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ABSTRACT

The introduction of Artificial Intelligence and Machine Learning technologies has
been causing a revolutionary change in the field of mental health, especially in pre-
natal and postpartum depression prediction. It enables healthcare professionals to
make timely, informed decisions, which in turn improves mothers’ wellbeing and con-
tribute to family dynamics positively, and improvements in infant development and the
mother-infant bond. During delivery (prenatal) and postpartum (1-6 weeks) after child-
birth are two of the most critical stages where psychological disturbance remains un-
diagnosed, which also leads to the main cause of late-stage depression. This thesis
investigates, develops, and proposes a triangulation model for prenatal and postnatal
mental depression prediction. Organized interviews were used to gather data from
women who were admitted for childbirth at SRM Medical College Hospital and Re-
search Centre in Chennai, India. Physiological measures, psychological questionnaire
responses, and social media posts make up the dataset. The first model involves an
Internet of Things enabled wrist wearable device to monitor the Electro Dermal Activ-
ity signals, along with cortisol levels, and Patient Health Questionnaire-9 responses
as data sources. Motion artifacts elimination using autoregressive methods, Patient
Health Questionnaire-9 responses based data labelling, subject dependent training
and independent testing using Leave One Out Cross Validation strategy, an Ensemble
Based Deep Learning model was developed to predict the prenatal depression levels
and evaluated against benchmark datasets. The second model predicts postnatal or
Postpartum depression depression based on psychological questionnaire data (Patient
Health Questionnaire-9, Postpartum Depression Screening Scale, and Edinburgh Post-
natal Depression Scale). Class imbalance was resolved using data level methods such
as data sampling (Over Sampling, Synthetic Minority Over-sampling TEchnique and
Under Sampling), and attribute selection (Particle Swarm Optimization). Algorithm-
level methods include MetaCost and ensemble approaches. This hybrid model was
evaluated against benchmark datasets and using ablation concepts. The third model
identifies postnatal depression markers in social media posts using Attribute Selection
Hybrid Network Models model developed with recursive Recurrent Neural Network.
Bidirectional Encoder Representations from Transformers attribute extraction algorithm
is used for word embedding on social media posts. A vector based analysis with post
attention mechanics based on attribute weights are used to predict the Postpartum
depression. Further, the trustworthiness of the model was assessed against other
benchmark datasets. Thus, the triangulation model improves the prediction and early
intervention of maternal depression by Artificial Intelligence based methodologies.
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CHAPTER 1: INTRODUCTION

Neurological disorders have become a global health challenge. Depression is the most
common mental ailment, and if not diagnosed appropriately, it can lead to suicidal
thoughts and attempts. Hence, mental health issues such as depression has signifi-
cant effect on the society and therefore, require novel prediction models. These models
require early depression detection, by utilizing validated questionnaires, psychological
signals, sensor data, and social interactions that can identify specific feelings. This
chapter gives an overview of the various neurological depressive disorders, and Arti-
ficial Intelligence (AI) based depression analysis background, goals, including its sig-
nificance and limitation that exists, specific to women during childbirth. The research
objectives behind Prenatal and Postnatal depression prediction models are discussed
and concluded with the structure of the thesis based on the reasons that prompted this
research.

1.1 Overview

In post era of COVID-19, 970 million people world wide were suffering with a men-
tal or neurological disorders [3]. According to World Health Organization (WHO) [4],
the mental disorders are caused by hereditary, physiological, environmental, and psy-
chological variables that have an impact on school or job performance, relationships
with family and friends, and the ability to take part in the community. The increasing
prevalence of mental disease has been demonstrated by the WHO [4]. As it would be
the leading cause of death globally by 2030, up from its 2008 ranking of #3 [5]. Clin-
ical judgement and patient self-reports are the mainstays of mental health diagnosis
and management [6]. Consequently, diagnosis is difficult regardless of the patient’s
level of mental capacity. According to a report from the year 2020, globally, 264 mil-
lion people suffer from Major Depressive Disorder Major Depressive Disorder(MDD)
[7]. Depression is more common among people who have experienced hardships like
unemployment or emotional stress. It will impact Thoughts, emotions, and routines in-
cluding eating, sleeping, and working [7]. By magnifying existing problems, depression
can increase the risk of suicide. Therefore, it is important to predict the depression
early and prevent it rather than treating it at later stage.

Recent statistics suggests that almost two-thirds of those who suffer from mental
illness never get medical attention. Most of the people with depression do not open-up
about this, leaving them unattended, and this increases the gap in having clinical treat-
ments [8]. Consequently, it is important to explore novel approaches for enhancing the
models for predicting depression in daily life passively, which will improve awareness
about mental health conditions and take up treatments if required [9]. The stigmati-
zation of mental illness in some contexts and the shortage of clinicians in other parts
of the world highlight the importance of automated prediction models for identifying
mental disorders. The development of diagnostic biomarkers and the improvement of
symptom identification could both be aided by automated prediction model evaluation.
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According to Baki (2022), automated detection systems aim to find indicators from
several modalities, including auditory features of speech and body language, which in-
cludes facial expressions and body gestures [10]. Consequently, the idea of constantly
monitoring patients through computer interaction technologies has gained more atten-
tion in the past few years.

1.2 Background

In this section, depression disorders are formally defined; followed by types of depres-
sion and in specific the details about the depression among women are described.
The International Classification of Diseases (ICD)-11 and the Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM) - Fifth Edition provide the primary framework for
making prediction of mental disorders in a clinical setting ICD-11 [11].
Among women, predicting the mental health issues during the motherhood called Pre-
natal and Postnatal or Postpartum Depression (PPD) are critical as it will have impact
on individual, baby and family dynamics. The necessity to deal with such conditions is
explained elaborately in this section later.

1.2.1 Depression

As defined by ICD-11,
Major depressive disorder is diagnosed when a person has depressive moods (such
as sorrow, impatience, or loneliness) or a diminished sense of happiness along with
additional symptoms that significantly impede their capacity to function, whether they
be behavioural, or cognitive in nature [11]. Worldwide, 5% of the general population is
believed to be depressed[3].

1.2.2 Types of depression

The number of individuals impacted by depression is on the rise, and it is the top cause
of disability globally, as stated by the World Health Organisation (WHO) [12]. Depres-
sion rates had risen worldwide as a result of the COVID-19 pandemic [13]. Countless
individuals across the globe are impacted by the severe and prevalent mental illness
known as depression.
Here are some of the types of depression and recent statistical data related to depres-
sion:

• Major Depressive Disorder (MDD) [14]: This is a severe form of depression
that affects a person’s ability to function in their daily life. Symptoms include
persistent feelings of sadness, loss of interest in activities, changes in appetite
and sleep patterns, and difficulty in concentrating. According to the WHO, around
264 million people worldwide suffer from MDD, and it is the leading cause of
disability worldwide.

• Persistent Depressive Disorder (PDD) [15]: This is a milder form of depression
that is characterized by long-term symptoms of low mood that last for at least two
years. According to the National Institute of Mental Health (NIMH), approximately
1.5% of the United States adult population (about 3.3 million) suffers from PDD.
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• PostPartum Depression (PPD) [16]:Postpartum depression is a sort of melan-
choly that new mothers could experience. Symptoms include feelings of sadness,
anxiety, and exhaustion that can make it difficult to care for themselves and their
newborn. One out of every eight American women suffers with premenstrual
dysphoric disorder PPD, as reported by the Office for Disease Control and Pre-
vention .

• Seasonal Affective Disorder (SAD) [17]: When daylight hours are shorter in
the winter and autumn, this kind of depression is more prevalent. Symptoms
include fatigue, irritability, and weight gain. According to the American Psychiatric
Association, SAD affect about 5% of the United States adult population.

• Bipolar Disorder [18]: Mania (or hypo-mania) and depression are symptoms of
this mental illness. Excessive energy, impulsivity, and grandiosity are symptoms
of a manic episode. Nearly 4.4% of American adults will suffer with bipolar illness
at some stage in their lives, as reported by the National Institute of Mental Health.

1.2.3 Depression in women

Depression is diagnosed at roughly double the rate in women compared to men [19].
Irrespective of age factor, Women go through a depressive episode.

Hormonal fluctuations are common and might cause some people to feel down or
affect their mood. On the other hand, if mood disorders aren’t caused by hormone
shifts, there are a number of other biological factors, genetic traits, and personal life
circumstances that enhance the likelihood of developing depression [20].

Puberty

A higher risk of depression in some girls may be associated with hormonal changes
that occur during puberty. Mood swings caused by changing hormones during puberty
are common, but they are not the cause of depression [21]. Other situations that are
commonly linked to puberty that can contribute to depression include: Questions of
sexuality and self-discovery Parental disagreements The ever-increasing demands of
success in academics, athletics, and other areas of life

Girls are more susceptible to depression after puberty. Since girls often attain pu-
berty earlier than boys do, it seems to reason that they would be more likely to suffer
from depression at a younger age. This gender discrepancy in depressive symptoms
may persist throughout a person’s life, according to the available data [21].

Menstruation issues

The majority of women who suffer from PreMenstrual Syndrome (PMS) have mild and
transient symptoms, including bowel disorders, discomfort in the breasts, headache,
anxiety, irritability, and depression. However, some women experience severe and
incapacitating symptoms that significantly impact their academic performance, profes-
sional careers, personal relationships, and other aspects of their lives. There lies a
fair chance, PMS would progress to Premenstrual Dysphoric Disorder (PMDD), a diag-
nosed and treatable form of depression [22]. The association between depression and
PMS remains vague. Hormonal fluctuations may interfere with the normal functioning
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of mood-regulating brain neurotransmitters like serotonin. Factors such as inherited
characteristics and one’s upbringing also contribute to depression.

Expectant motherhood/Pregnancy

The significant changes in hormone levels that occur during pregnancy can have an
effect on mood [23]. Factors that contribute to the elevated risk of depression during
attempts at pregnancy include:

Changes to one’s way of life, place of employment, issues with spouse, lack of
support in family, mood disorders, postpartum depression associated with previous
pregnancy, unplanned pregnancy, fertility issues, and reducing or eliminating antide-
pressant medication usage.

Post pregnancy

Not long after giving birth, many women report feeling depressed, irritated, and some-
times experience impulsive crying [24]. These emotions, which are common and usu-
ally go away after a week or two, are known as the baby blues. However, if these
symptoms get severe or persistent, combined with a few other symptoms like Frequent
weeping, low self-esteem, nervousness or apathy, disturbed sleep, challenges in car-
rying out routine tasks, improper infant care, and feelings of self-harming, then it may
be a sign of PPD.

It is critical to get immediate medical attention for PPD. It affects around 10% to
15% of females. It is believed to have ties with:

Significant changes in hormone levels that impact emotional state, caring for a new-
born is a huge responsibility, mood and anxiety problems as a potential outcome, diffi-
culties during pregnancy and delivery, issues related to breastfeeding, potential issues
or unique requirements for infants and limited social support.

The menopause and perimenopause

There is an elevated risk of depression during the perimenopause era, which begins
shortly before menopause and continues after menopause as this period is associated
with significant hormonal fluctuations such as oestrogen levels [25]. The majority of
women who have debilitating menopausal symptoms do not necessarily suffer from
depression. However, factors such as: Sleep disruptions, problems with anxiety or
sadness, elevated BMI, early menopause increases the risk of depression.

Social and Cultural experiences

There is more than just biological factors to explain why women experience a higher
risk of depression. Factors such as cultural pressures and personal situations might
also play a part. These stresses do affect males, although at a reduced frequency [26].
Women may be more susceptible to depression if they experience any of the following:

• Imbalance in status and power
Women face poverty more than men do, and this raises issues including future
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instability and diminished access to social and medical services. A lack of opti-
mism, confidence, and mastery over one’s own life might result from these prob-
lems.

• Too much work
In addition to taking care of the house, with children and other family members,
many women also take-up jobs. Single parenthood forces women to engage into
multiple jobs to maintain social standards.

• Misuse of power, whether sexual or physical
Women who have endured emotional, physical, or sexual abuse as children or
adults are more likely to suffer from depression. The likelihood of sexual abuse
occurring to women is higher than that of men.

1.2.4 Importance of Prenatal and Postnatal depression

Prenatal depression can be one of the contributors to PPD or Postnatal depression,
and these are important mental health conditions to address because they affect not
only the mother, but also the development and well-being of the child. Research has
shown that PPD can have multiple negative effects, such as [16].

• Negative impact on maternal health [27]
PPD can affect a mother’s physical health and emotional wellbeing, making it
difficult to care for herself and the infant. This can lead to problems such as poor
nutrition, lack of sleep, and neglect of personal hygiene.

• Impaired mother-infant bonding [28]
The mother’s capacity to form a bond with her infant can also be impacted by
PPD. The infant’s emotional and social development may suffer as a result of
this.

• Cognitive and developmental effects on the baby [29]
PPD can affect the baby’s cognitive and developmental outcomes. Infants of
those depressed mothers with PPD may have delayed language development
and impaired social interaction.

• Family dynamics [30]
PPD can also have an impact on the family dynamics. It can lead to stress and
conflict in the family, which can affect the well-being of other family members,
including the baby.

New mothers with postpartum depression can prevent these risks by seeking med-
ical help immediately. Treatment options for PPD include counselling, medication, and
support groups. Increased connections between PPD with infant mortality, preterm
birth, and low birth weight are evidenced in this research [31]. This study found
that children with women with PPD had higher rates of developmental delays and
behavioural difficulties. PPD can make the mother feel inadequate, guilty, and em-
barrassed, hindering her attachment with her child. One in seven American mothers
experience postpartum depression, according to the American Psychological Associa-
tion, making it them most common type of depression faced by women [32].
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1.3 Overview of childbirth

The foetus and placenta are expelled from the uterus and delivered through the vaginal
canal during the process that is known as labour. The stages of human labour can be
broken down into three categories [33]. The first stage is marked by the beginning
of labour, which continues until the cervix has completely dilated and effaced. The
second stage of labour begins with the completion of cervical dilatation and ends with
the delivery of the foetus. The third stage lasts from the time the foetus is delivered
all the way up until the placenta is delivered. For a productive labour, there are three
components involved: 1) the efforts of the mother and the uterine contractions, 2) the
attributes of the foetus, and 3) the structure of the pelvis. The terms ”passenger,”
”power,” and ”passage” are typically used to refer to the three components of this triad
[33].

1.3.1 Prenatal depression

Childbirth is generally considered to be the rebirth of a woman. During the period
from pregnancy until delivery, the depression women undergo is called as Prenatal
depression. There have been a number of studies which focus on the depression
during pregnancy [32, 34, 35, 36] which holds significance. However, an important
aspect of Prenatal depression is ’during’ labour, and if it gets prolonged can lead to
serious problems like fetal distress [37], complication in delivery [38], and long-lasting
psychological problems of child [23] and so on as shown in Figure -1.1. So, in this
study, prenatal depression during the labour is considered as one of the two research
works.

1.3.2 Postnatal or Postpartum depression PPD

Postpartum depression PPD is a form of mental illness that can manifest in new moth-
ers following childbirth. PPD is not recognized as a distinct disorder in the DSM-5 but is
instead considered when a mother experiences a significant depressive episode with
a peripartum beginning. Major depressive disorder that develops within four weeks of
childbirth is referred to as PPD.
It is diagnosed when at least five of the following symptoms persist for two weeks [39]:

• Moods of despair, worthlessness, and melancholy

• Shifts in food intake and sleep patterns

• Indifference and lack of drive

• Challenges with focus and decision-making

• Thoughts of harming oneself or the baby

• Loss of interest in activities that were previously enjoyable

• Irritability, anger, or anxiety

• Withdrawal from family and friends
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Figure 1.1: Deleterious effects on the fetus and Mother

• Physical symptoms such as headaches or stomach problems

It is important to note that many new mothers experience what is often referred
to as the ”baby blues,” which is a milder form of mood changes after giving birth that
typically resolves within a few days [38]. However, if symptoms persist or worsen, it
may be a sign of PPD and medical attention should be sought. It is crucial to consult
a healthcare professional for an accurate diagnosis and treatment strategy, as it can
progress towards PPD.

1.3.3 Postpartum depression in new mothers by ethnicity/race

Women of various ages, ethnicity, and socioeconomic statuses are susceptible to PPD.
Three decades of interdisciplinary research have produced thousands of studies inves-
tigating the characteristics, measurement, consequences, treatment, and predictors of
PPD. Despite these efforts, the global prevalence of PPD remains unknown. The widely
cited PPD prevalence rate of 13% ascertained two-decades ago is based on a meta-
analysis of overwhelmingly [2]. It affects approximately 17.7% of postpartum women
around the world by the recent research in 2024 [40]. According to their ethnicity or
race, the types of PPD in new mothers are shown in the Figure - 1.2.

It is difficult for the healthcare team to make a definitive diagnosis of PPD in the first
48 to 72 hours when the mother is under clinical observation after delivery. Given that
PMS symptoms can manifest anywhere from ”a few days after delivery or sometimes
as late as a year later” [41], it is reasonable to assume that women will most frequently
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Figure 1.2: Postpartum Depression in New Mothers by Ethnicity/Race [2]

experience postpartum depression symptoms after they have been discharged from
the hospital. Because of this issue, postpartum women are exposed to the possibility
of further damage or are unable to obtain the assistance that they might require. Since
the incidence of PPD is rising at an alarming rate among new mothers, it is impera-
tive that researchers employ a variety of study approaches in order to determine the
characteristics (attributes) that put certain women at increased risk for having PPD.

1.3.4 General risk factors of PPD

The prevalence of PPD was found to be 18.6% across 47 research conducted in 18
different countries and analysed in a systematic review [42]. These symptoms include
exhaustion, disturbances in appetite, and sleep difficulties.
Various risk factors of postpartum depression are:

1. Stress
PPD is exacerbated by many structural reasons, including low socioeconomic
status, family strife and crisis, inadequate resources, and an increasing number
of dependents. A sick infant, having Cesarean section, worrying social image,
and having a negative delivery experience all contribute to postpartum stress
[43]. PPD is caused by a combination of biological, hormonal, obstetric, social,
and environmental attributes. Women with many medical conditions, such as high
blood pressure, diabetes, so on, have a higher chance of developing PPD [44].
Factors associated with risk for PPD in India included low socioeconomic status,
having a female child, marital turmoil, isolation, a history of mental health issues,
multiple births in a short period of time, complications during pregnancy, and
inadequate maternal education. Previous studies from low- and middle-income
countries have shown similar risk factors [45].

2. Nutrition
Nutrients necessary for proper neurotransmission are depleted during pregnancy
and breastfeeding [46]. PPD is strongly influenced by the mother’s nutritional
state, including her diet, how much she eats, and how healthy her lifestyle is. The
mother’s mental health benefits from a healthy diet and lifestyle. Vitamin D is one
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of these nutrition that has been said to aid depressed people. Some have spec-
ulated that vitamin D included in food could operate as an enzyme that activates
neurons. Vitamin D receptors may be ubiquitous in the human brain, according to
a number of studies, and insufficient vitamin D levels can influence neurotransmit-
ters associated with depression [47]. PPD is significantly influenced by low levels
of n-3 PolyUnsaturated Fatty Acids (PUFA) . Dopamine metabolism is affected by
a lack of n-3 PUFA. It may contribute to the onset of PPD. The woman’s mental
health depends on a well-balanced diet and overall physical health. The risk of
PPD is increased when a woman has a metabolic condition during pregnancy
[48]. During pregnancy and breastfeeding, a woman’s body could get deficient in
specific minerals because those nutrients are transferred to the foetus and baby.
Depression has been associated to low levels of trace minerals such as zinc and
selenium [49].

3. Hormones
Hormone levels associated with reproduction are reported to change dramatically
following childbirth. It may make women more vulnerable to clinical depression
after giving birth. Inconsistencies in estradiol and progesterone, according to the
notion of hormone deficit, can rapidly bring on postpartum blues and depression
in susceptible mothers [50]. Despite the fact that all mothers in India go through
this hormonal shift after giving birth, only a small percentage of them suffers from
PPD. Having a child born prematurely (at less than 34 weeks) or with a congenital
impairment is another known risk factor for PPD [51].

4. Past psychiatric history
The best way to predict PPD is to check the mental health before and during the
pregnancy. If someone has a parent or sibling with major depression, that person
probably has a 2 or 3 times greater risk of developing depression compared with
the average person (or around 20-30% instead of 10%). An increased risk of
PPD has been linked to a prior history of unplanned pregnancies [52].

5. Thyroid function
In India, thyroid function tests are often used and easily available. Accurate
measurements are taken ofThyroid-Stimulating Hormone (TSH), Thyroxine (T4),
and Triiodothyronine (T3). Additionally, Thyroid PerOxidase (TPO) and Thyrox-
ine Binding Globulin (TBG) serve as indicators of thyroid functioning. Because
thyroid function is sensitive to other hormone variations throughout pregnancy,
studying thyroid function as a predictor of PPD requires careful timing [53].

6. Anemia
Insufficient iron in the diet is a common cause of anaemia in pregnant women in
India, according to a recent study [54]. As a result, it has been linked to wors-
ening postpartum mood, menstruation, and mother-child interactions, as well as
symptoms like exhaustion, irritation, and loss of concentration. Women whose
infants had low haemoglobin levels during the first week of life were shown to
have a considerably higher risk of PPD [55].

7. Age
A mother’s age is associated with risk of PPD [56]. Women under the age of
19 have the highest incidence of PPD [57] due to fear and stress. Depression
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after having multiple children is common among elderly women. Possible causes
include a rise in pregnancy-related problems.

As the above attributes are the predominant risk factors causing PPD, It is essential to
predict the PPD earlier.

1.4 AI-based Depression Analysis

The intrinsic ability of mental health predicting models is to provide proactive actions
holds a great deal of promise, which contributes to the system’s vast potential. Treat-
ment in the medical field has typically been undertaken in response to the appearance
of symptoms or complications in the past. This reactive approach has been the norm
for the majority of its history. However, metal health predicting models that are cou-
pled with AI have the ability to re-calibrate this paradigm, since they make it possible
to detect early deviations from baseline health indicators [58]. This could result in a
paradigm shift. This early detection, which is supported by the predictive powers of AI,
creates the groundwork for interventions that are both timely and precisely targeted.
As a consequence of this, the results for patients and the general quality of healthcare
are both likely to see considerable improvements.

By seamlessly integrating predicting models with electronic health records and hos-
pital information systems, the digital revolution has changed mental health monitoring.
This integration streamlines data administration and improves patient’s mental health
care. Furthermore, AI technologies, driven by breakthroughs in machine learning and
deep learning algorithms, have elevated mental health predictions to new heights [59].
AI-based mental health predicting models have developed from data collectors to pre-
dictive platforms. Through thorough dataset analysis, pattern detection, and precise
predictions, these technologies can revolutionize mental health early prediction with
personalized and proactive interventions.

Integrating AI and Machine Learning (ML) into mental health prediction models
marks a major healthcare advancement. These tools enable real-time data-driven
decision-making and personalized interventions, transcending established healthcare
paradigms. The following sections elaborate the ways in which artificial intelligence
and machine learning are influencing the field of depression analysis, particularly PPD
analysis. Background of mental health prediction models are discussed, the impact
of the digital revolution on this field, and the concept of machine learning in health-
care, which are both important. These components each contribute to the overall shift,
proving that AI and ML are the center of modern healthcare.

1.4.1 Exploring key technologies

Traditional methods as well as cutting edge technologies are both important contrib-
utors to the study and comprehension of depression. The following are some of the
most important technologies utilized in the analysis of depression:

• Machine Learning and Artificial Intelligence
Pattern analysis and depression prediction from several data sources are two
areas where ML and AI excel. These data sources include psychological ques-
tionnaires [60], posts on social media platforms [16], voice recordings, and psy-
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chological signals [61, 62]. These technologies have the potential to aid in early
detection and the recommendation of personalized treatments.

• Natural Language Processing (NLP)
AI’s sub field known as NLP analyses how computers and people communicate
with one another using words and phrases. For the purpose of diagnosing de-
pression, NLP can be applied to the examination of written or spoken language,
such as the content of social media posts [16], chat logs [63], or clinical notes
[60], in order to recognize linguistic indicators that are diagnostic of depression.

• Biometric and psychological monitoring
Wearable technology and sensors have the ability to capture psychological data,
such as a person’s heart rate, Electro Dermal Activity (EDA) [64], patterns of
sleep [65, 66], and activity levels [67, 68]. Alterations in these biometric mark-
ers may provide insights into an individual’s mental state, hence assisting in the
detection of indicators of depression in that person.

• Digital mental health applications and platforms
Mobile apps and digital platforms offer a variety of methods for the assessment
of depression, such as tracking one’s mood, participating in self-assessment
questionnaires [60], and engaging in cognitive behavioral therapy exercises [69].
These technological advancements make solutions for monitoring and managing
mental health more readily available and amenable to scaling.

• Remote health monitoring and telemedicine
Technologies for telehealth make it possible to conduct mental health monitoring
and consultations remotely [69]. The use of video conferencing, encrypted tex-
ting, and remote monitoring [70] of vital signs all contribute to mental health care
that is easier to access and more comfortable for patients, particularly those who
live in undeserved or distant places.

• Blockchain-based privacy protection for clinical depression research
Investigations are being conducted into using blockchain technology to improve
the confidentiality of patient mental health records. The study of depression can
benefit from the use of blockchain because it is a decentralized and transparent
system that can assist maintain the integrity of sensitive information as well as its
confidentiality [71].

The combination of these technologies makes it possible for a comprehensive and
multidimensional approach to be taken towards analysing depression. This technique
takes into account a variety of factors of an individual’s life and combines objective
and subjective data sources. Both the study of depression and the provision of mental
health care are undergoing continual transformations as a result of ongoing research
and technological breakthroughs.

1.4.2 Challenges in AI-based depression analysis

AI-driven depression analysis systems provide a number of significant issues that need
to be solved before their full potential can be realized, and before they can be effectively
integrated into healthcare practices. Despite the enormous promise that these systems
hold, however, they also present a number of important obstacles.
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1. Active assessment monitoring and heterogeneous data analysis
Depression prediction systems that are powered by AI have the ability to provide
individualized insights and treatments that are based on the data of each individ-
ual patient [72]. The uniqueness of patient data and the diversity of data sources
make active evaluation a challenging goal to attain. Electronic health records,
wearable sensors, and patient-reported information are just a few of the many
possible sources of healthcare data. As a result, the data might have varying
resolutions, formats, and overall quality. In order to find a solution to this problem,
advanced algorithms will need to be developed. These algorithms will need to
be able to analyze different types of data and produce individualized recommen-
dations. The application of reliable data preprocessing techniques, methods for
attribute extraction, and machine learning algorithms that are adept at handling
the complexities of many data modalities is required for effective solutions to be
developed.

2. Predictive monitoring and model validation
The purpose of mental health predictive monitoring is to facilitate the prediction of
critical behavioural occurrences that deviate from the norm, with the hope of facil-
itating the implementation of preventative measures. The construction of precise
and reliable prediction models, on the other hand, involves tremendous obstacles
that call for substantial research, data collection on a broad scale, and thorough
model validation. The data that is used in healthcare is frequently prone to hav-
ing noise, missing values, and uneven distributions, which poses extra challenges
when it comes to the process of training effective prediction models. It is crucial
to ensure the generalizability and reliability of these predictive models over a wide
range of patient demographics and healthcare settings. Doing so is necessary
for mitigating the effects of any potential biases and producing accurate forecasts.
The interpretability of predictive models also plays a crucial role since it enables
healthcare personnel to comprehend and trust the model’s predictions, which in
turn helps to build a mutually beneficial collaboration between AI and humans in
the provision of patient care [72].

3. Ethical considerations in depression analysis
There are some serious moral concerns with mental health institutions using AI
to forecast cases of depression from a distance. It is of the utmost significance to
strike a careful balance between delivering individualized care for patients while
preserving patient privacy and obtaining their agreement, despite the fact that
AI technologies offer important insights and the possibility for early diagnosis of
mental health concerns. In the field of mental health prediction, it is of the utmost
importance to make certain that AI models are ethically responsible, culturally
sensitive, respectful of patient autonomy, and keep patient information secure
[72].

4. Privacy and security issues
This system enables real-time monitoring of patients in settings other than clinical
hospitals, mental health monitoring Mental Health Monitoring (MHM) has a signif-
icant potential to completely transform the medical industry. On the other hand,
the decentralized nature of MHM, in which data is gathered from a wide variety of
distant sources, raises concerns regarding the patient’s right to privacy and the

12



safety of their data. Developing robust and secure solutions that protect patient
data throughout its transmission and storage in MHM systems is a challenge that
requires advanced cryptographic techniques [72].

1.5 Motivation

Maternal health encompasses a woman’s well-being before, during, and after her preg-
nancy. Both the prenatal and postnatal periods are important for the development of
a child. Getting prenatal care raises the chance of a healthy birth and decreases the
risk of complications during pregnancy. Whereas, postnatal care helps new mothers
adjust to the physical, social, and mental changes that happen after giving birth. There
are three distinct phases to the labour and delivery process. Beginning with the onset
of contractions, the first stage of labour lasts until dilation of the cervix. Full dilation
marks the beginning of the second stage of labour, which lasts until the baby is born.
After the birth of baby, the mother will enter the third stage of labour, which will last until
the mother deliver the placenta. The ”fourth stage of labour,” or the postpartum period,
consists of three different yet interconnected stages [73].

• The time immediately following delivery, from 6–12 hours, is known as the first
or acute period. Postpartum bleeding, uterine inversion, amniotic fluid embolism,
and eclampsia are all potential emergencies during this time of fast transition.

• Subacute postpartum occurs between weeks 2 and 6 after giving birth. The
body’s hemodynamics, genitourinary recovery, metabolic rate, and psychological
state all undergo significant shifts during this time. However, the rate of change
is slower than in the immediate postpartum period, and the patient can usually
recognize issues on her own. Perinatal pain is one example; peripartum car-
diomyopathy and severe PPD are others.

• The delayed postpartum period, the third stage, can persist for as long as six
months after delivery [74]. When it comes to pathology, this stage is uncommon
and the changes that do occur are quite subtle.

Despite evidence that describes postpartum ”baby blues” to be a ”normal” emotion
experienced shortly after giving birth, more study and understanding of PPD is nec-
essary. These ”blues” are said to occur following the birth of a child. It is estimated
that one in every five women may develop PPD after giving birth, although the factors
that lead to this condition are not fully understood [41]. Because of their reproductive
nature and the responsibility that comes along with child rearing, women are twice as
likely as men to experience depression throughout the course of their lives [75]. It is
projected that by 2020, PPD would surpass all other causes of disability in terms of
prevalence. It is also related with a rise in the mortality rate due to suicide, and it adds
to the development of other disorders that are associated with it [76].

It is one of the most common problems that can happen during pregnancy and can
make it hard for the mother and child to connect. If a baby has these problems, they
can have bad outcomes like getting sick, being behind in development, and not growing
properly [41, 75]. So, the goal of this study was to find out how common PPD is among
women who have recently given birth in the Indian state of TamilNadu and what traits
are linked to it.
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1.6 Research questions

This doctoral thesis embarked on a comprehensive research of the role that AI plays
in strengthening the prediction of prenatal and postnatal depression in women across
a variety of healthcare settings. This investigation is undertaken in light of the prob-
lems and opportunities given by depression prediction models. The study attempts to
provide answers to the following important questions:

• How can artificial intelligence be used to improve prediction models for mental
health, thereby solving issues in the areas of depression detection, personalized
activity tracking, and predictive monitoring in the healthcare industry?

• How can AI-based models help to forecast the motion artifacts in EDA analogue
signals obtained using wrist wearable devices? How can these models manage
both dependency in-dependency across the subjects in order to predict the de-
pression levels accurately that occurs during childbirth?

• What are the advancements to avoid the data imbalances and How Deep Learn-
ing (DL) models can be effectively utilized for analysing the questionnaire data to
predict postpartum depression, particularly within six weeks of delivery?

• What is the potential of applying multi factor fusion to the Social media posts, and
how does attention-based DL methods further enhance postpartum depression
detection?

1.7 Research objective and significance

This research primarily aims to create a hybrid model that can predict depression dur-
ing and after labour by combining three assessment methods and its analysis utilising
ML and DL algorithms. To solve the identified research gaps , three objectives derived.
Figure - 1.3 displays the proposed methodology’s summary.

The following are the specific research objectives:

1. To investigate the role of AI models in enhancing the accuracy of Prenatal and
Postnatal depression prediction models, thereby mitigating the challenge of model’s
opacity inherent in machine learning.

2. To assess the efficacy of deep learning techniques by eliminating motion artifacts
in EDA signals and balancing with in-dependency and dependency among the
subjects to predict prenatal depression

3. To explore and analyse the advancements of AI based postnatal depression pre-
diction model to overcome the class imbalance in psychological questionnaires,
and evaluate its trust worthiness using the various classification algorithms.

4. To assess the viability and effectiveness of deep learning model by developing
a hybrid attribute selection network model to identify the Postnatal depression
indicators in the social media posts and psychological questionnaire.

This analysis covers three stages of labour and Subacute postpartum. This time
span is from when the child is born until he or she is six months old. Later stage of
Postpartum complications are quite rare, and thus it was ignored for this research.
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Figure 1.3: Overview of Proposed Methodology

1.7.1 Significance of the research

Woman’s susceptibility to the onset of mental illness is amplified during the difficult
period of transformation from a woman to mother, which encompasses significant
changes in emotional, interpersonal, and psychological characteristics [77]. Postpar-
tum depression PPD symptoms will manifest during first year after giving birth and
characterized by loss of interest and selfestem, low energy and exertion, poor concen-
tration, even self harm intentions and may stretch to suicidal thoughts if unattended
[78, 79, 80].

Mental wellness is the base for several Sustainable Development Goals (SDG)s,
including the advancement of gender equality and women’s empowerment, the de-
crease in infant mortality, and the enhancement of maternal health. One of the aims
of the SDG is to increase mental health and well-being as well as reduce premature
mortality due to non-communicable disorders by one third by the year 2030 through
treatment and prevention PPD [81].

Effective prediction and understanding the factors that contribute to PPD is crucial
for supporting and preparing women who are currently dealing with diagnosis. Pre-
dicting PPD, by developing accurate models with reduced false rate by ML and DL
algorithms on the data collected through real time methodologies. The ML or DL al-
gorithms were chosen to anticipate early diagnosis and to provide recovery. This pro-
posed model is projected to be more effective and precise in predicting depression and
will subsequently prevent prolonged sufferings of mother and child. The proposed AI
based model facilitates medical industry in providing appropriate treatment.

1.8 Thesis organization

This thesis is organized into six chapters, each of which focuses on a particular com-
ponent of AI-based mental health prediction models, in particular during prenatal and
postnatal depression in women. The thesis is organized as shown in Figure - 1.4:
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Figure 1.4: Organization of chapters
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• Chapter 1 shows a clear picture regarding the depression, and various types of
depression in women. Among that, Prenatal and Postnatal or PPD is elaborated
in detail. It includes PPD background studies, importance of Prenatal and PPD, in
new mothers with respect to race, general risk factors which leads to Prenatal and
PPD. It also includes the problem statement, research motivation, and research
objectives.

• Chapter 2 delineates about the working of Prenatal and PPD Mental Health Pre-
diction Model (MHPM) with various layers from data source to evaluation mod-
els. Issues related to various input categories to predict Prenatal and PPD using
MHPM elaborated. Followed by the various Analysis methods followed to convert
the raw input into the meaningful information needed for prediction of depression
and AI based existing predictions models and gaps associated with it. MHPM out-
stretched with the limitations on the existing MHPM and open research issues.

• Chapter 3 discusses the development and implementation of effective and effi-
cient models to predict Prenatal depression occurring in various stages of labour
using a physiological analog signals EDA through wearable device and psycho-
logical questionnaire. Prenatal depression can be predicted using this innovative
hybrid strategy with Ensemble based Deep Learning model, which integrates ac-
tive and passive monitoring techniques and handles the imbalance in datasets.
Followed by experiments have been conducted to ascertain the validity and ac-
curacy of the models.

• Chapter 4 describes important issues related to high dimensional data in the
postnatal depression prediction. Further this section delves into the psycholog-
ical questionnaire data (Patient Health Questionnaire-9 (PHQ-9), Postpartum De-
pression Screening Scale (PDSS), Edinburgh Postnatal Depression Scale (EPDS))
gathered according to inclusion and exclusion criteria from the SRM Medical
College Hospital and Research Centre (SRMCH RC) to make predictions with
specific hybrid model that handles imbalance based methods called data sam-
pling (Over Sampling (OS),Under Sampling (US), and Synthetic Minority Over-
sampling TEchnique (SMOTE)), attribute extractions using Particle Swarm Opti-
mization(PSO), and algorithm-based methods called MetaCost. The trustworthi-
ness of the prediction models are found by comparing classification algorithms
with benchmark datasets.

• Chapter 5 gives a description of the importance of passive monitoring for post-
natal depression prediction. Participants selection and data collections explained
with Inclusion Criteria and exclusion criteria. Preliminary analysis was carried
with questionnaire score and followed by the assessments of the posts on Face-
book using an innovative Attribute Selection Hybrid Network model (ASHN) to
identify risk factors for postpartum depression. Here, four separate neural net-
works are designed to handle the majority of four classes of severe depressive
symptoms derived from previous psychological researches. Followed by evalua-
tion experiments.

• Chapter 6 concludes the research of this thesis by elaborating the contributions.
It discusses the potential shortcoming that has been discovered on the proposed
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design, generalizability of this model as well as future enhancement that have
been identified.

The purpose of this thesis is to make a contribution to the field of AI-based prena-
tal and postnatal or postpartum depression prediction models. By addressing the re-
search questions and fulfil the objectives that have been outlined. This research shed
insight on the problems and opportunities that are present in traditional settings, as
well as to guide the smooth integration of AI technologies into healthcare practices in
order to predict depression at an earlier stage. Each research question is thoroughly
examined in the following chapters. Strict research protocols, extensive experimental
investigations, and meticulous assessments of the results are used in this research.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

From data collection to model evaluation methodologies, this chapter provides a com-
prehensive review of the Prenatal and Postnatal or Postpartum Mental Health Pre-
diction Model (MHPM). For the better understanding of MHPM, issues related to the
raw inputs, and analysis methods carried out in the existing studies are discussed
in detail. Software packages used and evaluation metrics in the existing researches
are discussed. Then, inconsistencies in the existing models are summarized, thereby
highlighting the need for an enhanced mental health prediction models with combined
active and passive assessments ways and address the research question 1 defined in
section 1.7.

2.2 Prenatal and Postnatal mental health prediction model

Prenatal and Postnatal mental health prediction models that can function autonomously,
without the need for human involvement, are referred to as MHPM . In order to analyse
data and make decisions, these models frequently rely on context data gathered from
data sources using AI models [82]. Various layers of this autonomous Prenatal and
Postnatal Mental health monitoring model, such as real-time monitoring data sources
(sensing layer), ability to analyse those data it collected to detect patterns and abnor-
malities that could indicate potential health issues, are provided in Figure 2.1. Data
collection and storage are typically handled by the network layer, which follows the
data source layer. Bluetooth and Wi-Fi are examples of wireless networks that could
be included. The raw data are transformed into digital phenotype information in the
analysis layer, which is then used for predictions based on the application requirement.
This transformation may involve artificial intelligence algorithms or other advanced an-
alytic approaches. In a typical layered architecture, the final model for prediction is the
very last one. The obtained model can be used specially for the prenatal and postnatal
depression prediction with mothers. It also allows doctors and care takers to keep tabs
on the mother’s health from a far.

2.2.1 Data sources

The Data sources collect environmental and psychological changes, making it cru-
cial to predict prenatal and postnatal depression. Wearable, environmental sensors,
virtual chatbots, psychological questionnaires, social media posts and smartphones
can be used to collect the raw data needed for an MHPM, which can then be used
to determine emotional and behavioural features, as indicated in Table 2.4. The in-
formation that is required to construct automated prediction models and to monitor
changes in a particular state over time is typically gathered through the use of lon-
gitudinal and quantitative research methodologies. According to [72], [83], traditional
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Figure 2.1: Layered Architecture of Prenatal and Postnatal Mental Health Prediction
model
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self-report psychiatric questionnaires like the Hamilton Depression Scale (HDS) and
the Young Mania Rating Scale (YMRS) were used in the past. By combining it with
sensor-enabled wearable and smartphone applications data, the correlation between
sensor-derived readings and the stated conditions, can be determined. Finally, the
consistency of the sensor-derived readings with the claimed conditions [16] were eval-
uated. Using wearable technology to do remote and continuous monitoring of mental
health is an intriguing and potentially useful approach. There is a significant amount of
personal patient data that can be sent via wearable devices, which are able to record
rich contextual information.

Concurrently, machine learning’s advantages have accelerated data processing and
increased the quality of insights drawn from data. Smartwatches, which are one of
the most popular wearable gadgets, contains various sensors that are able to capture
physiological signals, such as EDA, PhotoPlethysmoGram (PPG),ElectroCardioGram
(ECG)), and skin temperature. Smartwatches function as miniature smartphones and
have promising computational capabilities [64]. The vital signs of a patient can also
be monitored with the help of chatbots [84]. Before, during, and after professional in-
terventions, chatbots are utilized as individual medical assistants in the mental health
industry to support psychological well-being and mental health periodic updates. This
is being done in order to improve patient outcomes [85]. They are also helpful for de-
tecting psychological symptoms and habits such as an individual’s degree of activity,
sleep routine, and amount of time spent on social media [86]. On-object sensors, such
as environmental sensors (smart beds, smart chairs, smart lights, and smart TVs), can
also be used to assess aspects of the indoor environment, such as temperature and
humidity. For the purpose of monitoring a person’s vital signs, physiological sensors
such as a temperature sensor, blood pressure sensor, as well as inertial sensors such
as an accelerometer, gyroscope, microphone, and connectivity using Wi-Fi and Blue-
tooth, in smartphone can be utilized [87]. And the data collected from the data sources
can be transferred through the transmission devices.

2.2.2 Input categories and Problems in the Prenatal and Postnatal depression
prediction models

Various type of input categories used in AI based models for predicting the Prena-
tal and Postnatal depression are listed, and the problems encountered are explained.
This is split into three subsections based on type of data sources used, 1) Physiolog-
ical Analog signals: Analog signals 2) psychological questionnaire: Quantitative data
3)Social Media Posts: Text data in detail.

1. Physiological analog signals: Analog signals

The majority of research aimed to identify stress in daily life including Prenatal
and Postnatal depression is based on several Physiological signals of mothers in
a naturalistic context. On the other hand, there have not been many investigations
concerning the prediction of stress in a clinical cohort based on psychological or
behavioural differences. The majority of these investigations made use of wear-
able sensors in order to record a comprehensive range of psychological signs in
a continuous and unobtrusive manner. The datasets that are generated in this
manner are invariably abundant in material, and they have the potential to offer
important insights into the influence that stress has on Prenatal depression and

21



postnatal depression. It is important to note that the signals generated by these
wearable devices are susceptible to electrical noise and artifects, which may have
a negative impact on subsequent data processing.

The vast majority of the research that have been reported have not specifically
addressed any method for motion correction on any level. Any EDA data col-
lected with a wrist wearable could have motion artifects Motion Artifacts (MA)
due to varied pressures exerted on the wearable device’s electrodes, that can
significantly affect the results. The wearable’s hand motions, snugness, or wrist
rotation might all contribute to these differences. In the past, many researchers
have used techniques like exponential smoothing, filtering, or adaptive de-noising
based on wavelet transform to suppress artifects [88] and [67]. A major concern
with MA suppression algorithms is that they filter all time series data without dis-
crimination, which means that even artifact-free parts of the data can be distorted.
The need for a replacement approach led to the creation of MA detection, a ma-
chine learning classifier model that attempts to accurately encapsulate the expert
knowledge on artifact recognition.

There have been too many attempts to quantify depression, which has hindered
the field of study when looking at published research on quantifying mothers’
PPD. Experiments carried out in a laboratory and those conducted in the field
are the two primary types of research that fall under this rubric. Experiments that
are carried out in a laboratory setting are known as ”in-lab experiments.” These
kinds of research are carried out in controlled environments, with the subjects ad-
hering to prescribed protocols. On the other hand, field experiments are studies
of depression that are carried out in an environment that is inherently depres-
sion. Table - 2.1 summarizes a selection of the most relevant field investigations
published in scholarly journals within the last decade.

As can be observed, the majority of research attempted to identify PPD by bas-
ing their conclusions on psychological signal data collected from subjects in a
naturalistic setting. However, PPD prediction in a clinical population with effec-
tive motion artifetcs removal methods involving in-dependency and dependency
among subjects has not yet been investigated thoroughly. This is considered as
base for accurate prediction.

2. Psychological questionnaire: Quantitative data

In general, it is not possible to achieve total equilibrium in the datasets of psy-
chological questionnaires, and the imbalances in the data are creating a grow-
ing number of categorization issues during prediction of prenatal and Postnatal
depression. The majority of these medical datasets are gathered from the med-
ical information of mothers, which commonly results in medical datasets being
skewed from time to time. It is possible that this imbalance is due to the fact
that, in the majority of instances, the number of mothers who do not have PPD is
higher than the number of mothers who do have PPD. According to Xu et al. [96],
most classifiers in the machine learning domain presume that a classification re-
lies on an equal number of classes. One class will have a high accuracy rate
because classifiers are influenced by it; this class will be the one that represents
most samples [97].

On the other hand, the classifier will disregard the minority class, which will result
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Table 2.1: Past research on Prenatal and Postnatal depression related studies with
analog data

Ref No Device Analysis (Best result**) Highlights
Aqajari et al.;
[89]

Smart
watch

EMAs and passive mobile log-
ging is used for prediction; Bi-
nary classification; F1 score of
70% with RF classifier using
PPG & contextual data

MA removed manu-
ally; subject in de-
pendency is not con-
sidered

Zhu et al; [64] Wearable After collecting EDA data,
SVM achieved a 75.9 accu-
racy rate for depression pre-
diction, surpassing all other
machine learning methods.

Manual MA removal;
Processed with all
features

Tump et al., [90] Smart
watch

To analyze depression levels,
univariate statistical analyses
were conducted, followed by
multivariate analysis using lo-
gistic regression, variance in-
flation factor (VIF) filtering.

Binary classification;
lack of feature extrac-
tion algorithms

Sa et al., [91] Smart
phone

impacts of depression on writ-
ing behaviour on a smart-
phone touchscreen utilizing
data from the accelerometer
and gyroscope sensors; Gain
Ratio method is used to rank
the attributes and KNN pro-
duces 87.5% accuracy.

user specific models
are into consideration

Robles et al., [92] Wearable Heart rate & physical activity
data are used with ensemble
learning algorithm DT & RF

Problem with pooling
of data; MA removal
is not utilized.

Fukazawa et al.,
[93]

Smart
phone

use real-world activity and on-
line behavioral variables re-
trieved from smartphone log
data to forecast changes in
depression levels. This frame-
work gives 74.2% accuracy

MA removed manu-
ally; context data is
not considered

Naegelin et al.,
[94]

Smart
watch

heart rate variability, key-
board, and Mouse,features
were used to detect depres-
sion, valence, and arousal us-
ing SVM, RF, and gradient
boosting models with 10-fold
CV, average F1 score of 0.775

Focused on subject
dependency

Liu et al., [95] Smart
watch

During every shift, accelera-
tion data is can into consid-
eration. At an AUC of 0.838,
the CatBoost classifier outper-
formed all others.

It is Binary classifica-
tion problem
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in the minority class having a low accuracy rate [98]. This is true regardless of
how data imbalances are handled. It is inevitable that this circumstance will result
in bottlenecks in classification performance. According to Rahman [99], there
would be more losses due to misclassification of the minority class compared to
the majority class. When dealing with problems caused by unequal class sizes,
resampling methods are necessary. In a similar vein, problems with data loss and
overfitting of the data can also significantly limit the effectiveness of prediction.

An examination of the published research on the subject of measuring mothers
PPD based on the psychological data reveals that the field of study presented in
Table - 2.2 to quantify depression. Consequently, a reliable attribute extraction
technique was required to address the problem of unequal class data. Improved
classification performance, reduced data dimension, and elimination of unneces-
sary or redundant attributes are all possible outcomes of attribute optimisation, a
multi-attribute optimization operation.

3. Social media posts: Text data

Depression causes many social concerns, including suicide, and makes daily
tasks difficult. PPD Depression is a common mental illness among young moth-
ers. Depressed mothers may not recognize their depression, thus they may miss
the chance to remedy it. By analyzing language use on social media, researchers
can identify depressed mothers who express their feelings. By analyzing a num-
ber of variables, including linguistic features (including symptom lexicons), the
researchers were able to detect depression with good performance [105], [106],
syntactic features [107], sentiment analysis [63], or (topic modelling).

However, these systems rely on labour-intensive, handcrafted engineering, which
is ineffective for classification. Deep learning algorithms have been proposed to
improve depression identification [108], [106]. These strategies try to enhance
depression diagnosis. In order to conduct an additional investigation on targeted
depression diagnosis and prevention, it is necessary to understand why some
people have been diagnosed with depression. Despite improved performance,
they cannot explain why some people are depressed [108].

To begin, it’s worth noting that signs of depression could be hard to spot on so-
cial media. Even for the most depressed people, there may be a gap on the
amount of posts that convey their emotions [106]. To overcome this, a method
that can single out popular posts that significantly contribute to the identification
of depressed individuals on social media is necessary. Secondly, it is possible
to interpret the critical components of the detection process by relating it to an
existing theory if the model is built upon a psychological theory for depression
that considers the way depressed individuals use social media. For the purpose
of putting into practise such an explainable model, it is necessary to include evi-
dence from psychological theories in an efficient manner.

An examination of the published research on the subject of measuring mothers
PPD depression based on the psychological data reveals that the field of study
presented in Table - 2.3 to quantify depression.
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Table 2.2: Related works based on the physiological questionnaire

Study QP Analysis Drawback
Jiménez-
Serrano et al
[100]

EPDS Algorithms that can identify
the likelihood of postpartum
depression in the first week
following delivery; Method for
validating hold-outs; A value
of 0.73 for the Naive Bayes
model’s function;

Lack of sampling
leads to class imbal-
ance

Betts et al [101] ICD-10 Construct a model that can
foretell which women will
require psychiatric hospi-
talization after giving birth;
Boosted trees method with
5-fold cross-validation in R
(AUC 0.80, 95% CI 0.76-0.83)
Data rebalancing through
manual screening

Data rebalancing
through manual
screening

Tortajada et al
[102]

EPDS Developed a classification
model for improved PPD
prediction in the 32 weeks
following birth using 1397
hospital data points, an
EPDS>9 score, and a feed
forward multilayer perceptron.
Recall of 0.84 and a true
negative rate of 0.81, a multi-
layer perceptron achieves an
accuracy of 0.82 with a 95%
confidence interval ranging
from 0.76 to 0.86.

Lack efficient data
handling methods

Wang et al [103] EHRS Created a PPD prediction
model with the following pa-
rameters: 179,980 EHRs;
SVM with AUC of 0.79; 10-fold
cross-validation applied; and
Codes 99.3 and 99.34 in ICD-
10-CM.

Not contains effec-
tive attribute extrac-
tions methods

Zhang et al [104] EPDS Four machine learning models
were evaluated for their ability
to predict PPD using data col-
lected during pregnancy. The
models included a SVM with
a sensitivity of 0.69 (AUC) of
0.78, a feature selection RF
model with a sensitivity of 0.69
within 42 days after delivery,
with a total of 508 patients.

Lack of effective fea-
ture extraction meth-
ods

Note: QP: Questionnaire
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Table 2.3: Related works based on the posts in Social medias

Study Social
Media

Analysis Drawback

De Choudhury et
al [105]

Facebook A total of 165 mothers; Face-
book posts; PPD detection
and prediction;L2 regulariza-
tion with LR; regression mod-
els for building a suite of sta-
tistical models;

context of the posts
was not considered
for prediction

Natarajan et al
[108]

Facebook
& Twitter

ML-based PPD prediction and
diagnosis using 207; Face-
book and Twitter posts; PPD
diagnosis criteria:Inventory
of PPD Predictors;In terms
of identifying sad content, a
multilayer perceptron reaches
81.7% accuracy, while in
terms of forecasting PPD
content, it achieves up to
83.9% accuracy.

POS of the posts
not included to pre-
dict PPD

Fatima et al [106] Reddit Using linguistic traits, a solu-
tion for PPD was suggested
& implemented across vari-
ous web-based social sites;
twenty-one text postings from
Reddit utilizing Functional
Gradient Boosting (Roc) to
evaluate linguistic features 9
1/22

context of the posts
of which the post
was not considered
for prediction

Trifan et al [107] Reddit uses social media to iden-
tify mothers who may be at
risk of (PPD) to initiate ther-
apies before the condition
worsens;512; Validation dur-
ing hold-out; AUC=0.80; sen-
sitivity=0.78; SVM and feature
selection RF

POS of the posts
not included to pre-
dict PPD

Gopalakrishnan
et al [63]

Twitter Twitter post-based PPD de-
tection utilizing integrated at-
tribute extraction; While SVM
classifiers produce 89% ac-
curacy and 0.91 F1 scores,
Bigram’s 82% accuracy and
0.80 F1 scores are achieved
through the use of the RF
classifier and single attribute
extraction.

Lack of attention
mechanism of con-
text clues
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2.2.3 Network for data transmission

The network devices were responsible for connecting either all of the sources or one
of the sources that are located as shown, in Figure - 2.1. The network devices enabled
the connection of wearable such as watches, wristbands, social media texts, ques-
tionnaires and virtual chatbot texts to communicate information to the prenatal and
postnatal depression prediction model using wireless communication protocols such
as Wi-Fi, Zigbee, and cellular by way of Bluetooth. Before being transported or stored,
any and all data should be encrypted to safeguard the anonymity of users. This is true
whether the data is going to a secure storage platform specifically designed to deal
with secret information or the onboard storage of a smartphone [109].

2.2.4 Analysis

Analysing psychological measures such as social media texts, questionnaires, elec-
trocardiograms, electroencephalograms, and electrodermal activities are all possible
through the usage of the analysis layer of a MHPM. It is also possible to utilize it to
examine behavioural and environmental aspects such as patterns of movement, social
interactions, voice patterns, and the duration of sleep, amongst other examples, as
shown in Table - 2.4. In order to get at this deduction, it was necessary to complete a
number of processes, including preprocessing, labelling the data, and segmenting the
data, and deduction.

A few steps involved in the analysis of the data to predict the Prenatal and Postnatal
depression were explained in detail as follows:

1. Preparing data and segmentation
After the data have been collected, the subsequent phases in exploratory data
analysis is Preprocessing, which assists with the visualization and comprehen-
sion of the data as well as the detection of any outliers to predict Prenatal and
Postnatal depression. During preprocessing, noise and outliers in raw data can
be eliminated, and undesired information can be filtered out by applying filters and
making other adjustments.Two examples of dimensionality reduction approaches
that are utilized in preprocessing are the Principal Component Analysis (PCA)
[110] and multidimensional scaling [111].

2. Extracting attributes
Following the collection of raw sensor data, the process of attribute extraction is
utilized to construct attribute vectors with word embedding (including bigrams, tri-
grams, Bag Of Words (BOW), and n-grams) [16, 63]. It is impossible for artificial
intelligence models to function properly without attribute vectors that describe the
raw data. In the process of determining Prenatal and Postnatal mental states, it
is common practice to extract parameters such as the minimum, the maximum,
the root mean square, the skewness, the mean, the standard deviation, the kurto-
sis, the power spectrum density, the correlation coefficient, and the energy [112].
Along with this first and second derivation are also derived for further analysis.

3. Data labeling
The process of linking data readings with a genuine background state is referred
to as labeling or tagging the data. It is relevant for the process of training the
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Table 2.4: Relationship between Data Source, Behaviours and Attributes

Data Source Behaviours Attributes
Physical activ-
ity

Interactions
with others

Accelerometer Sedentariness,
Motion, Speed,
Standing,
Strolling, Jog-
ging, Step
Count, and
Climbing Stairs

X travelling distance, gyra-
tion radius, The farthest
distance travelled, stan-
dard deviation of Dis-
placement The maximum
distance travelled

Bluetooth X Face-to-face En-
counters, Com-
munication

measure the time be-
tween calls. Incoming
and outgoing call volume
# inbound & outbound text
messages

Microphone X Communication Incoming and outgoing
call, volume Calls’ du-
ration, The number of
calls that are both unique
and repetitive, Vacuum-
ing, Garbage collection,
Clapping, Coughing,
Sneezing, Clearing the
throat Teeth brushing

Mobile phone us-
age

X Communication # lock and unlock of
phone, The length of time
spent on the phone, In a
particular hour, the total
number of phone use ses-
sions, Time b/w consecu-
tive phone calls on aver-
age

EDA Movement, Ac-
celeration

X heart rate variability,
blood pressure, SCL, and
SCR

Social Media X Communication emotions
Virtual agent X Communication In a particular day, the

number of mediated so-
cial encounters, emotions

Questionnaires X X Score values of Question-
naires
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best possible algorithmic prediction model. This can be accomplished in a num-
ber of different ways, including regular in-person or over-the-phone evaluations
by a clinician [? ], as well as through self-reports presented through a mobile
application at predetermined intervals [113].

4. Deducing
Higher-level attributes that reflect behaviours, cognitions, and emotions of the
prenatal and postnatal period are referred to as behavioural markers. Lower-level
features and sensor data are utilized in order to measure behavioural markers.
The concept of latent constructs, which is used in psychological methodology, is
comparable to this. Machine learning and data mining are the most prevalent
approaches that are utilized in the process of developing behavioural markers.
Artificial intelligence algorithms including machine learning, deep learning, trans-
fer learning, and reinforcement learning that can effectively predict depression
during Prenatal and Postnatal or postpartum period.

A prediction model is built by combing through a lot of data using supervised,
unsupervised, semi-supervised, transfer, and reinforcement learning methods.
Many algorithms are used in final prediction models. User-dependent and user-
independent (generic) models train users differently. User-dependent models
perform better but require more data to train because they capture user be-
haviours. User-independent models can be trained without user data, and they
may perform better with non-typical users. Some argue that user-dependent
models are more successful than hybrid models for stress detection [114], while
Lu et al. argue that hybrid models offer advantages of both types [62]. Further-
more, the accuracy of such models may be improved by integrating additional
auxiliary attributes, such as age, or employed status.

2.2.5 AI based prediction algorithms

Especially, AI is a field that is all about learning patterns from existing data to
make predictions by including the new data that make sense. The methods in this
field are often able to handle complex relationships in data. Supervised learning,
Unsupervised learning, and Semisupervised learning are all frequent types of
machine learning analysis, and the relatively recent development of deep learning
is another popular technique.

Supervised learning

The Prenatal and Postnatal MHPM uses supervised learning to discover a cor-
respondence between data and labels. A label in deep learning and machine
learning is like a dependent variable in statistics. Training samples contain la-
beled data instances.These labels are used to track training data. The trained
mapping function predicts unlabeled data’s labels. In Machine learning, super-
vised learning includes classification and regression. Classification algorithms
are used when the class label is categorical data, and Regression algorithms are
used when the class label is continuous data. Data classification is common in
supervised learning.
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A mother’s PPD can be identified using several methods, including K-Nearest
Neighbors (KNN), Decision Trees, Naive Bayes, Support Vector Machines, Direct
Discriminant Examination, AdaBoost, Markov Models, Irregular Timberland, Fake
Neural Systems, and Covered Markov Models. ML algorithms are used in predic-
tion of postpartum depression. The retrospective cohort analysis included 28,755
Maternal Risk Assessment Tracking System 2012–2013 records (3339 postpar-
tum depressions and 25,416 normal cases). Synthetic minority over-sampling
and random down-sampling are used for balancing these data groups. In this
work, models were tested using ML approaches such as KNN, Support Vector
Machine (SVM), Random Forest (RF), naive Bayes, Logistic Regression (LR),
and neural networks, with 10-fold cross-validation. The KNN–RF model classi-
fied 0.650 – 0.791 accurately. RF (0.884) has the highest Area Under Curve
(AUC), followed by SVM (0.864) [115].

The most accurate classifier was KNN, with a precision rate of 79.27% and an
average score of 76.08% for neutral, negative, positive, and resting states alone
considered in this study. Standard ElectroEncephaloGram (EEG) systems are
expensive and difficult to operate, moreover, a three-electrode system does not
increase PPD prediction accuracy [88]. Generative and discriminative classifi-
cation also exists. A classifier can predict labels for new data instances using
Bayes’ theorem [116], which calculates posterior probability and considers joint
likelihood of data instances and labels. Credulous Bayes models have been used
in psychological health Predicting systems [117]. Another study used a J48 de-
cision tree to appropriately categorize mothers’ moods, attaining 78% accuracy
[118].

In Supervised Deep Learning, algorithms, such as Convolutional Neural Network
(CNN)s and Recurrent Neural Network (RNN)s, are used. PPD analysis utilizing
automatic speech recognition [119] was performed with features acquired us-
ing spectrograms and audio waveforms in Deep Convolutional Neural Network
(DCNN)s. In Raw-DCNN, sound waves and Low level descriptors (LLD) are
used, but in Spectrogram-DCNN, visual cues are also included. The mecha-
nized speech input was considered and depression severity was assessed us-
ing human-made and machine-learned features annotations. Chung et al. [120]
train the model using a preprocessed dataset and a Bidirectional Encoder Rep-
resentations from Transformers (BRNN). Two levels were used to predict chatbot
responses. Data were cleaned to detect the mood from the chatbots responses.
The BRNN attribute creates words from lengthy phrases. It eliminates stop words,
tokenizes, and purifies data for sentiment analysis. Python’s Textblob package
determines statement tone using word sentiment scores. Positive, negative, and
neutral were used as three level of indicators. The Parametric Rectified Linear
Unit (PReLU) tensor flow activation function selects a tune based on the user’s
mood for the chatbot [121].

Unsupervised learning

The Prenatal and Postnatal MHPM typically employs unsupervised learning using
unlabelled data samples. Unsupervised learning techniques in machine learning
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fall into three categories: Clustering, Anomaly detection, and Dimensionality re-
duction. K-means and hierarchical clustering are two algorithms that perform this
data partitioning by identifying commonalities between sets of records. One-class
SVM are just one example of an anomaly detection approach. Finally, dimension-
ality reduction methods like attribute extraction and PCA enable machine learning
models to generalise more effectively by excluding irrelevant data and eliminating
multicollinearity [122].

Women were categorized by severity symptom using model-based clustering.
The 6-month follow-up sample includes 151 pregnant women found in two clus-
ters. Women in Cluster 1 (n=43) had lower depressed symptoms, less perceived
stress, less fatigue, longer sleep duration, and a negative trend in EPDS (β=0.05,
CI [0.09, 0.001]) and PDSS (β=0.09, CI [0.17, 0.01]. Women in Cluster 2 (n=108)
had higher EPDS and PDSS scores, exhaustion, and decreased sleep duration,
with a positive trend in sleep hours (β=0.02, CI [0.01, 0.03]) [123]. This model
was suitable only for linear time trends in outcomes.

Semi supervised learning

When there is a scarcity of labelled data, semi-supervised learning is employed
for prediction purposes. To construct models, semi-supervised computations
make use of both labelled and unlabelled cases [60, 116]. Since it can be dif-
ficult to properly label data with the ground truth type, semi-supervised learn-
ing is essential for discovering/resulting from Psychological states. Predicting
daily mood states through questionnaire is common practise, however when par-
ticipants don’t respond, some days get unrecorded. Informational chaos is ad-
dressed by labelling in a bipolar fashion. It is common practise to ask an expert
for their thoughts. Because of this issue, not as much tagged content will be re-
trieved. [124].
Gupta et al., [125] employs semantic representation and semi-supervised deep
learning model for PPD detection to extract depressed traits from unstructured
and structured social network data. The SSDD first examines demographic and
content-based syntactic and semantic differences. Second, the deep autoen-
coder unsupervised learning model extracts depression-indicative text charac-
teristics using word embedding. Depressed social users can be identified with
the use of the Bi-directional Long Short-Term Memory (Bi-LSTM) model’s text
prediction capabilities, as well as with the use of profile attributes, recognized
depression tweets, and hybrid knowledge. Although, this model usesBi-LSTM,
context based attributes are not included for predictions.

Transfer learning

This method of training is effective in settings where there is more detailed in-
formation available for preparation. An innovative transfer learning pipeline for
recognising pain in newborns. Deep features were extract from neonates’ faces
using pre-trained CNNs for image classification and face recognition. At the very
least, supervised machine learning classifiers are trained to identify if a newborn
is in pain or not. Compared to traditional features that were hand-crafted, the
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proposed pipeline achieved an AUC of 0.841 and an accuracy of 90.34% on a
testing dataset [126].

Reinforcement learning

The presence of a human master with expertise in the issue domain is not re-
quired for reinforcement learning to take place. It tries things out, gets feed-
back from experts, and improves over time. Specialists’ acts will be rewarded by
the environment or punished by it. The purpose of the agent is to maximise its
earnings. Directed learning, on the other hand, displays the process of learning
algorithm alongside the inputs and outcomes. It tries to keep track of which be-
haviours get the most rewards over time. Applications in the field of health and
wellbeing have been previously related to one of Reinforcement learning’s funda-
mental attributes. The results of this study analysed the impact of understanding
PHQ-9 on the frequency and duration of epileptic seizures [127] to predict PPD.

Ensemble learning

In practise, good final prediction models are typically built by combining multi-
ple methods. Typically, unsupervised learning approaches are employed first
to establish a foundation for developing supervised learning models.To improve
predictive performance, ensemble learning, a hybrid machine learning approach,
considers the predictions of numerous base models [128]. An assortment of ma-
chine learning algorithms are at the disposal of the base model. A homogeneous
ensemble learning model is one that uses a uniform set of base learners to con-
struct an ensemble. In contrast, a heterogeneous ensemble is one that uses a
more diverse set of learners to construct its ensemble. The three algorithms that
make up ensemble learning are bagging, boosting, and stacking.

Bagging is a method for achieving an average prediction from many machine
learning models by learning weak learners independently. To achieve a weighted
average of the predictions produced by the basis models, boosting iteratively
adds the basic learners. As an extra ensemble strategy, stacking makes use
of a meta-learner to enhance model performance by training base classifiers on
the same dataset [129].

As an illustration of this, Zulfiker et al. [130] sought the best machine learn-
ing model for diagnosing depressive patients by recognising depression and its
affecting factors. GradientBoosting, KNN, Bagging, AdaBoost, and Weighted
Voting were employed. Using SelectKbest, AdaBoost has the highest Accu-
racy (92.56%), Precision (95.77%), and F1-Score (93.79%). This shows that
variable selection improves model performance and disease detection. The re-
search by Haque, Kabir, and Khanam [131] used a Young Minds Matter (YMM)
dataset to identify factors influencing depression in adolescents and children.
XGBoost, Gaussian Naive Bayes, Random Forest, and Decision Tree algorithms
were tested. Random Forest achieved the highest Accuracy and Precision (95.00%
and 99.00%), while Gaussian Naive Bayes (NB) achieved a sensitivity of 51.00%.
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These findings suggest that machine learning methods can expedite depression
diagnosis and treatment.

In that study, multiple approaches to predicting depressive symptoms were de-
tailed [69]. Among those, this Table 2.5 provides a summary of the existing ap-
proaches carried with the single questionnaire such as PHQ-9,Center for Epi-
demiological Studies Depression (CESD), Beck Depression Inventory (BDI), and
mostly with self-declaration statements. Various classification techniques, includ-
ing Radial Basis Function (RBF) kernel, SVM, PCA, and LR, were used to analyze
the gathered data.The most significant problems with those works are,

• Class imbalance occurs as a result of using a biased dataset.

• It goes unreported or unrecognized that a single psychological questionnaire-
based evaluation of those clinical features may mislead patients into need-
less anxiety and treatments.

2.2.6 Software packages/libraries

It is possible to analyze and train Prenatal and Postnatal depression models with the
help of a large range of specialized machine learning software tools and libraries. Oth-
ers are supplementary libraries made for use with a particular programming language,
while yet others are complete applications in and of themselves. The most popular
machine learning tools are outlined in Table - 2.6, which can be found here. Weka was
utilized for the diagnosis of bipolar disorder in [138, 139, 140, 141]. For instance, in
[142] scikit-learn was utilized for the recognition of anxiousness during postnatal pe-
riod. Making an assessment of the model’s performance in real-world scenarios, when
it is asked to make predictions using data it has never seen before, is the next stage
after training a machine learning model.

2.2.7 Model evaluation metrics

The goal of model assessment is to evaluate the trained model’s ability to generalize, or
find the prediction on unseen data. A model’s generalization capacity may be estimated
by dividing the dataset into training and testing sets. Holdout validation involves training
the model using the training set and assessing its performance with the testing set.
Samples are generally randomly distributed to training and testing subgroups. Machine
learning models often overfit and perform well with the same data, but may struggle
to generalize to new data. Holdout validation ensures that the training model does
not include testing set sample information, improving generalization estimates. Some
models need parameter adjustment. Since the training process receives information
from the testing set, adjusting these parameters depending on its success might overfit
the model. The data set may be split into training, validation, and testing sets to prevent
this. The training set builds the model and the validation set tunes its parameters.
Generalization performance is then assessed using the testing set. Holdout validation
works well for large volumes of data. The split percentage for the three sets depends on
the application, but it is usually 60/20/20. When data is scarce, k-fold cross validation
is recommended. This approach randomly divides data into k equal-sized sections. So
k iterations are done. In each cycle, one subset is utilized to test and the rest to train
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Table 2.5: Summary of the reviewed papers under the observation categories

Observation
Categories

Sensors Observation Con-
tributors

Outcomes

Association
[132]

Speedometer 29 adults with melan-
choly and cognitively
normal individuals
over the age of 60
were studiedfor 1
week

Distressed adults
have lower amount of
physical activity (fine
motor) than normal
older people.

Detection
[112]

Dermatological
events

14 male veteran sol-
diers, ages 22–32,
who have been diag-
nosed with PTSD.

Significant relation-
ships were discov-
ered between psy-
chological responses
and subjective as-
sessments.

Detection
[133]

microphone,
accelerometer,
electrodermal
events, changing
in pulse rate

18 Psychology Stu-
dents in 18–39 from
Lincoln University

Sort stressful and
non-stressful situa-
tions. Precision. 94,
accuracy is 94 with
AdaBoost.

Detection
[134]

Speedometer,
skin reflection,
calls, messages,
address, display

There are 15 healthy
males and three
healthy females in
this group with aver-
age age of 28 for a
week.

Accuracy’s was over
75%

Detection
[135]

moving picture,
Speedometers,
dermal events,
pulse rate

Form the ITI, Cen-
tre for Research and
TechnologyHellas, 17
males and 4 females.

Precision of 1.0 is
achieved, & severe
examples of stressful
and non-stressful
cases using Back
Propagation Algo-
rithm.

Detection
[136]

respiratory rate,
sound effect,
speed, location,
calls, contacts

approx 38 people
from three MNC
companies for 123
days.

Consumer depen-
dent techniques have
a multivariate regres-
sion of 61%.

Prediction
[137]

social apps In-
stagram posts

There were 166 peo-
ple in total. 71
deserving volunteers,
ranging in age from
19 to 55.

With Random Forest,
we were able to cor-
rectly identify 70% of
all depressed cases.
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Table 2.6: Software tools/libraries used for implementing the Prenatal and Postnatal
Mental Health Monitoring model

Name of software
tools/libraries

Explanation

Matlab [143] Equipped with a number of toolboxes, Matlab is a nu-
merical environment. one of which is designed specifi-
cally for machine learning.MATLAB provides a variety of
options for communicating with and transmitting data to
various deep learning frameworks.

Python [144] programming language with an extensive library that in-
cludes libraries that implement many different types of
machine learning strategies. Some of the popular ones
include pandas, NymPy, matplotlib, seaborn, and scikit-
learn.

Keras [144] To make deep learning easier, Google built the Keras
API, which is a high-level application programming in-
terface. It is developed in Python and used while imple-
menting neural networks. The goal of this tool is to make
the process of installing neural networks easier. In addi-
tion to this, it enables the computation of a wide variety
of backend neural networks.

TensorFlow [145] TensorFlow is a library that has several potential uses in
machine learning. It is a complete platform that is open-
source.

Scikit learn [142] Python library Scikit-Learn, often known as sklearn, is
used to create machine learning models and statistical
modeling.The usage of scikit-learn allows us to construct
a range of machine learning models, such as models for
regression, clustering, and classification, and provides
statistical tools for evaluating these models.

R [60] R is a programming language with an extensive library
that includes libraries that implement many different
types of machine learning strategies. R is a statistical
programming language that is utilized for the purpose of
data analysis and the graphical depiction of said data.R
is well suited for studying statistics data experimentation
and investigation.

Spark Mlib [146] Spark’s ML library is commonly known as MLlib. Its goal
is to make true machine learning easier to implement at
a larger scale. At its most basic, it provides resources
like: common learning algorithms of filtering, regression,
clustering, classification. This machine learning library
scales well and works well with large datasets.

WEKA (Waikato Environ-
ment for Knowledge Anal-
ysis) [138, 139, 140, 141]

This document contains a compilation of machine learn-
ing techniques that have proven useful in data mining.It
is also possible to utilize it as an external library for Java
projects, despite the fact that it features a graphical user
interface (GUI).
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the model. All iterations’ average performance is provided. As k rises, this technique
reduces estimate variance but raises processing needs. The most common k is 10.

The capacity to split data collecting into training and test phase. Using k-overlay
cross-approval, we create two subsets from the full dataset: one for training and an-
other for validation. The progression described above is performed again for all sub-
sets. Parameter tweaking is required for a few models. Data from the testing dataset
could be introduced into the generated handling if these parameters are often adjusted
depending on the execution of the validation set. When we have infinite amounts of
data, delaying permission is fair. K-fold cross-approval is preferred when the total
amount of information is limited. The machine learning show evaluation is used to
grade the prepared show’s execution to predict accurately [147].
The MHPM often evaluates model performance by using data from all existing users
as the training set and data from the new user as the testing set. A user-independent
or generic model does not need training data for the intended user. In psychological
health wearable sensors, the most recent user’s data is utilized as the test dataset
to determine the algorithm’s efficacy for new members [115]. Grünerbl et al. [148]
employed this assessment approach to identify depression and manic periods using
smartphone motion traces.

In the Prenatal Postnatal Mental Health prediction model, different metrics are used
in the evaluation to grade the execution in order to ensure trust worthiness of the clas-
sification model chapter 3, 4 and 5 and regression metrics in chapter 3 are included as
follows:

Accuracy A test’s accuracy is determined by its ability to appropriately distinguish
between healthy and sick instances. To calculate the fraction of genuine positive and
true negative cases in all analysed cases, to calculate the test’s accuracy.

Accuarcy =
TruePositive+ TrueNegative

(TruePositive+ TrueNegative+ FalsePositive+ FalseNegative)
(2.1)

Precision Precision is defined as the degree to which measurements are in close
proximity to one another.

Precision =
TruePositive

(TruePositive+ FalsePositive)
(2.2)

Sensitivity or Recall The ability of a test to appropriately identify patient instances is
its sensitivity. To figure it out, we’ll need to figure out what percentage of patient cases
are true positive.

Sensitivity =
TruePositive

(TruePositive+ FalseNegative)
(2.3)

Specificity Specificity measures how well a test can distinguish between unhealthy
and healthy samples. Calculate the proportion of genuine negative in healthy cases to
estimate it.

Specificity =
TrueNegative

(TrueNegative+ FalsePositive)
(2.4)
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F1 score It is indeed a combined recollection and precisely weighted average. For
relapse challenges, the severe quadratic mistake, core cruel squared blunder, aver-
age relative error, association scores, and other implementation metrics are frequently
used.

F1Score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)
(2.5)

Root Means Square Error (RMSE) The difference between the actual values and
the anticipated values is what the RMSE evaluates.

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)
2 (2.6)

Mean Absolute Error (MAE) It is the absolute variation between the actual values
and the expected values that is measured by the mean absolute error.

MAE =
1

N

N∑
i=1

|xi − x̂i| (2.7)

In this context, the variables xi and xi represent the expected and actual values, re-
spectively, while N represents the number of instances.

Area Under Curve (AUC) For different threshold values, the area under the Re-
ceiver Operating Characteristic curve (ROC) curve, abbreviated as AUC. Melo [149]
states that the classification performance is determined by the AUC. A high degree of
separability is indicated by an AUC that is close to 1.0, which is a good indicator of a
successful classifier.

It’s crucial to note that using a single indicator to assess performance isn’t a good
idea (often only accuracy is used). So, that to achieve a positive view of a classifier’s
model’s genuine performance and resilience are measured by using multiple measure-
ments simultaneously to ensure the effectiveness of the Prenatal and Postnatal Mental
Health Monitoring model.

2.3 Research gap

PPD, which is one of the most frequent adverse effects of childbirth, is exacerbated
by the stress that a mother experiences during labour. According to Shorey (2018),
a higher percentage of women in less developed nations are affected, however it im-
pacts 10-15% of women globally [150]. PPD is the most common reason of perinatal
mortality in women and the primary cause of postpartum death overall, accounting
for approximately 24% of all postnatal mortality [151]. Inadequate bonding between
mothers and infants, developmental delays in physical and cognitive abilities, delays in
language acquisition, changes in baby behaviour, and poor sleep quality have all been
linked to PPDsymptoms [152].
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Postpartum depression is the leading cause of postpartum hemorrhage, and it is
very frequent among women. A woman’s chance of having mental disorder increases
significantly during childbirth [153]. Some of the clinical manifestations of depression
after childbirth include trouble in sleeping or remaining asleep, fear of hurting someone
or self, mood swings,insomnia, lack of hunger, sadness or excessive crying, feelings
of guilt and hopelessness, intense worry about the baby, thoughts of suicide, trouble
focusing and remembering, and lack of interest in daily activities [154].

Most studies that look at how mothers’ behaviour changes after giving birth mostly
focus on postpartum depression and the risk factors associated with it. Despite this
fact, direct PPD detection is not the main aim of such inquiries. According to one study,
[155], less than half of the women who openly acknowledge being depressed actually
say it out. This discovery is based on data collected from women who reported feeling
down. The fact that mothers may not want much attention for themselves could explain
why up to 50% of PPD cases go unreported [156]. It is thought, that a prognostic com-
puting methodology could be especially useful for prior identification and prediction of
PPD considering the well-documented and major problems associated while detecting
it. In order to accurately predict Prenatal and Postpartum Depression (PPD), certain
research gaps must be filled such as:

• Lacking of effective motion artifects removal methods
Motion artifects are potentially introduced in the analog signal data from the de-
pressed mothers due to changes in hand movement, wrist rotation, or different
levels of device wearability can significantly alter the results. But a big problem
with the existing MA suppression algorithms is that they filter informative time
series data without discrimination.

• Lacking of hybrid model to appreciate In dependency and dependency
among subjects
An independent model presumes that all depressed mothers have similar re-
sponses to different levels of depression. Thus, it is believed that one-prediction
models-fits-all mothers. But building subject-specific models fail miserably when
used to other subjects, even if they promise a high degree of accurate classifi-
cation for the target subject. Thus, both in dependency and dependency among
subjects in prediction methods is a significant challenge for developing artificial
intelligence algorithms.

• Imbalance in datasets
The majority of classifiers do not take imbalanced class problems into account
during the design stage, the application of machine learning for postnatal depres-
sion prediction has been hampered by datasets that contain an uneven distribu-
tion of classes. Thus, imbalance in data collected may lead to the inaccurate
prediction and treatments.

• Lacking effective attribute selection methods
There is a need for highly accurate and reliable screening and diagnostic model
for PPD. There should be better ways to detect women who are at risk for PPD,
based on risk factors or attributes needed to predict the Prenatal and Postnatal
depression of mothers. Thus, we need effective attribute selection methods for
accurate depression prediction.
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• Lacking of Multilevel attribute engineering methods
There are more researches on the classification based on the single categoriza-
tion, either based on severity level or user specific models. However, effective
multi level attribute engineering methods may further improve the prediction of
Prenatal and Postnatal depression.

• Lacking of context based prediction models
Context in which the posts are made has been identified as an important protec-
tive factor against PPD, but the most of the models do not include context specific
information for PPD prediction. Additional studies are needed to figure out how
context plays a part in both the prediction of onset and early intervention of PPD.

Addressing these research gaps could improve prediction models of Prenatal and PPD
and lead to the development of more effective prevention and treatment strategies.

2.4 Summary

This literature review provides a comprehensive summary of previous studies and re-
search conducted on PPD prediction. It emphasizes globally about 100 million cases
of PPD are reported every year and also depicts a number of things that could lead
to PPD, including past experiences with depression, stressful situations, not having
anybody to lean on, and hormone changes. Sadness, guilt, anxiety, and disinterest
in everyday activities are some of the common symptoms of postpartum depression,
as summarized in the review. Additionally, it highlights how PPD negatively impacts
mother health, child development, and family relationships. Overall, the literature re-
view provides a comprehensive overview of PPD and signifies the importance of ad-
dressing this condition. The review also identifies several research gaps that need to
be addressed to improve understanding and treatment of PPD.
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CHAPTER 3: PRENATAL DEPRESSION PREDICTION USING
ACTIVE AND PASSIVE ASSESSMENTS

3.1 Introduction

This chapter presents the prediction of prenatal depression assessed especially during
the delivery and immediately after the childbirth and address the research question 2
defined in section 1.7. Among the various monitoring techniques, this chapter specif-
ically deals about the combination of active and Passive monitoring. Each and every
monitoring has its own metrics and demerits thus combining those can leads to the
early prediction with more accuracy. Assessment of these depressive episodes are
carried out by continuous passive monitoring using the Electro Determal Activity (EDA)
signals from a wrist wearable device and evaluated with psychological questionnaire
called PHQ-9 survey to include the depression severity at various stages of labour. It
also addresses the automatic identification and elimination of Motion Artifacts (MA),
and provides a subject independent and dependent validation strategy during sens-
ing technology usage. Finally, Prenatal Depression was predicted accurately using
the Ensemble Based Deep Learning (EBDL) classifier and compared among the other
traditional machine and deep learning classifiers.

3.2 Assessment Methods

Emotional anguish, decreased productivity, poor relationships, and an increased risk
of comorbid conditions are all caused by untreated mental health concerns. There is
a strong correlation between problems with one’s mental health and the presence of
significant chronic diseases. This is likely due to the fact that mental and physical health
are inextricably linked. Screening for depression in day to day life is forms a substantial
part of this research. In specific prediction for prenatal depression is elaborated in
this chapter. This allows an early medical intervention and an effective prediction of
postnatal depression. Assessment is the progress of serially measuring severity of
symptoms with a standardized scale. Using digital technology to predict mood and
behaviour of prenatal and postnatal period opens up a lot of possibilities for clinical
approaches. It can be carried out in two ways, called Active and Passive.

3.2.1 Active Assessment Methods

Active monitoring shall be carried out within the facility that is designated for clinical
purposes. This requires the professionals working in the therapeutic setting to keep
a close eye on the patient continuously. Completing the questionnaire is a necessary
component of the task that needs to be completed. Based on this assessment, the
healthcare professional may decide to do additional tests to understand if the symp-
toms are related to Prenatal depression or other ailments. The postpartum depression
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which is a treatable condition that also can be identified by these measures [157, 158].
However, since there are not enough administrative and financial resources available
in certain locations, it is probable that universal screening will not be practicable.

A) Psychological questionnaire

One-on-one clinical interviews are the gold standard for detecting prenatal and post-
partum depression and anxiety [159]. The purpose of a clinical interview, which is
used in the mental health field, is to facilitate gathering the information from the patient
through observation and conversation [160]. Self-report instruments have a long his-
tory in psychotherapy research and have replaced clinician-rating scales. With the help
of predetermined thresholds, self-report questionnaires can generate an assessment
of the mother’s propensity to exhibit clinical levels of Prenatal and Postnatal depres-
sion. Self-reporting scales have been demonstrated to overestimate prevalence [161].
There are plenty of Psychological Questionnaire developed in the medical field such as
PHQ-9 [162], EPDS [163], PDSS [164] and so on. In this study PHQ-9 questionnaire
was used.

• Patient Health Questionnaire-9 (PHQ-9):

There are nine items that make up the PHQ-9 [162], which is used to screen for
mood disorders. Medical professionals Robert L. Spitzer, Janet W.B. Williams,
and Kurt Kroenke collaborated in 1999 to create the PHQ-9. This depression
screening tool incorporates nine questions from the DSM-IV. A quick and easy
way to diagnose and assess the severity of depression is using the PHQ-9. A
total score ranging from 0 to 27 is generated by evaluating each item on a sever-
ity scale from 0 to 3. The responder is asked to assess the frequency of each
symptom during the previous 2 weeks, with 0 being none at all, 1 many days,
2 more than half of the days, or 3 virtually every day. Interpretation of scores:
Depressive symptoms may range from 1-4 minimal; very 5-9 mild ;10-14 moder-
ate; 15-19 moderately severe; and 20-27 very severe. It was validated in many
situations and had a substantial amount of use [162, 165].

Based on the pervious researches and domain experts advise, the above-mentioned
questionnaires are often used in Prenatal and Postnatal depression prediction.

B) Biosignals

Biological signals are time-varying measurements of the processes that occur inside
the human body [166], and they may be classified into two primary categories: Physi-
cal and Physiological signals. Physical biosignals such as Pupil size, eye movements,
blinks, head, body, and extremities semivoluntary position/movements, breathing, fa-
cial expressions, and voice. These biosignals assess the deformation of the body that
occurs as a consequence of muscle activity. Physiological signals have a greater sig-
nificance linked to the critical functions of the body. Examples of these signals include
cardiac activity (Heart Rate Variability (HRV) analysis, Electrocardiogram (ECG)), brain
function (EEG), and exocrine activity. Exocrine activity (sweating assessed through
electrodermal activity (EDA)) and muscle excitability assessed through (ElectroMyoG-
raphy (EMG)).
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1. HRV Analysis:
The primary use of HRV is to evaluate the functioning of the Autonomic Nervous
System (ANS), which is comprised of the sympathetic and parasympathetic ner-
vous systems and is responsible for coordinating the unconscious movements of
the body as a component of the peripheral nervous system [167]. In order to keep
the body in a healthy and stable condition, known as homeostasis, the Sympa-
thetic Nervous System (SNS), which is located in the center of the spinal cord,
activates in reaction to stress. This causes the Heart Rate (HR) to increase, the
diameter of blood vessels to constrict, and the blood pressure to rise. In contrast
to the SNS, the Parasympathetic Nervous System (PNS) calms the heart, which
in turn reduces stress and blood pressure, and slows the heart rate. In humans,
the SNS and the PNS collaborate to keep the sympathovagal balance in check,
which is necessary for optimal cardiac function [168].

2. ECG
An electrocardiogram, often known as an ECG, is a signal that demonstrates the
contractile activity of the heart by displaying the electrical activity of the heart. As
can be seen in Figure - 3.1, the letters P, Q, R, S, and T are used to indicate the
peaks that are distinctive of the electrocardiogram [169]. The R-peak is the most

Figure 3.1: ECG signal characteristics

noticeable peak, and the majority of the studies take use of the distribution of this
peak by using consecutive R-peak intervals, also known as R R Intervals (RRI).

3. EEG
EEG is a noninvasive medical imaging technology that measures brain activity.
Richard Caton discovered brain electrical activity in 1875. Caton [170] found
EEG in rabbit and monkey brains. Electroencephalography is scalp surface elec-
trical activity recorded alternately [171]. The study utilized wearable devices (e.g.,
Emotiv EPOC) with 14 scalp electrodes to gather different EEG data from vari-
ous cerebral cortex areas.The rhythmic activity of the EEG is usually divided into
five frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (¿30 Hz). Delta and theta frequencies are common in
newborns, children, and sleeping adults. Deep relaxation is promoted by the al-
pha frequency range, which bands conscious and subconscious thinking. The
beta frequency range, the brain’s traditional walking rhythm for active thinking
and attention, clearly displays brain activation during motor cortex activity. Nor-
mal adults rarely experience the low-amplitude gamma frequency range.It is used
to detect brain disorders in clinical settings. The beta frequency bands are the
focus of stress research. In order to diagnose Major Depressive Disorder (MDD)
depression, EEG was utilized. With the eyes closed, five minutes of resting state
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EEG data were collected from thirty patients with MDD and thirty healthy subjects.
The data were collected using 19 channels in accordance with the international
10-20 approach [88].

4. EDA
All electrical phenomena in skin, including active and passive electrical qualities
that may be traced back to the skin and its appendages, can be collectively char-
acterised as electrodermal activity [172]. Perspiration is made up of water and
electrolytes, which increases the skin’s electrical conductivity. Therefore, it alters
Skin Conductance (SC), and capacitance and Skin Potential (SP).
EDA Analysis: The two basic EDA evaluation methods are exosomatic and en-
dosomatic—invasive EDA assessment.

• In exosomatic assessment, the skin passive electrical characteristics, such
as its conductance or resistance, are measured by applying a constant Di-
rect Current (DC) or Alternating Current (AC) externally in accordance with
Ohm’s law [173]. The exosomatic assessment uses tonic and phasic levels.
(a) Tonic EDA, also known as the Skin Conductance Level (SCL), is a term

that describes the progressive changes in EDA that occur when there
are no external stimuli available.

(b) Phasic EDA, on the other hand, is a term that describes the abrupt
changes that occur in reaction to either an external or an internal stim-
ulus [174] also known as the Skin Conductance Response (SCR). It is
further classified into two Event-Specific Skin Conductance Response
(ES-SCR) and Non-Specific Skin Conductance Response (NS-SCR).
1)The specific or ES-SCR is the name given to the phasic levels that
takes place in response to a particular and distinct external stimuli (Gun-
shot). ES-SCR often arise within 1–5 s of the stimulation. 2) On the
other hand, NS-SCR(s) are impulsive reactions that take place in the
absence of any external stimuli.

• During endosomatic assessments, there is no application of an external
source of current; rather, the only thing that is measured is the potential
(voltage) that is created by the skin.

A signal with EDA has two parts SCL and SCR and four characteristics as shown
in Fig. - 3.2. EDA evaluates latency, amplitude, rise time, and half recovery time.

(a) Latency The time it takes for the stimulus to begin and the phasic burst to
begin.

(b) Extreme magnitude The magnitude of the transition from beginning to the
highest point.

(c) Rise time How long it takes before the peak occurs after the commence-
ment.

(d) Resting time How long it takes to get back to peak performance.

3.2.2 Passive assessment methods

Passive assessment is defined as an approach that does not require a user attention;
in this case, the user does not have to actively participate in order to collect data.
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Figure 3.2: EDA signal characteristics.

Passive assessment can be carried out in the following ways:

1. Wearable

Sensor-enabled wearables are used for health and fitness, as well as used to
track the physiological Signals to predict the Prenatal and Postnatal depression.
Sleep, steps, and runs can be monitored by wearables. Wearables—devices with
dedicated sensors that are meant to be wear constantly (like a wristwatch or a belt
loop)— give better results. Inspite of increase in data quality, there may be certain
drawbacks with familiarity. Just 19% of Americans possess wearable devices
[175]. The health-conscious people utilize them more [176]. In this research,
EDA signals are measured using the wrist wearable device for predicting the
prenatal depression during labour.

2. Mobile phones

Due to the growing popularity and capabilities of cellphones, some research
projects have started using them to gather data. Bluetooth, gyroscopes, ambient
light sensors, proximity sensors, accelerometers, video cameras, magnetome-
ters, Global Positioning System (GPS) are some examples of the sensors that
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can be found in phones. One of the main benefits of smartphones is that they
can do much of their own processing without needing any additional hardware.
These gadgets can be utilized with mothers for collecting their communicative
feedback [177, 178] and interactive messages [179].

In Firth et al., meta-analysis of smartphone-based psychological therapies for
anxiety, [180] found that intervention groups saw statistically significant larger re-
ductions in total anxiety levels compared to control groups. In order to identify
real-world stress in the human voice, Lu et al. [181] created a smartphone-based
system and showed how fluctuating environmental noise might impact the classi-
fication’s precision.

3. Social media

Facebook and Twitter are examples of social media platforms where 65% of
Americans used them in 2015 to share their emotions, and opinions of everyday
lives. According to research in psycholinguistics, speech linguistics can be em-
ployed for the diagnosis of major depressive disorder [182, 183]. Thus, language-
based social media posts can reveal Prenatal and Postnatal Mental health issues
and mother’s ideas and feelings about them. In a study including more than
28,000 users of Facebook who took an assessment of personality, Schwartz et
al. found that social media post qualities had a slight correlation with the severity
of depression [184].

Themes associated with prenatal and postnatal mental depression include feel-
ings of hopelessness, helplessness, loneliness, aggressiveness, and thoughts of
self-harm. According to De Choudhury [185], individuals with Postnatal Mental
Disorder who use Twitter tend to tweet less frequently, use first-person pronouns
more frequently, and provide more information regarding their symptoms, ther-
apy, and relationships. Predicting a future depressive episode was 70% accurate.
Postnatal Mental Depression rates in a large Twitter sample matched Centers for
Disease Control and Prevention (CDC) geographical, demographic, and seasonal
patterns [184].

4. Virtual Agent chat

Mobile apps, internet, Short Message Service (SMS) texting, cognitive technol-
ogy, and virtual reality are just a few of the many platforms where chatbots can
be implemented. There are two types of AI models that chatbots can use: basic
rule-based models like ELIZA as well as advanced designs that include MLand
Natural Language Processing (NLP) [186]. Existing rule-based models include
ELIZA. Chatbots’ ability to mimic human conversation can also range greatly in
sophistication. Chatbots allow for a variety of user interactions, the most preva-
lent of which are text-based or voice-enabled [84]. When the chatbot processes
the user’s words, this happens. The majority of interactions with a chatbot take
the form of textual input from the user, either in the form of free-form text or a set
of multiple-choice alternatives. The user may ask the chat-bot either open-ended
questions or multiple-choice ones, [187].

Chatbots have been used in the diagnosis and testing of a wide range of mental
health concerns, from dementia, substance misuse, Prenatal to Postnatal Mental
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depression and anxiety disorders. Here, customers engage with the chatbot in
a manner analogous to that with a real person. The user is able to receive a
diagnosis, treatment plan recommendations, or both based on their responses
to a series of questions [188]. 51% of psychiatrists and psychologists surveyed
by the British journal British Medical Journal (BMJ) said that using chatbots for
diagnostic reasons was inappropriate [189]. Nevertheless, AI diagnostics can
reveal mothers at risk, allowing for earlier action and lessening the threat in the
long run.However, each data assessment methods, has its own set of advantages
and disadvantages [190].

3.2.3 Advantages

• Patients will have convenient access to the medical services they require the
most, which is one of the primary benefits of this passive monitoring arrangement.
The information received from their devices almost instantly, and historical data
regarding the condition of patients, will also be able to access.

• A greater quantity of data can be collected than would be done in a clinical en-
vironment. Patients have the option of wearing monitoring devices like glucose
metres and pulse oximeters at all times.

• The detection of the early phase is also feasible. In the early stages of the current
coronavirus pandemic, for instance, a greater number of patients took advantage
of remote patient monitoring as a technique to aid them in keeping socially iso-
lated. This was done in order to minimize the risk of spreading the virus to other
people.

• Even medical practitioners who wish to do more in terms of tracking the state of
their patients in a routine environment will use systems of remote patient moni-
toring in order to stay connected.

There are a few disadvantages associated with remote patient monitoring, such as
the fact that it is dependent on expensive technology that not all patients can afford.

3.3 Significance of Prenatal delivery prediction using wearable
device

Prenatal depression during the delivery has to be monitored continuously without dis-
turbing the mothers during the childbirth. The results consistently show that childbirth
pain ranks significantly on the scale of pain severity when compared to various other
painful experiences [191]. Wearable devices were utilized in the majority of these in-
vestigations so that continuous, covert recordings of a variety of psychological signals
could be obtained. The datasets that are produced in this way are invariably rich in
material and have the potential to reveal important insights into the influence that de-
pression has on the day of delivery and prolong to Postpartum depression.
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3.3.1 Importance of EDA signal

The most helpful physiological indicator for stress and anxiety identification is HRV
[192]. Most of the existing devices measure stress using average HR, which is not
as precise as HRV parameters but still useful. While adjunctive EEG improves stress
detection accuracy [193], it will be important for future research to determine if dual
technologies are useful for chronic stress monitoring over the long term. It is said
that EDA was the best wearable measure for stress detection because of its easy way
to set up and use [194]; EDA is a generalized information for the electrical charac-
teristics of skin. Unlike other organs in the human body that are connected to both
the parasympathetic and sympathetic nervous systems, the sympathetic branch of the
nervous system totally innervates skin, which contains sweat glands and blood arteries
[195]. As a result of being an ideal and unaltered measure of sympathetic activation
and the depression response, EDA stands out among other psychological metrics like
variability in heart rate or blood pressure. Consequently, the emphasis of this research
is placed on an EDA-based technique for the detection of depression. Therefore, elec-
trodermal activity, also known as EDA, was recorded from the wrist of mothers in order
to forecast an automatic measurement of depression experienced during delivery.

3.3.2 Importance of Ensemble Based Deep Learning model EBDL using stack-
ing

In sensor based development, model stacking helps in enhanced prediction and ro-
bustness [196]. Stacking is a machine learning method that combines the predictions
of many base models, often known as first-level models or base learners. It involves
training many base models on the same dataset and passing their predictions into
a meta-model or second-level model to create the final prediction. Combining base
model predictions improves predictive performance over using a single model. Stack-
ing reduces bias and variation in the final prediction by integrating several base models.
Stacking lets the meta-model learn from numerous base models and catch subtle pat-
terns that individual models may not be able to [197].

1. Model Diversity [196]: Stacking encourages base models trained with different
techniques, architectures, and hyper-parameters. Diversity may reduce overfit-
ting and make the stacked ensemble more resistant to varied data sources.

2. Flexibility [197]: Stacking can handle classification, regression, and time series
forecasting problems. It works with decision trees, SVMs, neural networks, and
others.

3. Interpretability [198]: Stacking may show how many base models and their
predictions affect the final prediction. Studying the meta-model weights or con-
tributions of each base model helps us understand their relative relevance and
interpretability.

3.3.3 Importance of Motion Artifacts (MA)

Any wrist wearable could potentially introduce MA into the EDA data that is obtained
with it. Variations in the force exerted on the EDA electrodes due to changes in hand
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movement, wrist rotation, or different levels of device wearability can significantly al-
ter the results. In the past, many researchers have used techniques like filtering
[199], adaptive de-noising based on wavelet transform [200] and exponential smooth-
ing [201]. But a big problem with MA suppression algorithms is that they filter all time
series data without discrimination. As a result, these techniques cause distortions
even in artifact-free regions of the data, which is a severe limitation. This resulted in
the development of an alternative method known as MA detection, which makes an
effort to encapsulate the expert knowledge on artifact detection as effectively as possi-
ble within a machine learning classifier model. An important distinction between EDA
and other biosignals is that the latter does not display periodicity. Therefore, it might
be rather challenging to manually adjudicate clean vs noisy EDA. In this research, an
AutoRegressive AR model is implemented to sidestep this problem.

3.3.4 Importance of subject dependent training and Subject in-dependent test-
ing model

The field of subject-independent emotion prediction is complex for several reasons: (a)
physiological expressions of emotion vary with age, culture, and other social factors
[202]; (b) a subject’s immediate surroundings also play a role; One alternate approach
that most research used to get around this issue was to build subject-specific models,
as shown in Table - 2.1 in Subsection - 2.1.2. However, these models may fail mis-
erably when used to other subjects, even if they promise a high degree of accurate
classification for the target subject. It is also a tedious process to choose the best clas-
sification scheme for fresh datasets because the method requires multiple models for
each subject. In light of the above, a proposal is necessary to enhance the functionality
of human emotion recognition systems that rely on or are not reliant on the subject.

This study proposes an Ensemble Based Deep Learning EBDL model with both
subject dependent training and subject independent testing. In this model, Leave One
Out Cross Validation (LOOCV) method is used for training the data. Based on this, pre-
natal depression prediction is inherently subject-dependent, meaning that the model is
trained on one set of mothers are often tested on other mothers. Thus, it functions well
when tested on new mothers (subject independent) and internally extracts the neces-
sary qualities from the subject dependent training.

This research improves the prenatal depression prediction by including the follow-
ing aspects such as : motion artifacts removal, including the severity levels based on
PHQ-9 scores, and using of stacking based ensemble approach for handling the hybrid
subject dependent training and subject independent testing.

3.4 Materials

This section offers an overview of the dataset that served as the basis for the experi-
ments that were conducted for predicting the prenatal depression in the Primi and Non
Primi mothers. It comprises a description of the fundamental characteristics of the data
collection protocol, the criteria that were used in participants selection for this work, and
detail description about the hardware device chosen for this EDA signals collection and
psychological questionnaire chosen for active assessment.
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3.4.1 Data collection protocol

Women who are anxious about giving birth frequently present themselves to obstetric
triage. Constant bleeding, painful contractions, and fluid leakage are common con-
cerns. Cervical dilatation, and clinically significant contractions, are the criteria used
by the clinician to determine if the mother is in labour. The heartbeat, oxygen consump-
tion, respiration rate, and temperature of women should be examined for irregularities
when they arrive to the labour and delivery unit [203]. Relevant information on obstetri-
cal, past surgery and health records are examined. Further, a sterile speculum, and a
physical examination are performed. The foetal health requires continuous cardiotoco-
graphic monitoring. Clinicians conduct fluid ferning, and evaluate cervical dilation and
effacement when admitted to the labour ward.

After getting the clinicians determines the on set of labour, As a part of this research,
information consent from the mothers were obtained to participate in this research. The
study’s protocol is shown in Figure - 3.3 depicts the period of the data collection. Details
regarding the personal, socio economic and PHQ-9 survey are collected periodically,
and using a wrist wearable device, EDA recordings were obtained until delivery of the
baby and the placenta.

Figure 3.3: Data collection protocol.

Ethical Clearance
Institutional Ethical Committee (IEC) approval was granted for data collection for

this study in Chennai, India, at SRMCH RC. The data was collected between April
to December 2022. Each participant acknowledged her understanding of the study’s
procedures by signing a permission form. All data were collected and processed in
accordance with applicable laws and ethical guidelines.

3.4.2 Subject selection

The study population was identified by clinicians, and data was collected from the par-
ticipants were selected from among women who had given birth at, SRMCH RC via
normal delivery. Because of this, information from mothers could be gathered at a
pivotal point during all the stages of delivery. The intention of this activity is to de-
crease the likelihood of lifespan effects of prenatal depression [204] such as hyper
responsiveness, difficult temperament, attachment difficulties, affective disorders, and
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last minute delivery complication such as fetal distress, rapid descent of the foetus,
sudden stimulation of nociceptors surrounding the vaginal vault, perineum [205]. And
it also increases the likelihood chances of predicting PPD and its treatment, avoiding
any future difficulties.

Criteria for Inclusion of subjects
Dahlen et al. [206] determined the fair chances of normal delivery which were consid-
ered for this research, such as :

• Absence of hypertension or diabetes, either prior to pregnancy or as a result of
pregnancy

• Women whose age between 19 and 35.

• body mass index more than 30

• 37 and 41 weeks of gestation;

• Whether the delivery is spontaneous or induced is irrelevant.

• A singleton pregnancy with a cephalic presentation or multigravida.

• Participating mothers read the study information, understood and filled out the
permission form.

These standards were applied to the study population to guarantee that the sample of
mothers whose data was collected falls within a reasonable age range.

Criteria for Exclusion of subjects
Women who met any of the following criteria were considered ineligible to take part in
the study:

• Women with more than one baby in their wombs.

• Vitro fertilization mothers

• Women having a challenging obstetric background.

• Women whose pregnancies were deemed extremely dangerous due to factors
such as high blood pressure, chronic sickness, or maternal diabetes mellitus.

Further, some mothers may have differing health requirements and hence be unable
to participate fully in the study.

3.4.3 Observation tools

The active and Passive Assessment can be in the following ways in this research

1. Psychological questionnaire

As explained in Section 3.1, Active Assessments methods include a Psycholog-
ical questionnaire, of which PHQ-9 is used in this research [207]. It was also
given more than once, which can show whether depression is getting better or
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worse over time. A raw number, which ranges from 0 to 27, shows how many
depressive symptoms the mothers handles.
The four different levels of severity considered for this research are:
1) 5 to 9: Mild depression
2) 10 to 14: Moderate depression
3) 15 to 19 :Moderately severe depression
4) 20–27 : Severe depression
For simplicity, PHQ-9 a score of 5, 10, 15, and 20 meant that the depression was
mild, moderate, moderately severe, and very severe. These pre-determined cut-
off points as per PHQ-9 questionnaire were taken into consideration for further
analysis.

2. Salivary Cortisol

The activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis that occurs when
an individual is exposed to a stressors causes the body to begin producing corti-
sol. Salivary cortisol has emerged as a valid biomarker for sympathetic activation
during times of depression, as a result of research that has been conducted over
the past few years. In order to determine the levels of cortisol in the individuals’
systems before the delivery, repeated samples of their saliva were taken during
the delivery period. The salivary cortisol test kit from SOMA Bioscience [67] was
used for both the collection of samples and their subsequent measurement.

3. Wrist wearable device

The recording of psychological data was carried out with the assistance of a
battery-operated wrist wearable developed by Analog Devices [208]. Taking the
form of a wristwatch, the device (henceforth referred to as ADI-VSM) allows for
continuous monitoring of electrodermal activity, electrocardiogram (ECG), PPG,
skin temperature (ST), and activity at sampling rates of 25 Hz, 500 Hz, 500 Hz,
1Hzand 50 Hz respectively. The configuration of the measurement and the initia-
tion and termination of data logging were performed in a programme named Vital
Signs Monitoring (VSM) WaveTool that runs on a personal computer. It is also
possible to store synchronised multiparameter data on the ADI-VSM’s internal
memory and recover it at a later time for offline analysis. The device is powered
by a rechargeable battery with a capacity of 140 mAh; with all sensors turned on,
the battery usually lasts for 18 hours.

Thus, data collection was performed using three tools, namely Psychological question-
naire, Salivary Cortisol test kit, and Wrist wearable device.

3.4.4 Benchmark datasets

Public datasets that predict stress by combining the results of EDA Physiological sig-
nals and PHQ-9 questionnaire are available such as the Cognitive Load, Affect and
Stress (CLAS) [209], VerBIO [210], and Wearable Stress and Affect Detection (WE-
SAD) [211].

1. Cognitive Load, Affect and Stress (CLAS): [209] The CLAS dataset was cre-
ated with the intention of studying intelligent Human Computer Interaction (HCI).
Included in this collection are a number of automated assessments of human
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mental and physical health, including the ability to identify stress and emotional
states. Some of these evaluations were carried out on live participants. EDA
and accelerometer signals were collected by CLAS as 62 participants tackled a
variety of issues. However, the EDA data from 59 patients were used in this in-
vestigation, since three of the subjects’ EDA data were missing important pieces.
In this study, the participants were invited to engage in activities involving both
interaction and perception. As part of the interactive task, the participants will be
asked to provide speedy responses to mathematical and logical problems, which
will allow the researchers to gauge the participants’ cognitive load and degree of
focus. For the purpose of the perception task, the authors chose several still im-
ages and short video clips to elicit an emotional response from the participants.
The Shimmer3 GSR+ Unit was employed during the collection of the 256 Hz EDA
signals in CLAS. Even though the gadget is worn on the wrist, the EDA signals
are gathered from the fingers.

2. Wearable Stress and Affect Detection WESAD: [211] WESAD was developed
in order to investigate whether or not it is possible to recognize emotional states
based on psychological markers. Data pertaining to EDA, respiration, temper-
ature of the body, and triaxial acceleration are included. For the purposes of
this investigation, there were a total of fifteen participants who were instructed
to perform activities such as meditating, watching films, performing mental com-
putations, and public speaking. Similar to VerBIO, Empatica E4 gathered EDA
information from WESAD at a 4 Hz frequency. The authors of this study built on
their previous work on emotion and stress detection by adding three additional
psychological states as follows: negative, neutral, and positive. The subjects
were asked to fill out self-reporting questionnaires after each activity.

3. VerBIO: [210] The VerBIO dataset was constructed with the intention of deter-
mining whether or not stress could have an effect on the physiological signals that
are present during public and virtual speaking. Audio recordings, physiological
signals and PHQ-9 were collected during the course of the 344 public speeches
that were delivered by 55 different speakers on a given topic from newspaper ar-
ticles, in front of a real or virtual audience. At the start and finish of each session,
participants were asked to fill out a self-report. Recording the EDA data at a 4 Hz
frequency using Empatica E4, the authors annotated the data with the speakers’
self-reports.

The consideration of these three datasets as benchmark dataset is because all of them
combine Wearable device based EDA monitoring and PHQ-9 questionnaire for stress
detection. The proposed stacking Ensemble Based Deep Learning EBDL model in this
research was evaluated using the above three publicly available datasets: Using the
signals from the body included in each of the four raw data, the classification models
are trained and evaluated.

3.5 Methodology

The Women’s EDA signals are gathered via a wrist-worn device, known as ADI-VSM.
The data is transmitted in a wireless manner to an accessible computer using Blue-
tooth throughout the various stages of labour. The signal then passes through a series
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of processing, with the retrieved attributes ultimately being put to use in a classification
process. This process can be carried out in the framework using the Data prepossess-
ing, Artifact removal, Data labelling, and classified using the novel stacking Ensemble
Based Deep Learning EBDL model to predict prenatal depression effectively. Figure -
3.4 depicts the proposed structure from data acquisition to classification.

Figure 3.4: The overall structure of the EBDL model for depression detection

3.5.1 Data preprocessing

During the pre-processing stage of the data, there are primarily three phases that are
carried out, as depicted in Figure - 3.4. This preprocessing is carried out using following
steps such as Data segmentation, Components separation, and Attribute extraction.
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1. Data segmentation: EDA data is gathered during various stages of the labour.
Time spent gathering the data could thus vary from a few minutes to several
hours. Given the high processing costs and uneven sample sizes, it is especially
advantageous if EDA data has a longer lifespan, which could make analysis eas-
ier. As a consequence, EDA data have to be segmented to a particular length in
order to maintain a consistent format for the samples and to reduce the amount of
computing effort required. For subsequent processing, this research divided all
of the data and labels based on a non-overlapping sliding window of 5 seconds.

2. Components Separation: The continuously recorded EDA signal, raw-EDA,
was subjected to a Butterworth low pass filter with a frequency of 5 Hz in order to
eliminate high frequency noise content and redundant information; nevertheless,
additional data preparation is still required. In order to ensure accurate analysis
in the future, it is necessary to first separate SCR and SCL components from
the data. In order to dissect the SCR and SCL components, the cvxEDA model
[68] is employed. This model is based on Maximum APosteriori (MAP), convex
optimisation, and sparsity.

3. Attribute extraction and selection: The first step was to calculate statistical
characteristics from the original EDA and its first and second derivatives. An Au-
toRegressive (AR) model is used to model the EDA sequence, employing two AR
parameters (n1 and n2) and the AR noise variance as features. The reason for
integrating AR modelling is that when EDA data is contaminated by noise, the
residual noise in the AR model is higher than in clean data. This results in higher
values for both AR parameters and free from motion artifacts. A high-resolution
temporal frequency decomposition approach, Variable Frequency Complex De-
modulation (VFCDM), is employed to enhance the dynamic aspects of both clean
and damaged EDA [212].

Using VFCDM for biosignal applications has been useful in effectively analysing
signal properties and reducing noise and artifacts [213, 214]. Using VFCDM,
EDA data segments are divided into 12 non-overlapping frequency bands. The
mean, variance, ratio of variances, and ranges (max-min) of the two signals are
calculated using VFCDM. In order to train the data, an attribute vector was con-
structed utilising statistical attributes and additional SCR attributes. This was
done because processing the signals with all of their properties would raise the
computing cost. The data was subsequently trained using this attribute vector.
According to [215, 216], seven attributes are chosen for inclusion in the attribute
vector. For example, the attribute vector can be expressed as:

AttributeVector =[meanEDA,minEDA, maxEDA, stdEDA,

meanSCR onsets ,meanSCR amp,

meanSCR recovery ]

(3.1)

where the actual EDA value in each signal frame is used to calculate the mean,
minimum, maximum, and standard deviation of EDA [215].

Attribute selection is accomplished by the use of the RF machine learning method
[217]. The RF technique is widely used as an Attribute selection algorithm because of
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Table 3.1: Dataset statistics

Variable Train Dataset Test dataset Total dataset
No of subjects 100 89 189

5s Epochs

LOW 4646 2721 7367
MOD 4321 3256 7577
MOD-S 4047 3217 7264
HIGH 4756 4117 8873
Total 17770 13311 31081

its high predictive accuracy, minimal overfitting, and interpretability. The use of RF for
attribute selection falls under the category of embedded techniques, which is a com-
bination of filter and wrapper methods. The embedded approaches are quite accurate
and can be generalised with relative ease.

3.5.2 Data labelling

Data from each woman’s time-synchronized EDA was manually sorted using a Matlab-
based data visualisation tool. The result is that non-overlapping windows were ex-
amined every five seconds and labelled as either low depression (LOW), moderate
depression (MOD), moderately severe (MOD-S), or very severe depression (HIGH).
The window size was chosen as the best alternative after a thorough experimental as-
sessment that examined five different window sizes: 5 s,10 s, 15 s, 30 s, and 60 s.
All of the signal are used to extract MA sections, but the 10-minute EDA data taken
immediately before the two PHQ-9 surveys are the only ones used to produce the de-
pression classes. According to S. Taylor et al., a 5-second epoch was marked as MA
if; (i) the epoch showed a skin conductance level of zero or negative; (ii) the epoch
showed an unexpected maximum in the EDA signal associated with movement indi-
cated by an accelerometer data; or (iii) the quantization error was more than 5% of the
signal amplitude [218].

The depression components of the questionnaire are determined with the use of the
scores that are received from the PHQ-9-Y1, and PHQ-9-Y2. The average score on
the PHQ-9-Y for mother i throughout both surveys is represented by the notation SSij

(where i can be any number from 1 to N and j can be either 1 or 2). The letter N denotes
the total number of women who took part in this research. On the PHQ-9-Y1, the
available score range for each question extends from 5 to 27, with 27 being the highest
possible score. In light of this, the formula SSij = (SSij- 5)/22 was performed in order to
calculate subject i’s normalized depression indices. After the scores were calculated,
the depression sections were categorized as ’LOW’ (scores between 0.0 and 0.19)
’MOD’ (scores between 0.20 and 0.41), ’MOD-S’ (scores between 0.42 and 0.64), and
’HIGH’ (scores between 0.65 and 1) according to the normative values given in the
PHQ-9 handbook [219]. Table - 3.1 displays a summary of the gleaned characteristics.

In the meantime, the data with all attributes is utilized to train the models and to
compare the classification results with the extracted attribute vector, even if no attribute
extraction is conducted on this data.
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Parameter Values
Input Layer Size 14
Output Layer Size 4
Hidden Layer Size 6
Activation Function ReLU
Learning Rate 0.01
Optimizer Adam
#epochs 100

Table 3.2: Hyper-parameters

3.5.3 Training and Testing: subject-independent validation strategy

During the training process of the model, the LOOCV validation strategy is utilized
in order to circumvent the issue of overfitting and to validate the performance of the
model on a fresh collection of data. The LOOCV method is one of the well-known and
commonly utilized approaches. It is appropriate for use with very limited datasets and
results in a model that is objective. Additionally, in comparison to other technologies,
this requires comparatively a shorter amount of time for calculation. Using the LOOCV
approach, the dataset is randomly divided into N independent parts of equal size, which
are denoted as D1, D2, D3,..., DN. The model is then trained and tested a total of N
times, with one of the independent parts serving as a testing set as shown in Figure -
3.5. where N is a number of samples in the collected dataset.

Further, in order to optimize the performance of the model through the utilization of
the grid search technique [220], other parameters, which are shown in Table - 3.2, are
also modified during each iteration. Once the training of the model has been completed
successfully, the accuracy that was acquired in each fold is mathematically calculated
using Equation 3.2.

AccNcv =
1

N

∑
(xi,yi)εFi

σ
(
I
(
FS(i), xi

)
, yi

)
(3.2)

where σ
(
I
(
FS(i), xi

)
, yi

)
denotes the accuracy observed for each fold.

Algorithm 1 Working of Cross Validation

1: Randomly split D into M equal parts such that D = D1, D2, D3, ..., DM

2: for each fold do
3: Train the model by combining N-1 folds, taking out one fold as a test fold.
4: Test the performance of the model using the test fold.
5: Perform the tuning of the classifier parameters.
6: Compute the statistical scores.
7: end for
8: Return the model’s performance by averaging the statistical scores of different

folds.
9: Exit
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Figure 3.5: Subject-independent validation strategy

3.5.4 Methods for classifications

This section provides detail description of the proposed EBDL model and four different
classification algorithms which are used to compare the effectiveness of the ensemble
model for predicting the severity levels of the prenatal depression mothers.

1. Artificial Neural Networks (ANN)
The process of information processing that occurs within the human nervous sys-
tem serves as a source of inspiration for the development of an ANN or a Multi-
Layer Perceptron (MLP). The term ”neural network” refers to a structure that is
composed of multiple layers of interconnected neurons. Neurons can be any
mathematical function that is responsible for the collection and analysis of infor-
mation [221]. The input layer, the hidden layers, and the output layer are the three
categories according to which these layers are organised. While the output layer
is responsible for mapping the information that is input into one of the classes,
the input layer is responsible for defining the input pattern. In order to fine-tune
the network and reduce the amount of error that occurs, weights are applied to
hidden layers [222]. The ANN that is being constructed for the proposed study
has 14 nodes at the input layer and 4 nodes at the output layer. The purpose of
this ANN is to forecast the severity levels based on the PHQ-9. The construction
of a neural network involves the use of five nodes in hidden layers and an activa-
tion function known as Rectified Linear Unit (ReLU).
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2. K-Nearest Neighbour (KNN)
One well-known machine learning method for regression and classification is the
KNN algorithm. It is based on the premise that values or labels assigned to com-
parable data points are more likely to be consistent. The KNN method uses the
whole training dataset as a reference during training. In order to make predic-
tions, it uses a distance metric, such the geometric distance, to determine how
far away the input data point is from all the training instances. After then, the
method uses the distance between the input data point and its neighbours to
determine which K neighbours are the closest. For classification purposes, the
method predicts the input data point’s label based on the most prevalent class
label among its K neighbours [223].

3. Decision Tree (DT)
The decision tree is an example of supervised learning, which is a type of learning
that may be used to problems involving classification as well as regression. Ac-
cording to [224], a decision tree is a hierarchical structure that consists of nodes
and directed edges to organise the information. In spite of the fact that it is simple
and has the potential to effectively manage high-dimensional data, a decision tree
presents a significant amount of instability. A minor modification to the data can
result in a significant alteration to the structure as a whole. The lengthy amount
of time required for training is yet another disadvantage of the decision tree [225].
The concept of entropy and information gain are utilized as attribute selection
metrics in the construction of the decision tree. At every level, the attribute that
has the least amount of entropy is chosen for the purpose of data classification.
In the event that a branch reaches zero entropy, it is designated as a leaf node;
otherwise, the branch will continue to divide into other branches. From a mathe-
matical standpoint, the following formula is used to determine entropy for various
attributes:

E = −
n∑

i=1

pi × log2 pi (3.3)

4. Random Forest (RF)
The random forest algorithm is another type of supervised machine learning algo-
rithm. In this algorithm, the decision tree serves as the fundamental component
in the process of constructing the forest. The random forest algorithm is devel-
oped by combining a number of individual decision trees into a single ensemble
[226]. It operates on the principle of the majority vote, in which each decision
tree makes an individual prediction on the class that will be observed, and the
class that receives the greatest number of votes is the one that is granted the
final classed label. Random forest makes use of this as an advantage and trains
each tree on the random sample using replacement in order to circumvent the
drawbacks of decision trees, which include instability and sensitivity to data. The
randomization of the features offered by decision trees and random forests is yet
another distinction between the two. During the process of developing the hierar-
chical structure, the decision tree takes into account each feature. On the other
hand, an individual tree in the random forest is trained over a subset of random
characteristics.

5. Stacked Ensemble based Deep learning (EBDL) Technique
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The technique of ensemble learning is a hybrid kind of machine learning that
takes into account the prediction of many base models in order to deliver im-
proved predictive performance [227]. Bagging, boosting, and stacking are the
three types of algorithms that are included in ensemble learning. In this strategy,
the base classifiers are trained on the same dataset, and an additional classifier
known as a meta-learner is used to improve the performance of the model. In the
current investigation, a single-level stacking method is utilized known as EBDL
technique, and two deep learning models are utilized in the beginning stages of
the process. Finally, a LogitBoost is fitted with the predictions of the individual
classification models, and it delivers the final predictions regarding the severity
level of prenatal depression, as described in algorithm - 2. Artificial neural net-
works are used to create the stacking ensemble that is depicted in 3.4.

Algorithm 2 Ensemble based Deep learning (EBDL) model’s Algorithm
Input: Training dataset D, where D = {D1, D2, D3 . . . Dm}
Output: Prediction of stress level from the stacking ensemble classifier

1: Randomly split D into M equal parts such that D = D1, D2, D3, ..., DM

2: for m = 1 to M do
3: Train base classifiers using D, and Repeat Step 4 to 7.
4: Calculate the weighed sum and add bias in each hidden layer node by Info =∑n

i xi ×Wi + bias
5: Calculate the values of ∆W = W − η ∂E

∂W

6: Adjust the values of learning parameter and weights until the minium error rate
is achieved.

7: At each base classifier, apply a ReLU activation function f(Info)= max(0, Info).
8: end for
9: Formulating the training set for meta-classifier.

10: for t = 1toT do
11: DE = {xi′, yi} , where x′

i = {hk1 (xi) , hk2 (xi) , . . . , hkT (xi)}
12: end for
13: Train a meta learning classifier, LogistBoost using DE

14: Return Predictions yi = {y1, y2, y3 . . . yn} from the formed ensemble model

The proposed model classifies incoming test instances into relevant subgroups and
then activates the related classifier to forecast the severity of depression. Figure -
3.4 shows the hierarchical structure of the depression prediction method, which begins
with an artifact removal phase, then uses a PHQ-9 scores for data labelling, followed by
the subject dependent training and independent testing. Finally, EBDL model predicts
the prenatal depression level.

3.5.5 Evaluation metrics

One of the most important factors that determines the effectiveness of an EBDL model
is its capacity to produce accurate results. The following is a list of the performance
evaluation measures that are utilized in order to evaluate the effectiveness of the sug-
gested model. The following classification metrics are used for evaluating the perfor-
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mance of classification model such as AUC, F1 score, precision and recall and accu-
racy as defined in chapter 2 subsection 2.2.7 :

1. Area Under Curve (AUC):
It states that the classification performance is determined by the AUC. A high
degree of separability is indicated by an AUC that is close to 1.0, which is a good
indicator of a successful classifier.

2. Recall (sensitivity):
The competence of the model to identify true positives for each of the given
classes is measured by the recall mechanism. It is given by the equation(2.3)
defined in subsection 2.2.7.

3. Precision:
Precision is defined as the degree to which measurements are in close proximity
to one another. It is given by equation (2.2) defined in subsection 2.2.7.

4. Specificity:
The capability of the model to ascertain the actual negatives associated with each
possible class, It is given by equation (2.2) defined in subsection 2.2.7.

5. F1 score:
F1 score given by equation (2.2) defined in subsection 2.2.7.

6. Accuracy:
Accuracy takes into account the frequency with which the proposed machine
learning model properly classifies an instance of data that has not yet been ob-
served. It is given by equation (2.5) defined in subsection 2.2.7.

7. Root Means Square Error (RMSE):
The difference between the actual values and the anticipated values is what the
RMSE evaluates. It is given by equation (2.6) defined in subsection 2.2.7.

8. Mean Absolute Error (MAE):
It is the absolute variation between the actual values and the expected values
that is measured by the mean absolute error. It is given by equation (2.7) defined
in subsection 2.2.7.

When it comes to determining whether or not a mother has prenatal depression, the
right prediction is represented by true positives and true negatives. On the other hand,
the number of incorrect predictions that the EBDL model generates is determined by
the number of false positives and false negatives obtained.

3.6 Results

This section describes the experimental step-up along with results obtained from the
model to predict the prenatal depression based on the EDA signals from the wrist
wearable device. It is subdivided into six subsections as follows:
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3.6.1 Experimental set up

The experimental implementation and performance analysis of the suggested model
are the topics that are presented in this Simulation Setup. Experiments are carried out
on a system as follows: an Intel(R) Core(TM) i7-9050H processor, a primary memory
capacity of 8 GB, a clock frequency of 2.60 GHz, an NVIDIA GeForce GTX 1050 GPU,
and a 64 bit Windows-10 operating system. The proposed model is implemented by
utilising various Application Programming Interface (API)s that are available in the most
recent version of Python, which is 3.9.

3.6.2 Exploratory data analysis

This part provides a high-level summary of the data that will be taken into considera-
tion later on. Box plots of the mothers who are experiencing labour pain, as well as the
cortisol levels of 189 individuals, are shown in Figure - 3.6. During the active part of
the labour period, there is a typical pattern showing a progressive rise in cortisol levels,
which indicates an increasing stress level. Only as an objective metric was salivary
cortisol employed to support the contention that the subjects were experiencing rising
amounts of stress. Because there was such a large amount of variation across sub-
jects, it was not employed for any other reasons, such as producing a wider variety of
stress levels. Cortisol concentrations at different stages of work displayed as box plots

Figure 3.6: Box plot of cortisol level varying

for 189 patients. Where To represents the start time of the data collection. T bars show
the spread of the data for each box plot. Within the box is the median, while the vertical
line denotes the interquartile range. The centre is shown by the red dot.

3.6.3 Analysis of stacked EBDL model with others classification algorithms

The purpose of this section is to validate our contributions to the prediction of prenatal
depression by comparing the performance of the proposed ensemble model with the
performance of the baseline machine learning algorithms. To begin, a LOOCV val-
idation strategy is utilized in order to accomplish the training and validation of all of
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the baseline machine learning and ANN models. The baseline machine learning algo-
rithms include DT, RF, KNN, and ANN. The results of these algorithms’ tests are com-
pared with our proposed ensemble model, which is based on a variety of performance
evaluation metrics, as described in Section 3.4.2. The results of the computations are
reported in Table - 3.3.

Algorithms Metrics
Precision Recall Specificity Accuracy RMSE MAE

KNN 0.7436 0.7234 0.8126 0.7319 0.50 0.34
Decision Tree 0.7765 0.7736 0.8369 0.7482 0.52 0.36

Random Forest 0.8252 0.8154 0.8791 0.8159 0.44 0.32
ANN 0.8712 0.8596 0.9052 0.8876 0.41 0.28
EBDL 0.9367 0.9254 0.9523 0.9387 0.31 0.24

Table 3.3: Ensemble models’ relative performances

3.6.4 Accuracy of EBDL model on benchmark datasets

Tables - 3.4,3.5, 3.6 display the accuracy of EBDL model on benchmark datasets such
as CLAS, WESAD and VerBIO respectively. Importantly, EBDL model predicts stress
accurately on CLAS, VerBIO, and WESAD datasets when compared to previous re-
searches is ensured with improved F1 score by 0.9351, 0.8234, 0.8724 respectively.
Using EDA from the collected dataset, the EBDL model maintains its optimal overall
result at 93.87%. It appears that EDA has the potential to mirror the emotional shifts
that occur in mothers during delivery. Furthermore, unlike SCR, variations in ECG and
PPG might not be as attuned to minor shifts in mood. Therefore, when it comes to
emotion-related detection, EDA should be the first choice with EBDL model.

Methods Metrics
Accuracy F1 score AUC

KNN [228] 0.6992 0.7026 0.6959
ANN [228] 0.7261 0.7434 0.7321
RNN [228] 0.8925 0.7831 0.7216
CRNN [229] 0.8894 0.8262 0.7914
EBDL 0.9126 0.9351 0.9143

Table 3.4: Detection accuracy for EDA modality of CLAS benchmark dataset

Methods Metrics
Accuracy F1 score AUC

KNN [210] 0.6641 0.4123 0.6185
ANN [210] 0.8570 0.7857 0.6185
RNN [228] 0.8652 0.8309 0.7982
CRNN [230] 0.8432 0.8071 0.7654
EBDL 0.8962 0.8234 0.8126

Table 3.5: Detection accuracy for EDA modality of WESAD benchmark dataset
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Methods Metrics
Accuracy F1 score AUC

ANN [210] 0.5882 0.5421 0.5268
DCNN [231] 0.6175 0.5987 0.5718
RNN [231] 0.8011 0.7967 0.8074
CRNN [210] 0.8643 0.8071 0.8106
EBDL 0.8957 0.8724 0.8214

Table 3.6: Detection accuracy for EDA modality of VerBIO benchmark dataset

Methods Metrics Algorithms
Random
Forest ANN EBDL

Without artifacts removal+
without LOOCV

F1 score 57.12 52.42 52.17
Precision 51.68 47.15 52.35
Recall 42.67 42.36 49.77
Accuracy 52.37 50.84 48.62

Without Artifacts removal+
with LOOCV

F1 score 52.74 52.08 58.12
Precision 56.53 49.82 52.68
Recall 48.61 47.96 51.79
Accuracy 56.47 59.96 59.21

Artifacts removal+
without LOOCV

F1 score 52.74 51.62 58.12
Precision 53.40 52.36 60.24
Recall 42.61 57.42 59.01
Accuracy 58.47 62.89 62.37

Artefacts removal+
with LOOCV

F1 score 81.64 87.28 92.19
Precision 86.48 82.51 91.54
Recall 82.34 80.94 94.62
Accuracy 81.59 88.76 93.87

Table 3.7: Evaluation based on Ablation analysis

3.6.5 Evaluation based on ablation analysis

The use of ablation principles was done to guarantee the significance of the innova-
tions of stacking EBDL procedures in this model. The novelties of this model were: 1)
Removal of motion artifacts. 2) LOOCV based on both subject dependent training and
independent testing validation strategy. For this purpose, the above two strategies are
combined into the one that is being offered, which then produces a variety of differ-
ent combinations and executed using the collected datasets and accuracy, precision,
recall and F1 score were evaluated as presented in Table - 3.7. These combinations
include: 1) without artifacts removal + without LOOCV 2) with artifacts removal + with-
out LOOCV 3) with artifacts removal + with LOOCV. It is very clear from the Table -
3.7 and Figure - 3.8 that artifacts removal combined with LOOCV subject dependent
and subject independent validation strategy provides better results are ensured with
improved values with F1 score, precision, recall and accuracy such as 81.64, 86.48,
82.34, 81.59 respectively.
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3.7 Discussion

The discussion section is split into four different subsections based on evaluation re-
sults obtained on executing the EBDL model with both subject dependent and subject
independent validation strategy with the collected dataset to predict the prenatal de-
pression in women.

3.7.1 Interpretation based on EBDL classification model

The stacked EBDL approach proposed in this research performs exceptionally well and
achieves the highest predictive accuracy of 93.79% when compared to other baseline
algorithms. In addition, the results of the comparison of the various performance mea-
sures that were obtained by the techniques that were taken into consideration are
presented in the form of a bar plot, as shown in Figure - 3.7. As an additional point

Figure 3.7: Comparative analysis of ensemble model

of interest, the results of F1 score (92.19%), precision (91.54%), and recall (94.62%)
demonstrate that the proposed method is better than DT, RF, SVM, and ANN. Further,
the results are compared using two statistical methods, namely Root Mean Square Er-
ror RMSE and MAE to evaluate prediction error. When compared to all of the baseline
algorithms, the proposed EBDL model has the lowest values for both RMSE (0.31) and
MAE (0.24). It is possible to draw the conclusion, on the basis of this comparative
analysis, that the stacked EBDL model outperforms all other baseline models in every
evaluation metric.

3.7.2 Interpretation of EBDL model with standard three benchmark datasets

Compared to ECG, PPG, and signal combinations, EDA provides more accurate de-
pression prediction [67, 229, 230]. Based on this, EDA signals were used in this study
for predicting depression levels in women during childbirth. EDA signal serves as the
foundation for all of the other benchmark datasets to predict the stress under various
situations, which provides comparatively better performance with the proposed EBDL
model as shown in the Tables - 3.4,3.5, 3.6. One possible interpretation of this find-
ing is that due to the efficient motion artifacts removal model as well as hybrid subject
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dependent and subject independent validation strategy. Moreover, when ensembling
the different Deep Learning classifiers, it produces better results than traditional base-
line models used in the existing researches. It also provides the severity level based
depression rather than without including severity levels it classifies like binary classifi-
cation models.

3.7.3 Interpretation based on ablation analysis

To ensure, the combinational approach utilized in this model is critical to the perfor-
mance achieved, the ablation concept is deployed as a two-step process. 1) The elimi-
nation of motion artifacts is one of the key concept in this EBDL model. 2) The innova-
tive validation strategy LOOCV methods. The Figure- 3.8 depicts the increasing trends
with respective to various combinational of novelties with respective to proposed model.
Upon examination of the Table - 3.7, it becomes evident that the artifacts removal, and

Figure 3.8: Comparative analysis of Ablation analysis

LOOCV method validation strategy yields the highest level of accuracy among all the
classifiers.

From the table - 3.7 without artifacts removal, and without combined validation
model the accuracy results are less than 50% which means the without the cleaned
EDA signals it is very difficult to predict the vital clue for the prenatal depression effec-
tively. On seeing the combination of inclusion of artifacts removal, and without valida-
tion strategy provides slight better prediction since the analysis is carried with cleaned
EDA signals. The artifacts removal, including validation strategy does not provide the
classification as like binary classification [218] each and every mother have their own-
specific characteristics such as the density of sweat glands and the thickness of the
skin so all those factors much contribute the prediction of prenatal depression.

3.7.4 Limitations and Future work

• Continuous active monitoring of EDA is necessary for this study, however this is
a challenge considering the sensitive nature of labour.
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• Multiple modalities of stress analysis are available, although, with a wrist-worn
wearable device, this is limited only to EDA signals.

• Additionally, for non-stationary Physiological signals, the frequency-domain fea-
tures may offer better discrimination ability than the time-domain features.

This EBDL model can also be used with the various physiological signals such as ECG,
EEG data to identify emotional changes.

3.8 Summary

The results of this research imply that prenatal depression is effectively predicted us-
ing a stacked EBDL model based on deep neural networks. Data collection during
childbirth by means of EDA signals, salivary cortisol and PHQ-9 questionnaire from
the mothers was performed. Data Preprocessing involves artifact removal, followed by
the data labelling using the PHQ-9 score. Then LOOCV strategy is used to train the
EBDL model for prenatal depression predictions. The performance of the suggested
stacked EBDL model is evaluated with 93.79% accuracy rate, Precision (91.54%), F1
score (92.19%), and recall (94.62%), when compared to baseline learning methods,
clearly demonstrates the superiority. Additionally, the suggested model is robust, as
shown by the minimal values of RMSE (0.31) and MAE (0.24). Therefore, this model
may be considered for effective prediction of prenatal depression.
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CHAPTER 4: POSTNATAL DEPRESSION PREDICTION
USING ACTIVE ASSESSMENT

4.1 Introduction

This chapter discusses Postpartum or Postnatal depression (PPD), which is a type of
depression that affect women (mothers) after the childbirth and address the research
question 3 defined in section1.7. The data collection for this analysis includes demo-
graphic details and psychological questionnaires as suggested by the Psychologist and
Gynaecologist. The experiments are designed to explore the problem of Imbalance in
datasets, Lacking effective attribute selection methods as suggested by the literature
review. The aim of the experimental study is to improve the efficiency of the postnatal
depression prediction with the collected questionnaire by eliminating the data imbal-
ance, with employing an effective attribute extraction algorithm and finally eliminating
the missclassification errors. The evaluation of this proposed model was carried out
with execution of benchmark datasets and best combination which yields better accu-
racy for each of the datasets were identified.

4.2 Significance of PPD assessment using psychological ques-
tionnaire

The evaluation of Mental health issues, such as sensations of anxiety or PPD, using
psychological questionnaires is one of the widely practised method [232]. Individuals
experiencing psychological distress can be identified and provided with assistance and
intervention in a timely manner. Important data is generated by incorporating contin-
uous monitoring of such women [219]. Time series analysis of this data can reveal
patterns of post-delivery recovery trends, or risk factors. However, classification issues
due to data imbalances, resulting in inaccurate predictions, needs to be addressed.
[233]. The psychological questionnaire was developed by the domain experts and
used as a standard tool for mental health analysis. The medical domain experts cre-
ated the standard screening tools using various items to be enquired to ensure the
diagnosis of the mental disorders.

The questionnaires which were used are elaborated in detail as follows

1. Edinburgh Postnatal Depression Scale (EPDS)

The purpose of EPDS 10-item self-report questionnaire is to identify pregnant
and postpartum women who may be experiencing emotional discomfort [163]. In
order to assess the amount of risk and make appropriate referrals as needed,
it is necessary to inquire more about the nature of any thoughts of self-harm.
This will ensure that the mother and baby are safe. 1) Scores between 0 and 9:
These scores may suggest the existence of temporary distress symptoms that
are not likely to significantly impact your day-to-day functioning at home or work.
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Nevertheless, more investigation is necessary if these symptoms have remained
for longer than a week or two. 2) Scores in the 10–12 range suggest the existence
of distressing symptoms. After two weeks, administer the EDS again, and keep
track of your progress often. After the scores reach 12, more evaluation may be
necessary to determine whether referral is necessary. 3) Scores over 12 indicate
a high probability of depression and need further evaluation and treatment. It
could be required to refer the patient to a psychologist or psychiatrist [23, 234,
235].

2. Patient Health Questionnaire-9 (PHQ-9)
There are nine items that make up the PHQ-9 [162], which is used to screen for
mood disorders. Medical professionals Robert L. Spitzer, Janet W.B. Williams,
and Kurt Kroenke collaborated in 1999 to create the PHQ-9. This depression
screening tool incorporates nine questions from the DSM-IV. A quick and easy
way to diagnose and assess the severity of depression is using the PHQ-9. A
total score ranging from 0 to 27 is generated by evaluating each item on a sever-
ity scale from 0 to 3. The responder is asked to assess the frequency of each
symptom during the previous 2 weeks, with 0 being none at all, 1 many days,
2 more than half of the days, or 3 virtually every day. Interpretation of scores:
Depressive symptoms may range from 1-4 minimal; very 5-9 mild ;10-14 moder-
ate; 15-19 moderately severe; and 20-27 very severe. It was validated in many
situations and had a substantial amount of use [162, 165].

3. Postpartum Depression Screening Scale (PDSS)
The PDSS indicates which women should get further evaluation for a definite
diagnosis of postpartum depression and subsequent therapy by determining their
risk level. A total of 56 items were initially developed, with eight items in each
of the seven dimensions: eating/sleeping disorders, anxiety/insecurity, emotional
instability, cognitive impairment, loss of identity, shame/guilt, and thoughts of self-
harm. With the use of confirmatory factor analysis, Beck et al., [236] were able to
pare the dimensions down to 7 questions with 5 responses for each so, totally 35
items, ensuring construct validity. With the last two weeks as a point of reference,
each statement explains how a woman could be feeling after the delivery of her
child. On a 5-point Likert scale, women are asked to indicate how much they
agree or disagree with each statement [164].

4. Beck Depression Inventory (BDI)
In 1961, Beck and colleagues developed the Beck Depression questionnaire
(BDI), which is a self-report rating questionnaire consisting of 21 items [237].
The BDI is used to examine the typical attitudes and symptoms of depression.
It may be used to evaluate persons who are not suffering from mental illnesses,
as well as adolescents and adults who are normal. The 21 items are evaluated
using a four-point scale, with the range of possible responses being from 0 to
3, and the total score may be anywhere from 0 to 63. A range of depressed
symptoms that the person had experienced over the course of the weeks were
intended to be documented by this instrument. In terms of total score, a range
of 0–13 indicates minimum, 14–19 indicate mild, 20–28 indicate moderate, and
29–63 indicate severe.
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5. Postpartum Depression Predictors Inventory (PDPI)

A thirteen risk factors that are associated with postpartum depression that are
included in the PDPI [238]. Among these thirteen predictors, the PDPI-Revised
includes four additional risk variables: self-esteem, marital status, socioeconomic
status, and unexpected or undesired pregnancy. These four risk factors are in-
cluded alongside the other 13 predictors. In an ideal scenario, this checklist need
to be completed at the beginning of each trimester in order to keep a pregnant
woman’s risk status up to date. As a result of the fact that a woman might get
postpartum depression at any point within the first year after giving birth, the
PDPI-Revised should be used to continue monitoring her risk status after she
has given birth.

6. Depression Anxiety Stress Scales (DASS)

Anxiety, depression, and stress are measured using the self-report measures
that make up the Depression, Anxiety, and Stress Scale with 21 Items (DASS-
21) [239]. Seven items make up each of the three DASS-21 subscales, and
they all cover comparable ground. Feelings of despair, hopelessness, low self-
esteem, disinterest, inactivity, and anhedonia are all measured on the depression
scale. Subjective anxious affect, situational anxiety, skeletal muscle effects, and
autonomic arousal are all measured by the anxiety scale. Levels of persistent
nonspecific arousal are detectable by the stress scale. In terms of emotional reg-
ulation, it measures anxious arousal, impatience, irritability, and trouble relaxing.
Adding up the scores on the appropriate questions yields a score for stress, anxi-
ety, and sadness. The DASS-21 does not use a category but rather a dimensional
approach to mental illness.

4.2.1 Importance of balanced dataset

The application of machine learning for postnatal depression analysis has been ham-
pered by datasets that contain an uneven distribution of classes, as the majority of
classifiers do not consider imbalanced class problems into account during the design
stage. A medical dataset is characterized by the fact that it contains many attributes
[240], and taking these attributes into consideration presents a problem for classifica-
tion activities [241] due to the fact that this results in high complexity and a tedious
processing effort. In the context of medical research, the cost of misclassification is
a significant factor that requires careful consideration. The cost of making an error
in judgment in the medical environment constitutes a significant loss due to the irre-
versible nature of the medical environment and the possibility that an error in judgment
would result in the patient suffering damage that cannot be repaired. It is possible to
classify methods for dealing with imbalanced class datasets using data resampling and
Cost Sensitive Learning (CSL). The following section briefs about these two methods.

1. Data Resampling
Resampling is the most frequent strategy for addressing imbalanced classes and
improving dataset quality. Both Over Sampling (OS) and Under sampling (US)
approaches have been employed to address the imbalanced class dataset issue
[97, 242]. These approaches have the following characteristics:
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• OS approach balances datasets by creating extra samples through copy-
ing [97]. It can address imbalanced class problems without data loss, but
overfitting from excessive sample copying is a major issue [98].

• US approach balances datasets by randomly eliminating instances from the
majority class [242]. Discarding samples might lead to data distortion or
loss, which is a drawback of US [98]. Since OS may introduce a negative
bias to the data in the worst-case situation, US is considered the safer option
[243].

In 2002, Chawla et al. [244] introduced the Synthetic Minority Over-sampling
TEchnique (SMOTE) to address OS and US issues. By creating artificial in-
stances, the method solves the unbalanced class issue. First, in order to identify
, a random sample is taken from the minority class KNNs were used. Picking a
neighbour at random to link up with the sample is the next step. Finally, a point
on the line is picked at random by the new sample. SMOTE is substituted for
previous techniques in additional research to enhance accuracy in solving unbal-
anced class data. Xu et al., [96], suggested an enhanced US method for dealing
with imbalanced cardiovascular data by combining SMOTE and US techniques.

2. Cost-sensitive learning (CSL)
The advantage of CSL over resampling is that, CSL does not cause data coupling
or missing data from excessive copying or sample loss. Misclassification charges
and penalty ratios are adjusted in CSL to balance samples [245]. Domingos
[246] highlighted that MetaCost is not limited in the number of classes nor does it
tackle class imbalance. Prior to calculating sample and class probabilities, Meta-
Cost replicates the dataset’s classification models. Next, by using the conditional
risk formula, it determines each sample’s optimum cost class. Finally, classifier
uses this relabelled training set created by CSL [246]. MetaCost with sequen-
tial minimal optimisation has the highest accuracy and sensitivity in cardiovas-
cular disease data classification with five classifiers, according to Alizadehsani
et al. [247]. Daraei and Hamidi found that MetaCost and attribute extraction
approaches produced the optimum cost ratio of 1:200 for myocardial infarction
prediction [248].

4.2.2 Importance attribute extraction algorithm

According to Cai [241], attribute extraction is meant to discover key characteristics,
decrease the size of an attribute subset, and improve classification accuracy, model
complexity, and processing costs for high-dimensional data. Gain ratio, information
gain, and genetic algorithm methods were among the prominent attribute extraction
techniques for classification that Omar et al. [249] investigated. [250]. Kennedy and
Eberhart created Particle Swarm Optimization (PSO) [251] to model animals looking
for food and finding optimal solutions with continuous search. PSO simulates a swarm
of birds seeking for food using particles. Each particle seeks for the ideal solution in a
specified space using its position and velocity properties. Swarm particles adjust their
position and velocity based on their own and the group’s optimal current solutions.
Medical data is often high-dimensional, making data mining challenging. Recently,
PSO algorithms have been used in medical investigations, demonstrating improved
classification performance through attribute extraction.
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Table 4.1: Overview of dataset

Dataset Sample size #Attribute Imbalance ratio

Collected dataset
PHQ-9 668 10 3.5:9.9:4.25:9.16:1
EPDS 959 10 2.9:1:3.18
PDSS 593 7 2.02:3.49:1

Benchmark dataset
Depression 400 21 1.41:1:1.17:1.1
PPD 755 13 1:1.7:1.3
Anxiety 877 21 1.47:1:1.06:2.4:3.18

4.3 Materials

The methods used to collect the data to examine the links between risk variables and
PPD symptoms are described in greater detail here. PPD risk variables are identified
using the demographic data and the results of the EPDS, PDSS, and PHQ-9 screening
tests administered as part of a population-based study designed to predict Postpar-
tum Depression. These checks were conducted between one and six weeks after the
woman giving birth.

4.3.1 Ethics declarations

The data collection for this study has been approved by the Institutional Ethical Com-
mittee (IEC) of SRM Medical College Hospital and Research Centre SRMCH RC in
Chennai, India. All the women who took part in the study signed consent forms indicat-
ing that they had read and accepted the study’s criteria. All procedures were carried
out in accordance with the law.

4.3.2 Survey for collection selection

The comprehensive data collection includes standard demographic questions in addi-
tion to those from the Postpartum Depression Screening Scale (PDSS) [252], EPDS
[232], and PHQ-9 [219]. Information about the woman ( nationality, age, education,
economic status, and details of occupation), her newborn, and her labour and deliv-
ery, including the date of birth of the child, whether she was a first-time mother, and
whether or not she underwent a postpartum depression screening after giving birth
were included.

4.3.3 Participants selection

Potential occupational dangers and the practicality of data collection are considered by
clinicians when choosing a research population.
Inclusion Criteria
Based on the following criteria, the subjects are requested for their participation con-
sent:

• Pregnant women within the age bracket of 19–35 years.

• Mentally competent to give their informed permission, and able to read and un-
derstand the study materials.

71



• Participation include all primigravida and multigravida women, regardless of whether
their childbirth was natural or artificially induced.

Exclusion Criteria
Based on the following criteria, these women were not included in the participation
consent:

• Women with obstetric history.

• Women in Multi-Fetal Pregnancy

• Women whose pregnancies are at elevated risk due to conditions such as preeclamp-
sia, diabetes mellitus, chronic illness, restriction of intrauterine growth, chromo-
somal defects, or known foetal abnormality

• Women who were pregnant by in vitro fertilisation (IVF).

4.3.4 Benchmark datasets

The process(es) of gathering three medical datasets that are imbalanced is briefly
explained in this stage. Details an experiment with a high degree of imbalance using
three datasets such as: PPD [108] collected using PDPI-R, MDD was predicted with
Beck Depression Inventory (BDI) [253], and the Anxiety was detected using DASS-II
[254]. Table - 4.1 summarises the samples, number of characteristics, classes, and
imbalance ratios of the six datasets.

4.3.5 Identification of risk factors

A literature review utilising databases such as EMBASE, PubMed, PsycINFO, CINAHL,
and Medline is conducted to identify risk variables contributing to the emergence of
postpartum depression-related symptoms during the initial six weeks following delivery.
A postpartum questionnaire is given to women in order to inquire about pregnancy-
related depressions (obstetric and pregnancy-specific), mother adjustment in sociode-
mographic situations, and biological contextual difficulties (refer to Table 4.2).

In this study, the possible sample size was estimated using the method given by
Harlow and Lisa [255]. For (m) independent predictors, N = 104 + m samples were
needed to detect an error type I of 0.05 and an error type II of 0.20. The sample size of
this research is 132, which qualifies the minimum requirement to produce a statistical
significance.

4.3.6 Statistical methods

The bivariate connections between risk factors and PPD may be understood using a U
test and a t-test. Continuous variables that do not follow a normal distribution so, tested
using the Mann-Whitney U test, whereas properly distributed continuous variables can
be tested with the Student’s t-test. The connection between postpartum depression
and several sets of categorical variables (risk factors) was determined using the Chi
Square test. When it was necessary to take into account a number of variables all
at once, logistic regression was employed. Odd Ratio (OR) are presented alongside
95% Confidence Intervals (CI)s. To determine statistical significance in this inquiry, a
two-sided P value and a significance level of 5% were used [256].
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Table 4.2: Identification of Risk variables to determine connection with depression
symptomatology with psychological questionnaires after delivery. [1]

Questionnaire
Domain Risky Components Quantity

Common Factors Demographic
Age 20-24, 25-29, 30-34, >34
Education Graduate, School or less
Economic status Always difficult, Some-

times difficult,Not bad,
easy

EPDS
Maternal

offspring number multiples/singleton
marital status married-in a relation-

ship/Single
distance from the
hospital

within 5 kms, more than 5
kms

history of anxiety
/depression

Yes or No

prenatal use of an-
tidepressants

Yes or No

Infant birth weight 4 Kg: adequate , 3-3.9Kg
Inadequate, 2.5Kg-2.9 Kg
Low

Gestational
Age(weeks)

extremely preterm
(<28), very preterm(28-
32), moderate to late
preterm(32-37)

PHQ-9
Pregnancy

PPD history insufficient birth weight
Issues with infertil-
ity

2500 - 2999 g: low birth
weight

Planned conception no definitely not, not ex-
actly at this time, Yes def-
initely

Maternal thoughts Very pleased, very
pleased in some respects
but not in others

Paternal thoughts Very pleased, very
pleased in some respects
but not in others

Obstetrical abnor-
malities

Yes, No

challenges in life Stress related work-
place

No, Yes, all of the time,
sometimes,not at all

Concerned about
going back to work

Yes, sometimes, no

PDSS

Obstetric parents relation-
ship

not close/no relationship,
close

Induction of labour Yes, No

Maternal Issues Ready to leave the
hospital

Yes, No

Way of feeding ba-
bies

almost exclusive breast-
feeding, high breast feed-
ing,partial, bottle feeding,
token breast feeding
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((a)) PHQ-9 questionnaire ((b)) EPDS questionnaire ((c)) PDSS questionnaire

Figure 4.1: Class imbalance of Questionnaires datasets

4.3.7 Rebalancing data

The data set consisted of responses to EPDS, the PHQ-9, and the PDSS. Considered
collectively, these sample sizes are depicted in Figure 4.3 for EPDS, PHQ-9, and PDSS
across different score categories.

In order to address class imbalance in these datasets, two types of solutions are
employed: 1) At the algorithm level, with solutions like MetaCost and hybrid/ensemble
methods, and 2) On a data level, using techniques such as attribute extraction using
PSO [257], and data sampling (SMOTE, OS, and US). This chapter proposes a strat-
egy of combining both these methods to eliminate class imbalance in psychological
questionnaire data. This approach makes use of multiple permutations of the SMOTE
method, the SMOTE method, an attribute extraction method based on PSO, and the
MetaCost method. Because of the following factors, the class imbalance issue is re-
solved.

1. SMOTE utilises the possibility of fewer instances from the majority class (US)
and more from the minority class (OS) in its statistical analysis. Its efficacy and
ease of use make it as a popular method, and many studies have used it to fix
unbalanced class data and improve classification performance [243, 258].

2. Since OS may introduce a negative bias to the data in the worst-case situation,
US is considered the safer option.

3. To address an imbalanced sample, MetaCost examines misclassification costs
and employs penalty ratios [245]. Lastly, compared to other evolutionary algo-
rithms that concentrate on attribute extraction.

4. PSO-based attribute extraction is more efficient and uses fewer computer re-
sources to reach a solution [251]. Additional advantages of PSO are its ease of
use, rapid convergence, effectiveness in finding the global optimal solution, re-
duced computational time requirements, and reduced number of parameters to
adjust [259].
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4.4 Methodology

This model’s brief workflow plan for assessing the predictions of PPD symptoms with
risk factors using machine learning approaches includes data pre-processing, resam-
pling, and attribute extraction. The objective function was implemented to resolve the
class imbalance problem and to reduce the number of false negatives, which in turn
reduced the uncertainty in the results, their interpretation, and the inferences that might
be derived from experiments employing classification algorithms. In the end, several
criteria were employed to assess the efficiency of each classification system and com-
pared with benchmark datasets.

4.4.1 Workflow strategy

Based on the objective, the workflow was analysed to arrive at a suitable classification
model is developed. The process is depicted in detail in the accompanying figure - 4.2.

Figure 4.2: Workflow of Computational Framework

4.4.2 Data preprocessing

Within the datasets that were obtained, there were certain records that lacked values
in the initial dataset. This was due to the fact that a number of patients elected not
to answer some questions . Since of this, records that included missing values and
outliers were removed at this stage of the process. This was done since any change or
data unfilled might potentially compromise the legitimacy of the dataset. In conclusion,
the three datasets were normalised in order to guarantee that the ensuing processes
would provide accurate results.

4.4.3 Re sampling

The Six datasets collected were not distributed evenly, which would have an effect on
the accuracy of the real categorization. Increasing numbers of studies [243, 258] have
shown that utilizing SMOTE to improve classification accuracy is an effective solution
to the problem of imbalanced classes. Therefore, SMOTE was used to equalise the
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amount of class samples, which improved the classification accuracy in this investiga-
tion. Achieving this was made possible by adjusting the distribution of class samples.
The process of SMOTE consists of three steps: Finding the kNNs is the first step af-
ter randomly selecting a sample from the minority class. Step two involves picking a
neighbour at random to join the sample, and step three involves picking a line point at
random to generate a new sample. In order to compare the performance of SMOTE’s
categorization, the results that were produced without its use were recorded.

4.4.4 Attribute extraction

Medical databases contain a large number of diagnostic characteristics for the purpose
of identification; currently, the clinicians’ practical experience and specialist knowledge
are mainly relied upon to determine the relationships between these attributes and
PPD. The significance of each of these attribute varies slightly in relation to the overall
diagnosis. It is possible that this will improve the accuracy of PPD recognition. This is
due to the fact that important attributes will be chosen before the diagnosis prediction
is carried out. The PSO method has been utilized in previous researches pertaining to
the prediction of diseases, and the findings indicate that PSO-based attribute extraction
has the potential to enhance classification efficiency [240, 243]. Based on Equation
(4.1), it was determined that the quality of the data was more essential than the ratio of
the attributes that were chosen, and thus α= 0.8 and β= 0.2 were set in order to look
for the attributes that are significant.

Fitness = αA+ β
|M |
|N |

(4.1)

For each given set of attributes in the original dataset, A is their performance of se-
lected attributes, —M— is the number of attributes to be chosen, and —N— is the total
number of attributes. α ∈ [1, 0], andβ = (1− α).

4.4.5 Cost-Sensitivity Learning (CSL)

Due of the very low misclassification tolerance in the medical area, the following de-
scription of the MetaCost approach is used: 1) Generate many copies of the training
data set.2)Utilize each replication to train classifiers. 3) determine the probability of
each class. 4) Using the conditional risk equation, reclassify all training data using
the calculated optimum class. 5) Re-training the classifiers on the training set with the
updated labels is the fifth step.

4.4.6 Classification

In the presence of class imbalance, the efficacy of the classifier will reduce, resulting
in risk of variation in the model’s performance. In this study, different combinations of
RBF, RF, SVM, and KNN classifiers were analysed until an optimal combination for
dealing with class imbalance was deviced. These four classifiers were selected for
their uniqueness because:

1. KNN take no assumptions and easy to implement [223, 260].
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2. RBF are easy to construct, stabilize and can tolerate input noise [217].

3. There is less chance of overfitting when using SVM in high-dimensional domains
[261, 262].

4. RF, is especially robust when dealing with both continuous and categorical data
types [263].

4.4.7 Metrics

Based on the confusion matrix Table - 4.3 the four evaluation metrics, namely AUC, F1
score, Precision, and Recall are calculated [264].Equations (4.2) through (4.4) were
chosen to represent each of these requirements.

Table 4.3: Confusion Matrix Table

Actual status of Mothers
Positive Negative

Prediction
Results

Positive
Presence of PPD

also predicted correctly
(True Positive)

Non-PPD but
predicted as PPD

(Type-I error; False Positive)

Negative
Presence of PPD

as predicted incorrectly
(False Negative ;Type II error)

No-PPD also
predicted correctly

(True Negative)

The following classification metrics are used for evaluating the performance of clas-
sification model such as AUC, F1 score, precision and recall and accuracy as defined
in chapter 2 subsection 2.2.7 :

1. Area Under Curve (AUC):
It states that the classification performance is determined by the AUC. A high
degree of separability is indicated by an AUC that is close to 1.0, which is a good
indicator of a successful classifier.

2. Precision:
Precision is also known as positive prediction value. It is given by equation (2.2)
defined in subsection 2.2.7.

3. Recall (sensitivity):
This is also known as the ”true positive rate” ,given by the equation (2.3) defined
in subsection 2.2.7.

4. F1 score:
F1 score given by equation (2.5) defined in subsection 2.2.7.

4.5 Results

There were three results described in this section for ensuring the reliability of the post-
natal depression prediction model. To start with, the statistical analysis used the Stu-
dent’s t-test and the Mann-Whitney U test to identify the bivariate correlations between
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Table 4.4: Hyper-parameters of algorithms for the experiment

Algorithm Parameter
KNN [223] k=5
SVM [261] Kenal: Radial basis function; degree=3

RBF [266] Weight in Hidden, output layer: Pseudo Inverse method
Activation function: Gaussian Function

RF [263] Bag size:100; iterations:100

risk factors and PPD. The second result describes how well the collected datasets
and the proposed computational approach worked. The third was an evaluation of an
unbalanced benchmark dataset using the proposed combined method based on the
higher imbalance ratios to make sure that the computational model could be trusted.

Four strategies are combined into the one that is being offered, which then pro-
duces a variety of different combinations evaluation parameters. Here are some pos-
sible combinations: (1) not going through any of the four techniques; (2) only carry-
ing out SMOTE; (3) only carrying out PSO attribute extraction ; (4) only performing
MetaCost; (5) only carrying out US; (6) carrying out SMOTE then PSO attribute extrac-
tion;(7) carrying out SMOTE then MetaCost; (8) carrying out PSO attribute extraction
then MetaCost; and (9) carrying out SMOTE, then PSO attribute extraction, and finally,
MetaCost.

All the above combinations were evaluated using the standard metrics. The Brier
score [265] was used for setting the threshold as F1 score 0.5 as optimal combinations
for dealing with datasets containing class imbalance to predictPPD model. The combi-
nations with F1 less than 0.5 were denoted as Not applicable (N/A) and ignored. The
experiments, uses Python 3.9, a 2.5 GHz Intel i7-4710MQ processor, and Windows
10. The proposed method was compared to the ones on the list using three different
machine learning classifiers. Table - 4.4 displays the configuration parameters for the
four ML algorithms.

4.5.1 Bivariate connection using statistical analysis

Socio-demographic, psychopathological, social support, and prenatal events are the
categories used to classify the traits. Here, the raw odds ratios were given for each
bivariate connection found between the research attributes to predict the postnatal
depression among the mothers. Table - 4.5,4.6,4.7 shows how depressed and non-
depressed people were represented across study attributes in the collected PHQ-9,
EPDS, and PDSS datasets.
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Table 4.5: Sociodemographic characteristics, Psychopathological status by EPDS-
questionnaire. Values are given as %, unless otherwise stated.

Questionnaire Domain Risk Factors/
Quantity Depressed Non

Depressed

Unadjusted
Odds Ratio
(95% CI)

Common
Factors

Socio
demographic

Ability to manage income

Always difficult 3.6% 2.5% 1.5 (0.8–2.9)

Sometimes difficult 4.4% 3.7% 1.2 (0.6–2.1)

Not bad 0.7% 0.4% 1.8 (0.4–8.1)

Easy 6.9% 5.8% 1.2 (0.7–2.0)

Age

20–24 16.4% 12.1% 1.6 (1.1–2.4)

25–29 32.5% 38.8% 1.0 (reference)

30–34 34.6% 34.8% 1.2 (0.9–1.6)

>34 16.4% 14.2% 1.4 (1.0–2.1)

Education

Graduate 94.8% 97.5% 1 (reference)

School or less 5.2% 2.5% 2.2 (1–2–3.9)

EPDS

Maternal
characteristics

offspring number

multiples 24.3% 20.6% 2.4 (2.4–2.8)

singleton 75.7% 79.4% 1 (reference)

MaritalStatus

married 15.3% 13.7% 1 (reference)

single 84.7% 86.3% 0.4 (0.4–1.8)

History of anxiety /depression

Yes 10.6% 12.5% 1.4 (0.8–1.8)

No 89.4% 87.4 1 (reference)

Infant characteristics

Birth weight

4 kg: adequateweight, 15.4% 62.7% 1.8 (1.3–2.4)

3-3.9 kg Inadequate weight 12.3% 2.0% 3.0 (2.5–3.6)

2.5-2.9 kg
Low weight

72.3% 35.3% 1 (reference)
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Table 4.6: Sociodemographic characteristics, Psychopathological status and social
support by PHQ-9- questionnaire. Values are given as %, unless otherwise stated.

Questionnaire Domain Risk Factors/
Quantity Depressed Non

Depressed

Unadjusted
Odds Ratio
(95% CI)

PHQ-9

Pregnancy

Postpartum depression history

Yes 83.7% 87.4 1 (reference)

No 16.2% 12.5% 1.4 (0.8–1.8)

Issues with infertility

Yes 10.6% 8.9% 1.2 (0.8–1.8)

No 2.5% 1 .0% 2.6 (1.2–5.7)

Planned conception

no definitely not 68.1% 62.7% 1.8 (1.3–2.4)

not exactly at
this time

10.6% 2.0% 9.0 (5.5–14.6)

Yes definitely 21.2% 35.3% 1 (reference)

Maternal thoughts on pregnancy

Very pleased 6.6% 4.6% 1.5 (0.9–2.4)

very pleased
in some
respects but
not in others

77.7% 83.1% 1 (reference)

unhappy 13.5% 7.4% 1.9 (14–2.8)

very unhappy 7.7% 7.4% 0.8 (0.5–1.3)

Obstetrical abnormalities

Yes 83.7% 87.4 1 (reference)

No 16.2% 12.5% 1.4 (0.8–1.8)

challenges in life

Stress-related to workplace

No 3.4% 2.3% 1.3 (0.7–2.6)

Yes 22.8% 31.3% 0.7 (0.5-0.9)

Concerned about going back to work

Yes 10.6% 2.0% 9.0 (5.5–14.6)

Sometimes 68.1% 62.7% 1.8 (1.3-2.4)

No 21.2% 35.3% 1 (reference)

80



Table 4.7: Sociodemographic characteristics, Psychopathological status and social
support by PDSS- questionnaire. Values are given as %, unless otherwise stated.

Questionnaire Domain Risk Factors/
Quantity Depressed Non

Depressed

Unadjusted
Odds Ratio
(95% CI)

PDSS

Obstetric

Parents relationship

not close/no
relationship
Vs close

83.7% 87.4 1 (reference)

close 16.2% 12.5% 1.4 (0.8–1.8)

Induction of labour

Yes 99.6% 98.6% 0.3 (0.1–1.9)

No 0.4% 1.4% 1 (reference)

Mode of delivery

Vaginal 94.8% 97.5% 1 (reference)

c-section 5.2% 2.5% 2.2 (1–2–3.9)

Maternal tolerance

Ready to leave the hospital

Yes 83.7% 87.4 1 (reference)

No 16.2% 12.5% 1.4 (0.8–1.8)

No 16.2% 1.4 (0.8–1.8)

way of feeding babies

almost exclusive
breast-feeding 17.6% 6.0% 3.6 (2.5-5.0)

high breast-feeding 17.9% 15.3% 1.4 (1.0–2.0)

partial 64.4% 78.7% 1 (reference)

bottle-feeding 19.6% 7.3% 3.1 (2–3–4.2)

token breast-feeding 20.2% 14.0% 1.6 (1.1–2.1)

Regarding the newborn feeding satisfaction

Very unsatisfied 10.6% 2.0% 9.0 (5.5–14.6)

unsatisfied 68.1% 62.7% 1.8 (1.3–2.4)

ok 21.2% 35.3% 1 (reference)

Satisfied 524% 40.2% 1.7 (1.3–2.2)

Very satisfied 18.6% 18.7% 1.0 (0.7–1.4)

4.5.2 Results of benchmark datasets with computational model

Here, an experiment was conducted using our multiple integrated strategy of US, en-
semble classifier and classification threshold on an unbalanced set of benchmark data.
Three publicly available datasets: MDD [267], PPD [115], and Anxiety [268], all of which
have high-class imbalance ratios, were utilized in this experiment. Table - 4.1 includes
condensed explanations of the three different datasets that were analyzed. After the
experiment, Table - 4.8 was shown, the combined technique that was proposed, which
included SMOTE or US and ensemble learning RF, as well as the combined method
that was developed, showed the highest level of sensitivity. The proposed combina-
tion of RF and US has the smallest Mean Square Error (MSE) of any of the possible
combinations. The proposed combination that includes RF has the best performance
in terms of area under the curve AUC as well as specificity.Ultimately, data with high-
class imbalance ratios may be efficiently processed using the proposed combination
strategy with ensemble learning RF and US. Because both US and RF make use of
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Table 4.8: Benchmark datasets with large class imbalance ratios

Dataset Method Metrics
Precision Recall F1 score AUC MSE

MDD

SMOTE+RF 0.89 0.64 0.71 0.92 0.0145
MetaCost+RBF 0.98 0.55 0.75 0.95 0.0426
US+RF 0.91 0.82 0.84 0.94 0.0415
GS kumar et al [253] 0.84 0.61 0.71 0.86 0.3740

PPD

SMOTE+RF 0.87 0.82 0.85 0.98 0.0084
US+PSO+RF 0.87 0.84 1.00 0.76 0.1247
US+RF 0.71 1.00 0.82 0.81 0.0449
Natarajan et al [108] 0.82 0.91 0.79 0.84 0.0871

Anxiety

SMOTE+RF 0.92 0.87 0.84 0.81 0.0635
SMOTE+PSO+RF 0.91 0.82 0.85 0.94 0.0415
US+RF 0.91 0.86 0.82 0.76 0.0487
US+PSO+RF 0.91 0.82 0.91 0.74 0.0435
Priya et al [254] 0.87 0.81 0.84 0.83 0.0361

ensemble learning, this is indeed the case.

4.5.3 Results of the collected data with computational model

In order to validate the proposed computational approach, this study used six different
datasets out of which three datasets were collected during the course of this research
namely EPDS, PHQ-9, PDSS as shown in Table - 4.1.

• Results of selection of important attributes using PSO
Following PSO-based attribute extraction, the attributes that were chosen to be
included are detailed in Table - 4.9. The results show that there were fewer at-
tributes selected by PSO as compared to the initial data. Thus, the data size
might be reduced and compute in lesser time than with the earlier experiments.
To make sure the recommended compositions of the resampling, PSO, and Meta-
Cost techniques worked, the KNN, SVM, RBF, and RF classifiers were evalu-
ated on all three datasets. In order to handle medical datasets with unbalanced
classes, the research aimed to find the optimal mix of algorithms based on AUC,
recall, F1 score, and accuracy.

• Results of evaluation metrics

1. Precision metric
In terms of precision, the following is a summary of the best precision that
can be achieved across all three datasets presented in Table - 4.10, 4.11,
and 4.12: (1) the overall optimal accuracy was attained by merging SMOTE
with RF. (2) When applied to the PHQ-9 dataset, the combined SMOTE
and MetCost and RF approach provided the best precision. (3) When used
on the PDSS dataset, the combination method of US and RF provided the
best precision. For the EPDS dataset ultimately, 4 out of the 6 datasets
(excluding the EPDS and MDD datasets) show that SMOTE can enhance
precision, as evidenced by Table - 4.13. Given these circumstances, it is
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Table 4.9: Extracted attributes by PSO

Datasets Original no of
Attributes

Selected no of
Attributes Name of extracted Attributes

PHQ-9 10 8

Having problems with infertility,
History of PPD,
paternal thoughts on pregnancy,
obstetrical abnormalities,
and stress at work.
Worry about going back to work
Planned pregnancy

PDSS 7 4
Parent-child bond, giving birth,
and happiness with feeding
Setting off labour

EPDS 10 6

#Offspring, Martial status,
History of depression,
Prenatal use of depressants,
Birth weight, Gestational age

reasonable to assume that SMOTE can efficiently deal with the sensitivity-
asymmetric class dataset. When dealing with data that is uneven between
classes, the recursive fuzzy method RF is a good choice.

2. Recall metric Tables - 4.10, 4.11, and 4.12 show the results of the studies,
and the best recall for each of the three sets of data is as follows: (1) In
the PHQ-9 dataset, the combined efforts of the MetaCost and RF models
yielded the best recall. (2) In the PDSS dataset, the combined efforts of the
MetaCost and RBF network models yielded the best recall. (3) In the EPDS
dataset, the combined efforts of the SMOTE, MetaCost, and SVM models
yielded the best recall. MetaCost is capable of handling the imbalanced
class dataset with respect to Recall efficiently.

3. F1 metric The following is an explanation of the best F1 metric for each of
the three datasets presented in Tables - 4.10, 4.11, and 4.12. (1) The SVM
classifier with no rebalancing performed the best in the PHQ-9 dataset, pro-
ducing an F1 measure of 0.8612. This was the best possible result out of
other combinations. (2) Without rebalancing the dataset, the SVM classi-
fier obtained the best F1 measure of 0.8392 in the PDSS database. The
PDSS dataset is an example of when this is valid. (3) With an F1 metric of
0.8275, the EPDS dataset was best served by the combined SMOTE and
RF strategy. This method also received the highest score. The PHQ-9 and
PDSS datasets, as shown in Table 4.13, achieve a high F1 metric even with-
out rebalancing or using SVM for dataset classification. This is because the
databases include details on women who have PPD and who have been to
the hospital for treatment, as well as those who have returned to ensure that
the treatment was effective. Hence, there are more samples with PPD than
without it (Table - 4.1). However, in other combination methods, the results
were shown as N/A because the F1 metric of the EPDS dataset had the
threshold F1 0.5. Lastly, we see that, with the exception of the PHQ-9 and
PDSS datasets, the RF classifier could potentially enhance the F1 measure.

83



Therefore, the best way to deal with class data that is imbalanced is to use
ensemble learning in conjunction with a classification threshold approach
(F1score > 0.5).

4. AUC metric Tables - 4.10, 4.11, and4.12 present the findings of the ex-
periments that were conducted after the classification of the three datasets.
The ideal combination strategy for each of the six datasets is summarised
in Table - 4.13 with respect to the AUC, recall, precision, and F1 score mea-
sures. When dealing with imbalanced class datasets, it was discovered that
the following combinations were most effective in maximizing AUC. (1) The
PHQ-9 dataset with the best AUC was constructed by combining SMOTE
and RF. (2) The combined SMOTE and RF approach was the most effective
one for analyzing the PDSS dataset, yielding an AUC of 0.8746. (3) The
EPDS dataset with the best AUC was obtained by combining SMOTE with
RF, which resulted in a value of 0.8936 accuracy. In a nutshell, the RF clas-
sifier was the one that yielded the best AUC across all three datasets, as
can be shown in Table - 4.13.Nevertheless, it was found that the AUC of the
EPDS dataset was unsuitable for some combination techniques using the
F1score > 0.5threshold.
These findings are omitted. Furthermore, following the rebalancing of classes
using SMOTE, the ensemble method (RF classifier) may be able to enhance
AUC. So, to handle class data that is imbalanced, ensemble learning and
classification threshold analysis (F1score > 0.5) are good methodologies.

4.6 Discussion

The approach that has been proposed was a combination of multiple data level as well
as algorithm level methods that is used for medical data that has imbalanced classes,
particularly for datasets pertaining to postnatal depression. The application of SMOTE
and OS approaches addresses the imbalanced class problem in this instance. The
next step is to use PSO-based attribute extraction to determine the most important
attributes. Lastly, a cost-sensitive classifier is built using MetaCost. The aforemen-
tioned three approaches yield a wide variety of combinations. A number of findings
are derived from the three experimental results, which are addressed in the following
paragraphs.

4.6.1 An efficient classifier is ensemble learning/Random Forest

Choosing the optimal classifier from the various classification methodologies is crucial
when trying to get the best data classification results [269]. The proposed computa-
tional approach was put through its paces in this work, which involved experimenting
with unbalanced prenatal as depression datasets. Tables 4.8 and 4.13 show that, for
most datasets, the RF classifier, which is a part of ensemble learning, has the best
AUC, recall, and precision metrics. Furthermore, multiple research studies have shown
that the RF algorithm can handle unbalanced classification problems [270]. Therefore,
ensemble learning is the best approach for categorising data with an imbalance of
classes, according to this study’s results.
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Table 4.10: Results of the PHQ-9 dataset

Methods Metrics Algorithms
KNN SVM RF RBF

No handling

Precision 0.781 0.734 0.795 0.721
Recall 0.7645 0.9972 0.9037 0.9949
F1score 0.7764 0.8612 0.8354 0.8243
AUC 0.5871 0.5026 0.697 0.718

SMOTE

Precision 0.6993 0.5750 0.8140 0.7990
Recall 0.7191 0.9389 0.8621 0.5246
F1score 0.7088 0.7132 0.8371 0.6325
AUC 0.6898 0.5899 0.9025 0.7668

PSO

Precision 0.7777 0.7352 0.7783 0.7569
Recall 0.7907 0.9665 0.7925 0.9468
F1score 0.7056 0.7043 0.8357 0.5712
AUC 0.5880 0.5070 0.6676 0.7238

MetaCost

Precision 0.7798 0.7329 0.7893 0.7321
Recall 0.7760 0.9103 0.9996 0.9966
F1score 0.7777 0.8458 0.8454 0.8441
AUC 0.5880 0.5014 0.7537 0.5061

Under
Sampling

Precision 0.7458 0.7312 0.7607 0.7748
Recall 0.7632 0.6502 0.7682 0.6014
F1score 0.7625 0.7635 0.7684 0.6001
AUC 0.7634 0.6974 0.8451 0.7198

SMOTE+PSO

Precision 0.7169 0.7437 0.7659 0.7577
Recall 0.8338 0.6676 0.8120 0.5860
F1score 0.7707 0.7031 0.6555 0.7880
AUC 0.7820 0.7076 0.8610 0.7391

SMOTE+
MetaCost

Precision 0.695 0.578 0.824 0.768
Recall 0.724 0.984 0.8614 0.512
F1score 0.705 0.715 0.805 0.601
AUC 0.678 0.564 0.894 0.712

PSO+
MetaCost

Precision 0.7314 0.782 0.746 0.756
Recall 0.785 0.9874 0.8214 0.924
F1score 0.775 0.835 0.789 0.835
AUC 0.5863 0.5005 0.6590 0.5198

SMOTE+
PSO+
MetaCost

Precision 0.684 0.712 0.816 0.726
Recall 0.794 0.685 0.812 0.574
F1score 0.754 0.796 0.782 0.654
AUC 0.702 0.718 0.824 0.715
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Table 4.11: Results of the PDSS dataset.

Methods Metrics Algorithms
KNN SVM RF RBF

No handling

Precision 0.7621 0.7258 0.7589 0.7145
Recall 0.7323 0.941 0.8654 0.9941
F1score 0.7451 0.8392 0.8012 0.8345
AUC 0.5632 0.5178 0.7351 0.7148

SMOTE

Precision 0.6874 0.6178 0.8094 0.8547
Recall 0.6235 0.9741 0.7325 0.5981
F1score 0.6324 0.7583 0.7745 0.5874
AUC 0.6547 0.6821 0.8746 0.7354

PSO

Precision 0.7852 0.7259 0.7684 0.7148
Recall 0.7624 0.9957 0.8576 0.9847
F1score 0.7682 0.8374 0.8357 0.8127
AUC 0.5987 0.5184 0.7165 0.7317

MetaCost

Precision 0.7684 0.7123 0.7567 0.7189
Recall 0.7352 0.841 0.8712 0.9847
F1score 0.7468 0.8347 0.8096 0.8371
AUC 0.5683 0.5147 0.7368 0.5124

Under
Sampling

Precision 0.7458 0.7312 0.8607 0.7748
Recall 0.7632 0.6502 0.7682 0.6014
F1score 0.7625 0.7635 0.7684 0.6001
AUC 0.7634 0.6974 0.8451 0.7198

SMOTE+PSO

Precision 0.7532 0.6314 0.7985 0.8347
Recall 0.6987 0.9241 0.7489 0.5124
F1score 0.7103 0.7412 0.7625 0.6357
AUC 0.72160 0.6830 0.8608 0.7501

SMOTE+
MetaCost

Precision 0.6821 0.5763 0.7607 0.7984
Recall 0.6124 0.9809 0.7214 0.5281
F1score 0.6217 0.7296 0.7532 0.6240
AUC 0.6632 0.6190 0.8608 0.7241

PSO+
MetaCost

Precision 0.7652 0.7180 0.7604 0.7182
Recall 0.76320 0.9925 0.8547 1.0000
F1score 0.7854 0.8369 0.8047 0.8301
AUC 0.60217 0.5276 0.7084 0.5217

SMOTE+
PSO+
MetaCost

Precision 0.7521 0.6317 0.7962 0.8247
Recall 0.6952 0.9740 0.7348 0.5841
F1score 0.7014 0.7152 0.7548 0.64710
AUC 0.6401 0.7240 0.8547 0.7351
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Table 4.12: Results of the EPDS Dataset

Methods Metrics Algorithms
KNN SVM RF RBF

No handling

Precision N/A N/A N/A N/A
Recall N/A N/A N/A N/A
F1score N/A N/A N/A N/A
AUC 0.5871 N/A 0.697 0.718

SMOTE

Precision 0.7645 0.6932 0.7951 0.6974
Recall 0.8234 0.8974 0.8563 0.8425
F1score 0.7932 0.7796 0.8275 0.7641
AUC 0.7852 0.7418 0.8936 0.7784

PSO

Precision N/A N/A N/A N/A
Recall N/A N/A N/A N/A
F1score N/A N/A N/A N/A
AUC 0.5871 N/A 0.697 0.718

MetaCost

Precision N/A N/A N/A N/A
Recall N/A N/A N/A N/A
F1score N/A N/A N/A N/A
AUC 0.5871 N/A 0.697 0.718

Under
Sampling

Precision 0.7458 0.7312 0.7607 0.7748
Recall 0.7632 0.6502 0.7682 0.6014
F1score 0.7625 0.7635 0.7684 0.6001
AUC 0.7634 0.6974 0.8451 0.7198

SMOTE+PSO

Precision 0.7510 0.6604 0.7785 0.6741
Recall 0.7236 0.9120 0.7143 0.8274
F1score 0.7401 0.7618 0.7436 0.7456
AUC 0.7516 0.7236 0.8127 0.7620

SMOTE+
MetaCost

Precision 0.7506 0.6530 0.7921 0.6854
Recall 0.8350 0.9127 0.8536 0.8690
F1score 0.7963 0.7692 0.8274 0.7651
AUC 0.7836 0.7127 0.8884 0.7754

PSO+
MetaCost

Precision N/A N/A N/A N/A
Recall N/A N/A N/A N/A
F1score N/A N/A N/A N/A
AUC 0.5871 N/A 0.697 0.718

SMOTE+
PSO+
MetaCost

Precision 0.7596 0.6632 0.7582 0.6854
Recall 0.7158 0.9123 0.7217 0.8705
F1score 0.7354 0.7698 0.7402 0.7687
AUC 0.7365 0.7215 0.7798 0.7584
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Table 4.13: Best combined methods in AUC, recall, and F1

Dataset Metrics
Precision Recall F1 score AUC

PHQ-9 SMOTE+MetaCost
+RF MetaCost + SVM No handling + SVM SMOTE + RF

PDSS US + RF MetaCost + RBF No handling + SVM SMOTE+RF

EPDS SMOTE + RF SMOTE+MetaCost
+SVM SMOTE+RF SMOTE + RF

MDD MetaCost + RBF US + RF US + RF SMOTE + RF

PDD SMOTE + RF,
US+POS+RF US + RF US + PSO + RF SMOTE + RF

Anxiety SMOTE + RF US + RF US + PSO + RF SMOTE+PSO
+RF

4.6.2 AUC is increased by the SMOTE data sampling technique

SMOTE is a combination of OS and US. This implies that it takes into account both US
and OS methods at the same time, with the former aiming to change the ratio so that
more samples come from the minority class and fewer from the majority. SMOTE has
been used in a number of researches [243, 258] to improve classification performance
after handling imbalanced class data. Both experimental findings demonstrate that, as
shown in Table - 4.13, SMOTE achieves the best AUC in five of the six datasets. To
illustrate, the SMOTE method has the dual benefit of enhancing prediction of patient
depression and decreasing the probability of inaccurate categorization.

4.6.3 PSO-based attribute extraction improves sensitivity

There is evidence that attribute extraction based on PSO can improve classification
performance [240, 243].To enhance classification sensitivity and decrease processing
time, this study employed a PSO-based attribute extraction. Furthermore, when con-
ducting PSO-based attribute extraction, neither of the two tests detected overfitting.
The reason behind this is that there was only a small (5%) difference in evaluation met-
rics between the training and testing datasets. Table 4.9 shows the two items being
compared are : the attributes chosen using the original data, and the attributes cho-
sen using PSO were much smaller, resulting in a decrease in calculation time and an
optimization in the data dimension. Table - 4.13 displays the experimental findings that
demonstrate how the proposed combination approaches using PSO-based attribute
extraction were able to achieve the highest sensitivity levels in four out of six datasets.
Therefore, the treatment of class imbalance is influenced by attribute extraction based
on PSO.

4.6.4 MetaCost reduces sensitivity

CSL is a well-performing, efficient approach, especially where the cost of misclassifi-
cations can be reliably forecast. This makes CSLcost-based learning an ideal strategy
for dealing with classes that were highly unbalanced. When dealing with imbalanced
samples, a MetaCost technique CSL takes into account a variety of misclassification
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costs and makes use of a number of various penalty ratios [245]. The unbalanced dis-
tribution of the class samples had an effect on the level of sensitivity as demonstrated
by the findings of the illustrative experiment. According to Table - 4.13, the example ex-
periment demonstrated that MetaCost can decrease the cost of misclassification and
reach the greatest sensitivity in three out of six datasets.

4.6.5 When implementing misclassification costs into account, when to utilize
OS or SMOTE

Ratios that are not within the range of 1.9 to 9 were deemed extremely imbalanced,
whereas those that were within this range are deemed slightly imbalanced, as stated
by Noorhalim et al. [257]. According to Table - 4.13, both experiments demonstrate
that SMOTE obtains the greatest AUC across all datasets. However, in the experiment
with a large imbalance, US demonstrates greater sensitivity and F1 metrics. The RF
classifier was used to compare US and SMOTE in the three depression datasets that
had a high imbalanced ratio, by using the cost curves of benchmark datasets. This was
done since ensemble learning was found to be an effective classifier in Table - 4.13. It
is evident from Figure 4.3 that the expenses linked to misclassification in the US were
lower than those linked to SMOTE. The estimated error rate of the random forest is
shown by the y-axis, which represents the normalised projected cost. As shown on the
x-axis, the cost of mistakenly classifying a positive example as negative is represented
[271]. The US cost curve is blue, while the SMOTE cost curve is red. So, datasets
with a skewed ratio higher than six should use US results to make decisions. When the
imbalanced ratio is less than six, decision-makers should look at both SMOTE and US
results at the same time to make the best choice.

4.6.6 Research finding

In order to accurately detect signs of postpartum depression beginning immediately
after delivery and continuing for up to six weeks thereafter, the study set out to develop
a model that can manage imbalances in datasets pertaining to prenatal depression.

This would aid in identifying mothers who are at a higher risk of having compli-
cations during childbirth. A 6-week evaluation was performed with the use of other
questionnaires if the first stage evaluation revealed the presence of symptoms of de-
pression, and preventive actions will be initiated. The statistical analysis of the study’s
participants reveals a wide range of substantial associations between PPD symptoms
and non-clinical characteristics such as socioeconomic status, level of education, bi-
ological and life stresses, and pregnancy-related, obstetric, and maternal adjustment
factors. Similar individual model results for postpartum depression were found in this
multi-stage investigation.

• Dealing with class imbalance: Merging the SMOTE, US, PSO, and MetaCost
methods, this study suggests a technique for handling medical datasets with un-
balanced classes. Ultimately, it can be concluded that (1) the RF-based method
consistently produces the highest AUC, recall, precision, and F1 scores in the
majority of datasets; (2) MetaCost may enhance sensitivity; (3) SMOTE may con-
siderably boost AUC; (4) US may enhance sensitivity and F1 in data exhibiting a
high class imbalance ratio; and (5) PSO-based attribute extraction may enhance
sensitivity while mitigating data dimension.
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((a)) MDD Dataset ((b)) PPD Dataset

((c)) Anxiety Dataset

Figure 4.3: Misclassification for the MDD, PPD, and Anxiety Datasets are displayed in
(a–c)

• Eliminating classification errors: Classification issues affect minority groups and
lead to inaccurate results from classification models due to the unequal nature of
medical data. In order to improve the classification performance and create more
balanced class samples, this work utilized SMOTE and US.

• When it comes to the high uneven ratio, the US beats SMOTE: Based on the
high imbalanced ratio experiment and Drummond and Holte’s [272] cost curves,
we think that the US results should be used to make the choice for the imbalanced
ratio greater than 9. If the imbalanced ratio is less than 9, the person making the
decision can look at both the SMOTE and US data at the same time to figure out
what the best choice is.

• Pregnancy-related hypertension is another potential threat. This study is com-
parable to others that have found that difficulties during pregnancy are linked to
postpartum depression. Postpartum depression was shown to be more prevalent
among women with significant issues in a research [32, 273] of 1095 American
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mothers.

• Preeclampsia and other obstetric attributes were associated with postpartum de-
pression in a prior study of 490 Australian women [32], which is consistent with
the current findings.

• Postpartum depression was more common among women who did not partici-
pate in postpartum parenting programmes. However, the likelihood of postpartum
depression was higher after both treatments [274].

• Consistent with these findings is the idea that partner support plays a role in
preventing postpartum depression [236]. In this study, postpartum depression
was more strongly associated with mothers’ perceptions of a lack of available
assistance during the first week.

• These findings highlight the need of providing postpartum support to women by
showing that being unprepared to leave the hospital is a significant risk factor.
The lack of faith a woman has in the care her child will get after she leaves
the hospital is identified by Astbury et al. as a potential risk factor for postnatal
depression [275]. Clinician approaches for postpartum care should so include a
discharge-readiness assessment.

4.7 Summary

Analysis of the correlation between demographic, behavioural, and socioeconomic
characteristics and PPD symptom prediction was performed to take into account the
challenge of forecasting PPD outside of a therapeutic setting. This study’s results
could lead to the creation of self-monitoring instruments and treatment regimens that
could benefit women suffering with PPD.Using statistical analysis, this study deter-
mined whether demographic, psychopathological, social support, and prenatal factors
were associated with PPD symptoms from responses to the EPDS, PHQ-9, and PDSS.
Unbalanced class data are now a major problem in medical diagnosis, but there isn’t
just one classification method that can handle all of the needs. Using an intersection
of SMOTE, US, PSO-based attribute extraction, and MetaCost approaches, Chapter
4 introduces a better approach to rectifying unbalanced medical data. The number of
class instances is typically changed using SMOTE and US. Attribute extraction based
on PSO is utilized to decrease the data set size while preserving crucial attributes.
Depending on the misclassification costs and penalty rates, MetaCost determines how
to deal with a sample imbalance. To evaluate the efficacy of the suggested approach,
this study employs six medical datasets. Combining SMOTE, US, PSO-based attribute
extraction, and MetaCost methods allows for the creation of more efficient and effective
classification models for depression analysis, especially postnatal depression analysis.
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CHAPTER 5: POSTNATAL DEPRESSION PREDICTION
USING ACTIVE AND PASSIVE ASSESSMENTS

5.1 Introduction

This chapter presents another method of prediction of one of the depressive episodes
of the women called ‘postnatal depression’ or Postpartum depression (PPD) and ad-
dress the research question 4 defined in section 1.7. Among the various monitoring
techniques, this chapter also specifically deals about the combination of active and
passive monitoring. Each and every monitoring has its own metrics and demerits, thus
combining those can leads to the early prediction with more accuracy. Familiarity of
social media among the people, people start sharing the emotions through social me-
dia platforms. Data collected for active monitoring can be done with the questionnaire
assessment and Facebook posts analysed by passively monitoring and processed with
Recurrent Neural Network (RNN). Using the standard deep learning metrics, the hy-
brid attribute selection network is evaluated, results obtained are discussed in detail
and important attributes which determines the depression in social media posts are
predicted.

5.2 Active assessment and Passive assessments

In this research, both the active and passive monitoring are used to develop a model
to predict the postnatal depression. Active assessment can be carried only with the
users attention. It can be carried out in many ways like psychological questionare, and
biosignals measured in clinical environment etc., In this study this active assessment
measures are used in the prelimary step to monitor the appropriate mothers withPPD.
This observation can not be continued once they discharged from the hospital. Based
on this PPD there is vast change of occurrence within one year after delivery. So, Con-
tinuous assessment it not possible. Thus, those mothers can be monitored effectively
by means of Passive assessment methods. In this scenario, the user does not need
to actively engage in order to gather data. Biosignals observation using wearable also
creates some awareness that they were monitored. For this reason, one of the effec-
tive way to observe the mothers emotional and behavioural changes using the social
media posts.

5.3 Significance of Postnatal depression assessment using So-
cial Media

Social media platforms are getting closer to completely digitalize the way to interact
with each other. A study by Marriott and Buchanan [276] shows that a person’s online
personality and off-line personality are about the same in terms of how real they are.
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In the study stated above, a person’s ”online personality” is their personality traits that
can be inferred from what people think. Also, there are a lot more people using social
media sites than there used to be. As of 2017, 81% of all Americans have a social
media page. Because of this, it’s now possible to infer health risks from social media
sites. Data obtained for this research, in a passive manner via social media from the
mother’s one to six weeks of childbirth, can be used to predict the Postnatal Mental
depression.

5.3.1 Need of Understandable model

An Understandable model should be able to justify the process of categorizing users
of social media when it derives the outcome of depression detection based on the
posts that they make. This model can be treated as an Understandable model for the
following reasons:

1. Linking depression theory By building the model on top of an existing psycho-
logical theory for depression that accounts for how depressed individuals utilise
social media, it becomes possible to explain the crucial components of the detec-
tion process through a relation to the theory.

2. Post level Attention It is important to note that depressive symptoms are not
always readily apparent on social media platforms. However, even for persons
who are severely sad, these symptoms may be displayed via a limited number of
postings. As a solution to this problem, we made use of a postlevel attention algo-
rithm, which identifies posts that are particularly noteworthy and play a significant
part in the identification of sad persons from social media.

5.4 Materials

An outline of the data set collected to classify mothers as postnatally depressed is
provided in this section. It describes the main attributes of the dataset, the process
of gathering it and the criteria that were used to shortlist mothers for the study. And
benchmark datasets chosen for this comparative analysis are described.

5.4.1 Ethical Clearance

The Institutional Ethical Committee (IEC) at SRMCH RC in Chennai, India, gave their
approval for the data collection of this project. In 2022, data was gathered from April 15
to July 15. Participant acknowledgment of having read and understood the study’s reg-
ulations was documented with each participant’s signature on the information consent
form. All applicable ethical guidelines for gathering and analysing data were followed.

5.4.2 Participants Selection

The study included mothers who had returned for follow-up exams within six weeks
after giving birth at SRMCH RC and used a technique known as ”sequential participant
selection” to choose them.
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Criteria for inclusion

Mothers were explained about the intention of the study, and data of those who met
the following criteria were collected

• Women who had given birth between the ages of 19 and 35.

• The people who took part in the study were able to read about it, understand it,
and fill out the permission form in their heads.

• It doesn’t matter if the birth is natural or induced; the mother can be a first-time
mother or a mother of more than one child.

• Women those who know to use Facebook

The study sample was selected using these criteria to ensure that it accurately re-
flects the demographic of mothers within a specific age range who have given birth.
Incorporating mothers with varying birth outcomes and family sizes also helps to gen-
eralise the data.

Criteria for exclusion

The following factors led to the exclusion of potential participants:

• Women who are carrying more than one baby.

• Women who are sure they will have a baby after IVF treatments.

• Women who have had complicated pregnancies in the past.

• Women with like those with gestational diabetes mellitus,high-risk pregnancies,
hypertension, a long-term illness.

Some groups of mothers were excluded based on these characteristics because
they were more likely to have postpartum depression and because their stories may
not have been representative of all mothers. Additionally, a few of women may not be
able to give their data to the research because of certain health issues.

5.4.3 Data collected

PDSS questionnaire

The participants were asked to complete out the Postpartum Depression Screening
Scale (PDSS) [277], a questionnaire that rates depression on a rating system ranging
from 0 to 63. Data regarding the child and its birth, including the date of birth and
whether it was the first child, were also collected alongside the survey questionnaire
[60]. The mother’s age, occupation details and the family’s economic status were col-
lected. The mothers’ social media usage pattern was also inquired.

The PDSS indicates which women should get further evaluation for a definite di-
agnosis of postpartum depression and subsequent therapy by determining their risk
level. A total of 56 items were initially developed, with eight items in each of the seven
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dimensions: eating/sleeping disorders, anxiety/insecurity, emotional instability, cogni-
tive impairment, loss of identity, shame/guilt, and thoughts of self-harm. With the use of
confirmatory factor analysis, Beck et al., were able to pare the dimensions down to 35
items, ensuring construct validity. With the last two weeks as a point of reference, each
statement explains how a woman could be feeling after the delivery of her child. On
a 5-point Likert scale, women are asked to indicate how much they agree or disagree
with each statement [164].

Facebook data

By promising anonymity, the mothers were requested to grant permission for collecting
information from their Facebook posts, which was used in this study. Posts data were
collected using the API in the survey. Data from each participant was obtained and
then by using the proposed model, likelihood of PPD is predicted. The study examined
English-written text messages, particularly those posted after the fact. Therefore, post-
partum depression mothers’ text messages on social media primarily address topics
related to childbirth and postpartum emotions. The quantity of text released by each
women varies substantially, and data received from social networking sites includes a
lot of clutter.

5.4.4 Data preparation and cleansing

The dataset underwent data cleaning and pre-processing to remove duplicates and
unnecessary information. It was also standardised to ensure that the model could
handle it effectively. In this section, the procedures used to prepare the dataset for
the stress detection job are described. In order to streamline the data collected, a
minimum text volume and maximum number of postings were defined. This ensured
that the study’s data was relevant and that there was a large enough sample to draw
valid conclusions.

Data cleaning procedures

As a first step, based on PDSS data, this work divides mothers into two categories:
those with low PDSS scores (less than 11) as control group and those with high EPDS
scores (more than 29) as depressive group. Secondly, the posts from the two groups
were collected. In Figure 5.1 the specific factors that were considered during the clean-
ing procedure were depicted.

Table - 5.1 shows how noisy the original data was, and the following observations
could be made. There was insufficient textual volume for 318 participant so it was
ignored. The posts was then cleaned up by omitting any symbols that aren’t alphabets,
numbers, or punctuation using regular expressions. Women who did not have 10 posts
or whose posts were excessively lengthy (more than 3000 characters) or extremely
brief (less than 2 words) were ignored. When these steps were applied to the raw
data, 631 user profiles were shortlisted.

Based on the accepted standards in the medical field, researchers used the Post-
partum Depression Screening Scale PDSS to separate the data into two groups. A
low-risk group (control group) was defined as all mothers whose depression annota-
tions in the cleaned data were less than 11. Those with a total score higher than 29
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Figure 5.1: Data cleaning

were classified as depressed. Anyone with depression who scored in the gray area
was not included in the study. The best strategy would be to conduct a regression
analysis using unprocessed depression scores. As can be seen in Table - 5.2, this
strategy resulted in a 314-person drop in the size of the data population. These were
divided into a ”control” group of 99 women who showed no symptoms of depression
and a ”depression” group of 215 mothers.

5.4.5 Benchmark datasets

• Reddit Self-reported Depression Diagnosis (RSDD) dataset: The suggested
model is tested using the RSDD dataset, much like the one used by Yates et
al. [278]. Furthermore, three annotators independently checked and classified
posts about depression diagnosis assertions, and divided them into two cate-
gories namely: depressed and control group. Reddit’s users who identify as
depressed are grouped together. Users who do not mention or utilise any terms
connected to depression in their posts are chosen at random to form the control
group. Inside the RSDD dataset, there are 9,210 users who are depressed and
107,274 users who are control subjects. Users post an average of 969 times,
with 646 being the median. There are 3,070 people with diagnoses and more
than 35,000 control users spread across the dataset’s three sections: training,
validation, and testing.
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Table 5.1: Statistical details about the different steps of data preparation. The data is
shown as the average ± standard deviation.

Observed data Initial data Cleaned data
Number of participants 949 631

Age 24.88 ±6.47 25.99 ±6.11
Depression score 18.97 ±11.68 17.99 ±11.04

Total number of posts 1257 872
Avg. posts count 65.93 ±103.85 21.9 ±29.3

Table 5.2: Statistics of participants based on depression score

Observed data Depression group Control group
Number of participants 215(68.47 %) 99(31.52 %)
Age 25.67 ±6.43 25.87 ±5.21
Depression score 36.44 ±6.37 6.17 ±2.75
Total number of posts 358 280
Avg. posts count 87.26 ±30.13 63.91 ±29.07

• Self-Reported Mental Health Diagnoses (SMHD) dataset: Posts on Reddit
produced by users who have claimed to have been confirmed with at least one of
nine mental health conditions (called ”diagnosed users”) and controlled individu-
als who are healthy persons make up the SMHD dataset [279]. All the posts that
were made to Reddit that were linked to mental health or that contained terms
that were associated with a mental health condition were included in the data of
the diagnosed users. The data of the control users did not contain any posts of
this nature. Within the SMHD, make use of the Bipolar disorder prediction data,
which includes Total 6,434 users and 575K posts among that for training 1,216
users and testing 1,247 individual users posts were used.

5.5 Methodology

This section describes the entirety of the network architecture that constitutes the At-
tribute Selection Hybrid Network (ASHN) Model, as shown in Figure 5.2. It is made
up of two interconnected recursive attribute networks, which evaluates the posts. An
established theory of depression and a post-level attentiveness that resides above net-
works are used to achieve each attribute. Each network’s technique and post-level
attention, as well as the reasoning behind their development and deployment, are de-
scribed in the section.

5.5.1 Attribute Selection Hybrid Network Model-workflow

This model is proposed as an effective method to predict the cases of maternal de-
pression. Nowadays, people convey both happy and sad feelings in their social media
posts. A total of 296 out of 358 depressed mothers’ negative posts were analysed
using attribute networks to determine which traits were most important in predicting
the mothers’ depression. In Figure 5.2 the ASHN is depicted. This ASHN model uses
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Figure 5.2: An Architecture for Attribute Selection Hybrid Deep learning Models

four attribute networks that each use a well-established theory related to postnatal de-
pression to evaluate posts and fellow by a postlevel attention network which includes
the active assessment scores. What follows is an in-depth analysis of each network in
ASHN and the post-level attention, together with a discussion of their design principles
and implementation details.

5.5.2 Attribute engineering methods

The attribute engineering was carried in this model using the word embeddings meth-
ods such as:

• Global Vectors (GloVe): Google Glove is a method that uses two different meth-
ods: count-based (like Principal Component Analysis (PCA)) and direct prediction
(like word2vec) [280]. The GloVe method is a traditional word embedding tech-
nique that acquires effective word representations via the process of training on
aggregated global word-word co-occurrence data derived from a corpus. As a
result of this characteristic, it is useful in terms of collecting linguistic aspects on
a global scale by monitoring the co occurrences of words across different corpora
[281].

• FastTEXt: Specifically, it builds upon Mikolov’s embedding [282]. Words are
represented as a bag of character n-grams in the FastTEXt technique, which is
based on the skipgram model [283]. Each letter n-gram has its own vector rep-
resentation, and words are just the total of all these representations. In order to
learn the word representation, a big window of words from both the left and right
contexts is considered. Because it employs character n-gram word tokenization,
FastTEXt can produce an embedding for misspelled words, unusual words, or
words that weren’t in the training corpus [284].

• Bidirectional Encoder Representations from Transformers (BERT): BERT
ranks among the most potent word and context representations [285]. The atten-
tion mechanism and transformer approach constitute the basis of BERT. Paying
close attention to a phrase allows one to see how its words fit together [286].
While doing so, BERT is able to take into account the whole scope of a word’s left
and right context. Additionally, word-piece tokenization is also used by the BERT
model [287].
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5.5.3 Attribute based Neural Networks

The Postnatal depression detection process, which is carried out by domain experts
who have prior information about depression, serves as the source of inspiration for
this attribute networks. In this process, domain experts review the social media post-
ings of mothers who may be suffering from postnatal depression in order to identify
important indications corresponding to their domain knowledge. As a consequence of
this impetus, four neural networks are developed, which are seen in Figure 5.3, 5.4,
5.5. Based on findings from the field of psychology, these neural networks are specif-
ically designed to address four distinct types of severe depressive symptoms. The
representation of a non-vector is a lowercase symbol (for example, x), and a sequence
of vectors is represented with a symbol with upper-case (for example, X). These sym-
bols are utilized in the descriptions that are presented below.

• Linguistic Style (morphological order) (A1)

A number of studies have indicated that persons who are afflicted with depression
exhibit alterations in their language patterns.Changes like this affect the uncon-
scious conceptualization of sentence complexity and the placement of verbs,
adverbs and nouns [288].

Figure 5.3: An attribute network schema for language style analysis

Based on this idea, the first kind of attribute network could be created, and its pri-
mary purpose was to classify people according to their preferred style of writing.
Not only are the various styles taken into consideration, but also the sequence in
which the words are placed and the positioning of the tags for the various parts
of speech were observed. Consequently, the attribute network is provided with
part-of-speech tags from mothers’ post. After that, the network will use RNN to
convert the tags into a one-hot vector with the same amount of part-of-speech di-
mensions. An attribute vector that was converted from network, denoted as (a1),
as depicted in Figure 5.3 below.

a1 = RNN (xpos ) (5.1)

• Sentimental words (A2)
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Individuals experiencing depression are more likely to exhibit negative thought
patterns and emotions, as per the cognitive hypothesis [237]. Therefore, accord-
ing to that notion, mothers who were diagnosed with postpartum depression PPD
were more prone to post unpleasant things on social media more frequently than
other people.

Figure 5.4: A schema of attribute network to predict positive, negative, and neutral
feelings.

Based on the analysis of the feelings in their postings, the proposed attribute ex-
traction network is expected to detect traits of depressed behaviour, as shown in
Figure 5.4. For the purpose of determining the sentiment scores that are con-
nected with each individual word, SentiWordNet was used [289]. Following the
encoding of the one-hot vectors to an attribute vector (a2) by means of a RNN,
will convert all the words contained within a post into one of the three categories
that SentiWordNet creates, namely positive, neutral, and negative classifications.

a2 = RNN (x sent) (5.2)

• Depressive Symptom words (A3)

Postpartum depression is characterised by emotional distress and is more often
shown in online postings made by women who suffer from the disorder. These
symptoms include sleep disturbances, feelings of loneliness, feelings of being
bewildered and disoriented, the experience of delusions and hallucinations, and
uncomfortable feelings. It has been suggested that the attribute network can be
utilized in order to locate expressions within postings that are associated with
symptoms of postnatal depression. In order to identify the symptoms linked to
PPD, a vocabulary was developed using sentences from the DSM-V as evidence
keywords [290].

The symptoms linked to PPD may be better identified in this way. The lexical
vocabulary incorporates twelve words from the DSM-V for depression medication
and seventy-six key phrases pertaining to nine categories of symptoms. Then
similarity between a mother’s social media post and dictionary tokens were cal-
culated using the following steps: First, The word vector correspond to each of
the symptoms are created. Next, the individual word vectors were combined to
one vector using element-wise multiplication. A symptom matrix was generated
for the vector with similarity to a post and dictionary. The matrix was projected
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Figure 5.5: An attribute network schema for predicting depressive symptoms

onto the attribute vector (a3) using the Multi-Layer Perceptron (MLP), as depicted
in Figure 5.5

fi = xWEi (i = 1, . . . , 9)

Y = softmax ([f1, f2, . . . , f9])

a3 = tanh(f(Y))

(5.3)

• Ruminative Response Style (A4)

The fact that ruminative response styles show up in routine thoughts and be-
haviour [291]. People with depression have a tendency to talk about their neg-
ative feelings or think about bad things over and over again. They may find that
they utilise the same terms often in their internet posts as a result of this.

Figure 5.6: An attribute network schema for Psycholinguistic style

Figure 5.6 shows the results of an attribute RNN network that was developed
based on the theory mentioned above. The network was designed to monitor the
frequency with which specific stories regarding significant issues after delivery
were expressed. To determine the degree of correlation between a particular
post and others, two vectors were computed using dot product. By analysing
this data, the relative importance of each post was determined. Afterwards, the
degree was transformed into an attribute vector called a4 using MLP.
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f = softmax(x · E) (5.4)
a4 = tanh(f(a)) (5.5)

Due to the fact that every single post of mothers exhibits a unique collection
of Postnatal depressed attributes, it is essential to take into account the attribute
weights when integrating the attribute networks. As a result, a vector with weights
was build to show which post characteristic is the most representative to predict
postnatal depression. After multiplying the weights of the attribute networks, a
post vector (p′) was built by summation of all the attribute vectors.

w = softmax(f(x)) (5.6)

p′ =
∑
i

wi · fi (i = 0, . . . , 4) (5.7)

By changing the weights, it was possible to figure out how and why depression
develops. The weights show how much each post’s characteristic contributed to
its classification, which helps explain how and why depression developed.

• Post level Attention

Posts on social media may not always reflect a person’s emotional state, even
if mothers suffer from depression. So, while selecting and dealing with social
media posts, needs additional attention and care. Furthermore, the attention
mechanism on the content of postings was used in a manner comparable to
the hierarchical attention technique [292]. A post-level context vector v, was cre-
ated and project it onto the post vector, p′, to find the importance of the posts of
prenatally depressed mothers.

a = softmax (p′Wv) (5.8)

o =
∑
i

ai · p′
i (i = 1, . . . ,M) (5.9)

Given that, M is the overall quantity of postings. The depression classification out-
put vector using MLP is represented as o. Finally, classifying postnatal depressed
mothers from others.

5.5.4 Metrics

The F1-measure, recall, accuracy, and precision were evaluated using True Positive,
True Negative, False Positive, and False Negative by given by equations defined in
subsection 2.2.7. The F1 score is one metric for accuracy; others include the model’s
recall and precision. There are four ways to categorize the degree to which a model
correctly or incorrectly predicts a class:

• When a model accurately predicts the presence of depressive symptoms, it is a
true positive.
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• When a depressive symptom is accurately predicted to be absent by the model,
this is known as a true negative.

• A false positive occurs when a model makes an inaccurate prediction about
the presence of positive depression symptoms as a class.False negatives occur
when a model makes an inaccurate prediction about the negative class, which in
this case is the absence of depressed symptoms.

The accuracy with which a model identifies genuine positives is called recall, while the
ratio of true positives to all positives is called precision.

At any certain classification threshold, the AUC evaluates total performance. The
notion is abbreviated as Receiver Operating Characteristic Curve. By comparing the
proportion of accurate predictions to the number of incorrect ones, a ROC curve can
be used to assess a classifier’s accuracy.

5.6 Results

This section describes the model’s hyper-parameters and the research’s findings on
depression.There were four experiments in this chapter for ensuring the trust wor-
thiness of the postnatal depression prediction model. First, from the Social media
posts, the associations between risk variables and PPD was ensured using the word
clouds.The Second was an evaluation was based on the CNN-R, CNN-E with RNN
in ASHN. Third, evaluation carried with proposed ASHN model with different attribute
engineering methods. Fourth was an evaluation of the experiment using the proposed
ASHN with the collected and benchmark datasets.

5.6.1 Experimental setup

Tables - 5.3 and 5.4 display the hyper-parameters used with these selected models
and are consistent with those found in previous similar study based on single attribute
network [293]. In the experiment, a GEForce GTX 1080 GPU, a uniform sampling ap-
proach, and a training duration of 1234 seconds were all employed. For training, every
model made use of stochastic gradient descent and the Adam optimizer [245]. Sev-
eral older models were used similar pooling method, number of dense layers, pooling
length, convolution size, and number of convolutional filters were given in Table -5.4.

Table 5.3: Hyper-parameter Search Spaces

Computing Infrastructure GeForce GTX 1080 GPU
Number of search trails 50
Search strategy Uniform Sampling
Training duration 1482 sec

Tokenization and part-of-speech tagging were applied to each post with the help of
Stanford CoreNLP [294]. Posts with a token count of fewer than five or greater than
one hundred were removed. The remaining postings were randomised, and around
245 were chosen at random for each user to utilise as training data.Word vectors are
embedded using GloVe [280], and the sequence is encoded using GRU [295], a version
of an RNN. Generalisation is enhanced by employing dropout and L2 regularisation. L2
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Table 5.4: The hyper-parameters used in the proposed model

Hyper-parameter Search Space Best assignment
embedding dropout uniform-float[0, 0.5] 0.3
number of pre-encode
feedforward layers choice[1, 2, 3] 3

number of epochs 50 50
batch size 64 64
gradient norm uniform-float[5, 10] 8.0
encoder hidden size uniform-integer[64, 512] 93
number of encoder layers choice[1, 2, 3] 2
number of pre-encode
feedforward hidden dims uniform-integer[64, 512] 232

pre-encode feedforward activation choice[relu, tanh] tanh
pre-encode feedforward dropout uniform-float[0, 0.5] 0.0
number of output layers choice[1, 2, 3] 3
output hidden size uniform-integer[64, 512] 384
output dropout uniform-float[0, 0.5] 0.2
integrator hidden size uniform-integer[64, 512] 337
number of integrator layers choice[1, 2, 3] 3
integrator dropout uniform-float[0, 0.5] 0.1
learning rate scheduler reduce on plateau reduce on plateau
learning rate scheduler
reduction factor 0.5 0.5

output pool sizes uniform-integer[3, 7] 6
learning rate optimizer Adam Adam
learning rate loguniform-float[1e-6, 1e-1] 0.0001

regularisation rate at 0.0001 and the learning rate at 0.001 was set. Separate dropout
rates (0.3 for the baseline and 0.2 for our model) were established. Only the top five
most frequent terms in the vocabulary are retained, while the remaining words are
replaced with ¡UNK¿ tokens.

5.6.2 Comparison results of word clouds

The Social media postings considered for analysis were chosen based on several fac-
tors, such as the title and contents of the posts. For the purpose of identifying postings
pertaining to PPD and making predictions about the most popular terms, the most
prevalent words were visualised using the titles of each category such as PPD, de-
pression, and normal daily life post [296].

Both Figures -5.7 and -5.8 display word clouds that represent the titles and contents
of postings within each category. Figures -5.7(a),5.8(a), and -5.7(b),5.8(b) both have
many common occurrences of terms, however Figure –5.7(c),5.8(c) uses a significantly
different collection of keywords to extract posts based title and content from the other
two categories. Even among keywords that show up in both the PPD and depression
word clouds, there is a clear variation in frequency of usage of words. In addition, the
PPD group has certain phrases, such as baby,feeding and birth, which makes associ-
ation with PPD and their experiences as parents. Figures - 5.7 and - 5.8 show how the
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((a)) Keywords in title of PPD posts ((b)) Keywords in title of Depression posts

((c)) Keywords in title of daily life posts

Figure 5.7: Keywords of PPD, depression, daily life posts’ title

title and body text frequently utilise the same words, which may be used to verify the
accuracy of the content vectors calculated using the post-level attention framework.

5.6.3 Results based on the CNN-Random, CNN-Enabled with RNN in ASHN

The proposed ASHN model with RNNs were replaced with CNNs as developed by
Yates et al., [278] . This allows us to examine the distinction between the conventional
network and the attribute networks that are constructed upon RNN as the baseline
method. After encoding the posts as vectors the CNN neural models merge all of the
post vectors into one. Through the process of projecting the vector, the models cate-
gorize users. Here, processing each individual post, combining them, and categorizing
mothers with PPD or without PPD were similar to proposed model. The results of the
collected test set for postnatal depression identification were presented in Table - 5.5.
With the cutting-edge CNN-R neural model, model outperforms all others.
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((a)) Keywords in contents of PPD posts ((b)) Keywords in contents of Depression
posts

((c)) Keywords in contents of daily life
posts

Figure 5.8: Detailed word clouds for entries about PPD, Depression, and Daily Life

Table 5.5: Test set evaluation results. CNN-E inputs 400 recent posts per user, CNN-R
1,500 random posts.

Method Metrics
F1 score Precision Recall

CNN-E 52.13 57.21 48.32
CNN-R 78.87 80.01 60.47
ASHN 75.74 78.77 72.94

5.6.4 Comparison results based on the attribute engineering models

This section provides comparison results with three attribute engineering-based mod-
els with ASHN in their presentation. In relation to the Multinomial Naive Bayes (MNB),
and SVM classifier models, the postnatal data model was examined using the Fast-
TEXt [297], GloVe [280], and BERT [294]. Normalisation and scaling were applied to
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each collection of attributes. To optimise the hyper-parameters of the classification al-
gorithms, grid-search iterations were used. Table - 5.6 displays the dataset used to
identify people with depression. Using a CNN, the neural models initially transform the

Table 5.6: * and † represents MNB and SVM classifiers were evaluated on the postnatal
depression dataset.

Method Metrics
Precision Recall Accuarcy F1

GloVe* 51.68±9.89 52.17±3.70 64.59±3.79 53.84±6.35
GloVe† 55.43±1.99 59.82±1.88 61.12±4.46 62.92±1.51
FastTEXt* 78.21±5.52 76.30±7.20 84.07±6.33 80.66±5.80
FastTEXt† 82.64±6.67 81.47±6.06 83.18±2.68 82.12±3.16
BERT* 89.78±6.07 83.74±11.24 90.29±2.64 81.74±2.76
BERT† 88.77±2.99 87.94±1.88 94.77±3.24 89.74±1.33

posts into vectors. Subsequently, they merge the vectors created from the posts into
one. The models forecast the vector with the aim of user categorization. The perfor-
mance of the proposed ASHN model, when it comes to Social media post classification
(i.e., processing each post, merging them, and classifying people).is comparable with
one of the other traditional model likeCNN.

5.6.5 Results of comparison using benchmark datasets and the collected dataset

The findings of research employing the ASHN models, with benchmark datasets such
as RSDD, and SMHD datasets, are displayed in the tables -5.7,5.8 respectively. With
benchmark datasets, outperforms with a F1 score of 0.89 and 0.87, according to the
experts’ advice in the ASHN model.

Methods Metrics
Precision Recall F1 score Accuracy

SGL-CNN [298] 0.51 0.56 0.53 0.72
MGL-CNN [299] 0.72 0.29 0.42 0.79
LSTM [300] 0.72 0.31 0.44 0.82
ASHN 0.84 0.796 0.89 0.93

Table 5.7: Performance detecting depressed users on the RSDD dataset

Methods Metrics
Precision Recall F1 score Accuracy

CNN [301] 0.72 0.87 0.79 0.59
LSTM [301] 0.74 0.79 0.77 0.80
HAN [302] 0.62 0.59 0.68 0.64
ASHN 0.86 0.85 0.87 0.86

Table 5.8: Performance detecting depressed users on the SHMD dataset.
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5.7 Discussion

The proposed Attribute Attention Network emulates the process of identifying postnatal
depressed mothers from their social media texts on sentences pertaining to depression
using post-level attention. This is useful in a real-world setting, where even depressed
mothers only have a few posts that are relevant to their depression. This section pro-
vides a number of findings are derived from the six experimental results, which are
addressed in the following paragraphs.

5.7.1 Interpretation of CNN-Random, CNN-Enabled with RNN in ASHN

Apart from CNN-R, a state-of-the-art neural network, the proposed model is demon-
strated to surpass all other models. One probable explanation is that the two sets of
training data have different numbers of posts. Because ASHN experimental model’s
setting lacked the processing capability to handle CNN-R’s 1,600 posts, we had to set-
tle with 500 posts per user as training data. Thus, the data set is three times smaller.

On the other hand, ASHN model outperforms CNN-E. CNN-E is practically identical
to CNN-R; the only difference is that CNN-E uses 500 posts for training instead of
1600. It is possible that this is because of the attention mechanism that ASHN model
employed. This is a sophisticated method that allows a model to prioritise significant
postings for classification. Thus, ASHN model achieves excellent interpretability and
good performance with significantly fewer postings compared to the CNN-E model.
Given the favourable link between the number of posts and performance [303]. Base
on this, it is expected that expanding the training data set to include more posts will
further enhance our model’s performance.

5.7.2 Interpretation of Attribute Engineering Models

From the perspective of the model’s applicability, every attribute engineering technique
has its own set of benefits and drawbacks. Regarding the use of SVM and MNB clas-
sifiers for social media post categorization (i.e., processing, merging, and user classi-
fication), it should be mentioned that ASHN model with BERT based word embedding
approaches achieved the best performance (94.77& 90.29) with both classifiers as
shown Table - 5.6. The fact that GloVe method disregard for the significance of word
order in context. When compared to other models, GloVe’s model is trained using a
linear classifier, which results method of training the model [280]. FastTEXt embedding
methods produces better results when compared to GloVe since, it has the capability to
generate embeddings for terms that are not included in its vocabulary. Both GloVe and
FastTEXt methods are context independent. Whereas, BERT is context dependent in
the processing, it results in superior performance when compare to other two embed-
ding. It also generates word embeddings based on context to record word meaning
and retrieve contextual information. BERT is more accurate at representing polyse-
mous words in various contexts, and it teaches deeper text semantics [304]. Thus,
ASHN model performance is decided based on the results of attribute rich attribute
engineering method.
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Table 5.9: Positive and negative values for each quality based on Low and high atten-
tion.

Attentions
Attributes High Low High Low

Psycholinguistic
(morphological) A1 0.33 0.86 0.42 0.84

Sentimental
words A2 0.63 0.06 0.24 0.08

Depressive Symptom
words A3 0.33 0.85 0.46 0.86

Ruminative
Response Style A4 0.13 0.08 0.19 0.09

True Positive
(TP)

True Negative
(TN)

5.7.3 Interpretation of results of ASHN model with benchmark datasets

When tested on the RSDD dataset, our model detected more instances of depres-
sion in social media than many state-of-the-art approaches. With gains of 16.9% in
Precision, 17.8% in Recall, and 17.6% in F1 for diagnosed users, it significantly out-
performed the baselines. Since with fewer parameters, RNNs make training easier
and quicker than Long Short-term memory (LSTM)s. Time-series and sequential data,
like text, are better analyzed by RNNs than CNN. Instead of reporting findings at the
user level, this research utilized the same SMHD dataset to provide results using trans-
former based approaches, like BERT in conjunction with RNN. Hence, a high F1-score
(0.87). Furthermore, lexicon-based categorization is still not absolute with CNN, and
each word in the depression lexicon might have more than one meaning in social me-
dia (for example, ’isolation’ can signify both emotional and physical isolation).The post-
level attention weights of the these datasets were compared in an effort to understand
how depressed mothers are classified and identify potential causes.

5.7.4 Interpretation of the detection results of each attribute networks

The significance of the detection results is determined by ASHN by inspecting the
learned representations. This study on a sample size of 314 mothers with verified
depression. Then, 100 random sample were chosen based on the popularity of the
(i.e., 100 most popular and 100 least popular) for each mother. Nearly 120 mothers
who had previously been diagnosed with depression were selected as a false-negative
group. Table - 5.9 displays the median attribute weights for the four categories. The
frequency with which each attribute (four classes) was mentioned in the threads is
summarised in the table - 5.9 below.

Checking that ASHN model delivers enough results to accomplish the goals in-
volves looking at the examples in Table - 5.9 for each class.

A1:Linguistic style
The influence of a post’s morphological writing style (A1) on the ability to identify

depression is minimal in comparison to other attribute networks. Assigning part-of-
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Table 5.10: The polarity of different P.O.S. tags

Tag Explanation TP-High TP-Low
NN Noun, singular 0.32 0.38
NNS Noun, Plural(Non-singular) 0.21 0.28
NNP Proper Noun, Singular 0.43 0.57
NNPS Proper Noun, Non Singular (Plural) 0.25 0.36
VB Verb, Base form 1.83 1.67
VBD Verb, Past tense 1.04 0.95
VBG Verb, Gerund/ Past Participle 0.83 0.76
VBN Verb, Past participle 0.59 0.54
VBP Verb, non-3rd ps,sing,present 1.76 1.61
VBZ verb, 3rd ps, sing, present 1.18 1.08

speech tags to a whole phrase was done by looking at the links between the words.
The use of machine learning models allows for the identification of words’ parts of
speech tags. The Penn Treebank corpus provides the most popular tag notations for
differentiating parts of speech; 48 Parts Of Speech (POS) tags are created based on
the functions they serve. But this research shows that increasing the A1 weight also
increases the frequency of verb phrases. The attention that verbs elicit grows in direct
proportion to their frequency, in contrast to the different noun forms, as seen in Table -
5.10. Mothers who have mental health issues may exhibit a distinct pattern of phrase
complexity, according to this finding. [288].

A2:Sentimental words
Posts that receive the most attention also tend to have the most prominent displays

of the second attribute weight (A2). This provides more evidence that sentiment data
can help find depressed mothers. Table - 5.11 displays the polarity of the most used
terms in a set of posts with high A2 weights. The negative-polarizing phrase ”hopeless”
can be seen among the High-A2 weighted posts from True Positive (TP)-High and TP-
Low class users.
It seems like the second attribute weight (A2) is 978 for ”hopeless” as shown in Table
- 5.11; studies have shown that posts with greater weights also tend to have higher
attention levels. Table - 5.11 displays a list of posts with high A2 weights, as well
as the most utilized words and the polarity of those words. Words with a negative
connotation, such as ”hopeless,” are absent from A2 weighted entries from individuals
in the TP-High and TP-Low categories.In contrast, the word ”panic” is used 236 times
out of 872 posts in the high A2 weighted posts group, making up 13.8% of all posts in
this genre. ”Hopeless” is more common than popular general terms like ”baby” (723
occurrences, or 74.8 percent), ”like” (752 occurrences, or 56 percent), and ”would”
(511 occurrences, or 41.8 percent) in this collection of posts. An overall negative and
gloomy tone is created since most of the frequently used phrases in posts with a high
A2 weight have a negative polarity, as shown in table-5.11.

A3: Depressive Symptom words
According to Table - 5.9, the group TP-Low has the most postings with high A3

weights. Also, the frequency of the words in the low A3 weighted posts shows a link
between inattention and depression (Table - 5.11). Low article A3 weight indicates that
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Table 5.11: SentiWordNet-identified PPD mothers’ post words and their polarity.

Words Frequency Polarity
hopeless 978 Negative
Sleepless 937 Negative
tired 872 Negative
hurting 923 Negative
anxious 821 Negative
overeating 723 Negative
panic 236 Negative
Crying 176 Negative
medication 142 Positive
Planning 56 Positive

Table 5.12: Example words with high-weight A3 and A4 postings.

A3 A4 Phrase
0.43 0.19 I feel like
0.41 0.19 I am helpless
0.36 0.16 I am restless
0.32 0.14 I am staying asleep

the selected depression keywords are not widely used, which rules out a post’s poten-
tial relevance to the subject. If a post doesn’t fit any of the categories, it’s likely that the
attribute weights are skewed towards A3.

A4: Ruminative Response Style
The A3 and A4 weights of some TP-High class posts are quite high, nevertheless.

Table - 5.12 displays some representative examples of phrases from these sources.
Many of the posts containing these terms are associated with the phenomenon of ”self-
attention,” in which individuals frequently write about their own thoughts and emotions.

To delve further into this pattern, we will examine the frequency of the word ”I”
in TP-High and TP-Low postings, as well as in each of the posts with A3 weights
exceeding 0.50 and A4 weights exceeding 0.15. Posts with a high A3 or A3 weight
use the pronoun ”I” 1.35 times per post, while all weights use it 1.25 times per post
on average. More posts in the TP-High class (14.8%) than in the TP-Low class (0.4%)
have high A3 and A4 weights (A3 > 0.43, A4 > 0.14). This demonstrates that people
with mental health issues are highly introspective [305].

5.7.5 Limitation and Future work

As stated in Section 4.1, this model trains with fewer data and is more interpretable than
the state-of-the-art model, yet it nevertheless manages to attain greater performance.
It is anticipated that as computing capacity grows, this model will outperform the current
gold standard. Based on research in depressed psychiatry, ASHN has been reduced to
its present-day four components. There is conclusive evidence that the computational
capacity of the model employed, and the amount of attributes taken for analysis, all
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contribute significantly to improved performance. Due to the widespread use of social
media by mothers, a special chance to track and study patterns of long-term mental
health of mothers after giving birth can be tracked. By doing so, the factors that con-
tribute to PPD can be identified and help in early detection and treatment. Using high-
dimensional representations of neural networks allows incorporating more high-level
characteristics and enhances the model in multiple ways. It will help to develop more
plausible and varied explanations for various attributes of depression. If analogous
attribute networks can be constructed for additional mental conditions (such bipolar
disorder, schizophrenia, and dementia), the proposed ASHN model can be modified
suitably.

5.8 Summary

This research has shown that deep learning techniques can enhance PPD identifica-
tion even farther than the conventional, time-consuming ways of manually collecting
attributes. The Attribute Selection Hybrid Network (ASHN) model has been proposed
to predict PPD through social media posts. Psychological questionnaire developed by
experts is utilized for data collection. Experts in the field helped to choose the attributes
for effective PPD prediction, such as Psycholinguistic style, sentimental words, de-
pressed words, and Ruminative Response Style exhibited in social media posts. Con-
sidering the real world situation, where a very limited social media posts may exhibit
signs of depression, The proposed ASHN model will be effective because it, employs
a post attention technique to meticulously select posts according to the significance of
their responsibilities, considering context vectors.Looking at the keywords used in the
PPD and how they relate to general depression, as illustrated in a word cloud, can also
help determine why a certain post is related to depression from a psychological study
perspective. In the future, clinical investigations of depression symptoms will benefit
from this.
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CHAPTER 6: CONCLUSIONS

With the help of AI and cutting-edge techniques like deep learning and machine learn-
ing, this doctoral thesis looked at Prenatal and Postnatal or PPD detection models. It
took important steps towards both improving prenatal and postnatal depression detec-
tion and changing healthcare, by looking into different applications of AI in healthcare.

The challenges of collecting longitudinal data on mothers’ behaviours, over lengthy
periods, possibly explain the paucity of research predicting prenatal depression. This
involves the risk of developing postnatal or PPD which will affect the mother and child.
To diagnose prenatal and postnatal depression, the primary need was to gather ap-
propriate real time data. Women admitted to SRMCH RC in Chennai, India, for the
delivery of their babies were considered for the study, then interviewed based on cri-
teria suggested by domain experts, followed by data collection. The collected dataset
consists of different responses to psychological questionnaires, diverse responses to
stress during delivery with EDA signals, and social media posts.

The goal of predicting prenatal and postnatal depression is formulated by a triangu-
lation model based on AI technologies, and the effectiveness of these frameworks can
be analyzed using classification algorithms. This triangulation framework is modelled
to overcome the inherent drawbacks based on the type of data sources used for pre-
diction. The first model in triangulation employs a wrist-worn device enabled with IoT
that measures physiological signals, and psychological responses during the various
stages of delivery. The motion artifacts are eliminated to predict Prenatal depression
severity levels with subject independency and dependency validation strategy. For this,
Segregation of motion artifacts from signals is carried out with Auto regression meth-
ods. The data labelling was carried using psychological score values to determine
the severity of the stress level and followed by subject independency training and de-
pendency testing. In conclusion, benchmark datasets are used to assess the Prenatal
Depression Detection Model. The significance of ideas such as motion artifact removal,
validation strategy, and severity level based data labeling is demonstrated by ablation
based comparisons.

The second model in triangulation aim is to focus on identifying postnatal risk factors
and reduces the misclassification costs and problems due to handling the dimensional
data to predict the postnatal depression. Misclassification costs are very crucial in
medical research. The irreversible nature of the medical environment and the prospect
that an error in judgement could permanently hamper the patient allows zero toler-
ance on mistakes. These misclassifications errors are primarly due to the imbalanced
classes. With high-dimensional data comes great complexity and requires consider-
able computational time due to the absence of efficient attribute extraction algorithms.

In order to make a dataset more balanced, OS approaches generate more sam-
ples by replicating them. In contrast, Dataset balance is accomplished by removing
instances from the majority class at random using US techniques. By generating
synthetic samples, the SMOTE approach addresses the imbalanced class problem.
Hence, this model encompasses very minimal risk of data coupling or missing data
when using CSL procedures. A CSL approach handles imbalanced samples by taking
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into account various misclassification costs and using varying penalty ratios, called as
Metacost. The second major challenge araises when working with high-dimensional
data, which requires an effective attribute extraction method that helps to reduce pro-
cessing costs, simplify models, and improve classification accuracy by limiting the num-
ber of attributes in a subset and identifying the most optimal solution. Therefore, this
model’s attribute extraction uses the PSO algorithm.

A hybrid approach was employed to handle data imbalance with one group consists
of methods that operate on data, such as data sampling (OS, SMOTE and US) and at-
tribute extraction by PSO, while the other group consists of methods that operate on
algorithms, such as MetaCost. And hybrid/ensemble approaches used with collected
psychological questionnaire data PHQ-9,PDSS and EPDS to predict the postnatal or
PPD depression. This was evaluated using the various classification algorithms and
compared the models’ consistency with benchmark datasets and identify the best com-
binations methods which yields higher accuracy to predict the postnatal depression.

With the advent of Social media and its increasing usage, it can provide valuable
insight into their emotional and psychological well-being. Social media language anal-
ysis has been a game-changer for the detection of depression, according to numerous
researchers.The majority of posts lack information relevant for depression detection,
since there may not significant enough percentage of posts containing signs of postna-
tal depression. a depressed person’s social media posts do not necessarily reflect their
current emotional state, and it is necessary to implement context based word embed-
ding to predict a typical representation of depression. The triangulation model’s third
was to understand the attribute representations linked to different depression compo-
nents obtained from ASHN attribute networks in order to accurately identify the indica-
tions of postnatal depression from social media posts.

The proposed ASHN model is implemented by a set of recursive RNN neural net-
works to analyze postnatal depression in women. This model works based on the
multimodal fusion of psychological questionnaire data and social media platform posts.
Attributes such as Sentiment, depressive words, Ruminative Thinking, writing Style
has a higher significance in identifying Postnatal depressed mothers than other char-
acteristics. Finally, weight based post attention mechanism is included with context
of the mother’s posts to derive the conclusions regarding PPD. Further, this model
is evaluated with visualisation of word cloud for differentiating PPD posts from reg-
ular other posts. The importance of choosing RNN instead of CNN is compared.
The ASHN model’s attribute engineering method is evaluated with different methods
such as GloVe, FastTEXT and BERT to conclude the effective attribute engineering
method. Finally, trust worthiness of the ASHN model is evaluated with other bench-
mark datasets. This research is not limited to prediction of PPD but also explains the
attributes required for the detection in relation to key field theories.

At the end of the day, the performance of any artificial intelligence technology is
based on the quantity and quality of datasets. A thorough preprocessing approach
is to be applied to the data before modelling it. It’s possible that the decisions made
during the process of building the full dataset has an effect on how well the models
were able to learn from it. According to the results obtained, the performance of the
triangulation model are better than baselines models. The data collected, and the
triangulation model, can act as a point of reference for any future work on mental health
study and depression prediction. In this research, the proposed model that begins with
an agnostic approach is further developed using AI methodologies to provide useful
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insights on this research subject that creates a base for further investigation, both in the
realm of methodological study and in the pursuit of in-depth ethological understanding.

6.1 Contributions

In this thesis, using AI methodology is utilised with the goal of improving the models for
prenatal and postnatal depression prediction. This AI based triangulation model, can
create multiple opportunities in the advancement of healthcare because it addresses
the significance of multimodal fusion approach within the framework of depression
analysis systems and mainly aims at improving the performance of PPD detection mod-
els. In addition, this study advocates for the incorporation of verifiable and explicable
AI into a wide range of data sources, including physiological analogue signals, psycho-
logical questionaries, and social media postings. By including context-sensitive data,
removal of motion artifacts, efficient attribute extraction algorithms and by addressing
class imbalance, the resultant model exhibits superior accuracy while fulfil the research
objective. The critical points of this research are briefed in individual chapters, as

• A comprehensive review of AI’s impact on mental health monitoring to develop AI
models with reduced risk of machines’ learning inherent limitations and address
the research question 1 defined in section 1.7 .

• Proposed a novel stacked EBDL model to predict the prenatal depression us-
ing active and passive assessments such as psychological questionnaire and
EDA signals from wearable device. The efficacy of the EBDL model is improved
by removing the motion artifacts of analog signals, balancing the independency
and dependency among the subjects and classifying severity levels of prenatal
depression using PHQ-9 score and reduces the risk of PPD and address the
research question 2 defined in section 1.7.

• The development of hybrid model to resolve the issue of class imbalance in
medical data, and incorporate data resampling using various techniques such
as SMOTE, US, OS, PSO-based attribute extraction, and MetaCost. It is used in
conjunction with psychological questionnaire data from PHQ-9, PDSS, and EPDS
in order to predict postnatal or PPD depression and evaluate its trust worthiness
using the various classification algorithms and predict the best combinations for
each dataset and address the research question 3 defined in section 1.7.

• Developed an efficient ASHN model using recursive RNN by analysing social me-
dia post’s important attributes such as Linguistic Style, Sentimental words, De-
pressive Symptom words and Ruminative Response Style using BERT algorithm
to predict postnatal depression and address the research question 4 defined in
section 1.7.

6.2 Limitations

The restrictions associated with the sample selection is a notable factor in this study.
Limiting the data collection to literate women, and excluding women with past med-
ical complications, ignoring the mothers with fertility abnormalities, were followed to
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decrease variability and outliers should be noted as selection bias. This research fo-
cused on data collected during delivery and within six weeks after delivery; it did not
observe or analyze patterns of long-term symptoms among mothers after giving birth.
The risk of developing PPD in long term without having a chance of predicting it within
six weeks has a probability that cannot be denied, multiple studies reveal such occur-
rences are extremely rare. This ensures that a significant percentage of women who
have a risk of developing PPD are not overlooked in this research.

6.3 Generalizability

The triangulation model can be considered for horizontal deployment to reconstruct
the diagnosis process of other mental disorders (such as major depressive disorder,
schizophrenia, bipolar disorder and dementia) provided the suitable attribute extraction
methods are employed. Both prenatal and postnatal mental health monitoring will serve
as foundation for other case studies. Those case studies can spread over a variety of
situations including daily activity monitoring, care for the elderly, fitness support, and
telemonitoring programmes.

6.4 Future directions

The fact that there are just a few datasets to choose from is the most significant re-
striction of this study. This is primarily owing to the fact that the researches are unique,
since only a small amount of study has been conducted in this field, and the majority of
the existing approaches have only been published within the past few years, with most
of them containing predictions based on the response to a single psychological ques-
tionnaire. Additionally, in order to keep things simple, only one modality of EDA signals
are used for the prediction. This situation depicts the lack of attention and the need
of in depth research upon this field is indispensable. This research can be expanded
upon even further in the following ways:

• In order to better evaluate the suggested models’ capacity for clinical recommen-
dations and generalisation, it is necessary to incorporate additional datasets to
model for testing. Further, datasets that provide global perception based on cul-
tural backgrounds and linguistic difference, if available, can be instrumental for
future insights.

• Elaborating the proposed works with explainable AI models may improve under-
standing of dependency of variables which contributes for the predicting the pre-
natal and postnatal depression effectively.

• Incorporating additional techniques of categorization into the classification model
requires conducting research on a greater variety of variables pertaining to the
internal and exterior environments of the human being.

• The data obtained from the various modalities are combined by implementing a
data-level fusion technique.Alternatively, it will be interesting to further investigate
more fusion approaches such as decision-level fusion and hybrid fusion, which is
a combination of data and decision level methodology.
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• Both supervised and semi-supervised learning strategies have been investigated
in this research. In the not too distant future, one of the goals is to look into
the efficacy of unsupervised approach. Implementing unsupervised approaches
can help to circumvent the problem of acquiring annotated datasets for use in
healthcare applications.

• When this research model transforms into a comprehensive system that makes
use of all the different techniques proposed, clinicians would use such a system
in order to facilitate or automate the examination of mental disorders.

This doctoral thesis has significantly contributed to advancing knowledge and prac-
tice in AI-driven mental health prediction systems. By addressing limitations and em-
bracing future directions, the transformative potential of AI in healthcare is within reach.
Continued research and innovation in AI, combined with a patient-centric approach, will
usher in a new era of personalized, proactive, and effective healthcare delivery, ben-
efiting individuals worldwide. The collective efforts of researchers and practitioners
in the field will shape the future of healthcare, where AI-driven mental health predict-
ing becomes an indispensable tool in enhancing patient well-being and transforming
healthcare practices.
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Tübingen, 2022.
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