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Abstract
This study investigates the ability of 20 model simulations which contributed to the CMIP6 HighResMIP to simulate pre-
cipitation in different monsoon seasons and extreme precipitation events over Peninsular Malaysia. The model experiments 
utilize common forcing but are run with different horizontal and vertical resolutions. The impact of resolution on the models’ 
abilities to simulate precipitation and associated environmental fields is assessed by comparing multi-model ensembles at 
different resolutions with three observed precipitation datasets and four climate reanalyses. Model simulations with relatively 
high horizontal and vertical resolution exhibit better performance in simulating the annual cycle of precipitation and extreme 
precipitation over Peninsular Malaysia and the coastal regions. Improvements associated with the increase in horizontal and 
vertical resolutions are also found in the statistical relationship between precipitation and monsoon intensity in different 
seasons. However, the increase in vertical resolution can lead to a reduction of annual mean precipitation compared to that 
from the models with low vertical resolutions, associated with an overestimation of moisture divergence and underestima-
tion of lower-tropospheric vertical ascent in the different monsoon seasons. This limits any improvement in the simulation 
of precipitation in the high vertical resolution experiments, particularly for the Southwest monsoon season.
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1  Introduction

The climate of Peninsular Malaysia is dominated by the 
annual precipitation cycle, which includes two monsoon 
seasons. As is typical for the wider western Maritime Con-
tinent region, during boreal winter (November-February, 
NDJF), a warm, moist atmosphere near the surface com-
bines with intense horizontal moisture transport associated 
with the Northeast monsoon to produce strong convective 

precipitation (Chang et al. 2005). Peninsular Malaysia is 
significantly influenced by precipitation extremes (e.g. Tan-
gang et al. 2017) and associated flooding (e.g. Diya et al. 
2014; Chan 2015). These climate extremes can cause con-
siderable economic losses, casualties and a deterioration of 
the environment (Mohd et al. 2006; Muqtada et al. 2014), 
posing a great threat to livelihoods and thus limiting eco-
nomic growth. During the past 40 years, the observed rain-
fall record indicates a considerable increasing trend in the 
annual total precipitation over Peninsular Malaysia (Mayowa 
et al. 2015). An increasing trend in the frequency of extreme 
rainfall events has also been observed in Peninsular Malay-
sia (Syafrina et al. 2014; Chan 1997; 2015; Mayowa et al. 
2015).

Given these trends, it is important to understand likely 
future changes in precipitation in the region given the impact 
further increases in total and extreme precipitation could 
have on society and the environment. Climate models pro-
vide a key tool to provide a physically-based assessment of 
prospective impacts and risks from changing hydrological 
extremes, which in turn help to inform strategies of disas-
ter mitigation and adaptation in a changing climate. Many 
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studies have examined the simulation of precipitation over 
Peninsular Malaysia (e.g. Syafrina et al. 2014; Tan et al. 
2014; Noor et al. 2019; Salman et al. 2020) and the adjacent 
areas in Southeast Asia (Siew et al. 2014; Raghavan et al. 
2018; Tan et al. 2017; Kamworapan and Surussavadee 2019) 
using global climate models (GCMs). However, these stud-
ies document considerable biases in the modelled regional 
precipitation patterns compared to observed precipitation. 
One possible reason for this is the limited horizontal reso-
lution (with grid spacing > 100 km) of typical GCMs that 
makes it difficult to properly resolve the complex topography 
over the Maritime Continent and its interactions with the 
monsoon circulation (Chang et al. 2005). Coarse horizontal 
resolutions also lead to poorly resolved synoptic/mesoscale 
processes that are strongly associated with precipitation 
extremes in Peninsular Malaysia, such as Borneo Vortices 
(Tangang et al. 2008; Koseki et al. 2014; Liang et al. 2021) 
and easterly wave disturbances (Chen et al. 2013). Moreover, 
poor performance in simulating the eastward Kelvin wave 
activity coupled with equatorial convection has been dem-
onstrated by GCMs with a horizontal resolution coarser than 
50-km (Yang et al. 2009), which can limit the realism of 
simulated precipitation in the tropics.

The role of model horizontal resolution in the simula-
tion of global precipitation is summarized by the study of 
Rauscher et al. (2016). They argued that fine horizontal 
resolutions are important for a model to capture intense 
precipitation because finer grid spacings can allow the pre-
cipitation-related vertical ascent to be further strengthened 
by the interaction between the constraint of fluid continuity 
and the emergent scaling properties of winds. In addition, 
a sufficiently high vertical resolution is important for mod-
elling the vertical profile of cumulus latent heating rates, 
which are closely associated with tropical deep convection 
and the associated precipitation (Druyan et al. 2008; Rashid 
and Hirst 2017). Inness et al. (2001) suggested that a rela-
tively coarse vertical resolution can lead to underestimates 
of sub-seasonal precipitation variability associated with the 
Madden Julian Oscillation due to the poorly resolved verti-
cal distribution of convective cloud-top height. In the Asian 
monsoon region, Richter et al. (2014) reported that a GCM 
with relatively coarse vertical resolution tends to simulate 
a stronger summer monsoon and associated precipitation. 
Models with finer vertical resolutions also exhibit a better 
representation of the vertical profiles of water vapor and 
temperature (Tompkins and Emanuel 2000), which are 
closely associated with precipitation intensity (Fujita and 
Sato 2017).

Previous studies have attempted to improve model per-
formance by downscaling GCM simulations over Peninsular 
Malaysia using statistical (Juneng et al. 2010; Nadrah and 
Tukimat 2011; Hassan et al. 2015) and dynamical (Tangang 
et al. 2013; 2020; Kwan et al. 2014; Amin et al. 2017; Chin 

and Tan 2018 2018; Jamaluddin et al. 2018; Ngai et al. 2020) 
downscaling. Although statistical downscaling is compu-
tationally cheap, it is dependent on the observational data 
at the target resolution used within the statistical model to 
be statistically correlated with the large-scale predictors. 
This process can be affected by uncertainties in both the 
observational data (e.g. Kotsuki and Tanaka 2013; Tan et al. 
2015; Qi et al. 2016) and GCM performance (San-Martín 
et al. 2017). Dynamical downscaling using regional climate 
models (RCMs) is another important approach to increase 
resolutions as the limited area simulation of RCMs can 
reach higher resolution levels compared to GCMs for given 
computational resources (Demory et al. 2020). However, 
RCMs also exhibit considerable uncertainties in simulating 
precipitation over Southeast Asia (e.g. Nguyen-Thuy et al. 
2021; Tangang et al. 2020) as the performance of RCMs is 
dependent on both the RCM configuration and the lateral 
boundary conditions from GCMs.

In recent years, high-resolution GCM simulations (with 
grid spacings < 50 km) have been used in precipitation stud-
ies and have exhibited an improved ability in representing 
the observed regional precipitation patterns compared to 
coarse-resolution GCMs (e.g. Iorio et al. 2004; Mo et al. 
2005; Sato et al. 2009; Feng et al. 2011; Kopparla et al. 
2013; Yashiro et al. 2016; Kim et al. 2019; Bador et al. 2020; 
Kong et al. 2020). For instance, Arakawa and Kitoh (2005) 
and Sato et al. (2009) showed the improved ability of GCMs 
to represent the detailed topography and simulations of land-
sea breezes and the associated diurnal cycle of precipitation 
when finer horizontal resolutions are used. GCMs with finer 
horizontal resolution have also been shown to be capable of 
producing improved simulations of the interaction between 
the sea surface and the troposphere, which are important 
for realistic simulations of deep convection and associated 
precipitation (Scher et al. 2017). In Peninsular Malaysia, the 
precipitation patterns are associated with multiple physical 
factors that may be sensitive to changes in model resolution, 
such as complex synoptic systems (Chen et al. 2013; Koseki 
et al. 2014) and atmosphere-topographic interactions during 
the different monsoon seasons (Chang et al. 2005; Varikoden 
et al. 2010; 2011). However, there has been little research on 
the impact of increased horizontal and vertical resolution on 
GCM-simulated precipitation over the region.

The availability of high-resolution GCM data from the 
High Resolution Model Intercomparison Project (High-
ResMIP, Haarsma et al. 2016) of Coupled Model Inter-
comparison Project Phase 6 (CMIP6) provides a good 
opportunity to study the impact of model resolution on 
GCM simulations of precipitation. For instance, a recent 
study by Xin et al. (2021) evaluated the ability of the High-
ResMIP models to simulate precipitation in China and found 
improved simulation of precipitation in simulations at finer 
horizontal resolution due to the better resolved topographical 
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rainfall. Molteni et al. (2020) has demonstrated the ability of 
the HighResMIP models to simulate the tropical Indo‑Pacific 
rainfall and its modulations by the El Niño-Southern Oscil-
lation (ENSO) and the North Atlantic Oscillation. Their 
study found that most of the HighResMIP GCMs simulate 
the late-winter ENSO teleconnection reasonably well; how-
ever, it is difficult to detect a consistent change in the realism 
of the simulated atmospheric teleconnections when model 
resolution is increased. Ajibola et al. (2020) assessed the 
ability of the HighResMIP GCMs to simulate West African 
summer monsoon rainfall and suggested limited improve-
ments in simulated mean precipitation when GCM simula-
tions at finer horizontal resolution are compared with those 
at coarser resolution. For these studies of precipitation 
simulations based on HighResMIP, three main limitations 
are noted in the model evaluation process. First, the role 
of vertical resolution in precipitation simulation is usually 
ignored. Second, the validation data used to assess model 
performance is usually based on a single dataset, which may 
bring considerable uncertainties to model evaluation. Third, 
though the HighResMIP GCMs has presented a better per-
formance in simulating large-scale patterns of precipitation 
in Asia than other CMIP6 GCMs (Dong and Dong 2021), it 
still remains unknown whether HighResMIP can tackle the 
challenge of simulating regional-scale (less than 500-km) 
precipitation patterns.

In this paper, an assessment of the ability of atmosphere/
land-only (AMIP style) GCM simulations of HighResMIP, 
with a spectrum of both horizontal and vertical resolutions 
of the GCMs, to simulate the precipitation climatology 
and variability in Peninsular Malaysia will be performed. 
The assessment will provide model validations based on 
ensembles of multiple precipitation observations and cli-
mate reanalysis datasets, which helps to achieve more robust 
processes of model validation. The assessment aims to pro-
vide useful information on how to interpret the latest GCM 
simulation in Malaysia and the adjacent Western Maritime 
Continent for the further use of the models in hydrological 
impact studies. The specific objectives of this study are:

(a)	 To assess the realism of precipitation in different mon-
soon seasons over Peninsular Malaysia as simulated by 
the GCM simulations of HighResMIP.

(b)	 To investigate how the simulated precipitation in Pen-
insular Malaysia is affected by horizontal and vertical 
resolutions in those GCMs.

This paper is structured as follows. Section 2 briefly 
describes the study area, observational precipitation data 
and the HighResMIP experiments together with the meth-
odology used for assessing the performance of the High-
ResMIP GCMs in simulating precipitation in Peninsular 
Malaysia. Section 3 presents the results of the assessment 

of the performance of the HighResMIP GCMs with different 
horizontal and vertical resolutions in simulating precipita-
tion. Section 4 summarizes and discusses the main findings 
of the research.

2 � Data and methods

2.1 � Observed precipitation data

The study of Kotsuki and Tanaka (2013) suggested that 
considerable uncertainties exist in observed precipitation 
products over Southeast Asia. In this study, three different 
historical precipitation datasets are used for verifying the 
ability of the HighResMIP GCMs to simulate precipitation 
in Peninsular Malaysia. The use of multiple observational 
datasets helps to address the uncertainties in the observed 
precipitation and facilitates the evaluation of the model 
performance in simulating precipitation. The observed pre-
cipitation products used here include daily precipitation data 
from 53 rain gauge stations of the Malaysian Meteorological 
Department (MMD). The distribution of the 53 rain gauge 
stations is shown in Fig. 1. In addition, two gridded data-
sets of observed precipitation are used to validate the GCM 
simulations; Asian Precipitation- Highly-Resolved Observa-
tional Data Integration Towards Evaluation (APHRODITE, 
Yatagai et al. 2014) and Integrated Multi-satellitE Retriev-
als for Global Precipitation Measurement (IMERG-GPM 
referred to as GPM, Huffman et al. 2015). APHRODITE is 
a gridded daily precipitation dataset over land with a 25-km 

Fig. 1   Distributions of the 53 climate observing stations (triangles) 
and elevation [shaded, unit: m; data from the 3 arc-seconds elevation 
data of the Shuttle Radar Topography Mission (Farr et al. 2007)] in 
Peninsular Malaysia. The four blue (yellow) triangles denote the sta-
tions for the west (east) coast of Peninsular Malaysia as per our analy-
sis
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resolution developed by the Research Institute for Humanity 
and Nature and the Meteorological Research Institute of the 
Japan Meteorological Agency. This dataset was produced 
by interpolating in-situ rain gauge data using an angular-
distance-weighting method to consider the local topography 
between rain gauge and interpolation point (Yatagai et al. 
2014). APHRODITE has been used widely as verification 
data for studies of precipitation simulations over Southeast 
Asia (e.g. Ngai et al. 2017; Chung et al. 2018). GPM is a 
precipitation dataset based on satellites equipped with pas-
sive microwave sensors and active scanning radars, which is 
produced by NASA and the Japan Aerospace and Explora-
tion Agency (Huffman et al. 2015). This dataset provides 
daily precipitation estimates with a spatial resolution of 
0.1° × 0.1° (approximately 11-km latitude and longitude over 
Malaysia) available since June 2000 over the domain from 
60° N to 60° S.

2.2 � Reanalysis data

Due to the strong association of precipitation patterns in 
Peninsular Malaysia with the onsets, peaks and transitions 
through different monsoon regimes (e.g. Chang et al. 2005; 
Tan et al. 2015; Chenoli et al. 2018), it is important to under-
stand how well the GCMs can represent the monsoon cir-
culation in different seasons, in addition to the associated 
precipitation. To evaluate the ability of the HighResMIP 
GCMs in simulating the large-scale environments associ-
ated with precipitation, four different reanalysis datasets 
are used as validation data to compare with the simulated 
large-scale fields from the HighResMIP GCMs. The use of 
multiple reanalysis datasets helps to reduce uncertainties 
associated with the different reanalysis models and differ-
ent data assimilation methods (Bengtsson et al. 2004), such 
that the reliability of the model evaluation is improved. The 
precipitation-related environmental fields to be evaluated 
include the vertically integrated water vapor transport (IVT) 
and vertical velocity at 850 hPa for the southwest monsoon 
(May to August, MJJA) and northeast monsoon (November 
to February, NDJF) seasons during the period 1979–2014. 
The reanalysis datasets used here are from the Fifth Genera-
tion ECMWF Atmospheric Reanalysis (ERA5), the Japanese 

55-year Reanalysis (JRA-55), the Modern-Era Retrospec-
tive analysis for Research and Applications—version 2 
(MERRA-2) and the National Centers for Environmental 
Prediction—Climate Forecast System Reanalysis (NCEP-
CFSR). The model resolution, data assimilation models and 
references of these datasets are summarized in Table 1.

2.3 � The HighResMIP experiments

HighResMIP is an integral protocol of CMIP6 (Eyring 
et al. 2016). The protocol provides high-resolution GCM 
ensembles to allow for robust assessment of the impact of 
increased model resolution on “the simulated mean climate 
and its variability”, so as to improve understanding of the 
“origins and consequences of systematic model biases” 
(Haarsma et al. 2016). As defined by HighResMIP, pairs 
of GCM simulations were run, with both atmosphere-only 
(AMIP) and coupled climate models over the historical 
(1950–2014) and future (2015–2050) periods, under the 
high-emission SSP585 scenario, (O'Neill et al. 2014).

In this study, the simulated precipitation and associated 
environmental variables from 20 historical simulations for 
the period 1979–2014 of the atmosphere-only experiments 
based on 11 GCMs are used. The initial atmospheric and 
land-surface conditions of these experiments are based on 
the ERA-20C reanalysis data (Poli et al. 2016). These exper-
iments consider historical sea-ice and sea surface tempera-
ture forcing based on the HadISST2.2.0 data (Titchner and 
Rayner et al. 2014). Anthropogenic aerosol forcing including 
aerosol optical depth and changes in cloud effective radius 
deltas are based on the MACv2.0-SP model (Stevens et al. 
2017). The forcing of volcanic activity, natural aerosol, 
greenhouse gases and solar radiation are the same as those 
used in the CMIP6 historical climate simulations described 
by Eyring et al. (2016).

To investigate the impact of model resolution on the 
simulation of precipitation and related environmental 
fields, the HighResMIP simulations are categorized into 
different groups for inter-comparison, including low hori-
zontal resolution (Lh), high horizontal resolution (Hh), 
low vertical resolution (Lv) and high vertical resolution 
(Hv). The Lh (Hh) group includes simulations run at grid 

Table 1   Summary of the reanalysis datasets used for model validation

Organizations Dataset name Horizontal resolution 
(longitude × latitude)

Vertical 
resolution
(No. of 
levels)

References

European Centre for Medium-Range Weather Forecasts ERA5 0.25° × 0.25° 137 Hersbach et al. (2020)
The Japan Meteorological Agency JRA-55 0.5° × 0.5° 60 Kobayashi et al. (2015)
The National Aeronautics and Space Administration, U.S MERRA-2 0.5° × 0.625° 72 Gelaro et al. (2017)
National Centers for Environmental Prediction, U.S NCEP-CFSR 0.312° × 0.312° 91 Saha et al. (2010)
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spacings greater (less) than about 0.6° (~ 70-km). The Lv 
(Hv) group includes the simulations of fewer (more) than 
80 atmospheric vertical levels. Noted that the criterion 
of horizontal resolution acts to classify all the IPSL-
CM6A simulations as Lh and all the MRI-AGCM3-2 
and NICAM16 simulations as Hh. With such a classifi-
cation, the comparison between the ensemble of the Lh 
and Hh simulations will reflect more effects of the dif-
ferent GCM configurations (dynamical core, physical 
parameterizations etc.). To better generalize the effect of 
horizontal resolution, we classify the high-resolution ver-
sion of IPSL-CM6A (0.703° × 0.5°) as Hh and the low-
resolution versions of MRI-AGCM3-2 and NICAM16 
(0.563° × 0.563°) as Lh. Approximately half of the experi-
ments fall in Hv and half in Hh. The combined effect of 
the horizontal and vertical resolution on the simulation 
will be investigated by the intercomparison among Lh–Lv, 
Lh–Hv, Hh–Lv and Hh–Hv, although their ensemble sizes 
are small (six models or less) and are difficult to fully 
exclude model uncertainty. Information on the selected 
HighResMIP experiments and the corresponding resolu-
tion groups is given in Tables 2 and 3 respectively.

2.4 � Methods for model validation

The ability of the HighResMIP GCMs to simulate precipita-
tion in Peninsular Malaysia is assessed by comparing with 
the different precipitation observation datasets, includ-
ing MMD, APHRODITE and GPM. All the precipitation 
data from the different observation datasets and GCMs are 
interpolated to the 53 rain gauge stations of MMD shown 
in Fig. 1. The inter-comparison of precipitation among the 
different models and observational data are made at the rain 
gauge stations. The interpolation is performed based on the 
two-dimensional cubic spline method (Alfeld et al. 1984). 
The same method is used to replace the missing data in the 
MMD precipitation observation with the interpolated values 
based on the available data of the time step, though most 
of the applied MMD observations are from the principal 
climate stations of the WMO which are well maintained 
and thus contain fewer missing values than other stations 
(Tan et al. 2021). The inter-comparison of the full-year pre-
cipitation amount and those during the southwest monsoon 
(MJJA) and northeast monsoon (NDJF) seasons is made for 
the observed precipitation data and the GCM simulations. 

Table 2   Summary of the used GCMs from the CMIP6 HighResMIP experiments

Label No Modeling organizations Model name Horizontal resolution 
(longitude × latitude)

Vertical 
resolu-
tion
(No. of 
levels)

Hori. res. categ Vert. res. categ

1 The UK Met Office Hadley Centre for Cli-
mate Change

HadGEM3-GC31 1.875° × 1.25° 85 Lh Hv
2 0.83° × 0.56° Lh Hv
3 0.35° × 0.23° Hh Hv
4 French National Centre for Meteorological 

Research
CNRM-CM6-1 1.406° × 1.406° 91 Lh Hv

5 0.5° × 0.5° Hh Hv
6 European Centre for Medium-Range 

Weather Forecasts
ECMWF-IFS 1.0° × 1.0° 91 Lh Hv

7 0.5° × 0.5° Hh Hv
8 27 institutes in Europe (Haarsma et al. 2020) EC-Earth3P 0.703° × 0.703° 91 Lh Hv
9 0.352° × 0.352° Hh Hv
10 Meteorological Research Institute (Japan) MRI-AGCM3-2 0.563° × 0.563° 60 Lh Lv
11 0.188° × 0.188° Hh Lv
12 Japan Agency for Marine-Earth Science and 

Technology
NICAM16 0.563° × 0.563° 38 Lh Lv

13 0.281° × 0.281° Hh Lv
14 Institute of Atmospheric Physics/ Chinese 

Academy of Sciences
FGOALS-f3 1.25° × 1° 32 Lh Lv

15 0.25° × 0.25° Hh Lv
16 Geophysical Fluid Dynamics Laboratory/ 

NOAA (U.S.)
GFDL-CM4C192 0.625° × 0.5° 33 Lh Lv

17 Institude Pierre Simon Laplace (France) IPSL-CM6A 2.5° × 1.259° 79 Lh Lv
18 0.703° × 0.5° Hh Lv
19 Institute of Numerical Mathematics of the 

Russian Academy of Sciences
INM-CM5-H 0.67° × 0.5° 73 Lh Lv

20 Chinese Academy of Meteorological Sci-
ences

CAMS-CSM1 0.469° × 0.469° 31 Hh Lv
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The comparison focuses on the period 2001–2014 due to the 
limited data period of GPM.

The simulated distributions of precipitation-related vari-
ables from the HighResMIP models are evaluated, including 
the total precipitation amount during different seasons and 
the extreme precipitation (the 95th percentile of daily pre-
cipitation) rate for wet days (daily precipitation > 0.1 mm) 
during NDJF. To investigate the capability of the models to 
simulate the relationship between precipitation and mon-
soon intensity, the Pearson correlation coefficients between 
the seasonal total precipitation and seasonal mean mon-
soon indices are analyzed. Due to the close relationship 
between the winter monsoonal flow over the South China 
Sea and the regional climate in the Maritime Continent 
(Zhang et al. 2019), the intensity of the northeast mon-
soon is computed by a Northeast Monsoon Index (NEMI) 
defined as the regional mean northeasterly wind speed 
at 850-hPa over the main South China Sea (5° N–20° N, 
110° E–120° E), following the study of Wang et al. (2009). 
For the southwest monsoon season (MJJA), a modified ver-
sion of the Malaysian Meteorological Department Wind 
Shear Index (WSI) (Chenoli et al. 2018) is used to diagnose 
the monsoon intensity. The WSI is defined as the regional 
mean zonal wind component at 850-hPa over the region 
of 1.75° N–4.25° N, 100.75° E–113.25° E minus that over 
5° N–15° N, 90° E–130° E.

We employ a variety of statistical techniques to evaluate 
the performance of each model with respect to the observed 
precipitation data. The Pearson correlation coefficient is 
used to quantify the similarity of the spatial distribution 
of a given variable between the GCM simulation and the 
observations. The root-mean-square error (RMSE) and the 
relative bias (RB) are used to indicate the departure between 
the simulations and observations. These statistical measures 
are commonly used in precipitation studies over Malaysia 
(e.g. Tan et al. 2015; Xiang Soo et al. 2020). The Taylor dia-
gram metric (Taylor 2001) is used to synthesize the variables 
(including correlation coefficient, centered root-mean-square 

difference (RMSD) and standard deviation) assessing the 
similarities of mean and variation between the simulations 
and observations.

3 � Results

3.1 � Annual cycle of precipitation

The annual cycles of precipitation in the three precipitation 
observation datasets and the different subsets of the High-
ResMIP GCM simulations separated into all-measurements, 
east-coast, and west-coast observations are shown in Fig. 2. 
The observed precipitation, from MMD, APHRODITE and 
GPM, at all the rain-gauge stations show two peaks of pre-
cipitation during March–April and November–December 
respectively (Fig. 2a). For selected stations along the west 
coast (Fig. 2b), two precipitation peaks are seen in April and 
October, implying a significant influence of the Inter-Tropi-
cal Convergence Zone (ITCZ) during the inter-monsoon sea-
sons (Camerlengo et al. 1998). For the east coast, one pre-
cipitation peak is found in December due to the influence of 
the Northeast monsoon (Fig. 2c) and such an influence was 
highlighted by the extreme flood event induced by the long-
lasting precipitation across the east coast in December 2014 
(Hai et al. 2017). The double-peak monthly distribution of 
the observed precipitation is represented reasonably well by 
all the GCMs (Fig. 2a). However, it is overestimated in the 
Lh and Lv simulations during the inter-monsoon seasons 
(April–May), by about 100% relative to the observational 
mean, (Obs. Mean) and October–November (by about one-
third). Similar biases are found in the Hh–Lv simulations. In 
contrast, the simulations with relatively high vertical reso-
lutions, including the Hv, Lh–Hv and Hh–Hv simulations, 
have a better representation of the annual cycle of precipita-
tion. Simulations with relatively high horizontal resolutions, 
including Hh, Hh–Lv and Hh–Hv, also tend to overestimate 
precipitation less than Lh, Lh–Hv and Lh–Hv respectively. 

Table 3   Summary of the different resolution categories

Resolution category Label Number of experi-
ments

Mean horizontal resolution 
(longitude × latitude)

Mean vertical 
resolution (No. of 
levels)

Low horizontal res Lh 11 1.089° × 0.846° 69
High horizontal res Hh 9 0.399° × 0.363° 66
Low vertical res Lv 11 0.732° × 0.552° 50
High vertical res Hv 9 0.835° × 0.722° 89
Low horizontal res. with low vertical res Lh–Lv 6 1.028° × 0.731° 53
Low horizontal res. with high vertical res Lh–Hv 5 1.163° × 0.984° 89
High horizontal res. with low vertical res Hh–Lv 5 0.378° × 0.338° 48
High horizontal res. with high vertical res Hh–Hv 4 0.426° × 0.396° 90
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All the models simulate an earlier occurrence (by about a 
month) of the precipitation peak in October-December. For 
the west coast (Fig. 2b), all the simulations represent the 
observed precipitation peaks in April and October reason-
ably well, though the simulations with coarser vertical reso-
lutions (Lv, Lh–Lv and Hh–Lv groups) tend to overestimate 
the precipitation by approximately one third. For the east 
coast (Fig. 2c), all the simulations underestimate the precipi-
tation by at least 50% during November–December. Simu-
lations with coarser horizontal resolutions (Lh, Lh–Lv and 
Lh–Hv) exhibit an earlier precipitation peak in November 
compared to that in December as shown by the observa-
tions. Similar biases have been noted over eastern Peninsular 
Malaysia in the RCM simulations for the dynamical downs-
caling domain of the Coordinated Regional Climate Down-
scaling Experiment–Southeast Asia (CORDEX-SEAsia, 
Tangang et al. 2020). A more reasonably simulated peak of 
precipitation in December is seen in simulations with finer 
horizontal resolutions (Hh, Hh–Lv and Hh–Hv).

3.2 � Spatial distributions of precipitation

Figure 3 shows the spatial distribution of the observed 
and simulated annual total precipitation for the period 
2001–2014. Observed precipitation patterns show some 
significant differences. For the observed precipitation 
from MMD (Fig. 3a), APHRODITE (Fig. 3b) and GPM 
(Fig.  3c), the northeast and west coasts of Peninsular 
Malaysia have the highest precipitation totals, with annual 
precipitation greater than about 3000 mm/year on average 
across all the observed precipitation data (Fig. 3d). The 
MMD data indicates the north of the region is also affected 
by high precipitation totals (> 2600 mm/year), though such 
estimated precipitation maxima are not seen in the APH-
RODITE and GPM data. Although the locations of pre-
cipitation maxima are similar in all observed precipitation 
datasets, the precipitation amount from APHRODITE is 
about 600 mm/year less than those in MMD and GPM, 
a similar result to previous studies (e.g. Tan et al. 2015; 

Luo et al. 2020; Ji et al. 2020). However, each of the three 
precipitation data sets has its strengths and weaknesses. 
For instance, MMD provide high-quality observations, 
while the extreme variation in orography in Peninsular 
Malaysian can lead to spatially inhomogeneous samples 
(Stokstad 1999). The gridded APHRODITE and GPM 
datasets provide more uniformly distributed data, while 
the production of these data is affected by the uncertainties 
in interpolation methods (Herrera et al. 2018) and satellite 
observation errors (Tian et al. 2010; Maggioni et al. 2016). 
Considering the uncertainties in observations varying as 
a function of location and season, the following section 
assesses the performance of GCMs against each of the 
precipitation datasets.

In the Lh simulations (Fig. 3e), a precipitation maximum 
is found in the mid-north of the region. The pattern of pre-
cipitation is poorly simulated as indicated by the negative 
correlation coefficient relative to all the observation datasets. 
For Hh (Fig. 3f), a higher correlation with the observations 
is found. However, the Hh subset still fails to capture the 
observed precipitation maximum along the northeast coast. 
For Lv (Fig. 3g), the models show a general overestimation 
of precipitation with positive relative bias (RB) compared 
to the observations. In contrast, the Hv simulations (Fig. 3h) 
show less precipitation across the region. A higher correla-
tion with the observations is also seen in Hv compared to 
Lv. The Lh–Lv and Hh–Lv simulations show relatively low 
correlations (< 0.3) with the observations. In comparison, 
the Lh–Hv simulations show a higher correlation, indicating 
an improved simulation of the observed distribution when a 
higher horizontal or vertical resolution is used. The Hh–Hv 
group presents the best-simulated distribution with the 
highest correlation with the observations and least RMSE. 
Hh–Hv simulations also correctly simulate the observed pre-
cipitation maximum over the northeast coast of the region, 
though underestimation is found (negative RB) compared to 
all the observations. It is also noticeable that the RMSE, RB 
and correlation coefficient for all the simulations vary with 
the compared observation data, implying that uncertainty 

Fig. 2   Annual cycle of the regionally averaged precipitation amount for all the rain-gauge stations (a) and the stations along the west coast (b) 
and east coast (c) of Peninsular Malaysia
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in observed precipitation datasets limits their capacity for 
model evaluation at higher temporal and spatial scales.

The rainfall characteristics in Peninsular Malaysia exhibit 
strong seasonal variation due to the influence of the North-
east and Southwest monsoons (Varikoden et al. 2011; Tan 
2018). Here, the analysis of the seasonal changes in pre-
cipitation for the wet Northeast monsoon season (NDJF) 
with respect to the dry Southwest monsoon season (MJJA) 
is shown in Fig. 4. For the observed precipitation over the 
region (Fig. 4a–d), a significant increase in precipitation is 
seen during the Northeast monsoon season, especially over 
the northeast coast (by up to 800 mm/season) and the south-
west (by up to 400–600 mm/season). Decreased precipita-
tion during the Northeast monsoon season (by up to about 
100–300 mm/season) is shown in the northwest, though 
APHRODITE and GPM do not suggest these changes are 
statistically significant. The Lh (Fig. 4e) and Lh–Lv (Fig. 4i) 

simulations show a significant precipitation decrease across 
the north of the region and fail to capture the observed pre-
cipitation increase in the northeast coast and the southwest. 
Simulations with higher horizontal resolutions, including Hh 
(Fig. 4f), Hh–Lv (Fig. 4k) and Hh–Hh (Fig. 4l) show a better 
simulation of the precipitation increase along the northeast 
coast than those with lower horizontal resolution. However, 
the amplitude of the annual cycle of precipitation is still 
underestimated over most of the region, which is consist-
ent with the underestimated precipitation in December and 
the overestimation during MJJA (Fig. 3). Compared with 
Lv (Fig. 4g), Lh–Lv (Fig. 4i) and Hh–Lv (Fig. 4k), simula-
tions with finer vertical resolutions, including Hv (Fig. 4h), 
Lh–Hv (Fig. 4j) and Hh–Hv (Fig. 4l), show an improved 
simulation with higher correlation and lower RMSE and RB 
in general. The Hh–Hv simulations exhibit the lowest RMSE 
and RB against every observational dataset compared to the 

Fig. 3   Spatial distribution of the annual precipitation amount for the 
period 2001–2014. The root-mean-square error (RMSE), relative bias 
(RB) and correlation coefficient (R) between each simulation group 
and the observed precipitation are shown in red (relative to MMD), 

blue (APHRODITE) and orange (GPM). Asterisk indicates the cor-
relation at a confidence level above 90% (two-tailed p-value < 0.1) 
based on Student's t-test
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other groups. They also exhibit the best representation of 
the observed precipitation increase over both the northeast 
coast and the southwest during the Northeast monsoon sea-
son, though the spatial correlation with the observations is 
not improved.

The Taylor diagrams in Fig.  5 provide a statistical 
comparison between the simulated precipitation distribu-
tions with different resolutions and the mean precipitation 
from the four different observational datasets. Black dots 
indicate that the different observed precipitation datasets 
exhibit some consistencies in the spatial pattern of pre-
cipitation in different seasons, though APHRODITE and 
GPM show a lower standard deviation compared to MMD. 
The Hh–Hv simulations perform the best in simulating the 
precipitation distribution during the Northeast monsoon 
(NDJF) seasons in terms of RMSD. For the Southwest 
monsoon seasons (MJJA), the Lh–Hv simulations show the 
lowest RMSD, while Hh–Hv shows the highest correlation 

with the observed precipitation compared to other groups. 
Additionally, for the total precipitation during the full-
year and the MJJA periods, the Lh–Hv simulations out-
perform Hh–Lv and Lh–Lv, implying the importance of 
using fine vertical resolutions for a realistic simulation of 
precipitation. Comparing the NDJF period with MJJA, a 
larger spread is seen and it implies a greater model uncer-
tainty in the simulation of the Northeast monsoon sea-
sons. Moreover, for the different periods, the simulations 
at relatively high vertical resolution (Lh–Hv and Hh–Hv) 
generally show smaller spreads of scattering compared 
to the coarse vertical resolution simulations (Lh–Lv and 
Hh–Hv). Also, for Lh–Hv, Hh–Lv and Hh–Hv, the correla-
tions with observations are higher in NDJF than those in 
MJJA. Similar results have been found when the simulated 
precipitation over Southeast Asia during DJF is compared 
with that in JJA using the RCM simulations of the COR-
DEX–SEAsia experiments (Tangang et al. 2020).

Fig. 4   Same as Fig.  3, but for the difference of total precipitation 
between the Northeast monsoon season (November to February, 
NDJF) and the Southwest monsoon season (May to August, MJJA). 

Black stippling indicates the statistically significant difference at the 
95% confidence level via the Student’s t-test
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In summary, models with finer horizontal and vertical 
resolutions exhibit a better representation of precipitation 
distribution. Such an improvement is more prominently 
shown during the Northeast monsoon season. However, 
simulation for the Southwest monsoon seasons is not sig-
nificantly improved. This limits the improvement in simu-
lating the spatial shift of precipitation between the different 
monsoon seasons.

3.3 � Relationship between monsoon intensity 
and precipitation

The simulated relationship between monsoon intensity and 
precipitation over Peninsular Malaysia, in terms of Pearson 
correlation coefficients between seasonal total precipitation 
and seasonal mean NEMI and WSI, is shown in Figs. 6 and 
7. For the northeast monsoon season, the observed precipi-
tation from MMD (Fig. 6a), APHRODITE (Fig. 6b), GPM 
(Fig. 6c) and their ensemble mean (Fig. 6d) suggest positive 
correlations (> 0.5) with NEMI on the windward side of the 
Titiwangsa Mountains (near 4.6° N, 101.4° E) and the East 

Coast Range (near 4.8° N, 102.8° E), implying an increase 
(decrease) in precipitation amount due to a stronger (weaker) 
winter monsoon. Uncertainty in the observed precipitation 
datasets means the location of significant correlations var-
ies from the center to the southeast of the region. The Lh 
(Fig. 6e) simulations show correlation coefficients between 
0.15 and 0.3 over the region and are underestimated by up 
to about 0.4 over the center to the east coast compared to the 
observational mean. The Hh simulations exhibit a higher 
correlation coefficient compared to Lh and the location of 
the observed correlation maximum across the east is cap-
tured reasonably well, while underestimation still exists. An 
obvious underestimation of correlation is also noted in the 
Lv simulations. With increased vertical resolutions, the Hv 
ensemble mean shows higher correlation coefficients com-
pared to Lv; however, the simulations fail to capture the 
location of maximum correlation over the east. As shown in 
Fig. 6i and j, the Lh–Lv and Lh–Hv simulations poorly cap-
ture the correlation pattern. Comparison of Fig. 6i–l shows 
that the ensemble of Hh–Hv simulations has the least RMSE 
and RB when compared with every observational data set 

Fig. 5   Taylor diagrams for the spatial comparisons of the precipita-
tion amount during the full-year (a), northwest (b) and southwest 
monsoon (c) seasons between the ensemble mean of observed precip-
itation and each simulation for the different resolution groups. Black 
dots show the statistics for the different observed precipitation data-

sets, including MMD, APHRODITE (APH) and GPM. Rings show 
the statistics for the ensemble mean of simulations for the different 
resolution groups. The labelled number of scatters for each simulation 
is the same as that listed in Table 2
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compared to the other groups. The simulated correlation 
coefficients are up to 0.5 over the east, which is higher than 
other simulations and mostly similar to the observational 
mean. However, overestimations are seen over the north 
and southwest of the region. The Hh–Lv simulations show 
the most similar spatial pattern to the observational mean 
(in terms of correlation coefficient with the observed pre-
cipitation), though more underestimation is seen compared 
to Hh–Hv. It is also noted that all simulation groups show 
no statistically significant correlation in contrast to the 
observations.

During the southwest monsoon season, all the observed 
precipitation datasets (Fig. 7a–d) suggest relatively high 
correlation coefficients between precipitation and WSI 
across the southwest windward side of the region. The 
MMD shows the highest maximum of correlation coef-
ficient by up to 0.75. The correlation presented by GPM 
is generally weaker than other observational datasets. 
Comparison of Fig. 7e–h shows that increases in model 

resolution can result in higher monsoon-precipitation cor-
relation over the southwest, especially for the increase in 
vertical resolution (by up to 0.3, Fig. 7g and h). In contrast 
to Lh, Hh and Lv, the Hv simulations successfully rep-
resent the statistically significant correlation across the 
southwest in the observations. Comparison of Fig. 7i–l 
suggests that the Lh–Hv group has the most similar spatial 
pattern to the observational mean (in terms of R) com-
pared to Lh–Lv, Hh–Lv and Hh–Hv, while Hh–Hv gener-
ally shows the lowest RMSE and RB with respect to the 
observational datasets.

Overall, the GCM simulations with coarser horizontal 
and vertical resolutions tend to produce a weaker relation-
ship between precipitation and monsoon intensity during the 
different monsoon seasons. Improved simulations of such 
relationships can be obtained by the use of sufficiently high 
horizontal and vertical resolutions and such an improve-
ment is more obviously seen during the southwest monsoon 
seasons.

Fig. 6   Pearson correlation coefficients between NDJF-mean NEMI and the total precipitation during NDJF. Black stippling indicates the statisti-
cally significant correlation at the 95% confidence level (two-tailed p-value < 0.05)
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3.4 � Extreme precipitation

Extreme precipitation during the Northeast monsoon sea-
son is closely associated with severe flooding over Penin-
sular Malaysia (e.g. Tangang et al. 2008; Hai et al. 2017) 
and the reliable projections of changes in these extremes 
are therefore key to understanding the likely impact of 
climate change in the region. To evaluate the ability of the 
HighResMIP models to simulate the extreme precipitation 
in the region, the distribution of the 95th percentile maxi-
mum daily precipitation during the Northeast monsoon 
season (NDJF) from the different observed precipitation 
data and the ensemble mean of each resolution group are 
presented (Fig. 8). The MMD (Fig. 8a), APHRODITE 
(Fig. 8b) and GPM (Fig. 8c) show the regions with the 
highest extreme precipitation rates (> 76 mm/day in NDJF) 
occur along the northeast coast of Peninsular Malaysia. In 
these regions, MMD and GPM show a higher precipita-
tion rate (approximately double) compared with APHRO-
DITE. For MMD, the extreme precipitation rates over the 

southwest of the region are higher (by around 20 mm/day) 
than in GPM.

All the simulations, except Hh–Lv, show an apparent 
underestimation of the extreme precipitation rate (by up to 
about 60%) over the region compared to the observational 
mean. The simulations with coarse horizontal resolutions, 
including Lh (Fig. 8e) and Lh–Lv (Fig. 8i), fail to capture the 
maximum extreme precipitation rate in the region. The Hh 
(Fig. 8f) shows obvious improvements in the simulated loca-
tion of the maximum rate compared to Lh. Similar improve-
ments are seen in Hv (Fig. 8h) compared to Lv (Fig. 8g); 
however, Hv shows a further underestimation of the extreme 
precipitation rate over the region. The Lh–Hv (Fig. 8j) simu-
lations present the highest correlation with the observations 
compared to Lh–Lv, Hh–Lv (Fig. 8k) and Hh–Hv (Fig. 8l). 
Also, Hh–Lv exhibits the best performance in simulating 
the maximum rate on the east coast and the lowest RMSE in 
general. Increases in both the horizontal and vertical resolu-
tions (Hh–Hv) also show apparent improvement in the simu-
lation of extreme precipitation along the east coast compared 

Fig. 7   As Fig. 6, but for correlation coefficients between MJJA-mean WSI and the total precipitation during MJJA
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to simulations with increased vertical resolutions alone, 
although the correlation with observations is not improved. 
Hh–Hv also shows an obvious underestimation of extreme 
precipitation.

In summary, increased model resolution horizontally and 
vertically and yield a better-simulated pattern of extreme 
precipitation rate during the northeast monsoon seasons. 
Also, the GCMs with coarser horizontal resolutions tend 
to produce a weaker extreme precipitation rate. In contrast, 
stronger extreme precipitation rates are found in simulations 
with coarser vertical resolutions.

3.5 � Large‑scale environments in the different 
monsoon seasons

To further understand the source of any model biases in 
the simulated precipitation and the associated extreme 
events discussed in the previous section, in this section the 

precipitation-associated environmental fields of the mon-
soon seasons from the HighResMIP models are evaluated 
through their comparison to the four reanalysis datasets.

3.5.1 � Northeast monsoon season

Moisture transport and the associated divergence field dur-
ing the Northeast monsoon season are shown in Fig. 9. The 
reanalysis datasets illustrate strong moisture transport (up 
to 400 kg m−1 s−1) by the Northeast monsoon flow. The 
passage of the monsoon flow shows a region of weak hori-
zontal divergence (up to 1.2 × 10–4 kg m−2 s−1). For ERA5 
(Fig. 9a), a narrow convergence belt associated with oro-
graphic blocking is seen near the east coast of Peninsular 
Malaysia. The orographic blocking on the windward side 
of the Titiwangsa Mountains across the west of the pen-
insula also causes a strong moisture convergence belt (up 
to 3.2 × 10–4 kg m−2 s−1). A strong divergence belt (up to 

Fig. 8   As Fig. 3, but for the 95th percentile maximum daily precipitation rate during the northeast monsoon seasons (November to February, 
NDJF) for the period 2001–2014
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3.2 × 10–4 kg m−2 s+) associated with the flow diversion is 
seen on the windward side of the East Coast Range. These 
characteristics of the wind‐topography interaction are also 
shown by NCEP-CFSR (Fig. 9d). However, the convergence 
belt near the east coast is not apparently seen in MERRA-2 
(Fig. 9c) and JRA55 (Fig. 9b) shows smaller magnitudes 
of moisture convergence/divergence compared to the other 
reanalyses. This may be due to the relatively coarse reso-
lution in these two datasets, which limit fine-scale wind-
topography interactions. The following section assesses 
the performance of GCMs in simulating large-scale envi-
ronments against the ensemble mean of all the reanalysis 
datasets. Although NCEP-CFSR and JRA55 are at a coarser 

resolution of data assimilation, they are also taken into 
account for incorporating more data sources so as to better 
consider the uncertainties in the data assimilation process, 
including the different model configuration, bias correction 
schemes and the different choice of observational data to be 
assimilated (Bengtsson et al. 2004; Dee et al. 2011).

The difference between the simulations of different res-
olution groups and the ensemble mean of the four reanaly-
sis datasets indicate an underestimation (by up to about 
60–70 kg m−2 s−1) of the moisture transport by the North-
east monsoon in all the model simulations (Fig. 9e–l). 
As a result, the flow diversion is weaker in all the simu-
lations, which causes a moisture convergence bias near 

Fig. 9   NDJF-mean fields of the vertically integrated water vapor 
transport (IVT, vectors) and its horizontal convergence (positive 
shaded) and divergence (negative shaded) for the period 1980–2014 

in four reanalysis datasets (a–d) and the difference fields between 
each resolution group and the ensemble mean of reanalysis data (e–l)
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the east coast. These biases become less obvious in the 
simulations with high vertical resolution (e.g. Hv, Hh–Hv) 
compared to those with low vertical resolutions (e.g. Lv, 
Hh–Lv), implying an improvement in the simulated mois-
ture transport and divergence of the Northeast monsoon. 
This explains the improved precipitation simulation in 
NDJF due to the increased vertical resolution as shown in 
Fig. 5b. However, the increase of vertical resolution also 
leads to a higher divergence bias near the west coast of 
the peninsula, which partly explains the underestimated 
extreme precipitation rate over the west in the simula-
tions with high vertical resolutions as shown in Fig. 8. No 
apparent improvement in the simulated moisture transport 
is seen in the simulations with relatively high horizontal 
resolution compared to those with coarse resolutions. This 

is partly consistent with the study of Demory et al. (2014) 
suggesting that the simulated circulation associated with 
the global water budget in GCMs is insensitive to varying 
horizontal resolutions.

The vertical velocity is considered as an important envi-
ronmental indicator of precipitation in Malaysia (Mahmud 
et al. 2020) and more widely in the tropics. Here, the verti-
cal velocity fields at 850 hPa from the HighResMIP models 
are examined. During the northeast monsoon seasons, the 
east coast of Peninsular Malaysia is dominated by an intense 
ascent (up to 9–15 × 10–2 Pa s−1) of the northeasterly winds 
over coastal orography as shown by the reanalysis datasets 
(Fig. 10a–d). ERA5 and CFSR also show intense ascent (up 
to 15 × 10–2 Pa s−1) on the windward side of the Titiwan-
gsa Mountains, mid-west of the peninsula. This feature is, 

Fig. 10   NDJF-mean fields of vertical velocity at 850 hPa (positive: downward motion) for the period 1979–2014 in four reanalysis datasets (a–d) 
and the difference fields between each resolution group and the ensemble mean of reanalysis data (e–l)
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however, not obvious in JRA-55 and MERRA-2, which may 
again be due to their relatively coarse horizontal resolutions.

All the model simulations (Fig. 10e–l) except Hh–Lv 
exhibit an underestimate of ascent (by up to 8 × 10–2 Pa s−1) 
across the west of the peninsula. This bias is more obvious 
in simulations with relatively high vertical resolutions (e.g. 
Hv, Lh–Hv and Hh–Hv) compared to those with low vertical 
resolutions (e.g. Lv, Lh–Lv and Hh–Lv). The simulations 
with high horizontal resolutions (Hh) show some reduction 
of this bias compared to Lh, though such an improvement is 
as apparent for Hh–Hv compared to Lh–Hv. The bias may 
be due to the overly weak strength of the Northeast monsoon 
(Fig. 9e–l). Such a bias also partly explains the underesti-
mated precipitation during NDJF (Fig. 4 and Fig. 8), espe-
cially for simulations with high vertical resolutions.

3.5.2 � Southwest monsoon season

For the southwest monsoon season, the reanalyses 
(Fig. 11a–d) show that the south of Peninsular Malaysia is 
affected by the southwesterly moisture transport of the cross-
equatorial winds and the north is affected by the westerly 
monsoonal flow. Relatively strong moisture convergence 
occurs in the mid-north of the region, which explains the 
northward shift of the maximum precipitation in MJJA as 
indicated by the negative precipitation difference values in 
Fig. 4a–d. In the Lh simulations (Fig. 11e), a bias of west-
ward moisture transport is shown from the peninsula to the 
east, implying an overestimated strength of the Southwest 
monsoon compared to all the reanalyses. Moreover, the sim-
ulations show overestimated divergence in the center of the 

Fig. 11   Same as Fig. 9, but for the MJJA-mean fields
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region and an overestimate of convergence in the northwest. 
Similar biases are shown in Hh, Lv, Hv, Lh–Lv, Lh–Hv and 
Hh–Hv. These biases can induce an overestimate of pre-
cipitation during MJJA in the west of Peninsular Malaysia, 
which are consistent with the overestimated negative anoma-
lies of precipitation in the region for NDJF relative to MJJA 
as shown in Fig. 4e–l. The Hh–Lv simulations (Fig. 11k), 
however, show the smallest biases in moisture transport, 
which possibly explains their superior performance in simu-
lating the pattern of precipitation difference between MJJA 
and NDJF (Fig. 4k).

Figure 12 shows the vertical velocity fields during the 
Southwest monsoon season (MJJA). A relatively intense 
ascent (up to 5–12.5 × 10–2 Pa s−1) is found in the mid-north 
of Peninsular Malaysia (Fig. 12a–d) due to the influence of 

the westerly monsoonal flow to the north of Sumatra and 
the cross-equatorial southwesterly flow over the south of 
the peninsula (Fig. 11a–d). Although all the simulations 
(Fig. 12e–l) show a weaker ascent (up to 6–10 × 10–2 Pa s−1) 
over the mid-north of the peninsula, some overestimation of 
the ascent is seen across the west coast. These biases, com-
bined with the overestimated moisture convergence in this 
region (Fig. 12e–l), may explain the overestimated precipita-
tion during the season (Fig. 2b), especially for simulations 
with coarse vertical resolutions (Lv, Lh–Lv and Hh–Lv).

In general, the simulations of the precipitation-related 
environmental fields for different resolution groups exhibit 
some similar biases with respect to the ensemble mean of the 
four reanalysis datasets. These include the overly weak mois-
ture transport by the Northeast monsoon flow in NDJF and 

Fig. 12   Same as Fig. 10, but for the MJJA-mean fields
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the strength of Southwest monsoon flow is overestimated. 
Also, for most of the simulations, the ascent in the lower 
troposphere for different seasons are generally underesti-
mated over the region. The simulations with high horizon-
tal resolutions show some improvements in simulating the 
lower-tropospheric vertical velocity and moisture transport/
divergence in different seasons. However, greater biases are 
seen in simulations with relatively high resolutions com-
pared to those with low vertical resolutions.

4 � Summary and discussion

This study has evaluated the performance of the CMIP6 
HighResMIP experiments in simulating monsoonal pre-
cipitation and associated large-scale environments over 
Peninsular Malaysia and the impact of varying horizontal 
and vertical resolution on model skill. The analyses have 
grouped the model simulations by horizontal and vertical 
resolution. Compared to simulations at coarser resolutions, 
the higher horizontal and vertical resolution versions of the 
HighResMIP models show improved ability to simulate 
the total precipitation in different monsoon seasons dur-
ing the period 2001–2014 compared with three observed 
precipitation datasets. Improvements in the simulated rela-
tionship between precipitation and monsoon intensity in 
different monsoon seasons are also achieved in simulations 
at increased resolutions, especially for the southwest mon-
soon seasons. The results also show that the simulations with 
higher horizontal and vertical resolutions from the High-
ResMIP experiments are more capable of representing the 
observed annual cycle and spatial patterns of precipitation 
compared to the low horizontal and vertical resolution sim-
ulations. Similar improvements associated with increased 
horizontal resolution have been found in previous studies 
based on RCM simulations over the CORDEX-SEAsia 
domain (Tangang et al. 2020) and East Asia (e.g., Jin et al. 
2016); however, further study is required to compare the 
performance of HighResMIP with the RCM simulations of 
CORDEX-SEAsia so that their advantages and disadvan-
tages can be better understood. Jain et al. (2019) considered 
these improvements to be associated with improved low-
level dynamics and better-resolved topography. These find-
ings also support the study of Lindzen and Fox-Rabinovitz 
(1989) suggesting that the increase in horizontal and vertical 
model resolutions ought to be set consistently for a reason-
able Rossby ratio between vertical and horizontal scales in 
quasi-geostrophic flow. However, it is still unclear whether 
the improvement in the seasonal mean precipitation is asso-
ciated with better resolved synoptic weather systems associ-
ated with precipitation, such as the northeasterly cold surges 
and Borneo Vortices (Tangang et al. 2008; Koseki et al. 
2014; Liang et al. 2021), rather than the mean circulation 

patterns being better represented. In another study of the 
authors, increases in horizontal resolution were found to sig-
nificantly improve the simulation of Borneo Vortices using 
the HighResMIP experiments from the HadGEM3-GC31 
model (Liang et al. 2021). However, it is still difficult to fully 
explore these weather systems within all the HighResMIP 
ensemble members due to limited data availability.

The analysis of the annual cycle of precipitation shows 
that all the HighResMIP experiments can capture the 
observed precipitation peaks of the year during the Northeast 
monsoon seasons. However, all the simulations, particularly 
for those with low vertical resolutions, tend to overestimate 
the precipitation amount during the Southwest monsoon 
season. The simulations at lower vertical resolutions are 
also found to produce higher annual mean precipitation and 
extreme precipitation in NDJF than those at higher vertical 
resolutions and lead to overestimated precipitation, which 
can be explained by the stronger vertical ascent in the dif-
ferent monsoon seasons. These findings are partly consistent 
with the study of Volosciuk et al. (2015), suggesting that 
coarser vertical resolution in a GCM can cause an equator-
ward shift of extreme precipitation in the tropics, while the 
physical mechanism behind this finding remains unclear. In 
addition, the total precipitation amount and extreme precipi-
tation rates during the Northeast monsoon season are also 
generally underestimated by all the simulations. These biases 
are associated with the overly strong (weak) moisture trans-
port by the Southwest (Northeast) monsoon flows. Although 
increases in both the horizontal and vertical resolution can 
yield a better representation in general of the observed tem-
poral and spatial distribution of precipitation, the large-scale 
environments in the low vertical resolution versions gener-
ally present fewer biases with respect to the ensemble mean 
of the reanalysis data. Previous research has also reported 
similar limitations of the increase of vertical resolution on 
improving the simulation of circulation features associated 
with precipitation. For instance, Xie et al. (2018) found that 
increasing vertical resolution can lead to greater underesti-
mation of tropical high clouds and shallower penetration of 
deep convection as water vapor becomes more confined to 
the lower levels and less moisture being transported into the 
middle troposphere. However, due to the limited ensemble 
size and spatial resolution of the reanalysis data used here, 
the evaluation of the simulated large-scale environmental 
fields should be interpreted with caution.

This study has performed a classification of GCM experi-
ments in terms of theirs horizontal and vertical resolutions 
to investigate the role of model resolution in the simula-
tion of monsoonal precipitation. It should be noted that the 
sensitivity of precipitation to the different model groupings 
found here can be due to other factors, such as the differ-
ent atmospheric dynamical core (e.g. Jang and Hong 2016; 
Yang et al. 2017) and physical parameterizations (e.g. Im 
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et al. 2008; Juneng et al. 2016) used in the selected experi-
ments. The limited sample size for each resolution group 
may also lead to uncertainties, especially for the Hh–Hv 
simulations which only include four members, as the number 
of ensemble members for the high-resolution models are 
strongly limited by their computational cost. Moreover, we 
note that the selected observed precipitation datasets exhibit 
considerable uncertainties in the magnitude of precipitation, 
though similarities in spatial distribution are observed. Also, 
the selected climate reanalysis data contains uncertainties 
in their data assimilation methods. Although the use of the 
different observational and reanalysis datasets as verifica-
tion data in this study help to understand the impact of the 
uncertainties and thus to improve the robustness of model 
evaluation.

This study has focused on climatological precipitation 
patterns. As such, one limitation of the study is the lack of 
analysis of the natural variability of precipitation over Penin-
sular Malaysia. Precipitation studies in the region have sug-
gested a connection between the interannual variability of 
precipitation with the El Niño–Southern Oscillation (Wong 
et al. 2009; 2016; Tangang et al. 2017). The Indian Ocean 
Dipole has also been found to be associated with histori-
cal extreme precipitation events in the region (e.g. Tangang 
et al. 2008; Islam et al. 2018). Moreover, phases 3–5 of 
the Madden–Julian Oscillation are found to facilitate the 
low-level convergence and vertical velocity over the west-
ern Maritime Continent during boreal winter (Wu and Hsu 
2009; Oh et al. 2012), leading to strong intra-seasonal vari-
ability of deep convection and precipitation over the region 
(Peatman et al. 2014). In addition, deep convection strongly 
interacts with tropical waves, which leads to variability of 
precipitation at synoptic time scales (Ferrett et al. 2020). 
Precipitation over Peninsular Malaysia also exhibits strong 
diurnal variation with the peak of precipitation observed 
early in the evening (Varikoden et al. 2011). The ability of 
climate models to simulate variability at different temporal 
scales in this region is still not well understood and will be 
investigated in future model-based studies.

The research indicates some credibility in the use of high-
resolution simulations of HighResMIP for projecting the 
possible future changes of precipitation in a warmer climate, 
but these results make it clear that users should be aware of 
the fact that model performance varies depending on the 
phenomena of interest. Based on these simulations, future 
work will study projections of precipitation under green-
house gas emission scenarios. One ongoing study based 
on HighResMIP is focusing on the simulation of Borneo 
Vortices and the associated precipitation over Malaysia in 
the present (Liang et al. 2021) and future climate. Another 
ongoing study uses the HighResMIP experiments as input 
to a river basin-scale hydrological model to investigate the 
combined impact of climate change and land use change 

on extreme hydrological events over Peninsular Malaysia 
(Tan et al. 2021). The model evaluation in this article will 
provide important information for future research based on 
the HighResMIP experiments.
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