment of damage have been 

proven in several studies (Charles et al. 2007; Everitt & Keeling 2009). These 

limitations prevent farmers from optimising management practices and mitigating 

losses while reinforcing the need for more precise techniques for prediction of cotton 

damage. 

Remote sensing techniques are widely applied in agriculture due to their capability to 

provide significant information about the health of crops. Biophysical and 

physiological variables are analysed through the visible (VIS)-to-shortwave infrared 

(SWIR) wavelengths without the need to implement destructive sampling. The ability 

to integrate the concept of spatial distribution, environmental conditions and soils, with 

high accuracy, has turned remote sensing techniques into a valuable tool for crop 

assessment (Clevers 1999; Suarez, Apan & Werth 2016; Tian, Zhu & Cao 2005). 

Hyperspectral sensors are able to detect small variations in the biophysical and 

physiological characteristics of the plants (Rapaport et al. 2015). Accurate prediction 

results (i.e. prediction accuracy = 92%) were obtained in predicting the grain protein 

content of wheat (Triticum aestivum) (Apan et al. 2006) through the implementation 

of hyperspectral data and partial least squares regression (PLS-R) analysis. 

Hyperspectral sensors have been also used in a variety of detection of plant disease or 

stress applications caused by pesticides (Henry et al. 2004), water (Detar, Penner & 

Funk 2006), nitrogen (Schlemmer et al. 2013), and other nutrient deficiencies (Chen 

et al. 2011; Tian et al. 2012). Effects on carotenoids, an important pigment of green 

leaves, were accurately predicted by different statistical approaches applied to 

hyperspectral data in cotton crops (Yi et al., 2014). These techniques included stepwise 

multiple linear regression (SMLR), band selection indices, partial least squares 

regression (PLS-R) and linear regressions using published vegetation indices such as 

NDVI and red-edge chlorophyll index. 

Remote sensing data has been also used to discriminate species (Ghosh et al. 2014), 

canopy variables and canopy structures (Lefsky et al. 2002; Marshall & Thenkabail 

2015; Rama Rao 2008). This technology has been further applied to estimate different 

biophysical and physiological variables and pigment contents of vegetation over a 

large number of crops (Barnes et al. 2000; Li et al. 2001; Pinter et al. 2003) with the 

objective of examining the healthiness of vegetation. Other remote sensing studies 
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have analysed the relationship between cotton reflectance and lint yield under variable 

Nitrogen and irrigation treatments (Li et al. 2001). In another study, cotton yield was 

found to be highly correlated with stomatal conductance and transpiration rate, as they 

are positively correlated with flower production (Perumal et al. 2006). 

Studies on the effects of 2,4-D on cotton crops demonstrated that photosynthesis was 

highly affected by this herbicide leading to ineffective photosynthesis processes, 

affecting boll production and development (Perumal et al. 2006; Sullivan et al. 2007). 

Perumal et al. (2006) reported a reduction of 23% in stomatal conductance and 70% 

in photosynthesis when cotton plants were exposed to 2,4-D at 5 ppm. Spectral bands 

in the green, red and NIR regions have been identified as good predictors of yield and 

they are also associated with the health condition of the plants (Plant et al. 2000; Zhao 

et al. 2005). Photosynthesis has a strong relationship with the spectral bands around 

700 nm, which is also related to physiological stress (Merton, Sugianto & Huntington 

2004; Zhao et al. 2007b). As the visible and NIR bands respond to different conditions 

of the crop, it may be possible to determine yield based on those responses (Pinter et 

al. 2003; Thulin et al. 2012; Zarco-Tejada, Ustin & Whiting 2005). 

Several narrow and broadband vegetation indices have been developed in order to 

minimise the influence of soil (Yu et al. 2015), pigments, moisture, and the general 

variability of external factors on leaf and canopy reflectance (Cyr, Bonn & Pesant 

1995; Zhao et al. 2007a). However, their applicability may be limited by the pigments’ 

variability per unit leaf area and potential saturation at medium-to-high leaf area index 

(LAI), which are related to spatial and temporal situations (Blackburn 2007; Carter 

1998; Zarco-Tejada, Ustin & Whiting 2005). On the other hand, hyperspectral sensors 

may allow the detection of very small changes within the plant due to reflectance 

changes on the electromagnetic spectrum, which often consist of hundreds of highly 

correlated wavelengths (Figure 4-1). These sensors rely on the efficiency of the 

processing and analysis techniques to isolate one single response variable with a 

sample size greatly smaller than the number of predictors (Rapaport et al. 2015; Wold, 

Sjöström & Eriksson 2001). 
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Figure 4-1. Comparison of the spectral profile generated by a multispectral sensor and a hyperspectral 

sensor. 
Source: (Harrys Geospatial Solutions 2017) 

Signal noise is a documented limitation of hyperspectral data, caused by instrument 

and atmospheric conditions (Vaiphasa 2006). Noise in the spectral data has to be 

removed with caution due to a high correlation between discrimination capabilities and 

bandwidth (Schmidt & Skidmore 2004). Noise removal decreased the predictive 

capabilities of models in Barbin et al. (2012), while Vaiphasa (2006) demonstrated the 

negative effects of smoothing techniques in the outcomes of subsequent analysis when 

statistical characteristics of spectral data were required. Smoothing techniques should 

be objectively selected rather than ad hoc as many studies have previously done (Chen 

et al. 2011; Helland, Næs & Isaksson 1995; Swatantran et al. 2011). 

Partial least squares regression (PLS-R) is an algorithm that deals with hundreds of 

highly correlated variables that is commonly used and considered as a powerful tool 

in spectroscopy (Indahl & Næs 2004). Furthermore, PLS-R optimises the resulting 

model by reducing the dimensionality of the electromagnetic spectrum (Mevik & 

Wehrens 2007; Wold, Sjöström & Eriksson 2001). While various statistical methods 

are available for quantitative studies, such as neural networks (de Castro et al. 2012; 

Goel, P. K. et al. 2003), PLS-R has proven to be optimal as the first-step approach for 

supervised classifications (Indahl, Liland & Næs 2009), and it is also one of the most 

effective methods for quantitative predictions (Mevik & Wehrens 2007). 
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Successful yield prediction studies and discrimination of healthy from unhealthy 

plants damaged by herbicide drifts can be found in the literature. A research gap still 

exists to accurately model 2,4-D herbicide drift damage, in cotton crops, using 

hyperspectral data as a function of three factors: a) dose (D), b) timing of exposure (S), 

and c) days after the exposure (DAE). 

4.3. Materials and methods 

A complete description of the experimental design was described in section 3.2. This 

design was composed of three timing of exposures: 4-5 nodes (S1), 7-8 nodes (S2) and 

11-12 nodes (S3) and three doses of 2,4-D (Amicide Advance 700®; 700 g/L 2,4-D) 

according to the recommended label rate as Nil (0%), 28 g a.i/ha (5%) and 280 g a.i/ha 

(50%) (Figure 4-2). Plants were treated only once and directly sprayed in two rows of 

the 5 rows available as presented in Figure 4-3. 

  
Figure 4-2. Set up of equipment and preparation of simulated dose. 

Standard management practices were applied to all treatments before and after the 

spray activity. In two replications, some treatments were required to be relocated as 

some rows looked slightly affected by drift from a neighbouring treatment. Figure 4-3 

shows the treatments locations and the treatments subjected to relocations. 

d 
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Figure 4-3. Layout of the experimental design. 

The herbicide was applied under optimal environmental conditions between 9 am and 

10 am local time once the plants reached the timing of exposure previously defined 

(Figure 4-4). The spray treatment area of each plot was clearly marked to avoid 

spraying outside this area, with consequent possible exposure of other plots to the 

herbicide (Figure 4-5). 

 
Figure 4-4. Spraying activity at 4-5 nodes. 
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Figure 4-5. General view of the experimental area and treatment set-up. 

The initial and final point of each treatment is defined by the white and yellow markers in the ground, respectively. 

Table 4-1 summarises the frequency, the instruments and the variables implemented 

in this study while Figure 4-6 summarises the approach implemented in this chapter. 

Table 4-1. List of frequency, variables and instruments analysed in this study. 

  Days after exposure (DAE) 

Variables Instrument 2 7 14 28 Harvest 

Hormones Indole Acetic Acid (IAA)* Laboratory x  x   

Abscisic Acid (ABA)* 

 

x  x   

Physiology Photosynthesis LiCOR x x x x  

Stomatal Conductance x x x x  

Spectral data Spectral response Hyperspectral x x x x  

Yield Quality 

 
    x 

Quantity      x 

* Destructive sample       

 

 
Figure 4-6. Flowchart of the main activities undertaken for the analysis of hyperspectral data. 
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4.3.1. Data collection 

Data collection was performed at four specific days after the exposure (DAE) to 

analyse the temporal changes to the variables listed in Table 4-1, and to establish the 

optimum data collection date after the exposure. Five uppermost fully expanded leaves 

were sampled from five plants randomly selected in each treatment at 2, 7, 14 and 28 

days after exposure (2 DAE, 7 DAE, 14 DAE and 28 DAE, respectively). Destructive 

sampling was necessary for IAA and ABA analysis. Hormone content analysis was 

performed only at 2 DAE and 14 DAE due to the high cost of the laboratory analyses, 

while the physiological variables were measured at the same proposed dates as the 

hyperspectral measurements: 2, 7, 14 and 28 DAE. For each DAE, all the 

measurements were collected in the same leaf, clearly identified on the plants (Figure 

4-7). The labels were moved to the top node after destructive sampling to identify and 

exclude these plants from further analysis. 

 

 
Figure 4-7. Plants were marked to be excluded from further analysis after destructive sampling. 
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4.3.1.1. Hyperspectral data 

Leaf spectral reflectance was measured using a portable spectroradiometer FieldSpec 

HandHeld2 (Analytical Spectral Devices Inc., Colorado USA) which acquires 

continuous spectra from 325 nm to 1075 nm, with an accuracy of + 1nm and resolution 

of < 3nm at 700 nm. The instrument was configured to calculate each reflectance as 

an average of ten repeated scans on cloudless and sunny days between 9h00 and 15h00 

during the 12 data capture campaigns. The weather and sunlight conditions were 

generally stable. Calibration and optimisation procedures with a Spectralon® white 

reference panel were performed per treatment and for every time slight changes in 

environmental conditions were observed. These procedures were implemented to 

maximise the signal-to-noise ratio without saturation and to ensure that the different 

spectral reflectance measurements were comparable (ASD Inc 2010; Liu, Zhao & 

Guan 2013; Yi et al. 2014) (Figure 4-8). 

 
Figure 4-8. Calibration and optimisation procedure with a Spectralon® white reference panel. 

The standard field-of-view of the instrument was 25° so the instrument head was 

placed approximately 2.25 cm above the leaf to get a circular view area of 1 cm 

diameter. As cotton is a broadleaf plant, this facilitates a clear spot size of 1cm on the 

leaf without soil and background effects. Leaves were positioned horizontally to 

simulate Lambertian surfaces and reduce any possible backscattering and solar 
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illumination effects (Figure 4-9). The horizontal position also allows the device to 

detect the same magnitude of radiance at any angle of field-of-view of the instrument 

relative to the leaves (ASD Inc 2010; Vigneau et al. 2011). Furthermore, the instrument 

was placed above the leaf in such position that no shadow was generated from the 

device or from the person collecting the data. These sampling techniques were 

previously used in measuring reflectance from mangrove (Lagomasino et al. 2014) and 

corn leaves (Wang et al. 2012). 

 
Figure 4-9. Collection of hyperspectral data in the field. 

4.3.1.2. Photosynthesis and stomatal conductance 

A portable photosynthesis system Li-6400 (Li-Cor, Lincoln, NE, USA) was used to 

take instantaneous measurements of photosynthesis (umol/m2/s) and stomatal 

conductance (mol/m2/s) in the same leaves sampled for hyperspectral measurements. 

Li-6400 is an open system where photosynthesis and transpiration are computed on 

the differences in CO2 and H2O in an air stream that is flowing through the leaf cuvette 

or chamber (LiCOR 1999) (Figure 4-10). The photosynthesis and stomatal 

conductance calculations were based on the chamber area (see Figure 4-10) which is 

equal to 6 cm2. Some leaf areas were smaller, so the calculations were performed based 

on the percentage of the area exposed inside the chamber (LiCOR 1999). This situation 

occurred a few times during the early stage of growth, as the leaf area was not big 
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enough to completely cover the leaf cuvette. Measurements were performed at 

intervals of 2, 7, 14 and 28 DAE. Data was imported and combined with hyperspectral 

data into R software to create hyperspectral objects for posterior analysis. Figure 4-11 

shows the functionality of the Li-6400 in the field. 

 
Figure 4-10. Main parts of the Li-6400 portable photosynthesis system. 

Source: (LiCOR 1999) 

4.3.1.3. IAA and ABA estimations 

The IAA and ABA responses during the growing season were analysed at 2 DAE and 

14 DAE. In the field, five leaves per treatment were sampled after the respective 

hyperspectral and physiological measurements. A total of 72 samples, representing all 

treatments and replications for 2 DAE and 14 DAE were analysed. Before the 

extraction of IAA and ABA, the samples were stored in liquid nitrogen during 

transportation and kept frozen in a -80°C freezer until the freeze-dried procedures were 

undertaken to remove or extract all water content from the leaves. Hormone extraction 

was then performed following the procedure described by Tivendale et al. (2012). 
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Figure 4-11. Measurement of physiological variables. 

4.3.1.4. Harvested yield (including quality and quantity) 

Cotton was manually harvested over three consecutive days during April 2015. Yield, 

as well as a count of immature bolls, were recorded for each treatment (Figure 4-12). 

Only the two rows directly sprayed with the chemical were harvested and weighed. 

Three of the 5 m per row available were harvested resulting in an equivalent area of 6 
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m2 picked at each treatment. The three meters were measured one meter after the 

starting point of each treatment. Quality characteristics of the yield samples were also 

measured. Table 4-2 summarises the quality variables investigated in this study and 

their corresponding description. From this analysis, lint yield percentage (Lint) was 

calculated and yield was estimated in the units of bales/ha using the equation 1, where 

W is the weighted yield projected in bales units (1 bale = 227 kg): 

��������	
� ��⁄ � �  ���� ∙  ���  (Equation 1) 
 

Table 4-2. Cotton fibre quality variables measured in this study 

 
 

 
Figure 4-12. Manual harvesting in a control treatment. 

Variable Description Acronym 

Gin turnout Percentage of lint compared to total sample weight Lint 

Staple length Length of fibre expressed as 36/inch Length 

Micronaire Factor based on fibre maturity and fibre thickness M 

Fibre uniformity How uniform the fibre sample is Uni 

Fibre strength Strength of the fibre Strength 

Short Fibre Index Percentage of short fibre within each sample SFI 

Fibre elongation Percentage of the starting length Elon 
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4.3.2. Data processing 

The reflectance data (751 wavelengths) was exported into ASCII format using 

ViewSpec Pro (Analytical Spectral Devices Inc., Colorado USA). The data was then 

imported into R software (R Core Team 2014) and converted to hyperspectral objects 

using hyperSpect package to conveniently manage the hyperspectral data (Beleites 

2014). A cleaning process took place to exclude the noisy wavelengths of two regions 

(i.e. 325 nm - 399 nm and 901 nm - 1075 nm) from data analysis (Apan et al. 2006). 

Outliers or anomalous reflectance data were also omitted from the remaining 

reflectance data from 400 nm to 900 nm, as they tend to increase the error in statistical 

models (Wold, Sjöström & Eriksson 2001; Zainol Abdullah et al. 2014). Although 

the hyperSpect package provides different approaches for pre-processing techniques, 

the prospectr package was implemented in this study as it supplies functions that 

work independently from the object class (vector, data frame or matrix) in R (Stevens 

& Ramirez-Lopez 2014); this facilitates data manipulation while applying the pre-

processing algorithms. 

4.3.2.1. Noise removal and filtering of hyperspectral data 

Different pre-processing techniques were applied after the cleaning process. These 

techniques are commonly used in spectroscopy to remove or minimise light scattering 

effect by removing the noise and normalizing the data (Stevens & Ramirez-Lopez 

2014). Pre-processing algorithms can change the spectral characteristics of the data 

which could lead to inaccurate results (Vaiphasa 2006). Selecting the pre-processing 

technique is a task that involves continuous testing and there is no standard procedure 

to define it (Barbin et al. 2012). A range of different pre-processing algorithms was 

performed to reduce the spectral variation and noise generated by light scattering 

effects with data collected at 2 DAE. Raw spectral data were analysed to compare the 

influence of pre-processing techniques in the prediction ability of regression models. 

Pre-processing filters of hyperspectral data include smoothing, derivatives and scatter 

correction. Smoothing techniques are mathematical approaches that alter original data 

to remove or minimise noise originated by the instrument or environmental conditions. 

Derivatives of the first (FD) and second order (SD), have the potential to remove 

additive (offset) and multiplicative (slope) effects, enhance small spectra absorptions 

and resolve overlapping absorption. However, there are negative impacts associated 
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with these filters, as they increase the noise and the risk of overfitting the calibration 

model (Barbin et al. 2012; Stevens & Ramirez-Lopez 2014). Savitzky-Golay (SG) is 

another smoothing technique that smooths the reflectance signature while conserving 

the relative information of minima, maxima and width (Barbin et al. 2012; Luo et al. 

2005). 

Relatively new spectral transformations, such as Fourier transformation and empirical 

mode decomposition, have been proven to produce reliable results. However, the 

former has been mainly developed to reduce the full-column atmospheric effects or 

the stripping effects from satellite imagery (Rama Rao 2008) while the latter has been 

applied to analysing the properties of time series (Wang et al. 2016). Wavelet 

transform has been implemented with limitations, especially in cases with high 

background influences (Hai-bin, Dan-lin & Yi-yu 2005). 

Scatter corrections remove the light scatter effects and variations in effective path 

length. Standard Normal Variate (SNV) is a way to normalize spectra by removing the 

light scattering effect. SNV establishes a common scale for all spectra as each 

individual spectrum is divided by its standard deviation. Multiplicative Scatter 

Correction (MSC) is another mathematical treatment that uses the mean spectrum of 

the data set (Barbin et al. 2012). SNV or MSC only take into consideration the spectral 

information of the sample. Other scatter corrections not only take the information of 

the sample but they also take the chemical variation within the sample as a source of 

scattering (Helland, Næs & Isaksson 1995). 

The two scatter correction methods, of Multiplicative Scatter Correction (MSC) and 

Standard Normal Variate (SNV), were performed in this study. Furthermore, first and 

second derivatives (FD and SD), as well as Savitzky-Golay (SG) filtering with 11 local 

polynomial regression, were also investigated. 

4.3.3. Statistical analysis 

Classical Partial Least Square Regressions (PLS-R) analysis is the most used 

regression technique in chemometrics and spectroscopy. It can be performed to obtain 

Y-variable responses indicating continuous data or classes or categories. The influence 

of pre-processing techniques was tested, in this study, by comparing five PLS-R 

models with raw or transformed spectral data as X-variables, and yield as Y-variable. 
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Furthermore, four PLS-R models were built to investigate the temporal variability of 

the models with hyperspectral data collected at 2, 7, 14 and 28 DAE. Likewise, Two 

PLS-R methods for predicting categorical variables (D0, D1, and D2) were tested: 

Canonical Powered PLS-R (CPPLS) and Sparse PLS Discriminant Analysis (sPLS-

DA). 

New and promising non-parametric and machine-learning algorithms have been used 

in recent years for spectral regression applications such as estimation of nitrogen, 

phosphorus and potassium (Zhai et al. 2013; Zhang, X et al. 2013). ). However, from  

a statistical perspective, linear models should be the calibration tool of choice (Olivieri 

2015) as non-parametric algorithms can only be implemented in a limited way, and 

only non-linear relations can be modelled. Furthermore, the effect of each predictor, 

in this case, the wavelength, can be less easy to understand intuitively than in linear 

models such as PLS-R. 

The calibration performance of PLS-R has been compared with sophisticated non-

linear models, such as least-squared support vector machines, perception networks and 

kernel PLS-R in some studies (Thissen et al. 2004). The comparisons are often based 

on the error of prediction and the coefficient of determination (R2). However, these 

parameters, particularly R2, are inadequate to assess the prediction performance of 

these models (Olivieri 2015; Spiess & Neumeyer 2010). It is not possible to calculate 

the R2 in a non-linear regression, since the Total Sum of Squares of the Response 

����� minus the Sum of Squared of the Regression ����� is not equal to the Sum of 

Squared Errors ����� as it is in a linear model. Hence, the R2 cannot be estimated as 

the ratio of ��� and ��� (Frost 2014; Spiess & Neumeyer 2010). An adequate and 

carefully defined statistical procedure should be implemented to test whether the 

performances of these methods are significantly different (Olivieri 2015). Based on 

the lack of proper analysis and interpretation of results in the literature, this study 

implemented the most common, reliable and extensively investigated prediction 

algorithm to analyse the hyperspectral data: PLS-R. 

The identification and selection of the most significant wavelengths can be performed 

with different algorithms. This is a critical stage in modelling as it is being used not 

only to optimise and simplify the model but also for interpretation purposes (Suarez, 

Apan & Werth 2016; Yi et al. 2014). Two methods for the selection of the most 
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significant wavelengths were applied according to the response (Y) variable: yield or 

dose. Weighted regression coefficients (Bw), resulting from the optimal yield 

prediction models, where plotted across all wavelengths. The higher the value obtained 

for Bw, the more significant the wavelength was for the model (Garrido Frenich et al. 

1995; Olivieri 2015) therefore peaks of Bw were indicators for the contribution of each 

wavelength (Barbin et al. 2012) into the resulting model. The Significant Multivariate 

Correlation (sMC) algorithm was implemented for extracting information regarding 

the most significant wavelengths in the models with dose as a response variable. sMC 

is reported as an algorithm that corrects the limitations of the variable selection method 

Variable Importance in the Projection (VIP) (Tran et al. 2014). 

4.3.3.1. Testing pre-processing techniques and predicting yield with 

PLS-R 

PLS-R is a multivariate procedure for modelling the relationship between a set of 

independent variables or predictors X and a set of dependent variables or responses Y 

(Wold, Sjöström & Eriksson 2001). PLS-R is commonly used in spectroscopy for the 

following main reasons: 1) it deals with a high amount of correlated X-variables and 

relatively few samples; and 2) it reduces hundreds of potentially correlated predictors 

into a new small set of orthogonal variables (also called components or latent variables 

- LV) which carry most of the information. PLS-R incorporates the information of 

predictors and response variables optimising prediction capabilities (Mevik & 

Wehrens 2007). 

The optimal number of latent variables (LV) is referred as the one with the highest 

significance for prediction purposes (Mevik & Wehrens 2007). The set of predictor X-

variables (Nsamples x Wwavelengths) was composed of 36 initial samples N with 501 

wavelengths from 400 nm to 900 nm. On the other hand, the dependent variable Y was 

yield expressed in bales/ha (Equation 1). The resulting PLS-R equation is: 

� = � ×  +  "   (Equation 2) 

where B is the matrix of regression coefficients b and ε the matrix of residuals. The 

determination of wavelength’s importance or influence within the model is complex 

because it is necessary to consider not only the magnitude of b-coefficient but also a 

variable with small absolute value and a large variance (Garrido Frenich et al. 1995). 
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To identify the most significant wavelength and to ensure the same variance for each 

variable, the data has to be standardised (��#�$%�&'�
%) by weighting the X-variables 

with the inverse of the standard deviation (See Equation 3). The resulting Bw-matrix 

is used to predict new Y-values from ��#�$%�&'�
%. A large absolute coefficient (bw) is 

indicative of an important X-variable while large Y-residuals from the F residual matrix 

are indicative of poor performance (Wold, Sjöström & Eriksson 2001). The new 

equation would be: 

� = ��#�$%�&'�
%  ×  ( +  )   (Equation 3) 

The resulting prediction models used a maximum number of 10 latent variables (LV), 

while the leave-one-out (LOO) method was implemented as the cross-validation (CV) 

algorithm and normalized reflectance per band was used as the predictors. Cross-

validation has been reported as an optimum and reliable way to test the predictive 

significance of the models when highly correlated data is included as predictors, and 

when an independent and representative set of validation  data is not available (Olivieri 

2015; Wold, Sjöström & Eriksson 2001). CV splits the available dataset into v groups 

of approximately the same size (usually 10 groups). The PLS-R algorithm is then run 

v times using (v - 1) groups as training sets and one group as a validation set, with a 

different group being used as the validation set each time. In the case of v equals to N, 

one object or sample is left out at a time, turning CV into LOO-CV, and CV is then 

designed to simulate how well the model predicts new data by running the algorithm 

leaving one object out at a time rather than one larger group. 

The coefficient of determination (R2) in a multiple regression, is defined as: 

*+ = ,,-
,,. = ,,.�,,/

,,. = 1 − ,,/
,,. = 1 − ∑ �34� 354�67489

∑ �34�3:�67489
  (Equation 4) 

Where SST is the Total Sum of Squares of the Response ��� = ∑ ��' − �:�;$'�� , the 

Sum of Squared of the Regression (SSR) is equal to SST – SSE, and �: is the mean of 

the measured response. Because the calibration model applied in this study was LOO, 

the explained variance for the cross-validation model (Rcv
2) is defined based on the 

Prediction of Sum of Squares (PRESS) rather than the SSE. PRESS residuals are the 

difference between the measured value �' and the predicted value �5',�'. The stand for 
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�, −� indicates that it is the residual for the ��ℎ sample based on the ��ℎ point removed 

from the model (Smith 2005). In this way, PRESS is defined by: 

>*?@@ =  ∑ ��' − �5',�'�;$'�� =  ∑ �',�';$'��   (Equation 5) 

The PRESS residuals �',�' can be calculated using the expression: 

AB,�B = 
4
���44    Equation 6) 

Where the leverage of the ��ℎ sample, ℎ'', is the distance of the predicted sample � to 

the centre of the data set (i.e. training or test data set) (Bellon-Maurel et al. 2010). 

Replacing the SSE factor by PRESS in the Equation 4, the explained variance of a 

cross-validated (Rcv
2) corresponds to: 

*CD+ = 1 − E-/,,
,,.    (Equation 7) 

Rcv
2 was calculated using the datasets into the LOO-CV models. Because the PRESS 

can be higher than SST, Rcv
2 can yield negative values (Smith 2005). 

The selection of the best performing PLS-R model was based on the minimum number 

of LV, the ability to explain LOO-CV yield variance (Rcv
2) and the minimum absolute 

root square mean error of the LOO-CV (RMSECV). Also, the fitted values were 

plotted against the measured values, and the regression coefficient was used as an 

additional indicator of fit. RMSECV is given as (Mevik & Cederkvist 2004):  

*F@?GH = I = J,,/
$ =  JK∑ LM46N

$ = J∑�34�354�6
$   (Equation 8) 

Assessments of collinearity between scores per LV were performed to avoid model 

overfitting and support the selection of LVs (Garrido Frenich et al. 1995; Mevik & 

Wehrens 2007; Zhao et al. 2013). 

Figure 4-13 shows the flowchart of the process followed to test pre-processing 

techniques and assessing model capabilities for predicting yield (bales/ha) from 

hyperspectral data. 
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Figure 4-13. Flowchart for assessing pre-processing techniques and prediction of yield applying PLS-R. 

4.3.3.2. Estimating Dose with Canonical Powered (CPPLS) and Sparse 

Discriminant Analysis (sPLS-DA) 

Canonical powered (CPPLS) and sparse discriminant analysis (sPLS-DA) are 

classical PLS models (supervised classification) but the main difference is that the 

response Y-variate is qualitative indicating classes or categories. CPPLS integrates 

canonical correlation analysis and the parameterisation of loading weights optimised 

over a given interval (Indahl, Liland & Næs 2009). In this study cppls.fit function from 

the pls R-package was implemented (Mevik & Wehrens 2007) and linear discriminant 

analysis was applied for classification purposes. CPPLS has demonstrated the ability 

to extract more information in the first LVs and it is appropriate when: a) classification 

problems related to group priors occur and/or b) regression and classification problems 

with an individual weighting of the observation occur (Indahl, Liland & Næs 2009).  
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sPLS-DA is a one-step approach where building model and classification are 

performed under the same algorithm. Three different methods for classification are 

available (Centroid, Maximum and Mahalanobis distance) under the mixOmics 

(González, Lé Cao & Déjean 2011) package in R. More information about these 

methods is available in Indahl, Liland and Næs (2009), Jiang et al. (2014) and Mevik 

and Wehrens (2007). 

Figure 4-14 presents the main processes implemented for the estimation of dose. The 

datasets collected during each DAE were combined after the cleaning process (CHO, 

cleaned hyperspectral data). From this combined dataset (CHO), a training and a test 

dataset were generated using the createDataPartition function available in the caret 

R-package with a proportion of 75% for the training dataset and 25% for the test dataset. 

This function is used to create stratified random splits of a dataset while maintaining a 

balanced ratio of the factor classes (i.e. Dose) so that the overall class distribution is 

preserved as far as possible (Kuhn 2008). From this analysis, it is possible to determine 

whether dose can be estimated regardless of DAE and timing of exposure (S). 

To identify the influence of DAE, the initial CHO was segregated by DAE. This 

resulted in four datasets (CHO-DAE): 2 DAE, 7 DAE, 14 DAE and 28 DAE. Training 

and test sets were generated for each of these datasets, using the procedure described 

above. Subsequently, each CHO-DAE was segregated by S (CHO-DAE-S). The same 

procedure was applied to generate the training and test datasets. This level of 

segregation was used to identify the influence of S. 

 
Figure 4-14. Flowchart of main processes to assess prediction capabilities of hyperspectral data to estimate 

dose. 
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4.4. Results 

4.4.1. Yield, timing of exposure and dose 

The timing of exposure is an important factor in determining the final damage to the 

crop. The highest recovery capabilities were evident when the crop was exposed to 

2,4-D at early stages of growth (Figure 4-15). Few recovery signs were evident within 

the first two months after exposure. However, as the crop got nearer to harvest, the 

treatments had significantly recovered especially those treatments sprayed at very 

early stage (S1). The main stem of plants exposed at the early stage (S1) appeared to 

have died, but the plant kept growing in a horizontal trend where the main stem tended 

to be replaced by several thickened lateral branches. Early visual assessment (within 

three weeks) suggested a complete mortality of the plants. After 30 days, visual 

assessment suggested an initial recovery of plants sprayed with the lowest dose (D1) 

starting from the bottom of the plant while the plants treated with the highest dose (D2) 

had no visual evidence of recovery. In general, early exposure to the herbicide caused 

visual symptoms as soon as 2 DAE regardless the dose. 

 
Figure 4-15. The visual appearance of 28 g a.i./ha of 2,4-D herbicide drift 74 days after sowing (DAS). 

Top-left: control plants (D0); top-right: plants treated at 4-5 nodes (S1); bottom-left: plants treated at 7-8 nodes (S2); 
bottom-right: plants treated at 11-12 nodes. 
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Plants sprayed at 7-8 nodes (S2) only showed slight curls at the edge of the leaf and 

discolouration within the first days of assessment. At this stage, the recovery was 

slower than S1 and the plant did not grow significantly. Visual symptoms, when 

assessing the middle stage (S2) with the highest dose (D2), included necrotic patches 

in leaves and branches as soon as 2 days after the exposure (2 DAE). After 28 DAE 

plants had shown two different recovery patterns according to the dose applied. S2 

plants affected by the lowest dose (D1) grew more than the D2 dose but several 

younger nodes and leaves looked more affected. With D2, the plants did not grow 

much after the spray but the younger nodes and leaves looked less affected. For the 

last stage (S3), the symptoms were similar to S2: when plants were sprayed with the 

highest dose, fewer young leaves looked affected than when they were sprayed with 

D1, while those plants sprayed with the lowest dose grew more than the plants sprayed 

with D2. 

Cotton yield (bales/ha) was highly affected by 2,4-D. The yield was documented to be 

reduced by more than 90% when the plants were treated with the highest dose (280 g 

a.i/ha). The timing of exposure was an important factor in the recovery capabilities of 

the plants. The yield was relatively higher when the plants were exposed at an early 

stage (S1) as the plants had more time to recover, but the impact of dose was greater; 

treatments sprayed with D1 produced, on average, 5.29 bales/ha more than those 

treatments sprayed with D2.Yield reduction, on the other hand, was higher in those 

treatments sprayed at a late stage (11-12 nodes) (Figure 4-16 and Figure 4-17) and the 

average difference on the final yield between D1 and D2 was lower (less than 1.37 

bales/ha). 

The early stage was the only timing of exposure able to produce yield higher than 2.16 

bales/ha and 7.49 bales/ha, under the influence of the highest and lowest dose, 

respectively (D2 and D1), hence S1 had the highest yield possible for both doses 

(Figure 4-17). S3 had the highest losses as yield in those treatments were reduced 

between 87% and 98% (Figure 4-18). Yield reduction of treated plants at S2 with the 

highest dose was similar to S3 (97%) but much lower with D1 (53%) (Figure 4-18). 

These findings generally agree with other studies which found that yield was 

significantly reduced by phenoxy herbicide regardless of variety, dose or application 

(Everitt & Keeling 2009; Smith & Wiese 1972). 
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Figure 4-16. Yield (bales/ha) by replication (1 to 4): influence of dose (D) at different timing of exposure (S). 

Error bars represent the standard error of the mean. 

 
Figure 4-17. Yield variability according to the timing of exposure and dose. 
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Figure 4-18. Percentage of yield reduction as compared with control treatments. 

Correlation analysis provided a better understanding of the relationship between yield 

and the reflectance of the plants. The significant bands (p-value < 0.05) were mainly 

located around the green peak (~550 nm) and NIR (between 719 nm and 767 nm) 

wavelengths (Figure 4-19). However, the significance varied through time. The green 

peak had a significant relationship with yield within the first 14 days after the exposure 

while the NIR wavelengths had more variability and only at two specific dates were 

correlated: 7 DAE and 28 DAE. While the entire NIR region (except for the small 

window from 700 nm to 718 nm) had a significant relationship with yield at 7 DAE, 

only the first 67 wavelengths (from 700 nm to 767 nm) were correlated with yield at 

28 DAE. Apart from the wavelengths between 525 nm and 575 nm, the visible range 

did not provide information about the yield variability of the different treatments at 

any date after the exposure. 

 
Figure 4-19. Temporal variability of the relationship between yield and spectral reflectance. 
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the others quality variables, there was no apparent variability or reduction of quality 

in relation to the herbicide (see Figure 4-20 and Figure 4-21). 

Table 4-3. Mean, median and mode of cotton fibre quality variables. 

 

 

Figure 4-20. Quality variables grouped by dose. 
Control: "0", D1: "1"; D2: "2". 

 
Figure 4-21. Correlation matrix: dose vs. yield and quality variables. 

dose: Dose; bales: yield (bales/ha); lint: lint turnout percentage, length and strength of fibre, m: micronaire, uni: 
uniformity; SFI: short fibre index; elon: elongation. 

 Lint Length Micronaire Uniformity Strength SFI Elongation 

Mean 45.4 1.3 4.1 84.1 34.2 8.0 5.4 

Median 46.3 1.3 4.0 83.9 34.2 8.1 5.3 

Mode 47.2 1.2 4.3 83.5 33.8 8.3 5.2 
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4.4.2. Internal changes of cotton plants after the exposure to 2,4-D 

4.4.2.1. Physiological changes in cotton after exposure to 2,4-D 

Photosynthesis and stomatal conductance were highly affected by the simulated spray 

drift in each treatment. These variables exhibited a reduction in measured values as the 

dose was increased regardless of the timing of exposure. However, when plants were 

sprayed at 4-5 nodes (S1) and 7-8 nodes (S2) with the lowest dose, photosynthesis was 

only slightly different from control plants. On the other hand, when plants were treated 

at 7-8 nodes (S2) and 11-12 nodes (S3) with the highest dose, photosynthesis was 

reduced by more than 75% and 64%, respectively (Figure 4-22). A similar situation 

occurred with stomatal conductance: the plants treated with the highest dose (D2) had, 

at those timings of exposure (S2 and S3), the highest variability (more than 75%). 

Stomatal conductance and photosynthesis were the second and third variables highly 

negatively correlated to dose (r = -0.81 and r=-0.79, respectively), which indicates that 

stomatal conductance was more sensitive to the dose (Figure 4-23) but it was also more 

sensitive to the timing of exposure (Figure 4-22). 

 
Figure 4-22. Relationship of photosynthesis and stomatal conductance rates with treatments. 

Error bars represent the standard error of the mean. 

Yield was further investigated to understand its relationship with internal variables 

such as hormones, photosynthesis and stomatal conductance. Correlations coefficients 

manifested between moderate and high positive relationship with IAA, photosynthesis 

and stomatal conductance, with r coefficients equal to 0.52, 0.79 and 0.85, respectively 

(Figure 4-23). 
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Figure 4-23. Correlation matrix: dose vs. yield and internal variables (IAA, ABA, photosynthesis and 

stomatal conductance). 
bales: yield (bales/ha); dose: dose; photo: photosynthesis and cond: stomatal conductance. 

4.4.2.2. Hormone content variability in cotton crops affected by 2,4-D 

Figure 4-24 shows the relationship between Indole acetic acid (IAA) concentrations 

and the different treatments. Untreated plants during the early stage of growth (S1) 

manifested an IAA increment through time that stabilised around 7-8 nodes (S2) when 

the IAA increment still occurred at a reduced rate. A decrease in the values of IAA 

was evident when the crop reached 12 nodes. The IAA content of plants was 

significantly reduced soon after 2 DAE, with the highest dose causing a greater 

reduction. IAA reduction was the usual response when it was measured at 14 DAE 

(with the exception of those plants treated with the lowest dose at S2 and S3). 

Grossmann (2010) reported that plants were lethally damaged with increasing 

concentration and auxin activity after the application of 2,4-D. The author’s finding is 

in accordance with the results reported in this study where the decrement of IAA was 

associated with high concentrations of 2,4-D (i.e. auxin concentrations). 

Spearman correlation was used to investigate the temporal relationship of IAA and 

hyperspectral data and the internal variables explored in this study (Figure 4-23). IAA 

content was positively and highly correlated to photosynthesis and stomatal 

conductance while it was strongly and negatively correlated with dose (Figure 4-23). 
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Figure 4-24. IAA concentrations measured for all treatments. 

Error bars represent the standard error of the mean. 

The lack of IAA caused by the auxin (2,4-D) overdose, leading to disruption of 

membranes and necrosis of tissues (Grossmann 2010) which could explain the strong 

correlation between IAA and NIR wavelengths (i.e. r > 0.70 at 760 nm) (Figure 4-25). 

However, the relationship’s magnitudes were different at each DAE. The green peak 

(550 nm + 5 nm) had a significant and positive relationship with IAA regardless of the 

DAE (0.4 < r < 0.7). Particularly, moderate correlations were obtained between 

reflectance from 541 nm to 574 nm at 2 DAE (r > 0.6, p-value < 0.05). High reflectance 

in the green peak is associated with lower rate of photosynthesis and pigments 

(Blackburn 2007; Yi et al. 2008). Grossmann (2010) reported that within the first 24 

h, the physiological processes caused by auxin overdose included an intensified green 

leaf pigmentation, which could explain the higher correlation at 2 DAE than 14 DAE 

with the green peak. 

 
Figure 4-25. Correlation coefficients (r) of IAA and hyperspectral data after exposure to 2,4-D. 

ABA content did not show a clear pattern after exposure to 2,4-D (Figure 4-26). In 

control plants, ABA reached the highest values around 7-8 nodes (S2). Treatments 
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increment in the ABA content soon after spraying. This non-significant increment was 

observed in all of the treatments sprayed with D2 at 2 DAE. At fourteen days after 

exposure, there was a drastic fall in ABA in all treatments compared with levels 

measured at 2 DAE, except when plants were treated at a late stage (S3), where the 

decrease still occurred, but at a lower rate. At the early stages (S1 and S2) with the 

lowest dose (D1), ABA decreased at 14 DAE but rose at the latest stage (S3) while 

when ABA was measured at 2 DAE, the only fall was presented at S1. In the middle 

and late stage (S2 and S3), the ABA, under the D1-influence, rose in comparison with 

control plants. 

 

Figure 4-26. ABA concentration for different treatments measured 2 DAE and 14 DAE. 
Error bars represent the standard deviation of the samples. 

The ABA values in treated plants decreased through time (14 DAE vs. 2 DAE), except 

at the latest stage (S3), regardless of the dose. S3 treatments sprayed with D1 exhibited 

an increment in measured values from 2 DAE to 14 DAE (see Figure 4-26). 

This study has shown that a significant overproduction of ABA was presented when 

plants were treated at 7-8 nodes (S2) and 11-12 nodes (S3) and other studies have 

shown that overproduction of ABA was a crucial factor in growth inhibition 

(Grossmann 2010). Hence, the high levels of ABA in S2 and S3 treatments can explain 

the lower regrowth rate of the plants in comparison with the regrowth rate of treated 

plants with the lowest dose (i.e. lower ABA values). 

While the ABA content after the exposure could not be directly correlated to any 

physiological variable (see Figure 4-23), there was a moderate correlation (r = 0.4) 

between ABA and the blue range (450 nm to 499 nm) and the early green range from 

the 500 nm to 525 nm, and a stronger relationship with the NIR particularly from the 

740 nm to 810 nm (0.58 < r < 0.60, p-value < 0.05) (Figure 4-27). Blue light has an 
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important role in photomorphogenic in plants including stem elongation (Cosgrove, 

1981) and stomatal control (Schwartz 1984) which influences water relations and CO2 

exchange. However, there was not a strong relationship between ABA and red 

wavelengths, indicating that ABA did not have a significant impact on pigment 

concentrations but it did have in cell structure. During the first days of the exposure (~ 

2 DAE), only the visible range (long blue and short green) manifested a positive 

relationship with ABA. On the other hand, the only significant relationship (p-value < 

0.05) with ABA with the NIR range was at 14 DAE. 

 
Figure 4-27. Temporal relationship between ABA and reflectance data in 2,4-D injured leaves. 

4.4.3. Hyperspectral data analysis 

A change in the spectral variability of the crop foliage occurred throughout the entire 

growing season. Figure 4-28 shows the spectral changes from 4 nodes to 12 nodes in 

non-treated plants. Controls exhibited higher NIR reflectance and lower visible 

reflectance as they became mature. Varying the exposure dose from 0% to 5% of the 

recommended label rate reduced the reflectance in the NIR from higher than 0.6 to 

nearly 0.4 (Figure 4-29). The amount of NIR reflectance variability due to different 

doses was nearly the same in S2 and S3 (~ 0.03). Although treatments sprayed at S1 

with D1 and D2 presented changes in the reflectance, the curve from 400 nm to 900 

nm did not tend to vary greatly through time. In the green peak (550 nm), there was 

no major change for D1 at S2 and S3 (Figure 4-29). However, when these treatments 

were compared with controls and S1, the reflectance for both S2 and S3 was the lowest 

of the treatments (Figure 4-29). 
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Figure 4-28. Reflectance average at different growing periods of control plants. 

When the crop was treated at S2 and S3, they had comparatively similar curves as with 

non-treated plants in the visible range from 400 nm to 700 nm (except in the green 

peak), i.e. at some point after the exposure, the treatments S2 and S3 did not show 

significant visual changes in comparison with non-treated plants. On the other hand, a 

completely different shape (from 400 nm to 500 nm and from 600 nm to 700 nm) was 

obtained for treatments at S1 regardless of the dose. S1 had the highest reflectance 

values in the red range tending towards more redness. In general, the spectral curve of 

S1 was highly different from the other stages in the entire region from 400 nm to 900 

nm. This supports the visual symptoms evident in the field, as it looked “highly 

damaged” in comparison with the other two timings of exposure (S2 and S3). 

The visible wavelength range (400 nm to 700 nm) presented different patterns in 

treated plants than in controls. However, the similarities within this range were higher 

than in the NIR (700 nm to 900 nm). High NIR reflectance is associated with healthy 

leaves due to a better leaf internal structure, higher LAI, and biomass (Schlemmer et 

al. 2013). In this study, controls had the highest NIR reflectance which suggests that 

they were the healthiest plants in the experimental plots. Results in the NIR have 

shown a decrease in reflectance values irrespective of the timing of exposure, 

suggesting that the cell structure abnormalities of the 2,4-D injured leaf are the most 

determinant variables (rather than pigment) for accurately assessing the damage 

caused by 2,4-D phenoxy herbicide in cotton crops. 
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Figure 4-29. Influence of dose at different timing of exposure. 

Early detection of damage was possible due to the variability in the reflectance as soon 

as 2 days after the exposure (2 DAE) even for the lowest dose. Figure 4-30 shows the 

difference of means in the spectral responses of controls and all treatments collected 

at 2 DAE, 7 DAE, 14 DAE and 28 DAE. Treatments sprayed at 4-5 nodes (S1) showed 

a clear different shape from 600 nm to 900 nm in comparison with other stages, and a 

major difference from control plants in the NIR range (700 nm to 900 nm). The 

differentiation in the NIR range at different doses was clear while the visible (from 

400 nm to 700 nm) wavelengths did not show such difference within doses, except 

when data was collected 14 days after the exposure (14 DAE) in the green and red 

range (i.e. from 500 nm to 700 nm) (Figure 4-30). 

When sprayed at 7-8 nodes (S2), the visible range had very similar differences (i.e. 

similar shapes) for the lowest dose (D1) and the highest dose (D2), i.e. the visual aspect 
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of the plants did not vary significantly (for data collected at 14 DAE, Figure 4-29). 

Soon after the spray, D1 did not show a major spectral change in comparison with 

control plants (except at the green peak around 550 nm) but D2 manifested changes 

also in the red range (at 7 DAE, Figure 4-30). At this stage (S2), the major changes 

between doses (Nil - D0, 5% - D1 and 50% - D2) were observed 14 DAE in the NIR 

range. When plants were treated at a late stage (S3), the behaviour of the visible was 

similar to the pattern described above for S2. The green peak (in the visible range) and 

the NIR (around 750 nm) were the major points of spectral variability within doses 

through time, except for 28 DAE where the variability between D1 and D2 was nearly 

null (Figure 4-30). 

At the end, when plants were treated at the earliest stage (S1), the reflectance in the 

visible range did not change between doses but NIR exhibited the highest variability 

for all of the treatments through time. At S2, the differences between doses in the 

visible wavelengths were not so evident after 14 DAE. However, soon after the 

exposure, spectral changes manifested with the highest dose (D2) were different. The 

lowest dose (D1) tended to not vary in the same range (from 400 nm to 700 nm) in 

comparison with controls (except at 550 nm). At the late stage, the peaks around 550 

nm and 750 nm were clearly differentiated from doses at any time between 2 DAE and 

14 DAE. The spectral variability of S3 after 28 days of the exposure (28 DAE) was 

not evident when comparing doses (except at the red edge from 700 nm to 730 nm) 

which may explain the visual similarities between treatments regardless of the dose. 

As expected, NIR was the most constant range showing clear differences for all of the 

treatments. 
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Figure 4-30. Temporal reflectance changes according to dose (D), timing of exposure (S) and days after the 

exposure (DAE). 
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4.4.3.1. Pre-processing techniques and their impact on prediction 

capabilities 

Raw spectral data and five pre-processing techniques were assessed. Derivatives and 

smoothing filters eliminated the number of wavelengths at the beginning and/or the 

end of the range. Application of the Savitzky-Golay (SG) filter has reduced the total 

number of wavelengths by 10: 5 wavelengths from 400 nm to 404 nm, and another 5 

wavelengths from 896 nm to 900 nm. The first derivative (FD) filter reduced one 

wavelength at the beginning of the range, while the second derivative (SD) reduced 

two wavelengths also at the beginning of the range. Multiplicative scatter correction 

(MSC) and standard normal variation (SNV) filters kept the original number of 

resulting wavelengths (Table 4-4). 

Table 4-4. Hyperspectral data pre-processing techniques used in this study. 

 

The scatter filters increased the noise of the spectral curves and the original reflectance 

characteristics exhibited changes (except for Savitzky-Golay filter - SG). MSC and 

SNV incremented the slope of the original spectra in the red edge range (from 700 nm 

to 750 nm) (Appendix 4-10). Furthermore, MSC’ shape looked similar than raw 

reflectance in the VIS range but with higher magnitude through all the NIR, while 

SNV accentuated the reflectance through all the spectrum. SG transformation properly 

reduced the spectral noise of the raw data and kept the shape of the original reflectance 

(See Appendix 4-10). On the other hand, derivatives changed the corresponding value 

significantly in each wavelength (Appendix 4-11). The highest value for First 

Derivative (FD) was 0.06 but most of the values were below 0.02. For Second 

Derivative (SD), the resulting values are even lower and the noise is higher than all 

techniques assessed in this study. 

Pre-processing filter Acronym No. of bands Initial – final band 

Raw spectra RAW 501 400 - 900 

Savitzky-Golay SG 491 405 - 895 

First derivative FD 500 401 - 900 

Second derivative SD 499 402 - 900 

Multiplicative scatter correction MSC 501 400 - 900 

Standard normal variation SNV 501 400 - 900 

Source: (Suarez, Apan & Werth 2017) 
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Different factors can be integrated to assess the impact of pre-processing techniques 

(as described in section 4.3). In this particular case, results were compared based on 

the root mean square error of LOO-CV (RMSECV) and Rcv
2. The lower RMSECV 

and the higher Rcv
2 the better the model was. The dataset collected at 2 DAE was 

implemented to build the models. 

Table 4-5 presents the results according to each pre-processing technique. The best 

performing models were those that used raw spectral data and the Savitzky-Golay (SG) 

filter. Both models were composed of the same number of LV (=4), Rcv
2 (X = 99.7% 

and Y = 64.6%) and RMSECV equal to 3.7 bales/ha. The poorest performance 

occurred when the data was converted into derivatives. With other pre-processing 

techniques such as MSC and SNV, the RMSECV was nearly the same with only 0.01 

bales/ha difference. However, with derivatives, that error increased to 5.99 bales/ha 

(more than 61% higher than the best prediction model). 

Table 4-5. Influence of pre-processing techniques in PLS-R models performance. 

 

4.4.3.2. Assessing hyperspectral capabilities by predicting yield under 

2,4-D-influence 

The analysis of the pre-processing techniques demonstrated that these techniques did 

not improve the prediction performance of the models. As a result, the PLS-R models 

for prediction of yield were developed with raw spectral data. Four prediction models 

were analysed to determine the best time to collect data in the field. The relationship 

between the root mean square error of prediction (RMSECV) of the leave-one-out 

cross-validation predictions and the number of latent variables is shown in Figure 4-31. 

The optimal number of LV was selected based on RMSECV, the highest Rcv
2 and the 

resulting scores (data not presented). Scores were analysed to detect any significant 

outlier among the samples. The results show that data collection can be done anytime 

DATA Pre-processing filter LV RMSECV X-R2 (%) Y-R2 (%) 

2 DAE 

RAW 4 3.70 99.68 64.57 

SG 4 3.70 99.68 64.57 

FD 5 4.00 68.33 94.53 

SD 1 5.99 21.29 20.15 

MSC 2 3.84 88.32 61.34 

SNV 2 3.83 88.18 61.38 
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after exposure with good prediction capabilities (except for 14 DAE, see Table 4-6), 

particularly for the model composed of 7 DAE data. This model appeared to be the 

best time for modelling with the lowest RMSECV (= 2.6 bales/ha) and the highest Y-

R2 (= 0.88). This corresponds to prediction error of 16.9%, which represents more than 

80% correct predictions (Table 4-6). 

Table 4-6. Performance of PLS-R models on yield (bales/ha). 

DAE LV RMSECV X- R2 Y- R2 RMSECV of yield (%) 

2 4 3.7 0.98 0.65 21.66 

7 6 2.56 0.99 0.88 16.91 

14 3 4.68 0.96 0.37 27.39 

28 6 3.16 0.99 0.84 18.48 

DAE: Days after exposure. LV: Optimal number of latent variables (LV). RMSECV: Root 
mean square error of LOO-CV. R2: variance explained of LOO-CV (Rcv

2). 

 

 
Figure 4-31. Relationship between RMSECV and the number of PLS-R LV. 

The contribution of each wavelength can be visualised by the analysis of weighted 

regression coefficients (Bw) of the models (Figure 4-32). Weighted regression 

coefficients are more informative and easier to interpret (Barbin et al. 2012; Garrido 

Frenich et al. 1995; Yi et al. 2014). In general, all models contained at least one 

wavelength in the green range (Table 4-7) which can be explained due to the high 

correlation between healthy plants and chlorophyll fluorescence with this spectral 

region (Rama Rao et al. 2008; Rapaport et al. 2015). 

Blue wavelengths (400 nm, 414 nm and 498 nm) had an important contribution in 7 

DAE and 28 DAE models which were the best prediction models based on RMSECV 

and R2 values. This is an interesting finding, as the blue region is not commonly 

associated with healthy plants or other physiological variables as demonstrated in a 
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study on the detection and prediction of herbicide injury on water hyacinth using 

remote sensing techniques (Robles, Madsen & Wersal 2010). 

 
Figure 4-32. Weighted regression coefficients (Bw) from the yield prediction models. 

Table 4-7. Significant wavelengths according to peaks of weighted regression coefficients of PLS-R models. 

 Spectral range 

Model Blue Green Red Red-edge NIR 

2 DAE  554  706/756 895 

7 DAE 414 553/595 617/673 762 897 

14 DAE  548 636/700   

28 DAE 400/498  616/681 704 815/899 

 

The red range (636 nm, 673 nm, 677 nm, 681 nm and 700 nm) contributed in three 

models: 7 DAE, 14 DAE and 28 DAE. Red edge, specifically at 704 nm, 706 nm, 756 

nm and 762 nm, and the NIR range at 815 nm, 895 nm, 897 nm, 899 nm, had important 

contributions in all models except for 14 DAE. This could explain the poor results of 

the model (RMSECV = 4.7 bales/ha) in comparison with the others. The wavelengths 
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around 550 nm (+ 4 nm) were highly important for all models except for 28 DAE. The 

contribution of 895 nm (+ 4 nm) was significant for all models except for 14 DAE. 

The significance of green, red, red edge and NIR observed in the prediction models 

agrees with several studies related to photosynthesis capacity, physiological stress, 

pigment concentration and, in general, different conditions of the crop (Merton, 

Sugianto & Huntington 2004; Pinter et al. 2003; Zhao et al. 2007b). 

Integration of results in Table 4-6 and Figure 4-33 indicated that the best prediction 

performance was obtained when data was collected at 7 DAE. The highest regression 

coefficient value of measured vs. predicted yield (R2 = 0.74) corresponded to the 

minimum RMSECV of the PLS-R models (RMSECV = 2.6). The second best model 

(28 DAE) corresponded to the second lowest RMSECV (= 3.2) and the second highest 

values R2 (= 0.64). According to the significant wavelengths included on each of these 

two models, the presence of the blue, red, red edge and NIR wavelengths was a 

common factor (Table 4-7). On the other hand, the worst performance occurred when 

only two regions of the spectrum (green and red) were significant (data collected 14 

DAE, RMSECV = 4.68 and Y-R2 = 0.37) which coincided with the lowest R2 of the 

linear regression of predicted vs. measured yield (R2 = 0.21) (See Table 4-6). 

 
Figure 4-33. Scatter plots of measured vs. estimated yield (bales/ha) derived from PLS-R. 

a) 2 DAE, b) 7 DAE, c) 14 DAE and d) 28 DAE. 
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4.4.3.3. Assessing hyperspectral data for estimating 2,4-D dose 

Two different approaches were tested to establish the best method for the estimation 

of dose. Canonical powered partial least squares (CPPLS) and sparse partial least 

squares discriminant analysis (sPLS-DA) were tested at three grouping levels (D0, D1 

and D2). 

 CPPLS 

This approach was implemented in two steps: development of prediction models and 

classification. Linear discriminant analysis (LDA) was performed as a classification 

tool for all groups. Each group was divided into training and test datasets composed 

of 75% and 25% of the samples, followed by outlier’s removal. The first group (level 

1) was composed of all data pooled across with a total of 697 samples (Table 4-8). 

Table 4-8. Sample size per group of analysis of CPPLS and sPLS-DA. 

Sample/Group Sample size 
No. of training 

samples (75%) 

No. of test 

samples (25%) 

All data 697 523 174 

 2 DAE 172 130 42 

  S1 56 42 14 

  S2 58 45 13 

  S3 58 44 14 

 7 DAE 171 129 42 

  S1 56 43 13 

  S2 55 42 13 

  S3 60 45 15 

 14 DAE 175 132 43 

  S1 54 41 13 

  S2 59 45 14 

  S3 56 43 13 

 28 DAE 176 133 43 

  S1 58 44 14 

  S2 60 45 15 

   S3 57 44 13 

 

Classification accuracy results range from 47% with only one LV to 72% with 10 LV. 

(Figure 4-34). The second group (level 2) was composed of data grouped by days after 

the exposure (DAE). Four resulting groups (2 DAE, 7 DAE, 14 DAE and 28 DAE) 

were analysed in order to determine the impact of DAE in the prediction capabilities 
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of the models. The highest classification performance was between 30% and 53% with 

7 and 9 LVs, respectively. The classification accuracy was lower than the first group 

(all data) (Figure 4-34). The prediction capabilities increased to more than 90% in the 

classification accuracy with just one LV when the level 2 was subdivided by the timing 

of exposure (S) (Figure 4-35). 

The data grouped by DAE and timing of exposure (S) manifested more variability in 

prediction performance (Figure 4-35). However, the classification accuracy improved 

considerably with less LV. Plants sprayed at the earliest stage (S1) produced the best 

classification accuracy (> 90%) with 3 LV at 2 DAE. It appeared that as soon as the 

event occurred, it is more likely to predict accurately the dose that reached the crop. 

At 28 DAE was also a good time to predict dose with the same accuracy but it needed 

more LV (between 7 and 10). 7 DAE and 14 DAE predictions are still good but with 

lower accuracy (< 85%). When plants were treated at S2, the worst time for data 

collection was at 2 DAE while 28 DAE was the best time as it only required two LV 

to reach 100% of correctly classified data. The best time for data collection at S3 was 

7 DAE with one LV and 93% of correctly classified data. 

 
Figure 4-34. Comparison of classification accuracy of CPPS for all data (All DAE) and grouped by DAE. 

 
Figure 4-35. Classification accuracy of CPPLS for level 3: Data grouped by DAE and timing of exposure. 

Source: (Suarez, Apan & Werth 2017) 
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Although the X-variance explained by the models with data grouped by DAE and S 

(level 3) was, in many cases, low, good classification accuracies were achieved, for 

example, 2 DAE-S3, 7 DAE-S3 and 28 DAE-S2 (Table 4-9). On the other hand, there 

were also models that reached more than 90% of X-variance explained but with poor 

classification results, for example, 28 DAE, level 2. The algorithm CPPLS only 

required 27.3% of variance explained for yielding good classification results (> 90%) 

(7 DAE-S3) (Table 4-9 and Figure 4-35). 

Table 4-9. Percentage of X-variance explained at different grouping levels with CPPLS algorithm. 

 

The identification and selection of the most significant wavelengths are critical stages 

in modelling. These procedures can be implemented with different algorithms. The 

Significant Multivariate Correlation (sMC) algorithm was applied for extracting 

information regarding the most significant wavelengths in the resulting models, as it 

corrected the limitations of the variable selection method Variable Importance in the 

Projection (VIP) (Tran et al. 2014). 

The model built with data at level 3 (28 DAE and S2) was significantly improved with 

the addition of the second LV. Figure 4-36 shows the most significant wavelengths for 

both LV 1 and LV 2. The difference between those LVs is the participation of the 

  Number of LV 

Level Group 1 2 3 4 5 6 7 8 9 10 

1 All DAE 34.9 37.9 46.8 47.6 48.1 48.7 48.8 48.9 49.1 49.2 

2 

2 DAE 41.9 50.5 52.9 54.6 57.5 58.0 58.3 58.3 58.4 58.6 

7 DAE 44.7 46.5 51.0 52.3 55.7 56.6 56.6 56.6 56.6 56.9 

14 DAE 50.9 56.3 60.7 61.1 62.3 62.9 63.3 63.5 63.6 64.2 

28 DAE 40.1 45.6 51.0 92.2 93.3 93.4 94.8 94.8 94.9 95.0 

3 

2 DAE-S1 73.2 86.7 87.0 90.0 91.1 91.1 91.2 91.4 91.4 91.4 

2 DAE-S2 50.9 52.0 54.6 54.9 61.8 66.4 66.7 66.8 67.3 67.5 

2 DAE-S3 43.1 49.2 56.5 57.9 60.5 60.7 60.8 60.9 61.0 61.1 
           

7 DAE-S1 30.1 33.6 35.8 35.9 36.3 36.4 36.7 36.7 36.7 36.7 

7 DAE-S2 16.8 20.8 65.2 67.4 68.7 69.4 71.7 74.5 75.8 77.2 

7 DAE-S3 27.3 30.6 35.1 38.2 38.7 39.5 40.5 40.5 43.6 46.4 
           

14 DAE-S1 34.7 53.3 56.3 57.8 58.0 60.6 61.0 61.3 61.7 61.9 

14 DAE-S2 27.3 54.1 54.7 59.8 60.0 60.1 60.7 61.5 62.2 62.8 

14 DAE-S3 17.8 20.3 28.8 30.1 30.9 31.3 32.4 33.6 33.9 35.6 
           

28 DAE-S1 58.5 69.8 71.6 73.1 73.2 73.6 73.7 73.7 73.8 73.8 

28 DAE-S2 42.2 50.1 57.6 58.0 59.5 59.6 60.3 60.4 60.9 61.0 

28 DAE-S3 13.6 86.7 87.2 96.6 96.7 96.8 96.9 97.0 97.0 97.0 
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wavelengths around 550 nm + 12nm in the second LV, which also included a few more 

bands from 442 nm to 449 nm and from 595 nm to 612 nm. The inclusion of those 

bands increased the classification performance from 73% to 100% of correctly 

classified cases.  

 
Figure 4-36. Significant Multivariate Correlation (sMC) for the first two LVs of the CPPLS approach: 28 DAE-

S2 model. 

 sPLS-DA 

For this approach, same levels of analysis were performed as CPPLS while three 

different algorithms for classification purposes were tested: Centroid distance, 

Maximum distance and Mahalanobis distance. In contrast with CPPLS, the 

classification accuracy increased as the number of LVs increased. Centroid distance 

was the worst classification algorithm which was slightly higher than 60% of properly 

classified samples in a few specific cases (Figure 4-37 and Figure 4-38). Maximum 

and Mahalanobis distance performed similarly in most of the scenarios. Grouping the 

data into DAE improved the classification results for 7 DAE and 28 DAE after 6 LVs 

(Figure 4-37). 

 
Figure 4-37. Classification accuracies for estimation of dose with all data pooled across (All DAE) and 

grouped by days after the exposure (DAE). 
Source: (Suarez, Apan & Werth 2017) 

400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900Si
gn

ifi
ca

nt
 v

ar
ia

bl
es

Wavelength (nm)

LV 1 LV 2

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 c

or
re

ct
ly

 c
la

ss
ifi

ed
 (%

)

Number of components
Maximum distance Centroids distance Mahalanobis distance

All DAE 2 DAE 7 DAE 14 DAE 28 DAE



Chapter 4       Hyperspectral Sensors and 2,4-D Herbicide Drift 

88 
 

When comparing levels 2 and 3 (Figure 4-38), some cases resulted in improved 

classification accuracy. Collecting data at 2 DAE did not perform well for any of the 

timing of exposure with the exception of S3 when 91% of the cases were properly 

classified. At this stage, it was possible to reach more than 90% of samples correctly 

classified by grouping the data 7 DAE. 

 
Figure 4-38. sPLS-DA prediction accuracy with data grouped by days after exposure (DAE) and timing of 

exposure (S) with one to ten LVs and for three different classification methods. 
Source: (Suarez, Apan & Werth 2017) 
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It was also possible to reach accuracy levels higher than 90% for the timing of exposure 

S1 and S2 but with more LV (8 and 10, respectively). For 7 DAE, the subdivision by 

the timing of exposure (S) (Figure 4-38) increased the accuracy levels. A similar 

situation occurred with the 14 DAE grouping factor when the accuracy increased from 

less than 80% to more than 90%. Predicting dose at 14 DAE was particularly good for 

the timing S2 (> 90% and 4 LVs). Data collection conducted 28 DAE increased the 

classification accuracies for all of the different timings of exposure. This was 

especially true for S1 when the internal changes were clearly identified by the 

hyperspectral sensor. Two LVs were able to properly classify 91% of the samples. 

Similar results were obtained for S3 (> 86%), although more LVs were needed (5 and 

7 to 10 LV). 

Table 4-10 summarises the best time for data collection according to the timing of 

exposure and classification method. When the timing of exposure was late, the best 

time for collecting data was within the first 14 days after the incident (2 DAE and 7 

DAE and up to 14 DAE with less accuracy). When the plants were exposed to the 

chemical at 7-8 nodes (S2) (and the data was grouped by 28 DAE), the CPPLS could 

predict dose with 100% accuracy and with only two LV. As a result, 28 DAE was the 

best time for data collection purposes for cotton plants affected at the middle stage 

(S2). However, in general, this timing of exposure was the most difficult to properly 

classified as indicated by the lowest classification accuracy (usually below 90%).The 

methods performed differently at the very early stage of exposure (S1): based from 

CPPLS analysis, the best classification accuracy was attained with data collected at 2 

DAE (> 90%) while sPLS-DA results showed that the best time was 28 DAE. 

Table 4-10. Summary of optimal number of LVs as per classification approach, timing of exposure (S) and 
days after exposure (DAE). 

 CPPLS sPLS-DA 

S 2 DAE 7 DAE 14 DAE 28 DAE 2 DAE 7 DAE 14 DAE 28 DAE 

S1 3 LV   4 LV*    2 LV 

S2   3 LV* 2 LV   4 LV*  

S3 3 LV 1 LV 2 LV*  6 LV 6 LV 5 LV*  

Results only show the optimal number of LVs for classification accuracies higher than 90% and * accuracies 

between 80% and less than 90%. 

The correlations between reflectance and yield after contact with the chemical clearly 

support the results of the classification methods, in the way that the optimal time for 
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data collection purposes (7 DAE for S3 and 28 DAE for S1) coincided with the highest 

differences that occurred in the NIR and green peak. Two and fourteen days after the 

exposure (2 DAE and 14 DAE) did not present such significant correlations but they 

resulted to be the best time for collecting data if the incident occurred at the early stage 

(S1) (in addition to 28 DAE) and the middle stage (S2), respectively. The NIR range 

and some of the visible wavelengths (i.e. blue range for S1 and green and red range 

for S2) manifested the biggest differences between varying doses at these times (2 

DAE and 14 DAE). 

The classification methods (CPPLS and sPLS-DA) tested in this study for estimation 

of dose provided good classification accuracies. The main difference was the optimal 

number of LVs. CPPLS performed better in most of the cases and required less LV to 

reach the same classification accuracy than sPLS-DA. However, both classification 

approaches highlighted the importance of knowing the stage of the crop when the 

incident occurred as the plants reacted differently at every timing of exposure (Everitt 

& Keeling 2009). Based on the results, the time (DAE) by itself did not improve the 

prediction capabilities. However, when the data was segregated by the timing of 

exposure (S), the accuracy was substantially improved suggesting a higher influence 

of (S) in the model performance. The best time for data collection purposes, after the 

exposure, depended on the stage of growth of the plants.  

The analytical techniques and results presented in this study provide valuable 

information for a better understanding of cotton crop variability due to herbicide drift. 

The findings related to fibre quality (e.g. gin turnout, micronaire, fibre length, 

elongation, uniformity, and strength, and percentage of short fibre within the sample) 

reduces the possible negative consequences associated to 2,4-D damage allowing 

farmers to focus on the maximisation of yield recovery by applying mitigation 

management practices. Most of the findings agreed with previous work, however, a 

significant disparity was observed in Abscisic Acid (ABA) content of treated plants, 

which could explain the plant growth inhibition according to Grossmann (2010). 

Another interesting finding was the inclusion of the blue spectral range (from 400 nm 

to 415 nm) in the prediction models in order to increase their prediction capabilities. 

Furthermore, the implication of the days after herbicide exposure in relation to field 

data campaigns was found relevant. With these findings in mind, it is possible to plan 
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field data collection activities in a specific period of time to make the damage 

assessment more accurate. 

4.5. Discussion 

4.5.1. Impact of 2,4-D herbicide drift on cotton yield and lint yield 

The recovery capabilities of the plants exposed to 2,4-D assessed by the amount of 

harvested yield manifested a clear relationship with the timing of the exposure. Plants 

exposed at very early stage (S1) reached a harvested yield equivalent to 66% of the 

control treatments while plots treated at middle and late stage (S2 and S3 respectively) 

did not reach 50% of the controls. This is in accordance with other studies where the 

timing of exposure proved to be an important aspect in the recovery capabilities of the 

plants (Charles et al. 2007; Everitt & Keeling 2009). The dose, on the other hand, did 

not show a significant difference at a late stage (S3) as the yield loss recorded was only 

with a difference of 11% between D1 and D2 while for other stages, the differences 

were higher than 39% (Figure 4-17). The resulting trend of cotton susceptibility to 2,4-

D is also evidenced in the study by Charles et al. (2007). In that study, conventional 

cotton and transgenic 2,4-D-tolerant cotton plants were exposed to similar doses (D1 

and D2). Regardless the tolerant capabilities, the plants were highly affected by the 

phenoxy herbicide increasing the yield loss as the dose was increased. 

Lint quality was not affected by the exposure according to the standard schedule of 

premiums and discounts of cotton marketers (e.g. Namoi Cotton Co-operative). 

Correlations did not show a statistically significant relationship between these 

variables and dose with the exception of micronaire (Figure 4-21). Although 

micronaire was observed to be negatively correlated with dose (r = -0.68, p < 0.05), 

the minimum and maximum values (i.e. 3.4 and 4.6, respectively) were within the 

range of “zero” discount policy of the market standards. The lowest variability and 

most-consistent results were obtained in fibre uniformity, strength, and length. 

Micronaire, SFI and elongation presented a slightly higher variation that was not 

clearly associated with herbicide application. These results agree with the findings 

reported by Smith and Wiese (1972) where they tested different concentrations of 2,4-

D on cotton crops. The results of their study concluded that micronaire was the only 

lint quality variable negatively affected by this herbicide. The micronaire levels in that 
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study were also within the base range of 3.5 to 4.9 to which discounts generally did 

not apply (Van der Sluijs 2015). 

4.5.2. Internal changes in cotton plants after the exposure to 2,4-D 

and its influence in spectral responses 

4.5.2.1. Physiological changes 

The direct relationship between the healthiness of the plant and photosynthesis and 

stomatal conductance, obtained in this study, can be confirmed by several studies 

where the health of the plants was affected by disease or nutrient availability reducing 

the stomatal conductance and, therefore, the photosynthetic capacity (Merton, 

Sugianto & Huntington 2004; Zhao et al. 2005). The negative relationship between the 

physiological variables and dose explored in this study also agrees with those findings 

in Perumal et al. (2006), where photosynthesis and stomatal conductance decreased 

due to the exposure to 2,4-D of cotton crops. 

It is commonly known that healthy plants decrease the reflectance in the red region 

(around 670 nm) while the increase of reflectance in the green peak is associated with 

lower rate of photosynthesis and lower pigment content (Blackburn 2007; Gitelson, 

Gritz & Merzlyak 2003; Merton, Sugianto & Huntington 2004; Schlemmer et al. 2013; 

Yi et al. 2014). Carter (1998) demonstrated a proportional indirect relationship 

between photosynthesis capacity and the reflectance at the end of the red band (~ 700 

nm). Additionally, in Suarez, Apan and Werth (2016), 2,4-D dose was highly and 

negatively correlated with photosynthesis. Based on those findings, including the work 

of Perumal et al. (2006), it was shown that treated plants suffered a reduction of 

photosynthesis capacity. Gitelson, Gritz and Merzlyak (2003) found that in the cases 

where the chlorophyll (chl) content in plants did not vary, thicker leaves presented 

lower chlorophyll concentration (per volume) manifesting reflectance increments in 

the green peak and the NIR. 

These results (i.e. higher green and NIR reflectance), are in accordance with the higher 

reflectance values in the green peak and NIR in control plants reported in this study as 

they had a more homogeneous, softer texture and thicker leaves than 2,4-D-injured 

leaves. Hence, these results suggest a potential higher chlorophyll concentration in 

treated plants as consequence of the chemical contamination. Furthermore, Rapaport 
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et al. (2015) demonstrated that the progressive reflectance decrease in the green peak 

and the red edge range (710-750 nm) was as consequence of gradual water deficits. 

2,4-D-injured leaves manifested a combination of these two factors (lower reflectance 

in the green peak and red edge region) suggesting that the effects caused by the 

chemical also induced water stress as consequence of the physiological changes where 

the youngest leaves were more likely to suffer this stress as shown in Figure 4-29. 

4.5.2.2. Hormone changes 

Middle and late stage of exposure (S2 and S3) produced the lowest harvested yield 

regardless the dose. IAA decreased through time in comparison with control 

treatments, in plants treated at early stage. On the other hand, an overproduction of 

IAA after the contact with the chemical was recorded for plants treated at S2 and S3 

with the lowest dose (D1) after 14 days of the exposure (14 DAE). This overproduction 

could explain in some extend the significant yield loss for those timing of exposure as 

the overstimulation of IAA culminates in a dead plant (Bondada 2011; Grossmann 

2010). 

Overproduction of ABA content causes morphological abnormalities and plants 

exposed to 2,4-D experienced structural modifications in the mesophyll cells of the 

injured leaves (Bondada 2011; Grossmann 2010). These structural modifications 

include extra cell layers proliferated near the spongy mesophyll close to the axial leaf 

surface (Bondada 2011) seriously affecting photosynthesis and stomatal functioning. 

Significant correlations between ABA and dose and physiological variables were not 

manifested in this study. However, throughout the study of the correlation coefficients 

of ABA and reflectance data, it was possible to indirectly relate the physiological 

aspects of the 2,4-D-treated plants and ABA content. ABA manifested a moderate 

correlation in the cell-related structure wavelengths (NIR) (r = 0.6, p-value < 0.05) and 

a moderate correlation with the longer wavelengths of the blue range (p-value < 0.05). 

Blue light has an important role in the inhibition of stem elongation (Cosgrove 1981) 

and stomatal control (Schwartz 1984) in plants, which at the same time also influences 

water relations and CO2 exchange. 
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4.5.3. Hyperspectral data as a tool for prediction of damage caused 

by herbicide drift on cotton crops 

Different spectral responses captured at three growth stages of healthy plants were 

expected to change due to physiological changes of the crop (Plant et al. 2000) (Figure 

4-28). The change in the NIR reflectance has been correlated to different conditions of 

the crop, such as a) fertile soil or soil nutrient content (Merton, Sugianto & Huntington 

2004); b) crop development (Merton, Sugianto & Huntington 2004) and c) stage of 

growth (Zarco-Tejada, Ustin & Whiting 2005). Control plants clearly manifested NIR 

increments as the crop became mature. Similarly, the plants treated with 2,4-D, 

manifested drastic changes in the NIR range (700 nm -900 nm) (Figure 4-29) 

indicating morphological deformities and structural alterations (Bondada 2011). 

The results from correlations between hyperspectral data with yield confirmed the 

important role of the green peak and the NIR wavelengths to assess the damage caused 

by 2,4-D. Although the correlation coefficients slightly varied through time, the 

relationships kept constant. An improved yield is expected when there are better 

conditions within the plant (Gitelson, Gritz & Merzlyak 2003; Schlemmer et al. 2013) 

including cell structure, leave thickness and chlorophyll concentrations (Blackburn 

2007; Grossmann 2010; Merton, Sugianto & Huntington 2004). These conditions were 

manifested through the changes of the reflectance shape of treated plants: the green 

peak and NIR reflectance increased while the reflectance in the red range decreased in 

comparison with control plants. 

According to the literature, transformed hyperspectral data affects the performance of 

prediction models. The impact of pre-processing techniques is wide but they need to 

keep the spectral characteristics such as the wavelength position of the inflection 

points, the local minima or maxima as well as the preservation of the absorption 

features of the original data (Schmidt & Skidmore 2004). Moreover, the mathematical 

approaches alter the original data (Barbin et al. 2012) by inducing spectral variations 

that are related to the studied variable. For these reasons, the implementation of noise-

removal or smoothing techniques needs to be addressed at each particular case of study 

rather than ad hoc as detailed by Chen et al. (2011) and Swatantran et al. (2011). In 

this study, we concluded that pre-processing techniques did not considerably improve 

the prediction capabilities of yield models. In fact, raw data and SG yielded the best 
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predicting models with the same coefficients (R2) and RMSECV. These results are in 

accordance with Barbin et al. (2012) and Vaiphasa (2006) where any spectral pre-

processing technique increased model performance. Hence, non-transformed spectra 

was implemented in all subsequent analysis, since any of the analysed techniques 

conceded better results than raw data. 

This study has proved the potential capabilities of hyperspectral data in the accurate 

prediction of cotton yield under the influence of phenoxy herbicide at different rates 

and timing of exposure. It was also possible to identify the temporal variability of the 

prediction models according to days after the exposure (DAE) confirming the recovery 

process within the plants as reported by Al-Khatib et al. (2004); Everitt and Keeling 

(2009) and Everman et al. (2008). Results from the prediction models included an 

RMSECV of 2.56 bales/ha which represent a prediction accuracy of 83% and an R2 

equal to 0.88. Charles et al. (2007) and Everitt and Keeling (2009) reported that one 

of the principal limitation in the traditional assessment of 2,4-D herbicide drift on 

cotton crops was the temporal variability of the visual symptoms which often resulted 

in overestimation or underestimation of yield loss. We demonstrated that proximal 

remote sensing is a powerful and reliable technology to overcome the traditional 

limitations of visual assessment of damages. As reported in Bondada (2011), broad 

leaves suffered changes in the internal cell-structure, once in contact to 2,4-D, that are 

not necessarily physically manifested at low doses or late timing of exposure (Everitt 

& Keeling 2009) but significantly influenced the harvested yield. 

The analysis of the contribution of each wavelength in the resulting yield prediction 

models provided information of the most significant aspect for the assessment of 

damage (Barbin et al. 2012; Garrido Frenich et al. 1995; Yi et al. 2014). The error of 

the prediction accuracy between the best and the worst predicting model increased by 

10%. The main difference, between these two models, is the lack of significant 

wavelengths in the NIR range (Table 4-7) which is recognised by its close relation to 

internal cell-structure changes of the leaves (Zarco-Tejada, Ustin & Whiting 2005). In 

this way, cell-related structure wavelengths resulted to be the most important range 

for yield assessment. Pigment variability in 2,4-D-injured leaves was then as 

consequence of the morphological abnormalities and structural alterations (Bondada 

2011). 
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Estimation of dose as a reference of herbicide drift damage was also possible with high 

prediction accuracy regardless the classification method. The main difference between 

the classification methods was the optimal number of LVs to return a higher prediction 

accuracy. CPPLS is a method designed to exploit information in the predictors, so it is 

expected to require less LVs (Indahl, Liland & Næs 2009). This study confirmed the 

power of CPPLS by reducing the number of LVs. CPPLS, with only two to three LVs, 

performed better than sPLS-DA (Table 4-10) with prediction accuracy up to 100%. 

CPPLS was able to reach 72% of properly classified cases without segregation the data 

into the timing of exposure (S). This result has an important impact on the realistic 

implementation of this technology. Usually, in the field, the timing of exposure and 

the dose are unknown which are also limiting factors for agronomists to have a more 

precise assessment. The implemented methodology improved the results presented in 

Henry et al. (2004) where the best prediction accuracies were not higher than 92%. 

In this study, every analysed variable manifested morphological changes through time. 

Photosynthesis, stomatal conductance, IAA, ABA and prediction capabilities 

responded differently at different point of time which support the findings reported in 

Bondada (2011), Everitt and Keeling (2009) and Grossmann (2010) where the 

assessment and variable changes fluctuated according to days after the exposure. 

4.6. Summary 

This study demonstrated that hyperspectral sensing was capable of detecting the 

symptoms of internal changes occurring in the cotton plants as soon as two days after 

the exposure to the chemical auxin herbicide 2,4-D. The herbicide 2,4-D significantly 

affected cotton crops regardless of the timing of exposure and dose. Yield loss due to 

2,4-D exposure was higher in more mature plants, as bolls did not have enough time 

to develop properly. 

This study tested five different pre-processing filters and concluded that they did not 

significantly improve the performance of models when compared with models built 

with raw spectral data. Days after the exposure and timing of exposure (DAE and S, 

respectively) were determinant factors in the performance of model prediction 

capabilities. Yield prediction assessment within the first two days after exposure was 

not necessarily the best time. However, the evaluation conducted within a week or at 
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more than 28 days significantly increased the prediction capabilities and performance 

of the models, with prediction accuracy higher than 80%. The datasets segregated into 

DAE and posteriorly into S increased the prediction capabilities of dose to 100% of 

samples correctly classified. Days after the exposure (DAE) was the most significant 

variable in the prediction of the simulated dose of 2,4-D in cotton crops. 

The visible (400 nm to 700 nm) and the NIR range (701 nm to 900 nm) were sufficient 

to predict dose of 28 g a.i./ha (5%) and 280 g a.i./ha (50%) of 2,4-D in cotton crops 

and the consequent yield. However, the green peak (around 550 nm) and NIR range 

had a significant relationship to yield and a high impact on the prediction capabilities 

of dose by increasing the accuracy to more than 30%. In addition to the above, the 

variability of the NIR range was more constant through time highlighting the 

significance of this range in the assessment of damages caused by 2,4-D. Instruments 

developed in the future for the detection of herbicide drift should include these spectral 

ranges as they supply information about the condition of the crop. 

The analytical approaches presented in this study accurately predicted yield after a 

simulated herbicide drift of 2,4-D onto a cotton crop, thereby providing a reliable, 

effective and non-destructive alternative based on the internal response of the cotton 

leaves. This approach provides a reliable solution to the limitations of traditional 

methods, which are reliant on the visual symptoms of the plants. Moreover, the 

combination of physiological data and proximal/remote sensing procedures, such as 

those previously described in this study, can provide an integrated understanding of 

yield variability due to plant conditions after drift, and enable the development of 

better mitigation plans to reduce yield loss.  



Chapter 5  Multispectral sensors and herbicide drift 

98 
 

Chapter 5  

MULTISPECTRAL SENSING FOR THE 
PREDICTION OF YIELD LOSS CAUSED BY 
HERBICIDE DRIFT ON COTTON CROPS 
 

5.1. Introduction 

Remote sensing tools have been proven to provide reliable solutions for the traditional 

inconveniences that face different industries such as grapes, tomatoes and cotton when 

assessing damage to 2,4-D affected crops using traditional methods or visual 

characteristics. This chapter explores satellite image data as an alternative tool to 

overcome the traditional limitations when assessing yield loss in areas where 

uncontrolled exposure of plants to 2,4-D herbicide has occurred. 

The aim of this study was to assess the utility of the medium-spatial resolution 

multispectral sensor Landsat-8 Operational Land Imager (OLI) data in estimating yield 

in cotton crops affected by 2,4-D phenoxy herbicide. Specifically, the objectives of 

this study were to evaluate the temporal aspect of accuracies of a) individual 

multispectral bands, b) several published vegetation indices and c) the integration of 

all multispectral bands from Landsat-8 OLI, in the prediction of yield after an 

accidental spray of 2,4-D in cotton crops.  

The content of this chapter is divided into six sections. Section 5.1 is an introduction 

to this Chapter. Section 5.2 is a brief review of the literature regarding previous 

successful studies where remote sensing data has played a key role in the provision of 

alternative methods to overcome the limitations of traditional assessment techniques. 

Materials and Methods are presented in section 5.3 and more information can be found 

in Chapter 3. The Results section is presented in section 5.4, followed by Discussion 

in section 5.5 while a summary is presented in section 5.6. 
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5.2. Multispectral sensors for predicting yield variability 

after a herbicide drift 

Best management practices in the agriculture sector are important to optimise on-farm 

productivity while demonstrating responsible management to the community 

(MyBMP 2016). However, some crops often suffer from accidental herbicide drifts 

that cause economic damage (Huang et al. 2015; Huang & Thomson 2010). This 

situation is worldwide and common; nevertheless, there is still a lack of reliable tools 

for the estimation of yield after an accidental exposure. Cotton is one of the most 

vulnerable crops to herbicide drift, particularly to the phenoxy herbicide 2,4-D (Zhang 

et al. 2001). This crop generally grows at the same time that weed control programs 

are taking place in neighbouring crops such as wheat, pasture, corn and grass seed, 

where 2,4-D is applied to kill broadleaf weeds (Ball, Corp & Dami 2014; Zhang et al. 

2001). This situation not only presents one of the highest risks for cotton growers, it 

also affects the sustainability and security of the industry. Assessment methods for 

phenoxy herbicide damage in cotton are not precise, often overestimating or 

underestimating yield. Compensatory growth after exposure to 2,4-D and the inherent 

recovery capabilities of cotton plants play a major role in reducing yield losses despite 

the appearance of symptoms of herbicide damage (Everitt & Keeling 2009).  

Proximal and remote sensing are powerful tools to characterise crop condition and are 

potentially superior to subjective traditional (visual) assessment methods, as they 

provide a spectral characterisation of leaf and/or canopy solar radiation absorption 

(Suarez, Apan & Werth 2016; Zhao et al. 2013). Canopy absorption properties depend 

on the morphological structure and biochemical content such as water, nitrogen, 

cellulose and foliar pigments (Bondada 2011; Yi et al. 2014). Spectral variability can, 

therefore, be analysed as a consequence of biochemical concentration, biophysical 

changes and cell structure abnormalities caused by external factors such as herbicide 

drifts. Vegetation indices are simple but effective mathematical equations designed to 

extract information about the different factors affecting the spectral response. The 

structural-related Vegetation Indices (VIs) are designed to extract the green plant 

quantity signal from complex canopy spectra while exploiting the basic differences 

between soil background and canopy cover (Zarco-Tejada, Ustin & Whiting 2005) as 
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most of the vegetation covers can be characterised by their biomass and Leaf Area 

Index (LAI). 

There are then several “structural” indices designed to optimise their performance 

according to the vegetation type and species usually involving a ratio or a linear 

combination of the red and the near-infrared (NIR) wavelengths (Huete, Justice & Liu 

1994). That is the case of the universal Normalized Difference Vegetation Index 

(NDVI) (Rouse et al. 1974), the Simple Ratio (SR) or the Ratio Vegetation Index 

(RVI) (Jordan 1969). However, these indices tend to saturate under high biomass 

conditions due to the high level of chlorophyll concentrations. Pinter et al. (2003) 

proposed to overcome this potential limitation, and minimise the impact of 

environmental conditions by the inclusion of the blue band. However, the blue band 

can restrict the EVI values when tested across different sensors, because this band is 

more difficult to standardise due to the atmospheric correction procedure (Pinter et al. 

2003). Jiang et al. (2008) ) developed a 2-band EVI, that is, removing the blue band 

from the equation, to be able to generate a long-term time series as the counterpart 

NDVI, but with the improvements to the EVI equation. More robust indices such as 

GEMI (Global Environment Monitoring Index) (Pinty & Verstraete 1992), the OSAVI 

(Optimised Soil-Adjusted Vegetation Index) and the RDVI (Renormalised Difference 

Vegetation Index) (Roujean & Breon 1995) have been designed to provide information 

on vegetation cover regardless of the density, while minimising soil background and 

atmospheric effects. 

In addition to the structure-related indices, chlorophyll-sensitive indices have been 

shown to be reliable in providing biochemical information under different 

physiological and stress conditions. The Green Ratio Index (GRVI) and the Green 

Chlorophyll Index (GCI) proposed by Gitelson and Merzlyak (1994) and Gitelson, 

Gritz and Merzlyak (2003), respectively, were proposed to estimate chlorophyll 

content where there is a background of high pigment concentration. This measurement 

can be used as an indicator of early leaf senescence or stress conditions that can highly 

affect yield. 

Different studies implementing proximal sensing (i.e. hyperspectral sensors) have 

analysed the capabilities of these technologies to discriminate between healthy and 

unhealthy soybean crops (exposed to paraquat herbicide), with more than 70% 
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classification accuracy (Henry et al. 2004). More recently, hyperspectral sensors have 

proved their potential applicability in predicting cotton yield after three simulated 

doses of 2,4-D herbicide drift with promising results (Root Mean Square Errors -

RMSE = 2.6 bales/ha and R2 = 0.88) (Suarez, Apan & Werth 2016). Several vegetation 

indices have been tested to localise the damage caused by glyphosate in cotton and 

corn fields (Ortiz et al. 2011). Chlorophyll Vegetation Index (CVI), a vegetation index 

developed to monitor photosynthetically active biomass of plant canopies (Tucker 

1979), was identified as the most accurate index for glyphosate damage detection 

while leaf total chlorophyll and nitrogen content in cotton crops were analysed through 

the identification of the narrow wavebands and narrow spectral indices that accurately 

estimated these biochemical parameters (Rama Rao et al. 2008). 

Successful cases of the implementation of remote sensing data for yield predicting and 

other agronomic variables of numerous crops are well documented (Pinter et al. 2003; 

Plant et al. 2000; Thenkabail, Smith & De Pauw 2000). Normalized Difference 

Vegetation Index (NDVI) (Rouse et al. 1974) and Soil Adjusted Vegetation Index 

(SAVI) (Huete 1988) were capable of providing information for crop monitoring after 

a herbicide-induced injury (glyphosate) by revealing stress at different phenological 

stages of cotton, corn and soybean (Huang & Thomson 2010). Aerial multispectral 

sensing was implemented to predict yield as a function of dosage of glyphosate in 

soybean (Huang et al. 2015). It was found in that study that prediction accuracies 

varied according to time after exposure and that between one and three weeks after 

exposure resulted in the best prediction results for all of the vegetation indices 

analysed. Damage could be also related to plant height and successfully related to 

vegetation indices. Some studies, on the other hand, found that linear regressions with 

vegetation indices (VIs) were of limited use when compared with Partial Least Squared 

Regression (PLS-R) models for estimating phenomics in different water regimes of 

cotton. Thorp et al. (2015) assessed different statistical approaches for estimating leaf 

water content, specific leaf mass, leaf chlorophyll a+b and leaf area index (LAI) on 

seven cotton cultivars growing under different water conditions. The four phenotypes 

were successfully estimated, with RMSEs lower than 18.5%, applying PLS-R models, 

while the errors of linear regressions with VIs were, on average, higher by more than 

4.5%. 
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Landsat-8, launched on the 11th February 2013, is a satellite from a series of Earth 

remote sensing missions launched by NASA since 1972 (Knight & Kvaran 2014). 

These moderate-resolution and free data-access missions provide one of the most 

historical Earth observation resources with a revisit cycle of 16 days over the entire 

globe. Compared with its predecessor, the Landsat-8 Operational Land Imager (OLI) 

sensor has an improved signal-to-noise ratio and better spectral characteristics. OLI is 

a “push-broom” scanner using long detector arrays (i.e. line of sensors) that do not 

transmit light between each other, and they gather more light than past Landsat 

instruments. OLI has a four-mirror telescope and 12-bit quantization (NASA 2017). 

Landsat 8 OLI has 11 narrower bands with three different spatial resolutions: 15 m 

(one panchromatic band), 30 m (four in the visible, one near infrared –IR and two 

shortwave infrared bands – SWIR bands) and 100 m (two thermal infrared –TIR 

bands) (NASA 2017). 

Landsat missions have more than 11 thousand users in a wide field of applications 

such as agriculture (i.e. agricultural forecasting, management, production and 

conservation), energy, environmental science and management, land use and land 

cover, planning and development, and human needs such as hazard insurance for crop, 

fire and flood (Miller et al. 2013). 

The extensive and well-recognised use of Landsat sensors and their derived 

information, such as vegetation indices, in many different areas, presents a research 

opportunity in the capabilities of Landsat-8 OLI for assessing yield variations after a 

2,4-D herbicide drift on cotton crops. Moreover, the use of remotely sensed data to 

locate and identify the degree of damage to crops may provide valuable information 

to producers to adjust mitigation plans and potentially locate the source of the drift.  

5.3. Materials and methods 

5.3.1. Overall approach 

Demarcation of the area affected by the drift was followed by correlation analysis 

between yield records and three different kriging methods to establish the best fitting 

interpolation approach. The original Landsat 8 product was Level-1, that is, terrain 

corrected, which is the highest quality L1 Precision Terrain (L1T) product. The L1T 

digital numbers were transformed to top-of-atmospheric correction image and 
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corrected, including dark pixel subtraction, after which nine vegetation indices were 

analysed to investigate their temporal variability in the affected area in comparison 

with the unaffected area. The study area was covered by 349 pixels (30 m x 30 m), in 

which the training (70%) and test (30%) datasets were randomly selected and 

associated whether the area was affected by the herbicide or not. 

Linear regression models (LRM) of vegetation indices and individual multispectral 

bands and yield were calculated individually for each area and then compared. Partial 

least squares regression (PLS-R) models were implemented, rather than the traditional 

multivariate linear regression modelling, because some bands in the visible, the near-

infrared (NIR) and the shortwave infrared (SWIR) wavelengths are highly correlated. 

It was then possible to compare prediction accuracies of vegetation indices and the 

reflectance recorded for the seven bands of Landsat-8 OLI. The predictive accuracies 

of the best resulting models were verified using the test dataset. Figure 5-1 shows the 

schematic approach employed in this study for estimating yield after an unintentional 

exposure to 2,4-D herbicide. 
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Figure 5-1. Schematic approach used for the prediction of cotton yield using Landsat data. 

5.3.2. Study area 

The study area covers a commercial cotton paddock comprising 37 ha (Figure 5-2) in 

Jondaryan, Queensland, Australia. In this region, the average size of a cotton paddock 

is approximately 53 ha. The unplanned exposure of the crop to the phenoxy herbicide 

occurred on the 28th January 2015, covering approximately 14 ha (i.e. 38% of the entire 

area). The weather conditions recorded on the day of exposure were 17.2°C and 23.9°C 

minimum and maximum temperature, respectively, and 8.6 mm of rainfall. The 

records came from the nearest weather station, located 19 km east of the study area 

(Oakey Aero station 041359; 151.74°E, 27.40°S). 

A high-yielding variety Sicot 74BRF (developed by the CSIRO Cotton breeding team) 

was planted on the 27th October 2014 at one meter row spacing. The site was chosen 
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because of the accidental application of the 2,4-D occurred near the peak of the 

growing season, and because the yield records from a yield monitor were also 

available. 

 
Figure 5-2. General location of the study area. 

5.3.3. Crop yield data 

In this study, a four-row picker (Case IH Cotton Picker 2555 Express Cotton) equipped 

with a yield monitor (Ag Leader PF3000 Pro) capable of recording GPS points every 

3 seconds (Figure 5-3) was implemented. Prior harvesting, the yield monitor was 

calibrated in a refugee paddock (see Figure 5-4) after which the cotton crop was 

harvested between the 24th and 25th April 2015 (Figure 5-5). 
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Figure 5-3. Picker and yield monitor implemented in this study. 

 
Figure 5-4. Calibration process in a refugee paddock. 
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Figure 5-5. Cotton harvesting in the study area.  

Much research has evaluated the relationship between yield monitor data and remote 

sensing imagery and found that yield maps derived from image data are correlated to 

those from yield monitor records (Yang, Everitt & Bradford 2006). The correlation 

level was driven by the smoothing effect of the yield records rather than the resolution 

of the image. The above was found to be significant, especially, in those cases when 

the resulting yield map included more yield records (points) per pixel size (Yang, 

Everitt & Bradford 2009). In this study, each yield data point represents a rectangular 

area of 3.8 m by 4.7 m, on average. Therefore, each pixel contained on average 42 

yield points. 

Yield maps are continuous surfaces generated from yield records (points) by the use 

of spatial interpolation methods. Several spatial interpolation methods have been 

tested in previous studies without an unequivocal conclusion being reached as to which 

is the best (Zimmerman et al. 1999). However, Zimmerman et al. (1999) used synthetic 

data to systematically test the statistical significance of the effect of certain 

characteristics such as the level of noise, surface type, sampling pattern, and the 

strength of the spatial correlations of four interpolation methods: ordinary kriging, 
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universal kriging, and two types of inversed squared-distance weighted. The authors 

found that the kriging methods were substantially superior to any of the inverse 

distance weighting (IDW) methods. This situation can be explained as being due to 

the advanced nature of the kriging geostatistical procedure which considers not only 

the distance (as in IDW) but the degree of variation (or the overall spatial arrangement) 

between known points when estimating values in unknown areas (GIS Resources 

2015). The direction, that is, distance, between known points indicates a spatial 

correlation that can be used to explain variation in the resulting surface. 

Universal kriging assumes that the mean of the variable is constant in the entire area 

of study while ordinary kriging assumes that the mean of the variable, in this case, 

yield, is constant in the local neighbourhood of each estimation point (Bohling 2005). 

In this way, ordinary kriging is comparable to the fact that each plant tends to respond 

differently to environment, so the yield of each plant can be potentially different. As a 

consequence, ordinary kriging methods with a spherical semi-variogram model and a 

variable search radius of 12, 15 and 18 points (records) (SR-12, SR-15 and SR-18, 

respectively) were implemented to generate yield maps. 

The most accurate surface (yield map) was defined, based on its correlation coefficient 

with yield records. To test the correlations, the minimum, maximum and average value 

of the yield records contained within each (30 m x 30 m) pixel of the three resulting 

yield maps were extracted. Thus, the highest correlation coefficients with yield 

records, that is, the minimum, maximum and average value, defined the final yield 

map or yield surface to be implemented. The kriging interpolation methods and the 

spatial analysis were performed using the Spatial Analysis Tool available in ArcGIS 

10.2. 

5.3.4. Multispectral satellite imagery 

Six dates of Landsat-8 OLI imagery from the Pre-collection Level-1 and processing 

level L1T were acquired from the U.S. Geological Survey Earth Explorer Viewer 

website. L1T is the highest quality of Level-1 Landsat products, they are 

radiometrically calibrated and orthorectified using ground control points and digital 

elevation models (DEM) to correct for relief displacement (Landsat 2017). 
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The Landsat digital numbers (DN) of each date were transformed to at-sensor 

reflectance or Top of Atmosphere Reflectance (TOA Reflectance) by applying 

calibration coefficients contained in the metadata file of each capture, using the 

following equation (U.S. Geological Survey 2016): OP = QR∗TUVWXYR
,'$�Z�  where OP is the 

true TOA reflectance, [\ is the reflectance multiplicative scaling factor for the band, 

]\ is the reflectance additive scaling factor for the band, ^_�	 is the pixel value in 

digital number (DN) and ` is the solar elevation angle. All the variables, except the 

DN, were accessed from the metadata. 

Seven structure-related vegetation indices and two chemical-sensitive indices were 

calculated for each date from the TOA reflectance image. These indices can be used 

as indicators of crop health, biomass and biochemical constituents that are closely 

related to yield (Zarco-Tejada, Ustin & Whiting 2005). Therefore, as these factors are 

affected in 2,4-D-stressed cotton crops (Suarez, Apan & Werth 2016, 2017), the VIs 

may serve as robust indicators of crop development and physiological status (Zarco-

Tejada, Ustin & Whiting 2005). The duration of green biomass during the boll-filling 

stage has a strong relationship with yield. The most common universal structural-

related indices, which provide an indication of the crop’s biomass, were therefore tested 

as indicators of crop performance after a 2,4-D herbicide drift event. Individually, these 

indices are useful in providing information about specific variables related to the 

physiological condition and stress status of the crop, but they work somewhat 

independently of each other, that is, each of them estimates a particular condition or 

set of conditions. Cotton yield is, however, influenced by the interaction of many 

factors, particularly when affected by 2,4-D, and its accurate estimation cannot, 

therefore, be expected from a single VI. Moreover, the relationship between a 

particular VI and yield may not be valid for others VIs (Pinter et al. 2003). This is, 

therefore, the reason the proposed VIs were tested in this study; it should additionally 

provide further information in relation to their recognised effectiveness across 

different cases and scenarios. 

Table 5-1 summarises the dates of the corresponding Landsat image capture, relating 

them to days after sowing (DAS) and days after the exposure (DAE) and Table 5-2 

summarised the multispectral bands and the spatial resolution of the imagery while  
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Table 5-3 lists the vegetation indices (VIs) investigated in this study. 

Table 5-1. Chronology of Landsat image acquisitions used in this study. 

Acquisition Date 

 17/12/2014 18/01/2015 3/02/2015 7/03/2015 23/03/2015 8/04/2015 

DAS 51 83 99 131 147 163 

DAE -42 -10 6 38 54 70 

DAS = Days after sowing; DAE = Days after exposure 

 

Table 5-2. Multispectral bands and spatial resolution of the imagery implemented in this study. 

 Coastal Blue Green Red NIR SWIR 1 SWIR 2  

Wavelength 

(nanometer) 
430–450 450–510 530–590 640–670 850–880 

1570–

1650 

2110–

2290 

 

Resolution  30 meters spatial resolution 

 

Table 5-3. Vegetation indices investigated in this study. 

Structural-related indices 

Vegetation Index Formula Reference 

 Enhanced Vegetation 

Index (EVI) or soil and 

atmospherically resistant 

vegetation index 

(SARVI2) 

EVI = 2.5*[(Rn – Rr)/(Rn + 6*Rr – 7.5*Rb + 1)] Huete et al. (2002); 

Huete et al. (1997) 

 Enhanced Vegetation 

Index 2 (EVI2) 

EVI2 = 2.5*[(Rn – Rr)/(Rn + 2.4*Rr + 1)] Jiang et al. (2008) 

 Global Environmental 

Monitoring Index (GEMI) 

GEMI = eta*(1 – 0.25*eta) – [(Rr – 

0.125)/(1 – Rr)]; where eta = [(2*(Rn^2 – 

Rr^2) + 1.5 * Rn + 0.5 * Rr)] / (Rn + Rr + 

0.5) 

Pinty and Verstraete 

(1992) 

 Normalised Difference 

Vegetation Index (NDVI) 

NDVI = (Rn – Rr)/(Rn + Rr) Rouse et al. (1974) 

 Optimised Soil Adjusted 

Vegetation Index 

(OSAVI) 

OSAVI = (Rn – Rr)/(Rn + Rr + 0.16) Rondeaux, Steven and 

Baret (1996) 

 Renormalised Difference 

Vegetation Index (RDVI) 
RDVI = ��$ −  �&� a��$ +  �&� ⁄  Roujean and Breon 

(1995) 

 Simple Ratio (SR) or 

Ratio Vegetation Index 

(RVI) 

RVI = Rn/Rr Jordan (1969) 

Chlorophyll-sensitive indices 

 Green Chlorophyll Index 

(GCI) 

GCI = (Rn/Rg) - 1 Gitelson, Gritz and 

Merzlyak (2003) 

 Green Ratio Vegetation 

Index (GRVI) 

GRVI = Rn/Rg Gitelson and Merzlyak 

(1994) 

Rb = Reflectance at blue range; Rg = Reflectance at green range; Rr = Reflectance at red range; Rn = 

Reflectance at NIR range 
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The study area was analysed in two different zones: unaffected and affected area. Yield 

map, multispectral bands and vegetation indices were segregated by area and all the 

statistical analysis was performed individually. Figure 5-6 shows the visual aspect of 

the areas in the field and their respective demarcation. 

 
Figure 5-6. Delimited areas (affected and unaffected) as evidenced by the brown and white predominant 

colours of the crop. 

5.3.5. Statistical analysis 

The areas were analysed individually and compared (i.e. not affected and affected 

areas) through time to understand the variability of reflectance data when assessing 

yield in cotton crop areas affected by a 2,4-D herbicide drift. Training and test datasets 

were randomly selected within each area, representing approximately 70% and 30% 

of the sample size of each area, respectively (nunaffected = 229 and naffected = 120) using 

the software ArcGIS. Correlations between vegetation indices and individual bands 
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were performed to investigate their relationship with yield and two different 

approaches were undertaken in this study for the prediction of yield. The yield 

prediction capabilities of nine vegetation indices (VIs) were used in the first approach. 

Linear regression models were carried out for the imagery of various dates using the 

following expression: 

� =  b +  cd +  e          (Equation 1) 

where the dependent-variable (Y) = yield (bales/ha) and the independent-variable (X) 

= vegetation index. The intercept of the line is defined by α, while ε represents the 

statistical error of the model or the residual standard error (RStE). If �' denotes the 

measured response value for sample �, �5' denotes the fitted value for the same sample 

�, and n denotes the size of the dataset, then RStE is defined by (R Core Team 2015): 

���� = " = J,,/
$�; =  JK∑ LM46N

$�; = J∑�34�354�6
$�;   (Equation 2) 

where SSE stands for the Sum of Square Error (I) and n-2 is the degree of freedom. 

In this equation, two degrees of freedom are lost because of the estimation of two 

parameters: α and β. 

The model performance was then tested based on the maximum value of the coefficient 

of determination (R2) and the minimum absolute value of the residual standard error 

(RStE). All the modelling and statistical tasks were performed in R software (R Core 

Team 2014). 

The second approach pooled the multispectral bands from each image. These bands 

have been reported in several studies as highly correlated in agriculture at the field 

level and different land cover types (Clevers 1999; Kaufman et al. 1997). Thus, partial 

least squares regression (PLS-R) models were developed to assess the prediction 

capabilities of multispectral bands from Landsat-8 OLI. 

As described previously in Chapter 4, section 4.3.3, in ordinary least-squares 

regression, � = d × f +  " is given by: f = �dgd��hdg�. However, the first term 

��.�� is frequently singular due to: (a) the number of variables in X, exceeds the 

number of samples (n), or (b) high collinearity between X-variables, or (c): a 
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combination of (a) and (b). PLS encompasses these limitations by decomposing X into 

orthogonal scores (S) and loadings (L) in such a way that d =  @ ∙ i. The regression 

of Y is not only in X but on the first α columns of scores S so PLS incorporates the 

information of both predictor (X) and response (Y) variables in the definition of scores 

and loadings. The integration of X and Y optimises the prediction capabilities of PLSR 

models (Bouckaert et al. 2011; Mevik & Wehrens 2007; Wold, Sjöström & Eriksson 

2001). 

The resulting prediction models used a maximum number of seven latent variables 

(LVs) as seven is the maximum number of variables or multispectral bands. Leave-

one-out cross-validation (LOO-CV) was also applied as the calibration algorithm with 

normalized reflectance per band. Two independent datasets (training and test) were 

implemented for cross-validation and the respective validation of the resulting models. 

This approach was employed because LOO has been reported as an optimum 

calibration algorithm when highly correlated data is included as predictors (Olivieri 

2015). The independent (test) dataset was then used to assess the transferability of the 

resulting models. 

The selection of the best performing PLS-R model was based on the same principles 

as those described in Chapter 4, section 4.3: a) the optimal number of LVs, b) the 

minimum absolute root mean square error of the cross-validation (RMSECV), and c) 

the ability to explain cross-validation (training) yield variance (Rcv
2). Furthermore, 

because there was an independent dataset available for validation, the ability to explain 

predicted (test) yield variance (Rp
2), the minimum absolute root square mean error of 

the prediction (RMSEP), and the respective RMS Ratio = RMSEP/ RMSECV were 

also examined. Rp
2 and RMSEP were estimated using the test dataset and they are 

equivalent to Rcv
2 and RMSECV, respectively. The equations of Rcv

2 and RMSECV 

are presented in section 4.3.3.1. 

5.4. Results 

Each area was assessed and analysed individually and then compared to each other. 

This approach was implemented to characterise the crop according to the spectral 

response as well as the prediction capabilities of the corresponding models within 

each. 
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The herbicide 2,4-D impacted the harvested yield to a substantial extent according to 

the yield records. Comparing both areas, the affected area suffered a substantial 

reduction of more than 36%. The unaffected area had an average yield of 11.83 

bales/ha, whereas the affected area only reported 7.56 bales/ha. Yield variability within 

the areas was not similar as the standard deviation in the affected area (std = 2.05) 

nearly doubled the standard deviation of the unaffected area (= 1.22) (Table 5-4). A 

clear region where the herbicide had the highest impact is shown in Figure 5-7. 

The soil conditions and the management practices were standard across the two areas 

before and after the accidental exposure. Hence, the variability within the affected area 

might be attributable to the recovery capabilities of individual plants. 

Table 5-4. Descriptive statistics of yield in unaffected and affected areas. 

 

 
Figure 5-7. Yield point records collected from the yield monitor in the study area. 

Yield (bales/ha) 

 

 Unaffected Affected 

Mean 11.83 7.56 

Standard Error 0.01 0.02 

Median 11.92 7.78 

Standard Deviation 1.22 2.05 

Minimum 7.76 0.03 

Maximum 15.00 12.00 

0.00

0.02

0.04

0.06

0.
0

1.
8

3.
5

5.
3

7.
0

8.
5

9.
7

10
.9

12
.1

13
.3

14
.5

R
el

at
iv

e 
fre

qu
en

cy

Yield (bales/ha)

H
istogram

Affected
Unaffected



Chapter 5 Multispectral sensors and herbicide drift 

115 

5.4.1. Yield maps 

Yield maps were created through the implementation of ordinary kriging methods with 

three different variable search radius, and resulting pixel size of 30 m by 30 m was 

used to match with the spatial resolution of the satellite imagery (Yang, Everitt & 

Bradford 2006). 

Because the yield records were transformed into a continuous surface and resampled 

to a significantly coarser resolution, it was pertinent to test how consistent the resulting 

surface was when compared with the original records. Correlations coefficients were 

then calculated as indicative of the most reliable kriging approach (Yang, Everitt & 

Bradford 2006). To assess this, the minimum, maximum and average of the yield 

records within a pixel were extracted and correlated with the pixel value. In general, 

only small differences occurred when comparing the search radius tested in this study. 

The smallest and the biggest search radius (SR-12 and SR-18, respectively) were 

slightly less correlated with each other while the medium search radius (SR-15) was 

perfectly correlated with both SR-12 and SR-18. Table 5-5 presents the descriptive 

statistics per pixel, and summaries the correlation coefficients from the yield records 

and the respective yield map. 

Table 5-5. Correlation coefficients between yield records and yield maps. 

Correlation coefficient * 

SR 12 pts SR 15 pts SR 18 pts 

Kriging parameter (search radius SR) 

SR-12 pts 1.000 

SR-15 pts 0.996 1.000 

SR-18 pts 0.995 0.998 1.000 

Spatial statistics per pixel 

Minimum yield records 0.648 0.655 0.659 

Maximum yield records 0.885 0.891 0.893 

Average yield records 0.963 0.969 0.972 

* p-value < 0.05. SR 12 pts: variable search radius of 12 points; SR 15 pts: variable search radius of

15 points; SR 18 pts: variable search radius of 12 points.

The highest correlation coefficients were between yield records and SR-18 values (p-

value < 0.05). Although the coefficients were similar to other kriging parameters, SR-

18 was always the highest correlated with minimum, maximum and average yield 

records. Based on these results, the ordinary kriging method with a spherical 
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semivariogram model and a variable search radius of 18 points (SR-18) was selected 

as the most accurate yield map. 

5.4.2. Temporal variability of multispectral bands and vegetation 

indices in relation to exposure area 

Raw bands in the visible range behaved similarly during the first 99 DAS when the 

point of maximum absorption in the coastal, blue, green and red bands was reached 

(Figure 5-8). The reflectance values per area started to vary after that time, where the 

unaffected area showed an incremental reduction of absorbance once the crop reached 

the peak of nodal development (Quinn & Kelly 2011). The absorption in the visible 

wavelengths also started to decrease in the affected area but the rate was lower when 

compared with the unaffected area. The affected area barely manifested spectral 

changes in the green band for nearly 50 days between 6 DAE and 54 DAE. This period 

only had a maximum reflectance difference of 0.002 while for the same period the 

unaffected area manifested reflectance changes of more than 0.01. 

 
Figure 5-8. Reflectance variability through time in unaffected and affected areas. 

The near infrared (NIR) band also manifested different patterns according to the area. 

Both areas had a reflectance peak at 99 DAS but with different magnitudes (0.48 and 

0.43 in the unaffected and in the affected area, respectively). The temporal changes in 

reflectance in the unaffected area defined a curve which represented the structural 

changes at the canopy and leaf level due to the normal growing condition of the crop. 

This is also supported by the maximum correlation coefficient between yield and NIR 

which was reached after 99 DAS, at approximately 131 DAS (Appendix 5-2). 

Variation in NIR reflectance in the affected area tended to be less after exposure, 

indicating a minimum canopy development between 6 DAE and 54 DAE (Figure 5-8). 
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In this area, NIR reflectance did not manifest correlations with yield (except at 51 

DAS=-42 DAE) and only the VIS bands developed a moderate and significant (p-value 

< 0.05) correlation with yield just before harvesting (Appendix 5-3). 

The SWIR bands (SWIR1 and SWIR2) manifested the same mean reflectance at -42 

DAE and -10 DAE (0.16 and 0.11, respectively). After this time, the reflectance 

patterns changed (Figure 5-8). The affected area manifested lower reflectance values 

than the affected area soon after the exposure and the difference gradually increased 

through time reaching a maximum of 0.026 difference at 54 DAE, after which the 

reflectance difference started slowly to decrease. 

The VIS and SWIR bands in the unaffected area did not manifest a good relationship 

(r < 0.4) with yield at any time after 51 DAS, while the NIR band shown a moderate 

correlation (r = 0.43, p-value < 0.05) at 131 DAS, when the crop was mature and most 

of the bolls were developed (Appendix 5-2). On the other hand, in the affected area, all 

the VIS bands were moderately correlated with yield (r > 0.50, p-value < 0.05) at two 

weeks before harvesting (163 DAS and 70 DAE) (Appendix 5-3). 

The temporal variability of the cell-related and the chlorophyll-related indices was 

calculated for both areas over the growing period analysed in this study. The VI values 

show a clear peak around 99 DAS in the unaffected area, whereas the indices tended 

to “stabilise” after exposure to the herbicide in the affected area, decreasing only close 

to harvest (Figure 5-9). 

 
Figure 5-9. Temporal variability of the vegetation indices according to the area (unaffected or affected). 

Dotted line: date of exposure. 

Correlations between VIs and raw bands were performed to determine their 

relationship with the harvested yield at the end of the season for each area individually. 
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A peak relationship between VIs and yield, under optimal growing conditions, was 

expected to occur when the crop reached the maximum vegetative growth and starts 

fruit development. In this study, that point was reached around 131 DAS in the 

unaffected crop (Figure 5-10). All VIs had their peak point of correlation at that time 

(r > 0.3) with NDVI and RVI manifesting the lowest correlation values (r = 0.29). An 

opposite situation occurred in the affected area where the maximum point of 

correlation was as early as 51 DAS. The moderate correlation between most of the cell 

structure-related vegetation indices (VIs) and yield at 131 DAS in the unaffected area 

can be explained by the significant correlation between the NIR band and yield, as this 

band is always a factor in their equations (See Table 5-2 and Figure 5-10 left). 

However, the moderate correlations of the NIR band with yield in the affected area 

were not enough to positively influence the correlations between VIs and yield. 

 

Figure 5-10. Temporal variability of the relationship between vegetation indices and yield. 
Dotted line: date of exposure. 

GEMI and RDVI exhibited the highest correlations with yield in the unaffected area. 

These indices were developed to minimise the soil background effect and reduce the 

atmospheric effect from the satellite data. Although the correlations were not strong, 

they indicated that green biomass is a good indicator of crop performance under 

optimal growing conditions. The highest correlation in the affected area occurred when 

the crop was vigorous with the canopy under development (51 DAS) but still immature 

and not yet under the influence of the herbicide. That could explain the positive 

response of all of the VIs, and particularly NDVI. To understand the spectral response, 

the VI values, and their consequent relationship with yield, it is important to note that 

the harvested yield was under the influence of the herbicide, consequently, it was very 
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low and similar to an immature crop, since the affected area had delayed development. 

The high correlations in the affected area at 51 DAS can be properly interpreted from 

this similarity between herbicide damage and an immature crop. 

5.4.3. Statistical models of crop yield estimation 

Linear regression (LRM) and PLS-R models were developed to assess the capabilities 

of three predictor groups: 1) individual multispectral Landsat-8 OLI bands; 2) VIs and 

3) the integration of all multispectral bands. Models were developed per area to 

identify the variability and prediction capability through time of each predictor’s 

group. 

5.4.3.1. Vegetation indices and multispectral bands 

Linear regression models (LRM) were built with individual multispectral bands (IMB) 

and VIs for each of the dates analysed in this study. Neither the IMBs nor the VIs were 

sufficient to accurately predict yield under optimal agronomical conditions of the crop 

(p-value > 0.05), nor when the crop was affected by an external factor such as an 

accidental spray. The resulting RStE was within the range of 1.5 bales/ha but the R2 

was low for each LRM turning the transferability of the models into “not reliable” 

(Table 5-6). Yield is a complex variable that integrates not only pigment content and 

nutrition status but also is driven by soils characteristics, moisture and canopy structure 

(Domenikiotis et al. 2004). An individual band is not capable of integrating all that 

information, and hence it did not result into a good model performance. This situation 

applies to both areas analysed in this study, but it turned more complex in the affected 

area as the exposure to the chemical introduced more variability at physiological and 

biophysical levels. 

Vegetation indices, although performing better than individual bands, still were not 

sufficiently powerful for yield prediction using linear regression methods (Table 5-6). 

The highest explained variability (R2 = 0.14) and the lowest RStE (= 0.75 bales/ha) 

were obtained when GEMI was the predictor index at 147 DAS (p-value < 0.05) in the 

unaffected area. However, for the same date in the affected area, the GEMI index was 

not significant for the prediction of yield (p-value > 0.05, R2 = 0.003). The affected 

area had, as a result, a slightly better fitting model with NDVI as the predictor index 

with data captured at 51 DAS, that is more than a month prior the accidental exposure 

(R2 = 0.24 bales/ha and RStE = 1.33 bales/ha). 
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Table 5-6. Linear regression parameters of yield predicted by vegetation indices. 

Unaffected area 

  Structural-related Indices Chlorophyll-related Indices 

  GEMI NDVI EVI2 OSAVI RDVI RVI EVI GRVI GCI 

DAS DAE RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 

51 -42 0.78 0.07 - - 0.78 0.07 0.78 0.07 0.78 0.07 0.79 0.06 0.78 0.07 0.79 0.06 0.79 0.06 

83 -10 0.78 0.09 - - 0.77 0.09 0.77 0.10 0.77 0.10 0.77 0.10 0.78 0.08 0.76 0.12 0.76 0.12 

99 6 - - 0.81 0.01 - - 0.81 0.01 0.81 - 0.80 - - - 0.79 0.06 0.79 0.06 

131 38 0.75 0.14 - - 0.75 0.14 0.76 0.11 0.75 0.14 0.79 0.06 0.76 0.12 0.77 0.10 0.77 0.10 

147 54 0.79 0.06 0.81 0.01 0.79 0.06 0.80 0.03 0.79 0.05 - - 0.79 0.06 0.80 0.02 0.80 0.02 

163 70 0.79 0.04 0.80 0.02 0.80 0.03 0.80 0.03 0.80 0.03 - - 0.79 0.05 - - - - 

 

 

Affected area 

  Structural-related Indices Chlorophyll-related Indices 

  GEMI NDVI EVI2 OSAVI RDVI RVI EVI GRVI GCI 

DAS DAE RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 RStE R2 

51 -42 1.36 0.23 1.33 0.27 1.36 0.23 1.35 0.25 1.36 0.24 1.37 0.22 1.36 0.23 1.37 0.22 1.37 0.22 

83 -10 - - - - - - - - - - - - - - - - - - 

99 6 - - - - - - - - - - - - - - - - - - 

131 38 - - - - - - - - - - - - - - - - - - 

147 54 - - - - - - - - - - - - - - - - - - 

163 70 - - 1.50 0.07 - - - - - - 1.50 0.07 - - 1.51 0.05 1.51 0.05 

RStE units = bales/ha. * Not significant (p-value > 0.05) 
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The indices related to canopy structure or chemical content were inadequate for 

prediction of yield at any point during the time analysed in this study regardless 

condition of the area: unaffected or affected. These results indicate that the changes 

within the plant and at the canopy level were not properly characterised by these 

indices and that the results were even more limited for individual multispectral bands 

(see Table 5-6). 

5.4.3.2. Multivariate yield prediction models 

The integration of all the multispectral bands considerably increased the prediction 

capabilities of the regression models. The variance explained (Rcv
2) by the resulting 

models varied from 0.05 to 0.21 in the unaffected area and from 0.13 to 0.61 in the 

affected area. On average, the R2 was improved by more than 61% of the LRM outputs 

as well as the corresponding errors. The validation of model performance was based 

on the minimum estimated RMSEP, maximum Rp
2 and the close-to-one RMS Ratio 

(Mevik & Wehrens 2007; Rapaport et al. 2015). 

The higher variance explained by PLS-R model was due to the inherent principles of 

this method to take into consideration the information of the predictor and estimator 

variables in the definition of scores and loadings (Mevik & Wehrens 2007; Wold, 

Sjöström & Eriksson 2001) and it was also higher due to PLS-R takes all of the 

available bands to build the resulting models (Garrido Frenich et al. 1995; Mevik & 

Wehrens 2007) instead of using a pair of bands as performed VIs. 

The data acquisition date was important for accurate yield prediction and varied 

according to the area (i.e. affected or not affected) (Table 5-7). The estimated error 

(RMSECV = 0.74 bales/ha) for the unaffected area was on average, considerably 

smaller than in the affected area (RMSECV = 1.20 bales/ha). However, the variance 

explained (Rcv
2) in the affected area was much higher (on average by 0.22) than in the 

unaffected area (Table 5-7). The results show that PLS-R models were capable of 

explaining the yield variability within the field caused by 2,4-D. The time for data 

collection influenced the model performance and which also changed according to the 

area or whether the crop was in contact with the chemical or not. The best model cross-

validation fit, in the unaffected area, was when the crop reached the point of boll 

development, so the vegetative growth was slow (131 DAS) (Figure 5-11). The 

relationship between RMSECV and RMSEP, measured by the close-to-one RMS ratio, 
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started to decrease (Table 5-7) after 131 DAS while increasing the error in the LOO-

CV model (Figure 5-12). 

The model performance was clearly different in the affected area: higher RMSEs and 

as consequence, higher Ratios (Table 5-7, Figure 5-12) but better explained variances 

(R2). The best model fit with the lowest RMSECV and the highest Rcv
2 (0.96 bales/ha 

and 0.61, respectively) were reached just two weeks before harvesting (163 DAS and 

70 DAE). However, the Ratio was still very high (Ratio = 1.27) 

Table 5-7. PLS-R parameters for yield prediction modelling. 

  Unaffected Affected 

DAE DAS LV Rcv
2 Rp

2 RMSECV RMSEP RMS LV Rcv
2 Rp

2 RMSECV RMSEP RMS 

-42 51 2 0.05 -0.04 0.79 0.76 0.97 5 0.46 0.29 1.13 1.58 1.40 

-10 83 3 0.11 -0.09 0.76 0.78 1.03 6 0.44 0.60 1.15 1.19 1.03 

6 99 3 0.16 0.20 0.74 0.67 0.91 5 0.28 0.30 1.31 1.56 1.20 

38 131 4 0.21 0.15 0.71 0.69 0.97 3 0.13 -0.05 1.43 1.92 1.34 

54 147 2 0.15 0.22 0.74 0.66 0.89 4 0.25 0.17 1.33 1.71 1.28 

70 163 3 0.20 0.32 0.72 0.62 0.86 3 0.61 0.58 0.96 1.22 1.27 

 

 
Figure 5-11. Cross-validation model parameters for the unaffected and affected area: RMSECV and Rcv

2. 
Different scales are presented to facilitate result’s interpretations (points of minima and maxima per area). 

 
Figure 5-12. Ratio (RMSECV/RMSEP) for unaffected and affected areas. 
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The plant’s response to 2,4-D can be interpreted based on the results of PLS-R models 

(see Table 5-7, Figure 5-11 and Figure 5-12). There was a drastic and incremental drop 

in the model performance soon after exposure until 38 DAE when the RMSECV and 

Rcv
2 changed by more than 24% and nearly 30%, respectively. The model performance 

started to improve significantly after this time. This curve suggests that the greatest 

plant damage was within the first 38 DAE after which the recovery and regrowth stage 

started. The model performance improved at 54 DAE by increasing the Rcv
2 and 

reducing the RMSECV, reaching the maximum point of performance at 70 DAE 

(RMSECV = 0.96 bales/ha and Rcv
2 = 0.61). 

 

Figure 5-13. Validation performance of the best PLS-R models with test dataset in the affected area. 

The validation process was carried out implementing the test dataset, which was 

randomly selected and extracted from each area (i.e. unaffected or affected) before 

modelling. Samples from each area were predicted with each model and compared 

against the measured yield (data not presented for the unaffected area). Parameters 

from the test set predictions, such as the R2 of the prediction (Rp
2), RMSEP and RMS 

Ratio were estimated. Prediction parameters in both areas performed similarly to cross-

validation parameters. The highest RMSEP (0.69 bales/ha) and one of the best 

relationships between RMSEP and RMSECV (RMS Ratio = 0.97) were reached at 131 

DAS for the unaffected area (Figure 5-12). The affected area yielded the best 

prediction parameters (i.e. highest Rp
2, lowest RMSEP values and a close-to-one RMS 

ratio values) at 70 DAE and -10 DAE. The best validation fit (R2 = 0.69) (Figure 5-13) 

occurred with the data acquired just before the exposure (-10 DAE and 83 DAS), 

followed by data collected 70 DAE (R2 = 0.61). These validation results: a) ratify the 
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results from the calibration process, b) support the selection of optimal LVs, and c) 

provide information regarding the applicability and stability of the models. 

5.5. Discussion 

5.5.1. Temporal variability of multispectral bands and vegetation 

indices in relation to exposure area 

Cotton crops, in optimal conditions, reach the peak bloom around 90 DAS and the 

maximum reflectance response can be found within the next 30 days (Yang, Everitt & 

Bradford 2002). Furthermore, there is a reduction in pigment concentrations as the 

plants focus their development in reproductive growth (boll production) rather than 

vegetative growth (CottonInfo 2016). The trend in the spectral response of the visible 

bands in the unaffected area was then expected to occur (i.e. reflectance increment 

after 99 DAS) as well as the peak of vegetation indices values and particularly GCI, 

GRVI and RVI (Zarco-Tejada, Ustin & Whiting 2005). On the other hand, the lower 

reflectance in affected areas after 99 DAS (i.e. 6 DAE) and the lack of variability of 

the VIs after this time indicates a delay in reproductive growth, and a small variability 

in pigment contents indicating a lower rate of boll development. 

The highest reflectance difference between the unaffected and affected area in the 

visible region at 70 DAE (Figure 5-8) was a consequence of a standard defoliation 

practice to remove the leaves from the plants. Defoliation was carried out prior to 

harvesting in both areas, but the defoliation rate in the unaffected area was higher due 

to an optimal and uniform maturity of the crop, and hence the affected area looked 

greener at harvesting. This situation was suggested by the green reflectance pattern in 

the affected area, which absorbed always more energy due to a greener appearance. 

This study did not provide lint quality records of the harvested yield, however, the high 

amount of leaves still in the plant, after the chemical defoliation in the affected area, 

(Figure 5-6) could potentially affect the quality of the colour reflectance and the trash 

content of the fibre harvested (Van der Sluijs 2015). 

The NIR band, which is associated with canopy structural properties and leaf internal 

structure by several research studies (Huang & Thomson 2010; Li et al. 2001), 

exhibited changes during the first 38 days after the exposure to the chemical (Figure 

5-8). After this period, the NIR reflectance of both areas became similar. The rate of 
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change in the unaffected area was higher in comparison with the affected area. This 

could be explained by the difference in growing stages, as the affected area had delayed 

growth compared to the unaffected area (Everitt & Keeling 2009). Both areas had 

similar structural patterns at 147 DAS (i.e. around a month before harvest), but with 

different pigment concentrations, as suggested by the reflectance changes in the green 

(Figure 5-8) and red channels. This observation is supported by the changes in plant 

morphology, as the unaffected area showed bolls opened, and the affected area looked 

greener. 

The relationships between yield, VIS and NIR, that is, the high correlation with NIR 

and the low correlation with VIS, in the unaffected area indicate that the green biomass 

is a determining factor compared to nutrient content. On the other hand, in the affected 

area, there was no indication that green biomass had any influence over yield, while 

nutrients played a major role, as indicated by the higher correlation of VIS in 

comparison with the NIR band. 

The reflectance at SWIR1 and SWIR2 bands started to vary as soon after the incident 

as shown in Figure 5-8 and Appendix 5-1. The variability in the SWIR needs to be 

contrasted with the NIR band since leaf or canopy structure also influence the SWIR 

reflectance (Gao 1996; Yilmaz, Hunt Jr & Jackson 2008). This can also be evidenced 

by the moderate correlations between NIR and SWIR bands in this study. The 

reflectance similarities before the incident indicated similar soil conditions and crop 

status in both areas, affected and unaffected. The reflectance variability after the 

exposure could, therefore, be explained as being due to the changes in the canopy 

density, water-related properties or leaf area index (LAI) (Ceccato et al. 2002; Hunt & 

Rock 1989; Tucker 1979). 

High reflectance at the SWIR1 band was associated with high-density canopies while 

low-density canopies were related to lower SWIR1 reflectance in a study developed 

by Khanna et al. (2007). Wang et al. (2008) demonstrated that reflectance at 1640 nm 

and 2130 nm decreased as the LAI increased from 0.01 up to 1 regardless surface soil 

moisture and Liu et al. (2015) demonstrated that all water-related properties such as 

the vertical distribution of gravimetric water content (GWC), relative water content 

(RWC), and equivalent water thickness (EWT) were highly and negatively correlated 

with reflectance of the SWIR region particularly around 1510 nm. The canopy density 
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in this study started to decrease after exposure according to the reflectance decrement 

in the SWIR band in the affected area, while the LAI tended to remain constant with 

slight variabilities. LAI in the unaffected area was expected to decrease after the crop 

reached the maximum maturity stage at 131 DAS and the vegetative growth started to 

decline, hence the reflectance in the SWIR increased through time (Quinn & Kelly 

2011; Wang et al. 2008). The 2,4-D-injured area demanded more water for a longer 

period in comparison with the unaffected area. The peak for water demand in cotton 

crops under optimal conditions coincides with the early reproductive period (The 

Australian Cotton Industry Development & Delivery Team 2013) which can explain 

the constant drop of the reflectance until 131 DAS in the unaffected area (Liu et al. 

2015). The water demand in the injured area was prolonged since the crop 

development rate lessened (Figure 5-8). 

VIs did not manifest a distinctive and clear response due to the effects of 2,4-D in the 

cotton canopy. Neither the structural-related or chlorophyll-related indices were able 

to show a relationship between them and yield after contact with the herbicide. In fact, 

none of the VIs exhibited major variability after the incident for nearly 50 days (Figure 

5-9). This situation can be explained by the significant damage caused by 2,4-D to the 

crop and by the recovery capabilities of the cotton plants through time (Everitt & 

Keeling 2009; Suarez, Apan & Werth 2016). The temporal dynamics of the canopy 

structure and pigment content at 51 DAS exhibited the highest relationship between 

harvested yield and VIs (Figure 5-10). However, at this time, the crop was in the 

middle of squaring and it had not yet reached the peak of nodal development 

(Oosterhuis & Kerby 2008). 

Studies have shown that cell structure-related indices such as NDVI, RDVI and 

OSAVI performed well for the detection of cotton yield variability within the field in 

normal growing conditions (Zarco-Tejada, Ustin & Whiting 2005). Zhao et al. (2007b) 

also demonstrated significant correlations between VIs and relative lint yield between 

60 and 70 DAS. Contrary to those findings, we found that neither the cell structure-

related band (NIR) nor the vegetation indices manifested strong correlations with 

yield, regardless of whether the area had herbicide damage or not. The correlation 

shape and peaks were different between the damaged and undamaged areas, as the 

crop development was dissimilar and at different rates. In particular, the area affected 
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by 2,4-D never reached an optimal vegetative and fruit development stage, and yield 

was therefore considerably reduced. 

5.5.2. Performance of statistical models for crop yield estimation 

This study encountered serious limitations when applying VIs derived from Landsat 

8-OLI as predictors of yield. Linear regression models are often implemented when 

applying VIs as predictors of yield, with promising results (Yang et al. 2004; Zhao et 

al. 2007b). However, the VIs, tested in this study, were not able to accurately predict 

yield with two to three spectral bands. 

The damage caused by 2,4-D affected the new foliage (i.e. top-new leaves after the 

incident) where the upper canopy looked seriously damaged while the middle-lower 

canopy appeared unaffected. The plants did not grow much after the exposure and the 

damaged leaves (top-canopy leaves and new leaves) were a few at canopy level (i.e. 

upper canopy). Due to the architectural arrangement of the canopy, the moderate 

spatial resolution of the satellite data impacted the prediction capability of vegetation 

indices and individual bands, positioned in the visible and the NIR ranges. The 

methods of successful examples where VIs were implemented as predictors included 

hyperspectral data at a low distance from the canopy or high-resolution imagery (Liu 

et al. 2015; Yang et al. 2004), which could discriminate the architectural arrangement 

of the canopy at different growing conditions. Although the resampling method of the 

yield monitor records could affect the prediction error, Yang, Everitt and Bradford 

(2009) demonstrated that when the pixel size increases from 10 m to 30 m, the R2–

values increase when predicting yield from yield monitor records. Furthermore, the 

strong and significant correlations (r > 0.99 and p-value < 0.05) between the resulting 

yield maps and the original dataset (yield monitor records) reduce the probabilities of 

exaggerating the prediction error due to the resampling method. 

PLS-R models performed better than multispectral bands or VIs regardless the area. 

The better fit of the models can be attributed to the inclusion of all the multispectral 

bands irrespective of multicollinearity between them, which is one of the main 

advantages of this statistical approach (Garrido Frenich et al. 1995; Mevik & Wehrens 

2007). These results agreed with other studies where PLS-R was the best statistical 

approach when VIs were insufficient to optimise prediction capabilities of variables 

such as carotenoids, nitrogen and yield (Bronson et al. 2005; Rapaport et al. 2015; Yi 
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et al. 2014). The integration of all the multispectral bands resolved the limitation of 

the 30-m spatial resolution of Landsat imagery by increasing the R2 and reducing the 

RMSE. 

This study demonstrated that the recovery capabilities of the crop after exposure to the 

chemical strongly influenced the fit performance of the PLS-R models, highlighting 

the influence of the spatial resolution and the days after the exposure. The best 

prediction performance was around the date of exposure (-10 DAE or 6 DAE) or when 

the plants stabilised the internal mechanism in response to the contamination (70 

DAE). This result agrees with previous studies, where 7 DAE proved to be the best 

time for collection data purposes when cotton has been exposed to 2,4-D (Suarez, 

Apan & Werth 2016). The temporal variability in the accuracy of the model in the 

unaffected area agreed with other studies where the importance of growth stage for the 

prediction performance was demonstrated (Zarco-Tejada, Ustin & Whiting 2005; 

Zhao et al. 2007b). 

5.6. Summary 

The methodology implemented in this study has demonstrated the capabilities of 

remote sensing data in providing an alternative method to address the limitations of 

traditional (visual) assessment of herbicide drift in cotton crops. It has also shown that 

the integration of all multispectral bands from Landsat-8 OLI is a powerful approach 

to minimise the potential limitations of Landsat’s moderate spatial resolution imagery 

in the prediction of yield. This study has provided an understanding of the temporal 

implications of cotton yield assessment in areas of optimal growth conditions and in 

those affected by herbicide drift. 

The results indicate that the relationship between yield prediction and satellite data 

depends on the days after sowing (for those areas not affected by the chemical) and 

days after exposure (for affected areas), with the best results obtained for 131 DAS 

and 70 DAE, respectively. Individual bands or vegetation indices had a poor 

performance for predicting yield after herbicide drift. However, they were useful for 

understanding the main factors driving yield under stressed and optimal growing 

conditions, that is biochemical and biophysical conditions, respectively. 
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Partial least squares regression (PLS-R) models performed better, as they increased 

the explained variance by more than 60%, on average. The time of imagery acquisition 

was a key determinant in maximising the prediction capabilities of the models for both 

unaffected and affected area. Prediction capabilities in the unaffected area were 

maximised when data from 131 DAS was implemented (RMSECV = 0.71 bales/ha). 

The best time for prediction purposes in the affected area was at 70 DAE (163 DAS) 

with a prediction error of 0.96 bales/ha and a validated R2 of 0.61. The second best 

date in the affected area was just before the incident at -10 DAE with a prediction error 

of 1.15 Bales/ha and a validated R2 of 0.69. 

The defoliation rate in the 2,4-D-injured area was reduced by the delay in the growing 

stage of the crop, causing more green leaves in the plant at the harvesting time. This 

situation can potentially affect the quality of the fibre harvested when mechanical 

harvesting is employed. It is therefore important that future studies assess fibre quality, 

to identify if there is a significant impact of the green leaves still on the plant on the 

colour reflectance and trash content of the fibre harvested. 

Results have demonstrated the utility of remote sensing data in the prediction of yield 

loss caused by 2,4-D non-target spray in cotton crops. The advantage of accurately 

predicting the degree of damage and spatial location of potential yield loss will provide 

valuable information to farmers and consultants for the adjustment of mitigation plans. 

The localization and assessment of damage may provide direction in finding the 

potential source areas or responsible party. Further studies could focus on the use of 

higher spatial and temporal resolution imagery, including the use of airborne 

hyperspectral sensors, to further assess their capabilities in crop damage detection and 

yield prediction. 
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Chapter 6  

ASSESSMENT OF HERBICIDE DRIFT 
DAMAGE ON COTTON CROPS USING 
TERRESTRIAL LASER SCANNER 
 

6.1. Introduction 

This chapter explores the utility of terrestrial laser scanners (TLS) in the detection of 

canopy structure variability caused by 2,4-dichlorophenoxyacetic acid (2,4-D) 

herbicide drift on cotton crops. Temporal changes to the canopy were tested based on 

the timing of exposure (S) and the dose (D) of the chemical in contact with the crop. 

Effects at two phenological stages or times of exposure were then analysed using three 

doses of the recommended commercial label rate as spray applications. Scan 

measurements took place after three different periods of exposure: a) two days (2 

DAE), b) seven days (7 DAE) and c) 14 days (14 DAE). 

The aim of this research was to test whether the TLS field measurements are capable 

of characterising the temporal changes in the 2,4-D-injured cotton canopy structure. 

Three specific objectives were defined: 

i) to determine the limitations of TLS for assessing canopy structure variability; 

ii) to provide a comprehensive approach for the estimation of cotton canopy height 
and canopy volume; 

iii) to assess the capabilities of TLS-derived data for the provision of spatial-temporal 
canopy structure after simulated spray drifts onto cotton crops. 

A discussion of the current applicability of terrestrial laser scanning in agriculture is 

presented in Section 6.2 while the methods used in this study are described in Section 

6.3. In this section, detailed information about the instrument and statistical analyses 

implemented in this study are presented. Results are analysed in Section 6.4, and the 

main findings in relation to previous research studies are discussed in Section 6.5. A 

summary of the suitability of this technology as a possible tool for the estimation of 
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canopy structure variables in cotton crops affected by 2,4-D herbicide drift is presented 

in Section 6.6. 

6.2. LiDAR scanners as a tool for herbicide damage 

assessment 

The principal idea behind crop monitoring is to accurately estimate and/or improve 

crop yield. Plant height is a plant growth indicator that is related to yield (Confalonieri 

et al. 2011; Zub, Arnoult & Brancourt-Hulmel 2011). This factor, when combined with 

other variables (Muharam et al. 2014), such as spectral reflectance of the crops or the 

surrogate vegetation indices, increases its relationship with yield (Huang et al. 2015; 

Thenkabail, Smith & De Pauw 2000; Zarco-Tejada, Ustin & Whiting 2005). Canopy 

characterisation is also important for best management practices, where, for example, 

the optimisation of pesticide application and nutrient content might be highly 

dependent on this characterisation. Structural characterisation of plants has, 

additionally, a significant scientific value due to its influence in different biophysical 

processes, including photosynthesis, CO2 sequestration, and evapotranspiration 

(Rosell et al. 2009; Zheng & Moskal 2012). However, under stress conditions, 

estimations of crop growth are often inaccurate (Clevers 1999). 

Spray drifts typically expose crops to stress due to their susceptibility to the chemical 

in contact (Suarez, Apan & Werth 2016), forcing the plant's growth to be interrupted 

as the plant tries to recover from the stress, thus impacting on the harvested yield. 

During the recovery process, several internal changes within the plants can occur, 

limiting the correct and precise assessment of damage (Everitt & Keeling 2009; Henry 

et al. 2004). The broad aim of this research was to provide reliable proximal and remote 

sensing techniques for the assessment of 2,4-D herbicide drift in cotton crops. In this 

chapter, a Terrestrial Light Detection and Ranging Sensor (LiDAR or TLS) was 

evaluated to meet this objective. 

TLSs provide a unique opportunity to characterise plant growth and to analyse diverse 

architectural parameters as potentially good indicators of crop performance (Friedli et 

al. 2016), due to the highly detailed information provided by these devices. The point 

clouds resulting from the scans can be integrated and analysed to extract important 

characteristics of the canopy such as plant growth, biomass and leaf area index (LAI) 
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that are highly related to crop status and health (Hämmerle 2013; Rosell et al. 2009; 

Tilly et al. 2014). These characteristics can also provide a sensitive indicator of 

responses to stress and adaptation of plants to their environment (Omasa, Hosoi & 

Konishi 2007), especially because crops and vegetables grow fast, so the growth rate 

is a sensitive and direct indicator of stress. Stem heights of a harvest-ready crop of 

Miscanthus giganteus were calculated by applying dynamic and static approaches with 

accuracies higher than 92% (Zhang & Grift 2012). 

In another study, Tilly et al. (2014) demonstrated the advantages of TLS for deriving 

plant height and posterior estimations of biomass. The accuracy of the scan data was 

tested by correlations between TLS-derived and manual plant height measurements 

(R2 = 0.91) and by regressing biomass measurements from the field with the calculated 

plant height (R2 = 0.86). The transferability of the data was tested, correlating the 

measured against the estimated biomass samples (R2 = 0.90). Architecture differences 

between maize, soybean and wheat genotypes were tested in a study conducted by 

Friedli et al. (2016), where it was also possible to determine the temporal variability 

of the canopy and the maximum temporal resolution for each crop. 

Rosell Polo et al. (2009) demonstrated the applicability of LiDAR system and 

concluded that it is possible to measure geometric characteristics of plants with 

sufficient precision for most agriculture applications (R2 > 0.80). LiDAR-derived 

volume was highly correlated with manual volume measurements and total foliage tree 

area of pear trees (regression coefficient = 0.97 and 0.84, respectively). One of the 

main limitations of LiDAR is a significative large amount of data to be processed. 

Hämmerle (2013) explored the implication of reduced scanning resolutions and found 

that reducing the resolution to 25% still produced a coverage area of greater than 90% 

and mean canopy elevation greater than 96% accuracy with respect of measured crop 

height. 

The most common LiDAR or TLS sensors calculate the distance to the object with 

either a) the time-of-flight technique (TOF) or b) phase-shift method (PSM) (Figure 

6-1). The first method calculates the distance to the object by measuring the time 

between the transmitting and receiving laser signal (Tilly et al. 2014; Zhang & Grift 

2012). The second method calculates the distance by analysing the shift in the phase 

of the returning beam (FARO® 2009; Friedli et al. 2016). The main trade-offs 
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between the systems are i) speed of acquisition and ii) dynamic range. The PSM 

sensors provide a more detailed coverage in shorter time, as they do 100,000’s of 

points per second with the TOF doing 10-100 times fewer points in the same 

timeframe. However, TOFs are ideal when the ranges of measurement are long, as 

they can reach a target up to one kilometre away from the scanner, while the PSM 

sensors allow a maximum distance of a hundred meters (San José Alonso et al. 2011). 

Regardless the method implemented, TLS have demonstrated their significant impact 

on canopy structure estimations. 

 

Figure 6-1. The time-of-flight (TOF) and phase-shift (PSM) principles for calculating the distance to an 
object. 

Adapted by the author. Source: (Rodríguez‐Gonzálvez et al. 2016) 

6.3. Methods 

The following sections describe the procedures used to process and analyse the 

terrestrial laser scanner (TLS) data collected from the trial layout explained in section 

6.3.1. Four main steps undertaken to collect data include: 1) data registry; 2) edition 

and terrain surface generation; 3) height and volume calculations and 4) statistical 

analysis. Each of these steps was explained in more detail in the following sections. 

The methods differed based on the objective of a) calculating canopy height and b) 

calculating canopy volume. Figure 6-2 shows the main steps implemented in this study 

and each of them is described in detail in the following sections. 
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Figure 6-2. Flowchart of the main LiDAR processing steps. 

6.3.1. Experimental design 

The capabilities of TLSs for identifying the differences in canopy height and volume 

caused by simulated 2,4-D herbicide drift in cotton crops were tested as a subset of the 

experimental design in the controlled sub-study explained previously in Chapter 3 and 

4, and reported in Suarez, Apan and Werth (2016, 2017). The scanning process was 

undertaken only in replication four (R4) of the controlled sub-study (Figure 6-3). Six 

treatments corresponding to a factorial combination of two times of exposure (4-5 

nodes - S1 and 7-8 nodes - S2) and three doses (Nil - D0, 5% - D1 and 50% - D2) were 

analysed (Table 6-1). Treatments sprayed at S1 were scanned on the 27th November 

and the 4th December 2014 (S1-7DAE and S1-14DAE), while treatments sprayed at 

S2 were scanned once on the 4th December 2014 (S2 2DAE). 

Table 6-1. Factorial arrangement of scanned treatments 

Timing of exposure  Dose 

S1 

S2 

 0% - D0 

X 5% - D1 

 50% - D2 
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Figure 6-3. Experimental design. Replication 4 of the controlled sub-study. 

6.3.2. LiDAR capture 

In this study, a high-speed three-dimensional Focus3D laser scanner (Faro 

Technologies Inc., Lake Mary, USA) was used. The unit emits a laser beam 

(wavelength of 905 nm) towards the object at a fixed frequency or phase. Once the 

beam reaches the object, the infrared light is reflected back to the scanner at a different 

phase. The distance to the object is then accurately determined based on the phase-

shift method (FARO® 2011; San José Alonso et al. 2011). The distance, the vertical 

and the horizontal angles are encoded as polar coordinates (δ, α, β) and transformed to 

Cartesian coordinates (x, y, z) (FARO® 2011). 

To minimise the potential occlusion of plants or leaves by those closer to the scanner, 

it is imperative to combine scanning points from different view angles (Hilker et al. 

2010). Five elevated scan stations were therefore established around the area of 

interest, that is, replication 4, where the instrument was mounted on a fixed tripod. For 

each scan location, the scanner height (from the ground to the instrument) varied 

(Figure 6-4). 
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Figure 6-4. Distribution of scan locations in the scanned treatments. 

The scan stations were georeferenced by the Real-time Kinematic (RTK) surveying 

process (a static survey process) of 15 minute static sessions to reach accurate points 

at the sub-centimetre level in both the X and Y positions. A minimum of four artificial 

reference spheres was also used prior to data collection, to establish the relative 

orientation between the individual scans (Hilker et al. 2010) (Figure 6-5). The quality 

of registration of multiple scans depends on the visibility and the spatial distribution 

of the spheres (FARO® 2011). During each field session, the location of the white 

spheres was randomly selected at different heights, always forming an irregular 

polygon with unobstructed visibility. LiDAR data was collected at the centre and the 

four corners of replication 4 (25 x 25 m) with a scan resolution of 122,000 pts/sec 

(Figure 6-4 and Figure 6-6). 
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Figure 6-5. Northern-east scan location with white spheres around replication 4. 

 

 

 

Figure 6-6. First field campaign. Frontal view of a treatment. 

The treatments were scanned once or twice after the spray activity, according to the 

timing of exposure: a) for S1, the scan activity was performed at 7 and 14 DAE and; 

b) for S2, the treatments were scanned at 2 DAE. Further direct height measurements 

were also carried out on two randomly selected plants per treatment for S1 14DAE and 

S2 2DAE. 

The analysis was undertaken to estimate: a) canopy height and b) canopy volume of 

each treatment. For both procedures, it is necessary to have a reference surface or 

digital elevation model (DEM) in order to remove height variability associated with 

the terrain conditions. The DEM was generated from scanning the experimental area 

with very little or no vegetation. The concept of a crop surface model (CSM) 
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introduced by Hoffmeister et al. (2010) (Figure 6-7) was applied to estimate the canopy 

height. The difference between the CSM and the DEM permits the canopy height 

estimation. The DEM was calculated from the scanning points acquired on the 27th 

November 2014, following the procedure described below (Section 6.3.2.1). The DEM 

was the reference surface implemented to calculate canopy height at 2, 7, and 14 DAE. 

The CSMs were generated for each treatment and DAE on the 27th November 2014 

and 4th December (Table 6-2). 

Table 6-2. Scanning dates and the corresponding scanned treatment 

Date of data collection Timing of exposure Days after exposure Dose 

27th December 2014 S1 7 DAE D0, D1, D2 

4th December 2014 S1 14 DAE D0, D1, D2 

4th December 2014 S2 2 DAE D0, D1, D2 

 

 

Figure 6-7. Theoretical concept of crop surface modelling (CSM). 
Source: (Bendig, Bolten & Bareth 2013). 

Canopy volume, as well as the canopy height, was estimated per treated line and the 

lines were then aggregated by treatment and days after exposure. The volume was 

calculated applying the loop wrap and loop triangulation algorithms available in 

Maptek (MaptekTM I-SiteTM Studio 2015). The “loop function” concepts are visualised 

in Figure 6-8. The loop wrap function creates a polygon through a selected number of 

points, evenly spaced around the centre of a predetermined loop spacing, while the 
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loop wrap triangulation algorithm creates a surface between two or more polygons (i.e. 

polygons created using loop wrap function) (MaptekTM I-SiteTM Studio 2015). 

 

Figure 6-8. A conceptual explanation of loop functions with green lines defining loop polygons and 
coloured areas representing the resulting surfaces. 

Source: (MaptekTM I-SiteTM Studio 2015) 

The first steps, involving the geo-referencing, registration and merging of the point 

clouds resulting from each scan station and scan date, were executed in SCENE 

Software v5.2. This package is a comprehensive 3D point cloud processing and 

managing software tool developed by ©FARO Technologies Inc. A project was created 

in MAPTEK I-Site v6.0 (developed by MaptekTM) where the point cloud for each DAE 

was imported for further analysis of volume and canopy height. Spatial analyses were 

conducted in ArcGIS v10.3.1 (developed by ESRI), and the statistical analysis was 

performed in R software v3.3 (developed by R Core Team). The general workflow for 

the post-processing of the TLS data is shown in Figure 6-9, with more details provided 

below. 

 
Figure 6-9. Overview of the workflow for the processing and analysis of the terrestrial laser scanning data. 
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Initially, the scanning data was imported from the scanner to SCENE and a pre-

processing activity was undertaken to a) cleaning disturbing scan points and unwanted 

scan points representing external objects such as vehicles, other instruments and sticks; 

b) identifying objects in the scans and creating reference objects for scan registration, 

such as the white reference spheres, and c) adding colour to the point cloud to facilitate 

the interpretation of the scanning points. 

Following the pre-processing, the scan points were registered, applying the artificial 

white spheres scanned at each field day. The cloud points from each respective date 

were then created and exported for further analysis in Maptek, where the analysis was 

undertaken for each treatment at each date. 

6.3.2.1. Creating the terrain surface or digital elevation model (DEM) 

An iterative process integrating topography and proximity filters, and a topographic 

triangulation model, were implemented in order to create a precise terrain surface 

shown schematically in Figure 6-10. A topography filter divides the point cloud into a 

horizontal grid with a specific cell size, where the lowest or highest point in the cell is 

retained. The terrain surface was initially created searching for the lowest point in a 

0.5 m cell size. The resulting filtered points were used to create an initial base surface 

by applying a topographic triangulation model. After restoring the initial filtering, a 

proximity filter was applied. This filter is recommended when a base surface is 

available from which the proximity rule is applied. 

The first proximity range was defined as 0.05 m with the initial base surface as the 

reference surface. From this selection, a topography filter with a smaller cell size 

equivalent to 0.1 m was run. The resulting points were used to create a more accurate 

terrain surface from which the filtering process was repeated several times with 

variable search radio and cell size. The distance between the lowest points and the 

surface was assessed by looking for the best-adjusted surface to the points in a 

transversal section view and after each preliminary terrain estimate. The whole process 

was repeated if the surface was not well adjusted to the points, i.e. a gap between points 

and the terrain surface was evident. The final terrain surface was generated with a 

proximity filter of 0.02 m and a topography filter of 0.05 m. 
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Figure 6-10. Iterative process for terrain surface modelling. 

6.3.2.2. Creating crop surface models (CSM) and calculating canopy 

height 

The canopy surfaces equivalent to the crop surface model (CSM) described by Tilly et 

al. (2014) were calculated after the final DEM was generated. A difference surface 

was subsequently calculated to measure the height of the canopy. The procedure to 

create the CSMs in Maptek is similar to the DEMs, the difference between the two 

procedures is the selection of the top points for CSM in Maptek, rather than the lower 

points, as for the DEM. 

Due to the nature of the cotton canopy (i.e. triangular canopy structure), the area 

delimited by the top points is smaller than the area of the middle canopy (Figure 6-11). 

The canopy volume could therefore not be calculated using the same CSM as that 

related to the top canopy, hence a new method was proposed -loop wrap function. This 

function creates polygons (loop-wrap polygons) that tend to define the external shape 

of the canopy rather than just the top of the canopy. The CSM files and the DEM were 

exported from Maptek into ArcGIS once the CSMs of all treatments were finalised. 
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Figure 6-11. Theoretical cotton canopy structure and implications of volume estimation at different canopy 

positions. 
Adapted by the author. Source: (National Cotton Council of America 2013b; Oosterhuis 1990). 

The imported files representing the DEM and CSMs of each treatment were converted 

to a triangulated set of vertices which are connected with a series of edges to form a 

triangulated irregular network (TIN) surfaces (ESRI 2017) with a maximum edge 

length between 0.5 m and 0.3 m in ArcGIS. The canopy height was then calculated, 

applying the Surface Distance tool available in the Triangulated Surface toolset from 

the 3D Analyst tool. The resulting rasters of 0.001 m pixel size contained the height 

of the canopy, which was exported as ASCII files to be analysed in R (Figure 6-12). 

 
Figure 6-12. Flowchart for the calculation of canopy height in ArcGIS. 

6.3.2.3. Creating canopy volume 

Loop wrap polygons were generated delimiting the shape of the crop canopy with 

distances between 0.5 m and 1 m, prior to the loop triangulation, with between 50 and 
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72 points per loop, and a loop spacing between 0.005 m and 0.25 m. (Figure 6-13). 

Individual loop polygons were analysed implementing a transversal view. Incorrectly 

formed loops were edited in this view, removing invalid points or points that were 

outside the canopy shape. Some lines of the resulting polygons were projected into the 

DEM to get a more realistic transversal shape. 

 
Figure 6-13. Loop wrap polygon in a section view of 0.15 m. 

a) XYZ; b) YZ; c) ZX 

6.3.3. Statistical analysis 

Statistical analyses were performed to identify differences in 1) the canopy height and 

2) the canopy volume, within each group influenced by dose (i.e. D0, D1 and D2). The 

previous variables were grouped by the timing of exposure (i.e. S1 or S2) and days 

after exposure (DAE). Each of the resulting groups was treated with D0, D1 and D2. 

The three groups were analysed in this assessment as: 

i) S1-7DAE 

ii) S1-14DAE 

iii) S2-2DAE 

Analysis of Variance (ANOVA) is commonly used to statistically compare the means 

of subsets of the data. One-way ANOVA is an extension of the traditional two-sample 

t-test where there are more than two subsets to compare in the data. Because this study 

was testing three doses (three subsets), it was not recommended to apply a multiple t-

test. Applying this test, there is a 5% chance of making a Type I error; running two t-

tests, the chance of making the error increases by 5%. Three t-tests on the influence of 

dose (i.e. D0, D1, and D2) would, therefore, increase the chance of making a Type I 

error to nearly 15%.  
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The ANOVA test indicates whether groups are significantly different from each other, 

but it does not indicate where the differences occur. Post-hoc tests, on the other hand, 

indicate the location of these differences, reporting whether they are significantly 

different or not. There were more than two doses to compare, and the data did not meet 

the principles of normality, homogeneity and independence, so a one-way ANOVA 

test and Games Howell post-hoc test were therefore applied. Correlation analyses were 

also performed to identify the relationships between the variables analysed in this 

study and harvested yield (bales/ha). 

The one-way function from the userfriendlyscience package, available in R, was used 

to analyse the mean difference in the canopy height for each group. Table 6-3 

summarises the groups and factors analysed in this study. The correlation analysis was 

run with the Data Analysis tool available in Microsoft Excel. 

Table 6-3. Groups for statistical analysis. 

Group Days after exposure Timing of exposure Dose 

1 7 DAE S1 0% - D0; 5% - D1; 50% - D2 

0% - D0; 5% - D1; 50% - D2 

0% - D0; 5% - D1; 50% - D2 

2 14 DAE S1 

3 2 DAE S2 

 

6.4. Results 

The methods employed in this research were tested and evaluated in replication 4 of 

the controlled sub-study (Figure 6-3) in Jondaryan, Queensland, Australia. The 

differences in canopy height and volume will be discussed in sequence. 

6.4.1. Estimation of canopy height 

The canopy height surfaces for each treatment and scanning date were generated and 

compared with manual measurements in treatments S1-14 DAE and S2-2DAE (Figure 

6-14), after the described data processing of the captured TLS point clouds. The high 

values of R2 (> 0.91) validated the canopy height estimated by implementing the 

canopy surface model approach. The variability of canopy height caused by the 

different doses was much higher at the earliest timing of exposure (S1) than at the 

middle stage of exposure (S2), as indicated by the standard errors per group (Figure 

6-14). 
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Figure 6-14. Canopy height manually measured vs. estimated by canopy surface models approaches for S1-

14 DAE and S2-2 DAE. 
Error bars represent the standard error. 

An example of canopy height estimated by CSM is presented in Figure 6-15, which 

shows the mean changes in canopy height compared to control treatments through time 

(7 DAE and 14 DAE). At 14 DAE, the highest dose gradually affected the canopy 

height for plants treated at 4-5 nodes (S1) reducing plant height by 0.11 m and 0.22 m 

for D1 and D2, respectively (Table 6-4). 

 

 
Figure 6-15. Canopy height estimation of control treatment at 7 DAE (orange) and 14 DAE (green). 
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Table 6-4. Measurement results for canopy height and volume of the combined experimental design. 

    Canopy Mean Difference* 

Days 

after the 

exposure 

(DAE) 

Timing of 

exposure 

(S) 

Dose 

(D) 

Number 

of points 

Canopy 

height (m) 

(sd)  

Canopy 

volume 

(m3) 

Height (m) 

(ste) 

Volume 

(m3) 

7 DAE S1 Control 3334 0.239 (0.018)  0.107   

  D1 1776 0.119 (0.018) 0.071 0.12 (1e-5) 0.04 

  D2 352 0.133 (0.019) 0.014 0.11 (2e-5) 0.09 

        

14 DAE S1 Control 47011 0.357 (0.028) 0.388   

  D1 6756 0.247 (0.036) 0.151 0.11 (2e-5) 0.24 

  D2 2809 0.136 (0.019) 0.057 0.22 (3e-5) 0.33 

        

2 DAE S2 Control 7704 0.408 (0.032) 0.338   

  D1 4693 0.321 (0.029) 0.329 0.09 (4e-5) 0.01 

  D2 7670 0.275 (0.044) 0.292 0.13 (4e-5) 0.05 

*All mean differences are statistically different according to on-way ANOVA (p-value < 0.001). Standard deviation (sd) 
and standard error (ste) are presented in brackets (). Because canopy volume is a unique value, it did not report 
standard deviation. 

The dose affected the canopy height of all of the treatments regardless of the amount 

of chemical in contact with the plants. The height reduction varied from 21% up to 

62% of the control treatments. Two days after exposure (2 DAE), reductions of canopy 

height were calculated at 21.2% and 32.6% on treatments sprayed with the minimum 

and the highest dose, respectively. The minimum dose manifested the highest impact 

(50.2% reduction) at 7 DAE with an equivalent loss of 0.12 m. However, the maximum 

reduction was calculated at14 DAE with the highest dose (61.9%) (Figure 6-16). 

 

Figure 6-16. Temporal canopy height variability as a function of dose (D1 and D2). 

According to the results of the one-way ANOVA (p-value < 0.001), there were 

statistically significant differences in the average canopy height between all of the 
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groups analysed in this study. The average difference between treated treatments with 

the lowest dose (D1) and their respective controls was between 0.09 m and 0.12 m. On 

the other hand, the mean differences of treatments in contact with the highest dose 

(D2) and their controls presented bigger fluctuations, between 0.11 m and 0.22 m being 

the most notable difference for S1 at 14 DAE (Figure 6-17). 

 

 

 

 

 

Figure 6-17. Mean differences in canopy height between treated treatments and their respective controls. 

6.4.2. Estimation of canopy volume 

Canopy volume, as estimated, varied according to the sprayed dose. Some areas were 

not properly scanned due to obstruction generated by the canopy itself, but the 

estimation of canopy volume was not correlated to a number of scan points (p-value > 

0.05). Figure 6-18 shows the areas with good point cloud coverage and others (in the 

same sprayed line) with poor point cover. However, the loop wrap algorithm was able 

to overcome the poor point coverage and generate a volume with just a few points per 

area. 

The volume loss ranged from 3% to 87% where the impact of the highest dose was 

always bigger than the lowest dose, regardless of the timing of exposure. The loss of 

the treatments (S2) compared to the control was nearly 14% for D2 and close to 3% 

for D1 soon after the exposure (2 DAE) (Figure 6-19). The volume was considerably 

reduced (by more than 27%) through time when treated with D1 for treatments sprayed 

at S1 (Figure 6-19) while the highest dose (D2) had a more constant impact through 

time with a high volume loss between 85.3% and 86.9% equivalent to a 0.093 m3 and 

0.331 m3, respectively. 
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Figure 6-18. Volume of the control treatment at S2 and 2 DAE. 

a) General view (XYZ) of the point cloud superimposed on volume surface; b) plant in the field; c): transversal view 
(YZ) of (a). Note the good cloud cover at the top of the canopy compared with the poor cover at the middle and 

lower canopy and the similarities between b) and c). 

 
Figure 6-19. Temporal changes in canopy volume for all treatments. 

An estimation of daily rate loss (DRL) was analysed to characterise the proportion of 

loss in terms of height or volume per day according to the timing of exposure and dose. 

The estimated change in a treatment was divided by the corresponding number of DAE 

in order to get a daily rate. Figure 6-20 shows the DRL of canopy height and volume, 

where D2 had a calculated DRL difference higher than D1: 5% and 2% at 2 DAE and 

14 DAE, respectively. On the other hand, the DRL of volume reached a peak at 7 DAE 

for all the treated treatments. Differences in the DRL of volume caused by the 

increment of dose were calculated as 6% at 2 DAE, 7% at 7 DAE and 2% at 14 DAE. 
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Figure 6-20. Daily rate loss (DRL) of canopy height (left) and canopy volume (right). 

6.4.3. Correlation analysis of canopy structure variables and yield 

Correlation analysis was implemented within each analysis group (Table 6-2) to 

understand the relationship between the calculated variables and yield for the specific 

treatment. There was a strong and significant correlation between canopy structure 

variables (CSV) and yield (r > 0.88, p-value < 0.05) for all of the groups. The direct 

relationships are in accordance with different studies which demonstrated that plant 

growth is highly related to yield (Zub, Arnoult & Brancourt-Hulmel 2011). Yield 

(bales/ha) decreased as the dose increased (Figure 6-21), and yield was directly 

correlated to canopy volume and height (Figure 6-22). These results agree with the 

outcomes presented in Figure 6-19, where it was shown that the percentage of canopy 

volume loss increased as the dose also increased. 

 
Figure 6-21. Mean of harvested yield in relation to dose. 
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Figure 6-22. Correlations between yield (bales/ha) and canopy structure variables 

6.5. Discussion 

The position of the spherical targets is a major aspect in most of TLS studies. Fixed 

positions of the spheres during the whole season had been reported as essential for a 

high-accuracy setup (Friedli et al. 2016; Tilly et al. 2014), as fixed positions can reduce 

the potential height differences between scans and the risk propagating error when 

estimating canopy heights at different dates. Fixed locations are, however, not practical 

in agricultural fields where machinery movements are constantly needed for irrigation, 

pest control and other aspects of crop management. This study demonstrated that 

varying sphere locations and height can be implemented without affecting the accuracy 

of the results when the scan locations are georeferenced with high accuracy in the field. 

The integration of TLS data with other remote/proximal sensing technologies may 

provide a more multifaceted scenario to characterise a particular situation, but many 

of the TLS studies available in the literature focused on a fixed coordinate system 

(Hilker et al. 2010; Tilly et al. 2014; Zhang & Grift 2012) which is a potential 

limitation when other technologies are integrated. Special caution was taken in this 

study to properly register the scan locations, in order to guarantee comparisons of 

canopy height and volume through time and allow the potential integration with other 

technologies. 

The concept of CSM has been widely applied for canopy height estimations (Bendig, 

Bolten & Bareth 2013; Hoffmeister et al. 2010; Tilly et al. 2014; Zhang & Grift 2012) 

but the selection of the points to be included in the surface model differ. Hilker et al. 

(2010) selected the top 40, 30, 20 and 10% of the point cloud while Friedli et al. (2016) 

applied three filtering approaches based on the percentiles 100th, 99% and 90% of the 
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highest points (P100, P99 and P90, respectively). This approach presented a limitation 

when assessing the P100 as all the potential outliers were included, hence that 

contributed to a low R2 in relation to heights manually measured (Hilker et al. 2010). 

The accuracy of the canopy height estimations would, in the addition to the previous 

selection of the top points without prior cleaning process, depend on the canopy 

closure as the laser beam could penetrate and reach soil or lower areas of the plants 

(Friedli et al. 2016) influencing the percentiles. The iterative filtering process 

implemented in this study avoided the selection of lower/highest points, and hence a 

maximisation of the estimated canopy height. The removal of undesirable points is a 

fast process that did not require significant time while getting good results as 

demonstrated in this study. 

Measuring the soil level is traditionally accomplished at the beginning of the season 

for later estimation of canopy height (Friedli et al. 2016). Other studies, however, 

obtained the ground level by subtracting the lower points at a vegetation-free stage of 

the study area (Andújar et al. 2013) or applied the Multi Curvature Classification 

(MCC) method to generate digital terrain surface layers (Jensen et al. 2008). A 

combined methodology was implemented in this study that did not require an 

additional field day for soil levelling while selecting the lower points of the scanned 

areas for the generation of DEM. 

The results showed that the characteristics of the canopy can be captured by the TLS 

and compared through time. The statistically significant differences between all of the 

treatments analysed in this study allowed an understanding of the impact of the 

chemical 2,4-D on the canopy structure of the crop at a daily rate. The negative impact 

on canopy height and volume increased as the dose increased, regardless of the timing 

of exposure (except for S1 at 7 DAE where D1 had a higher impact than D2 for canopy 

height). The increment of the percentage of the active ingredient (dose) accounted for 

an additional reduction of more than 50% of canopy volume in this study. The DRL 

of volume increased as the dose increased, while the DRL in canopy height was usually 

higher soon after the incident (Figure 6-20). In this way, the DRLs of the height in 

treated plots with D2 were as high as 16%, 6% and 4% at 2 DAE, 7 DAE and 14 DAE, 

respectively. Conversely, the highest DRL of the volume was recorded at 7 DAE 

(irrespective of the dose). 
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The correlation analysis indicated how the variables analysed in this chapter changed 

through time. Canopy height had a higher correlation than volume with yield as soon 

as 2 DAE in treated plots at S2. In contrast, canopy volume had higher correlation than 

height with yield at 7 DAE (S1), while correlations between canopy structure variables 

and yield were more constant at 14 DAE (S1). These differences in the correlation 

coefficients, therefore, indicated that the height loss was greater than the volume loss 

for treatments sprayed at S2. However, the volume loss was higher than height loss for 

S1. 

In summary, canopy height was more representative of changes at S2-2DAE while 

volume was more representative of yield loss for sprayed treatments at S1. This 

situation can be also explained by the influence of the canopy height and row spacing 

on laser beam obstruction (Friedli et al. 2016; Hosoi & Omasa 2009). At younger 

canopy heights (S1) the laser beams can reach the lower parts of the plants turning the 

canopy volume estimation into a more accurate surface, hence higher correlation 

coefficients with yield in treated plots at the very early stage were manifested. As the 

canopy grew taller (S2) and became denser, it reduced the clear-row spacing. As a 

consequence, the single-return laser beams could not penetrate the lower part of the 

canopy as the upper parts obstructed the beams (Hosoi & Omasa 2009) resulting in 

less accurate volume estimation evidenced by the lower correlation coefficients (in 

comparison to the r coefficients obtained at S1). 

The proposed methodology captured the shape, area and volume of the cotton canopy 

that tends to be pyramidal. Due to this shape, the volume estimation directly from the 

CSM was limited. The calculation of canopy volume can be performed by 

implementing the CSM and the DEM in studies where the canopy structure of the 

investigated crop tends to be regular at different levels (i.e. middle and top canopy) 

(Bendig, Bolten & Bareth 2013; Hoffmeister et al. 2010). However, the cotton canopy 

structure required a more robust method. A significant finding is that the method 

described in this study for the calculation of canopy volume was not affected by the 

amount of resulting scanned points. General TLS restrictions include the potential 

occlusion of plants or leaves by objects closer to the scanner (Hilker et al. 2010). The 

amount of scanned points per treatment had no significant correlation with the 

resulting volume (p-value > 0.05) while the estimated volume was statistically highly 
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correlated with yield (r > 0.88, p-value < 0.05) even though there were occlusions that 

could not be avoided by integrating point clouds from different scanned locations as 

suggested by Friedli et al. (2016) and Hilker et al. (2010). 

Canopy height estimation can potentially also be affected if there is no homogenous 

point cloud. However, the probability of obstructions at the top of the canopy is less 

likely than at the middle or bottom canopy. This research study has demonstrated that 

although an obstruction may occur in some areas, canopy height and volume 

estimations are not significantly affected (p-value > 0.05). Both canopy height and 

volume calculated using TLS-derived point clouds were highly correlated with yield 

after the contact with the chemical (r > 0.88) regardless of any obstruction that might 

be present in some scanned areas. 

A high location of the scanning points is needed to optimise the cover and homogeneity 

of the point cloud, especially when the crop is reaching maturity. A fast and applicable 

method is reported in Tilly et al. (2014), where the tripod and the scanner were 

mounted on a small trailer. This can also be achieved by mounting the instrument on 

the back of a utility vehicle with a cargo tray. The height of the scanner can be easily 

increased by a meter with this, reducing the limitations of a relatively low altitude of 

the scanning locations. 

6.6. Summary 

The results of this study demonstrated that TLS could capture the temporal changes 

caused by 2,4-D in cotton crops providing an alternative (to traditional visual 

assessment) and reliable method to characterise plant growth and production. The 

methodology implemented in this study also allowed the acquisition of accurate results 

even in those treatments, which for different reasons, such as view obstruction, could 

not be properly or evenly scanned. There were statistical differences in canopy height 

which allowed their characterisation among all groups analysed in this study. 

Regarding the field experiment, further studies are required to investigate other timings 

of exposures with shorter gaps between doses. Furthermore, the transferability of the 

methods into larger fields should be investigated. Nonetheless, the approach presented 

in this work is a promising step toward optimising the assessment of damage caused 

by 2,4-D in cotton crops.  
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Chapter 7  

CONCLUSIONS AND RECOMMENDATIONS 
 

7.1. Introduction 

This study aimed at assessing the capabilities of remote and proximal sensing 

technologies for the accurate detection of herbicide drift on cotton crops. Three 

specific objectives were proposed and described previously in Section 1.4 of Chapter 

1, and individually addressed in Chapter 4 through Chapter 6. The objectives were 

proposed to achieve the goal of this study and to answer the research questions 

presented in Section 1.3 of the same chapter. This final chapter presents the 

conclusions generated from this work, as well as the recommendations for future 

adoptions and operations. 

7.2. Conclusions 

This study provided three reliable and accessible techniques to assess herbicide drift 

on cotton crops. These techniques proved to be capable of overcoming the limitations 

associated with traditional (visual) assessment. Each technique provided accurate 

results, tested in both controlled and uncontrolled scenarios, and demonstrated its 

capabilities and potential limitations. 

Proximal hyperspectral sensors, examined in Chapter 4, proved to be a powerful 

approach for the prediction of yield in contaminated cotton crops regardless of the dose 

or the timing of exposure. However, the prediction capabilities varied according to 

days after the exposure (i.e. the number of days between exposure to herbicide and the 

hyperspectral sensing measurements). Conversely, for the prediction of dose, the days 

after the exposure did not affect the accuracy of prediction models. 

The timing of exposure was the factor that primarily affected the performance of the 

classification models of dose by increasing the prediction accuracy by more than 10%. 

Hence, regardless of the classification approach, it was then possible to determine the 

best time for data collection for each timing of exposure through the growing season. 
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The prediction performance of yield and simulated dose were comparable in the sense 

that they share similar significant wavelengths and the optimal time for data collection 

purposes. Therefore, these results can potentially simplify prediction models and field 

work campaigns. 

The internal structure of the leaf, after the exposure to the chemical, was a major factor 

that influenced changes in the reflectance patterns in the visible and NIR range. 

Although the fluctuations between the physiological and the hormone content 

variables, particularly ABA, were not sufficient to determine a significant relationship 

between them, the reflectance changes were driven by both of them (i.e. physiology 

and hormone content variability). In particular, the structural-related wavelengths 

manifested stronger relationships with hormone content than the visible wavelengths. 

The Multispectral satellite sensor Landsat-8 Operational Land Imager (OLI) tested in 

Chapter 5 appeared to be an easily applicable and potentially useful approach at the 

field level to detect areas exposed to 2,4-D phenoxy herbicide. Even with the sensor’s 

medium spatial resolution of 30 m, yield was accurately predicted in areas exposed to 

herbicide drift. The use of multiple image bands in a multidimensional prediction 

model resolved the limitations associated with the medium spatial resolution of 

Landsat-8 OLI for the detection of within-field variability. 

The temporal reflectance changes and the variability in the accuracy of the prediction 

models through time were used as indicators of recovery mechanisms within the plants 

after the exposure. In that sense, we could surmise that the plants struggled with the 

impact of the herbicide during the first month after exposure. 

This study concluded that the vegetation indices derived from Landsat-8 OLI, with 

seven of them related to canopy structure and two more related to pigment contents, 

were not capable of accurately predicting yield in either contaminated or healthy 

cropping areas. However, their temporal variability, based on their correlation 

coefficients in relation to the area under study, indicated that after 2,4-D exposure, 

nutrient/pigment availability has a relatively higher impact, while under optimal 

growing conditions the yield determining factors are more related to the biophysical 

conditions of the crop. 
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The multivariate approaches overcame the limitations evident in the vegetation indices 

by providing good yield prediction fits, particularly in the affected area. In this study, 

as well as in the hyperspectral study, “days after the exposure” was a determinant 

variable for accurately predicting yield in contaminated areas. 

LiDAR-derived metrics estimated in Chapter 6 manifested significant correlations with 

cotton canopy variables at different days after the exposure. Canopy height and canopy 

volume were accurately estimated from the LiDAR point cloud at each date of the 

fieldwork campaign and strongly correlated with yield as soon as two days after the 

exposure. The methodologies, to estimate canopy height and volume, proved to be 

insensitive to the common limitation caused by occlusion points during the scanning 

process. Significant differences in canopy height between controls and treated plants 

were accurately estimated with the proposed methodology. In contrast to reflectance 

sensing techniques, LiDAR-derived canopy variables were strongly correlated with 

yield regardless of the “days after the exposure”. 

The preceding results help to bridge the gap between the adoptability of technology 

and final users, i.e. farmers, industry, consultants, etc. while providing reliable and 

accurate approaches for the prediction of 2,4-D herbicide drift damages in cotton 

crops. 

7.3. Recommendations 

The current lack of accurate methodologies to estimate potential yield loss and to 

monitor cotton crop areas that have been potentially affected by herbicide drift limits 

the maximisation of mitigation plans in affected areas representing millions of dollars 

in losses to farmers and the industry in general. This research provides three different 

methods to accurately predict damage caused by 2,4-D herbicide drift on cotton crops. 

The recommendations, provided in this section, are based on the practical applications 

of the methods used, and the variables that best predicted 2,4-D damage in cotton 

crops. As days after exposure (DAE) proved to be the most significant variable in the 

prediction performance of the models, it is therefore important to monitor the crop 

closely if any minor evidence of damage (based on spectral response) is apparent, in 

order to identify the timing of exposure and estimate the days after the exposure. After 
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which, it would be then possible to adjust the methodology described in this study to 

predict the dose of 2,4-D that might have affected the crop and the potential yield. 

7.3.1. Recommendations for practical applications 

The prediction capabilities of hyperspectral data proved to be an accurate technique 

for predicting yield, regardless of the timing of exposure and dose. However, days 

after exposure was a determining factor in model performance, which in real terms 

implies close monitoring of the condition of the crop. A potential limitation on 

practical applications is that it is a ground-based device that requires targeting and 

homogenous sampling within the field, and therefore, could be more limited on a larger 

scale. 

Landsat-8 OLI, as implemented in this study, proved to be a reliable and accurate 

technology for the identification of contaminated zones. The continuous revisit periods 

allow the monitoring of extensive field areas, providing information on crop conditions 

and potential problems. However, in some cases where the area of the paddock is 

relatively small, the medium spatial resolution of Landsat-8 OLI could pose some 

limitations that might be remediated by the implementation of other satellite sensors 

with better spatial resolution. 

Due to the significant impact of 2,4-D herbicide drift on cotton crops and the powerful 

applicability of remote and proximal sensors in the prediction of 2,4-D damage, it is 

highly recommended to implement a monitoring program based on remote sensing 

technologies at regional and field scales. The final users of this program would be 

regional managers, farmers and agronomists that could have access to detailed 

information about crop condition and potential injured areas, and distribute the 

information as needed to immediately activate targeting mitigation plans. 

LiDAR provided valuable information in terms of canopy structure variability with 

relatively short processing times. Hence, it is recommended to explore different 

platforms for LiDAR scanners and explore practical mechanisms to incorporate this 

technology in the same platforms as reflectance-based sensors. Currently, the costs 

associated with LiDAR sensors are high so that they are mainly implemented in 

research settings. However, due to the accuracy of this device and the fact that the 
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accuracy is not affected by “days after the exposure”, the integration of this technology 

in practical applications should be explored further. 

7.3.2. Recommendations for future research 

It is recommended that the methodology be tested in different locations with varying 

soil and water conditions, and with lower doses during at least three growing seasons. 

The influence of soil and canopy structure on the prediction capabilities of the resulting 

models need to be explored. This can be approached by analysing the hyperspectral 

measurements at canopy level. Furthermore, hyperspectral imagery or hyperspectral 

remote sensing might resolve the issues pertaining to spatial distribution of the degree 

of damage across and within paddocks. The results obtained from these systems can 

be extrapolated to other sensors and platforms. 

It is also recommended to test other satellite sensors such as Sentinel-2 and 

WorldView-3 (WV-3) as they provide more spatial and different spectral resolution. 

Because they provide smaller pixel size (20 m and 10 m for Sentinel-2 and 1.2 m for 

WV-3), the vegetation indices could potentially perform better for the detection of 

within-field yield variability and yield predictions. Testing these sensors will also 

provide a complete view of the implication of spatial and spectral resolutions for 

practical applications. 

Depending on resources, a fusion of satellite multispectral imagery and ground-based 

hyperspectral data can potentially resolve the limitations of the ground-based 

measurements and the reduced accuracy of multispectral data in comparison with 

hyperspectral data, as well as the cost associated with very high spatial resolution 

sensors. For this reason, it is also recommended to explore the viability of integrating 

both methodologies as an improved crop sensing tool for herbicide drift damage. 

Furthermore, testing of the most significant wavelengths is desirable for the 

development of new and simplified models. As reflectance varies according to the 

dose, it is recommended that other doses, especially lower ones, are tested and included 

in the models. Similarly, it is also recommended to test the proposed methodologies in 

different growing seasons and different paddocks, to further validate the transferability 

of the prediction models developed in this study. 
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Appendices 

CHAPTER 4 

 

 
Appendix 4-1. Correlation between photosynthesis and reflectance data at two days after the exposure (2 

DAE). 

 

 
Appendix 4-2. Correlation between photosynthesis and reflectance data at seven days after the exposure (7 

DAE). 
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Appendix 4-3. Correlation between photosynthesis and reflectance data at 14 days after the exposure (14 

DAE). 

 

 
Appendix 4-4. Correlation between photosynthesis and reflectance data at 28 days after the exposure (28 

DAE). 

 

 
Appendix 4-5. Correlation between stomatal conductance and reflectance data at two days after the 

exposure (2 DAE). 
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Appendix 4-6. Correlation between stomatal conductance and reflectance data at seven days after the 

exposure (7 DAE). 

 

 
Appendix 4-7. Correlation between stomatal conductance and reflectance data at 14 days after the exposure 

(14 DAE). 

 

 
Appendix 4-8. Correlation between stomatal conductance and reflectance data at 28 days after the exposure 

(28 DAE). 
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Appendix 4-9. Correlation matrix: dose vs. yield, quality, internal variables and hormone contents. 

Dose: Dose; bales: yield (bales/ha); lint: lint turnout percentage, length and strength of fibre, m: micronaire, uni: 
uniformity; SFI: short fibre index; elon: elongation; photo: photosynthesis and condu: conductance 

 
Appendix 4-10. Scatter filters vs. raw spectral data. 

Raw spectra (RAW); multiplicative scatter correction (MSC); standard normal variation (SNV); Savitzky-Golay (SG). 
* Transformed reflectance for MSC and SNV. 

 
Appendix 4-11. Reflectance transformation: First and second derivative algorithms. 
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Appendix 4-12. First journal paper published as part of this research study. 
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Appendix 4-13. Second journal paper published as part of this research study. 
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CHAPTER 5 

 

 
Appendix 5-1. Reflectance variability through time in unaffected and affected areas. DAS: days after 

sowing; DAE: days after exposure 

 

 
Appendix 5-2. Correlation coefficient variability through time in the unaffected area. Correlation between 

multispectral bands and yield (bales/ha). DAS = days after sowing; DAE = days after exposure. 
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Appendix 5-3. Correlation coefficient variability through time in the affected area. Correlation between 

multispectral bands and yield (bales/ha). DAS = days after sowing; DAE = days after exposure 

 
Appendix5-4. Validation performance of PLS-R models with test dataset in the affected area (n = 37). Data 

collected at -42, 6, 38, 54 and 86 days after the exposure (DAE). 
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Kingmill Pty Ltd Trading as Thrifty Car Rental ABN 
58 003 966 649


Tax Invoice Number:  SYDA1316432RA4


Hirer Address


CADAVID LUZ ANG SUAREZ 41a newton st
ARMIDALE NSW 2350
Australia 


Rental Location Pickup Date/Time Return Location Return Date/Time


Sydney Airport
Terminal Building
MASCOT Nsw 2020
Australia 
02 9582 1762


27/01/2018 15:48 Sydney Airport
Terminal Building
MASCOT Nsw 2020
Australia 
02 9582 1762


28/01/2018 11:50


Vehicles


Charges


Payments


Account Name/Credit Card# Account# Payment Dates Auth/PO# Amount


SUAREZ, CADAVID LUZ ANG 521729XXXXXX0757 MCD 27/01/2018 721585 153.49


SUAREZ, CADAVID LUZ ANG 471527XXXXXX0822 VI 27/01/2018 723601 200.00


SUAREZ, CADAVID LUZ ANG 471527XXXXXX0822 VI 28/01/2018 747014 -200.00


Total Paid 153.49


Amount Due (AUD): 0.00


Hirer Particulars


Registration 
Number


Make/Model Date & Time Out Date & Time In KM Out KM In KM 
Driven


Fuel Out Fuel In


672WSC MITSUBISHI ASX 2WD 27/01/18 15:48 28/01/18 11:50 38,857 38,913 56 8/8 8/8


Drivers


Rental Charges No. Of Items Charge per Item Total Charge
Rental 1.00 68.48 68.48


Rz Rental Day 1.00 Day 68.48 0.00


Damage Recovery - Car 1.00 0.00 0.00


Credit Card Fee - Mastercard debit 1.00 0.00 0.97


Vehicle Registration Recovery Fee 1.00 Day 6.50 6.50


Premium Location Surcharge 28.50 % 29.92 29.92


Administration Fee 3.50 % 3.67 3.67


Ultimate Protection.. - Daily - SWAR 1.00 Day 30.00 30.00


Net 139.54


GST 13.95


Total Charges Inc GST (AUD) 153.49


Existing Damage
1: 672WSC 09/04/2017 Drivers Side Rear Scuff (1-9cm) - Wheel


2: 672WSC 09/04/2017 Passenger Side Rear Scuff (10-19cm) - Wheel


3: 672WSC 28/04/2017 Passenger Side Rear Dent (1-9cm) - Panel


4: 672WSC 28/04/2017 Rear Missing - Aerial


5: 672WSC 23/06/2017 Drivers Side Front Scratch (1-9cm) - Panel


New Damage


Thank you for renting with Thrifty







