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a b s t r a c t

In the current technological era, predicting the power and energy output based on the changing
weather factors play an important role in the economic growth of the renewable energy sector. Unlike
traditional fossil fuel-based resources, renewable energy sources potentially play a pivotal role in
sustaining a country’s economy and improving the quality of life. As our planet is nowadays facing
serious challenges due to climate change and global warming, this research could be effective to
achieve good prediction accuracy in smart grids using different weather conditions. In the current
study, different machine learning models are compared to estimate power and energy of hybrid
photovoltaic (PV)-wind renewable energy systems using seven weather factors that have a significant
impact on the output of the PV–wind renewable energy system. This study classified the machine
learning model which could be potentially useful and efficient to predict energy and power. The
historic hourly data is processed with and without data manipulation. While data manipulations are
carried out using recursive feature elimination using cross-validation (RFECV). The data is trained
using artificial neural network (ANN) regressors and correlations between different features within
the dataset are identified. The main aim is to find meaningful patterns that could help statistical
learning models train themselves based on these usage patterns. The results suggest that opting feature
selection technique using linear regression model outperforms all the other models in all evaluation
metrics having to mean squared error (MSE) of 0.000000104, mean absolute error (MAE) of 0.00083,
R2 of 99.6%, and computation time of 0.02 s The results investigated depict that the sustainable
computational scheme introduced has vast potential to enhance smart grids efficiency by predicting
the energy produced by renewable energy systems.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over recent years the power industry has switched its focus to
enewable energy sources to reduce its carbon footprint during
nergy generation (Sharif et al., 2019; Qadir et al., 2019a). PV and
ind have been widely implemented as alternatives in the hybrid
ower system due to their renewable nature and ease of avail-
bility. The hybrid PV–wind power plants have been investigated
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due to its variability, being technical efficient and cost-effective
(Mohammadi and Mehdi, 2018; Fasihi and Breyer, 2020; Groppi
et al., 2020; Xu et al., 2020). Due to the variable nature of energy
generation from the PV and wind power systems, the managers
must control and operate the power plant efficiently (Qadir et al.,
2018a). There is a need to forecast the PV–wind energy gener-
ation for short- and long-term planning of power transmission.
A lot of research has been carried out recently on feasibility
analysis and forecasting the power generation by PV–wind sys-
tems (Abujubbeh et al., 2019; Zhang et al., 2019). Some studies
have used the approach to forecast the input variables (solar
irradiance and wind) and calculated the power generated by the
hybrid plant using models, while some have focused on direct
power forecast of the renewable energy source (Das et al., 2018).
Various prediction models such as persistent model, k-nearest
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able 1
ist of Abbreviations.
Symbol Definition

PV Photovoltaic
RFECV Recursive feature elimination using cross-validation
ANN Artificial neural network
MSE Mean squared error
MAE Mean absolute error
R2 Correlation coefficient
GA Genetic algorithm
kNNs K-nearest neighbors
ICT Information and communications technology
AI Artificial intelligence
Si Solar irradiation
Ws Wind speed
Ta Ambient temperature
H Humidity
R Precipitation
Pa Atmospheric pressure
Wd Wind direction
MLP Multilayer perceptron
IAPS Invasive alien plant species
METU Middle east technical university
NCC North Cyprus campus
GPS Global positioning system
SVR Support vector regression
FCME Forward consecutive mean excision
RH Relative humidity
ML Machine learning

neighbors (kNNs), SVM, ANN and genetic algorithm (GA) have
been investigated for solar power forecasting (Pedro and Coimbra,
2012; Qadir et al., 2018c; Rashid et al., 2018). The abbreviations
used in this study are summarized in Table 1.

The interest of researchers in ANN applications has exploded
ecently. Many of the new applications are introduced primarily
ocusing on technological and development issues related to ANN.
hese applications are not limited to one area but submerge
any fields such as agricultural production, environment, energy
eneration, engineering and science, finance and management,
olicy, and security (Munawar, 2020a,b; Munawar et al., 2020,
019a, 2017).
Further examples include stock market, banking, quality pre-

iction of crude oil, money laundering, water treatment, crime
etection, etc (Li et al., 2019a). The relationship of ANN applica-
ions with classification, pattern-recognition, and prediction and
umber of publications against different sectors are summarized
n Table 2. ANN is a vast field and can solve any problem related to
ifferent sectors. The different frameworks, models, algorithms,
nd schemes are always available to predict, classify, or recognize
atterns in any emerging field. ANN applications are applied in
ifferent sectors. However, there is an utmost need for robust
NN prediction models related to the energy sector that can be
nalyzed to utilize energy in a much sustainable and efficient
ay.
Artificial Neural Network (ANN) is the model inspired by the

uman nervous system to assimilate nerves in any environment
nd perform different activities. The architecture of regression in
NN is illustrated in Fig. 1. The ANN regression model comprises
f input, weight, error (the difference between an exact value
nd some approximation to it), transfer function (defines various
nput–output relationships), activation function (defines the out-
ut of node given an input or set of inputs) and output (Ahmad
t al., 2014; Saritas and Yasar, 2019). The most common task
hat an ANN can perform is pattern recognition, prediction, im-
ge classification, clustering, signal processing, social networking,
achine learning techniques (Koesdwiady et al., 2016; DiCarlo
t al., 2012; Park et al., 2009; Kriegeskorte et al., 2008; Kruger
t al., 2012). Currently, information and communications technol-

gy (ICT) hosts a lot of hot topics related to artificial intelligence i
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Table 2
Results related to classification, pattern-recognition, and prediction in several
ANN Applications.
ANN applications Classification Pattern recognition Prediction Total

Agriculture 2 3 3 7
Energy 2 15 5 22
Engineering 2 7 22 31
Environmental 2 15 10 27
Finance 2 15 10 27
Management 2 2 40 44
Manufacturing 5 15 12 32
Medical science 2 5 10 17
Mining 2 15 2 19
Policy 2 2 2 6
Science 2 25 25 52
Security 2 18 20 40
Weather/Climate 2 15 2 19
Other fields 10 11 52 71

(AI), such as machine learning, deep learning, neural networks,
cloud computing, big data, wireless communication and infor-
mation security (Zhang et al., 2018; Luo et al., 2018; Murphey
et al., 2012; Brundage et al., 2018; Qadir et al., 2018b; Munawar
et al., 2019b, 2020a,b) Under the umbrella of ANNs lie data anal-
ysis factors, such as computational time, accuracy, performance,
latency, scalability, and fault tolerance. These factors are useful
to calculate the prediction accuracy, for example, MSE, MAE,
coefficient of determination (R2), and time (Mozaffari et al., 2018;
He and Garcia, 2008). It has high-speed performance capabil-
ity in massive parallel implementation heightening the need to
do comprehensive research in this domain Huang (2017) and
Izeboudjen et al. (2014). In the numerical paradigm, ANN is
widely used in universal function approximation because of their
unique capability of adaptivity, self-learning, fault tolerance, ad-
vancement, and non-linearity in input to output mapping (Wang
et al., 2017). Moreover, for handling complex and non-complex
problems, these data analysis factors provide a clear picture.
Therefore, ANNs are preferred to be used (effectiveness, success,
and efficiency) in providing high data handling capability.

The choice of training algorithms used to train ANNs in terms
of computational time and accuracy depends on many factors,
such as size (dimension) of the dataset, weight and biases of the
network, number of delays, network complexity and its archi-
tecture, splitting of dataset for training, validation and testing
purpose and last but not the least is the acceptable errors (er-
ror histogram) and autocorrelation between training and test
data (Rahmanifard and Plaksina, 2018; Araque et al., 2017; Sheng
et al., 2017). ANN energy prediction pipeline consists of five
basic steps to select an accurate prediction model as shown
in Fig. 2 (Taborda et al., 2015). The input data from the given
database is split into training and testing according to the type
of problem being addressed. In the second and third steps, feed-
forward or feed-back connections are selected along with the
parameters to train the ANN model (Xing et al., 2018; Kingston
et al., 2005). In the fourth and fifth step, the error values are
calculated based on R2, MSE, MAE, time, and the prediction model
is selected based on the least errors and higher accuracy.

There are several problems related to time-consumption con-
vergence, variable quantization and artificial neural system (ANS)
using supervised learning that needs to be addressed. This study
highlights some of these shortcomings as follows:

• improving the prediction capability of ANNs and making
hem robust. Additionally, training a generalized range of data to
nhance prediction accuracy.

• complete knowledge retrieval from trained ANNs and model
ransparency to deeply understand the data transfer and process-

ng from input to the output layer.
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Fig. 1. The architecture of ANN Regression.
Fig. 2. Generic ANN prediction pipeline.
• enhancing the extrapolation ability of ANNs to design a
odel that can predict the outward range of data accurately.
• improving the efficacy of ANN prediction algorithms to avoid

ncertainty.
Hence the main aim of the study is to enhance the forecast

ccuracy of hybrid PV–wind system using ANN models by consid-
ring different weather factors. The weather factors selected for
he study were Solar Irradiation (Si), Wind Speed (Ws), Ambient
emperature (Ta), Humidity (H), Precipitation (R), Atmospheric
ressure (Pa) and Wind Direction (Wd). The intra- and interrela-
ionship of different weather factors and their impacts on PV and
ind energy systems are analyzed. This will help in developing
framework for generating a forecast model and compensate for
ny missing data. This paper is organized as follows: Section 2
iscusses the brief literature review on energy forecasting of
ybrid PV–wind system and compare different regression models.
ection 3 presents a detailed methodology, exploring the col-
ected data using data visualization techniques and a correlation
etween different features in the dataset. The main goal of the
ection is to find meaningful patterns that help statistical learning
odels train themselves based on these usage patterns. Finally,
ection 4 concludes the paper along with indications of possible
uture works.

. Literature review

The solar irradiance and wind speed play a key role in out-
ut power generation from the PV panel or a wind turbine.
he weather conditions and the time of the day impact the
olar intensity and wind speed reaching the earth surface. This
ause rapid change in power output from the PV or wind tur-
ine to the grid stations with time, resulting in instability. This
ecessitates the need for precise forecasting so that the opera-
or can estimate the difference in the forecasted and generated
nergy for balancing the grid performance at minimum cost (Al-
urjman et al., 2020). It helps the plant manager and customer to
void unexpected power shortage, uncertainty, and lower cost of
nergy (Antonanzas et al., 2016).
Fig. 3 highlights the ANN applications in developing regression
odels. A keyword analysis was performed using the VosViewer
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software for the articles retrieved to highlight the focus of the
ANN articles published in the last decade. Recent literature stud-
ies from the last two decades revolve around keywords such as
data mining, feature selection, prediction accuracy, regression,
pattern recognition, data processing and others (Kadam, 2020; Li
et al., 2019b; Cui et al., 2019; Qadir et al., 2019b). This entirely
portrays a central focus on data retrieval in developing regression
models, which is in line with recent literature (Jiang et al., 2019;
Leng et al., 2018; Jiang and Guoqing, 2017), where it is stated that
ANN regression models help in predicting the weather factors
based on feature selection.

The most influential input climatic parameters can be directly
fed to ANN prediction models. Marquez and Coimbra (Marquez
and Coimbra, 2013) selected and analyzed the most relevant in-
put variables from several climatic parameters using the Gamma
test-based strategy. Later, a genetic algorithm search is included
for speeding the process and finding the relevant combination of
input variables. The experimental results depict that the selected
inputs are temperature, precipitation, cloud cover, and solar ge-
ometry. Moreover, by using these inputs, the values of R2, MSE,
and RMSE comes out to be 94.7%, −0.6, and 0.177, respectively.
The use of additional input climatological factors was investigated
by Sfetsos and Connick (Sfetsos and Coonick, 2000) for predicting
the solar power output. Analyzing the trial-and-error method the
two-step technique was considered by the authors. In this tech-
nique, minimal errors are achieved initially by training the model.
Significantly, the influence of input parameters is abolished by
changing it with either zero or mean value.

Implementation issues can be faced while integrating several
input variables to an ANN model. The foremost one is the eleva-
tion in computation time which is consumed during the training
process. Additionally, it can also increase the risk of having re-
dundant parameters which may complicate the training process
and can cause a drastic increase in the prediction errors (Xiang
et al., 2016). This scenario is most common while using multilayer
perceptron (MLP), as each of the hidden neurons is multiplied by
the input variables leading to a complex network. To recapitulate,
an additional dimension to the output space is caused by the ad-
dition of variable in the input data, and to represent the mapping

relationship, the training stage will need more data to occupy the
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Fig. 3. Most frequent keywords used in ANN-based regression models from 2000 to 2020.
pace densely (De Martino and De Martino, 2018). Currently, the
evelopment of smart solutions, as well as the implementation
f various applications using smart wearables and accessories,
s being investigated quite extensively (Jaeger and Haas, 2004;
aykin and Neural Network, 2004; Floreano and Mattiussi, 2008;
uo and Zhu, 2018; Al-Mahasneh et al., 2017; Qadir et al., 2021b).
urthermore, various processes of predicting the energy output
f a PV and wind plants as a standalone system has also been
onsidered in various studies (Kulkarni et al., 2004; Yao et al.,
012). In another study (das Merces Machado et al., 2009), the
uthors mention that if the weak models provide significant
hanges according to the metrics, we use to evaluate them, the
agging models can provide somewhat better performance. In
irose and Yoshida (2012), the authors used to boost, and bagging
odels significantly help improve model accuracy. In Islam et al.

2017), the authors used a linear regression model that provide
onsistent results, and they use the least square estimation to
valuate the model.
In Marquez and Coimbra (2011), the authors consider linear

egression analysis as an important model to be explored. They
ention that linear regression enables the identification and
haracterization of relations between different attributes. We also
how in the next sections that the features in our dataset have a
ort of distribution that makes a linear regression model capable
f learning very well from it. In the results section, we show
hat this characteristic makes the linear regression outperform all
he other regressors. In Priddy and Keller (2005), the authors use
inear regression analysis to statistically characterize the relations
mong the population and gross local products and the request
or receiving energy by the residential, transport, and commercial
ields. Their main purpose is to determine the energy demand
rends over a long period. They mention that the linear regression
odel for estimating energy demands is an effective method. In
arquez and Coimbra (2011), the author mentions that linear

egression is one of the simplest yet popular ways to measure the
elationship between continuous predictors. Considering this fact,
e show in the results that due to the same reasons that Sfetsos
nd Connick (2000) mentions, linear regression outperforms all
he other predictors, including the most advanced cases such as
agging and boosting approaches. In Priddy and Keller (2005)
nowledge engineering, machine learning, and deep learning are
sed to address sustainable development. It is stated that these

ools are highly effective in passing from the obstacles on the
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path to a sustainable future. In Son et al. (2018) the author claims
that as AI moves into environmental health research, near-term
opportunities for the technology are arising on several fronts. In
Coyle et al. (2007) the authors argue that the combination of
massive environmental genomics microbial data with machine
learning algorithms can be extremely powerful for biomonitoring
programs and pave the way to fill important gaps in our un-
derstanding of microbial ecology. In An et al. (2017) the author
proposes a machine learning approach to accurately detect the
spatial extent of invasive alien plant species (IAPS) to map their
spread over time or model their potential invasion area.

As intrigued by the literature review, the importance of using
data science in environmental sustainability is undeniable. There
are many types of research conducted to address a wide range
of question while machine learning and deep learning is their
permanent mean of tackling the issues. The reason could be
the power of the state-of-the-art machine learning and deep
learning models to capture the differences in a huge amount of a
collected dataset. This is vital to make sense out of the gathered
information by analysis and finding similarities and differences in
the pattern which can be found in the data. Finding a potentially
useful pattern in a dataset can give us a better insight into the
data that we have collected and address relevant issues with a
better and a deeper level of knowledge about the gathered data.

3. Methodology

In this study, data visualization techniques were explored. The
goal was to find meaningful patterns that help statistical learning
models train themselves based on the usage patterns. It selects
the relevant feature i.e., the weather factors for the process to
make a robust model. Note that here the target feature could
be power or energy. The historical hourly metrological dataset
was gathered using calibrated sensors deployed at Middle East
Technical University (METU), NCC, from 1st Jan till 26th Dec 2015.
The weather factors selected for the study were Solar Irradiation
(Si), Wind Speed (Ws), Ambient Temperature (Ta), Humidity (H),
Precipitation (R), Atmospheric Pressure (Pa) and Wind Direction
(Wd). The global positioning system (GPS) module of Raspberry Pi
was used for data collection and storage in clouds. The collected
data were processed with and without data manipulation. While
data manipulations were carried out using RFECV. Data were ex-

plored using ANN prediction algorithms and correlations between
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ifferent features within the dataset were identified. The main
im was to find meaningful patterns that could help statistical
earning models train themselves based on these usage patterns.

Fig. 4 illustrates the development model for predicting the
ower output of PV–wind system based on different regressor
odels. The 1st stage determines the weather data extracted

rom the calibrated sensors. The extracted raw data is then pre-
rocessed, and feature engineering is applied in stage 2 to get the
eal values, eliminating any garbage value which can malfunction
ur model. Feature selection is opted in stage 3 to select the most
elevant feature to save computational time and minimize error.
he features are also adjusted, and zero paddings are applied
here necessary to make the model robust and efficient. In stage
, the data is split and trained using RFECV to eliminate the
epeating feature which can alter the model results. Moreover,
he processed data is analyzed based on the seven most common
egressor model. In the final stage 5, the power and energy output
f the PV–wind system is evaluated based on MSE, MAE, R2 and
omputational time. The regressors used for the study are Extra
rees regressor (meta estimator that fits several randomized de-
isions parameters over subsamples of the population), AdaBoost
Boost the performance of decision trees), SVR (evaluates real-
alue function), K-Neighbors regressors (solves classification and
egression issues), Gaussian Process Regressor (provide uncer-
ainty measurements on the predictions), MLP regressor (prevent
verfitting of the model and update parameters) and Linear Re-
ression (explain the relationship between scalar response and
xplanatory variables).
In RFECV method, an estimator that is a linear regression

odel was selected for the current study that estimates one or
ore target features containing continuous values. The discrimi-
ation function was given by the equation as follows:

= wx + b (1)

where w is the coefficient that the model identifies, and b signi-
fies the bias of the model. In each iteration the model runs, the
estimator uses the data with all the features to provide a set of
scores at the end of each iteration. Each element in this set of
scores will be associated with a feature. For example, the top 5
features of the data which could provide the best contribution to
the model accuracy need to be identified and let us assume that
we have 20 features in general. In this case, the algorithm starts
removing the features recursively at each iteration, only if their
gained score is less than expected by the algorithm. After training
an algorithm the accuracy of the model is evaluated through the
metrics enabling to judge the precision of the learning model.
Cross-validation which is explained by Arlot and Celisse (2010)
can be used. In this study k-fold cross-validation, where k is the
number of folds that divide the dataset into different partitions.
In each fold, the training set and the test set will be separated
from each other. In each fold, the learning and evaluation process
occurs, and at the end, the average accuracy, precision, recall and
F1 score is reported.

The comparison of different regressors based on MSE, MAE, R2
and computational time was carried out for the yearly datasets
using ANN. Based on the weather parameters and hybrid power
system output a total of 77,000 samples were collected and there
pattern is observed in Qadir et al. (2021a). The regressors were
trained, tested and validated based on the collected data. The
datasets were adjusted by removing outliers, errors and missing
values. The network simplification was carried out using the
validation process until no further improvement can be observed.
Finally, the performance is tested of the developed model. The
datasets were divided into three sets for training, validating and
testing. Around 75% of the data was used for training while 15% of

the dataset was used for the validating and testing each. Through
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network training, the values of MSE and R was evaluated for the
output values based on input datasets. The average mean square
difference between the outputs and target values is given by MSE,
and correlation is indicated by the R. MSE with zero indicates no
error and R-value close to one indicates a strong relationship and
zero is a weak relationship.

An interesting relationship between temperature and humid-
ity was observed for the analyzed dataset in Fig. 5(a). With the
increase in temperature fluctuation in humidity was observed,
however after 0.4 ◦C a linear increase in humidity was evident
with consecutive rise in temperature. The relationship between
temperature and relative humidity (RH) has been investigated
for estimating the amount of moisture in the air. It has been
widely accepted by the meteorological community that for a
1 ◦C decrease in temperature there is a 5% decrease in relative
humidity. For RH > 50% the relationship between temperature
and RH become linear (Spoel et al., 2005). The linear relationship
between temperature and RH is given as below:

RH = b − a(t − td) (2)

where b is intercept, a is a slope and t = initial temperature and
td= new temperature

Fig. 5(b) shows that, although the humidity is fluctuation
all along with the change in solar irradiation, it was observed
that when the solar irradiation increases, the humidity gradually
decreases. At the first stage of the experiment, the missing values
from the dataset were removed, and then the values were scaled
between 0 to 1. After completing the data cleansing phase, we
define ten classifiers and evaluated them based on the Coefficient
of determination (R2), Mean Squared Error (MSE), and Mean
Absolute Error (MAE). These findings are in line with the findings
of Thornton et al. (2000) who estimated the relationship between
solar irradiation and humidity of daily observations recorded
from 24 stations located in Austria. The algorithms were used for
estimating radiation and humidity that was based on temperature
and precipitation variables. The MAE for combined radiation and
humidity estimates were 2.52 MJ m-2 per day and 85.6 Pa,
respectively

4. Results and discussion

The weather factor dataset (Solar Irradiation (Si), Wind Speed
(Ws), Ambient Temperature (Ta), Humidity (H), Precipitation (R),
Atmospheric Pressure (Pa) and Wind Direction (Wd)) are formu-
lated based on varying climatic conditions and the output power
is derived as shown in Eq. (3). Once the power is derived, we
simply find the energy required by multiplying it by a varying
value α, here the value of α is 0.9 based on the load as shown in
Eq. (4). The weather factor measured reading from the calibrated
sensors provides the amount of power and energy produced by
the PV–wind system in hours as shown in Table 3. As the weather
factors vary the values of Power and Energy varies. In this study,
the calculated values of Power and Energy are considered as
target values and is compared with the values simulated by the
regressor models.

ActivePower [0 − 1] = ( + 2.68Si + 0.027Ws + 0.1003Ta
− 0.1766H + 0.0842R − 0.0813Pa + 0.0022Wd

+ 0.5228) (3)

Energy = ActivePower ∗ α (4)

After scaling the data, a further step was taken for developing
the ML models. Machine learning (ML) experiments that were
cover in this study can be categorized as the followings: (1)
Feeding learning models without manipulating the dataset. (2)
Performing RFECV before applying any learning models. Recursive
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Fig. 4. Development model stages for predicting power output of PV–wind system.

Fig. 5. Relationship between temperature, relative humidity and solar irradiation (a) abrupt Change in temperature based on humidity, (b) changes in the solar
irradiation based on humidity.

Fig. 6. Correlation between different features in the dataset.
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Table 3
Weather factor dataset and output power and energy produced by the PV–wind system.
Hourly
reading

Wind
speed

Temperature Humidity Air
pressure

Wind
direction

Precipitation Solar
irradiation

Power Energy

0 0.61 0.13 0.73 1.0 0.17 0.16 0.0 0.6897 0.6208
1 0.64 0.13 0.74 1.0 0.21 0.16 0.0 0.6909 0.6218
2 0.56 0.13 0.75 1.0 0.20 0.16 0.0 0.6791 0.6112
3 0.58 0.14 0.75 1.0 0.27 0.16 0.0 0.6731 0.6058
4 0.52 0.12 0.75 1.0 0.22 0.16 0.0 0.6703 0.6033
Table 4
Statistical measure of the weather parameters and output variables.
Measurements Wind

speed
Temperature Humidity Air

pressure
Wind
direction

Precipitation Solar
irradiation

Power Energy

count 8632 8632 8632 8632 8632 8632 8632 8632 8632
mean 0.407853 0.186580 0.709743 0.996968 0.182660 0.254109 0.207660 0.679220 0.611298
std 0.229877 0.074352 0.152935 0.005119 0.077407 0.101936 0.284296 0.067437 0.060694
min 0.040000 0.010000 0.130000 0.830000 0.000000 0.090000 0.000000 0.514000 0.462600
25% 0.220000 0.130000 0.640000 0.990000 0.120000 0.170000 0.000000 0.628200 0.565400
50% 0.360000 0.180000 0.730000 1.000000 0.190000 0.230000 0.000000 0.665700 0.599150
75% 0.560000 0.240000 0.830000 1.000000 0.240000 0.330000 0.390000 0.721225 0.649125
max 1.000000 1.000000 1.000000 1.000000 0.360000 0.560000 1.000000 0.910200 0.819200
feature elimination is a feature selection model that fits a model
and eliminates the weakest feature until a specified number of
features is reached. However, it is often not clear in advance
how many features are valid. To find a favorable number of
features the method of cross-validation is used to score numerous
features and choose the best scoring collection of features. It
normally plots the number of features in the model along with
their cross-validated test score and diversity and envisages the
selected number of features. It leads to fewer features and less
MSE loss. Furthermore, the time needs to train the learning model
significantly decreases. The data was visualized using a different
statistical measure of mean, median, standard deviation, mini-
mum and maximum values for weather parameters and output
variables as shown in Table 4. The mean variation in the values
of wind speed was found to be 0.4 m/s, the temperature was 0.18
oC, air pressure 0.99, for wind direction it was 0.18, precipitation
round 0.25 and solar irradiation was at 0.2 (KW/m2). While for
ower the mean value was 0.67 and 0.611 for energy.
The linear regression analysis presented in Fig. 6 depicts the

orrelation between the input and the output variables obtained
rom the ANNmethod. The agreement between the measured and
redicted values is represented by R2 with the highest value of 1.
uring the training and testing of the ANN model, the R2 value
as high indicating adequate performance capacity of the ANN
odel. The properties of a good fit model are that the training
nd the testing errors should be low, while training errors are
lightly lower than the testing errors (Duncan and Fiske, 2015).
Power and energy being the target values could be predicted

eparately. Therefore, once energy is removed and power as the
arget variable can be considered, and vice versa. It was observed
rom the linear regression analysis that weak correlations were
bserved for temperature, humidity, air pressure, wind direction
nd precipitation for PV output. While power and energy were
ighly correlated with the solar irradiation and wind with an
2 value of 0.79 and 0.74 as shown in Fig. 6. It indicates that
hese factors will play a significant role in forecasting the output
ariables. Any change in solar irradiation and wind speed will
irectly impact the PV out power. The power system controller
hould consider these factors when running the prediction mod-
ls and manage it for maintaining grid stability, maximum unit
ommitment, and regulations. It was also observed that solar
rradiation, humidity, temperature, and wind speed are correlated
ith each other. Therefore, these can be combined linearly to
reate a new feature. A pair-plot depicting the relationship of
ach feature with other feature was plotted in Fig. 7. The diagonal
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plot showed the histograms depicting the probability distribution
of each weather factor. While the upper and lower triangles
showed the scatter plots indicating the relationships between the
features. From Fig. 7 it was observed that each feature can fol-
low a particular distribution. The diameter of the plot illustrates
the distribution of each feature, and each feature demonstrates
the distribution/relationship with other features. This pair plot
aimed for showing the changes in one feature based on all other
features.

Due to the variable nature of solar energy the output power
of a hybrid PV power plant is subjected to ramping (Chiteka
and Enweremadu, 2016). The difference in energy generation
within a time interval is represented by ramping and is expressed
in a relative unit to the actual demand. The gap between the
measured and forecasted value significantly affects the end-user
especially the network controllers as it helps to determine an
abrupt change in the power output. Therefore, for short term
and long-term solar forecasting ramp event is significant for solar
power management. For large ramps, it is important that the
forecasting is done accurately for time and rate so that the power
grids are operated safely (Zhang et al., 2017).

The datasets were subjected to different regressor models such
as ExtraTrees Regressor, AdaBoost Regressor, SVR, K-Neighbours
Regressor, Gaussian process Regressor, MLP Regressor and Linear
Regressor. The datasets were analyzed without any feature selec-
tion and with feature selection. The computational time reduced
with feature selection for all the tested regressors. Tables 5 and
6 illustrate the results of the MSE, MAE, R2 and computational
time for the tested regressors. According to the data visualiza-
tion results, the attributes are linearly dependent on each other.
Therefore, the linear regression could be a suitable one to feed
the data to it. Results also suggest that the linear regression
outperforms the rest of the models. Furthermore, concerning the
obtained results, it takes less time for a linear regression model
to train itself, compared to the other models.

The results show that reducing the number of features is quite
helpful. Finding the most favorable features to use for Machine
learning model training is often a difficult task to achieve. The
feature selection model has been applied by different researchers.
In Iwata et al. (2020), the author investigated high-efficiency
energy detection-based spectrum measurements. The noise floor
estimation was found to be elemental for energy detection-based
measurement. A forward consecutive mean excision (FCME) algo-
rithm was selected which was found to be computationally inef-
ficient and unable to gauge the slowly varying time-dependent
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Fig. 7. Pair-plot, showing the distribution of each feature based on the other feature.
roperty of noise floor. Therefore, a computational complexity
eduction algorithm was selected which considered NF change
etection and skipped NF estimation when there was no esti-
ation. This proposed computational complexity reduction al-
orithm was found to be more efficient than FCME. Similarly,
tudies have been carried out in improving energy detection in
ognitive radio systems using machine learning techniques and
as been widely used in spectrum sensing techniques. The factors
uch as multipath fading and shadowing are limiting factors
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resulting in errors. The computational efficiency was enhanced
using weighted KNN which improved the overall accuracy to
about 92% with feature elimination at various SNR conditions.
Therefore, it can be stated that a feature selection method can
improve the overall computational efficiency of the model.

Hence, apart from the feature selection techniques, due to the
linearity attribute of the dataset, linear regression outperforms
all the other classifiers in all evaluation metrics. It is worth
noting that estimators such as Extra Trees model are much more



Z. Qadir, S.I. Khan, E. Khalaji et al. Energy Reports 7 (2021) 8465–8475

T
R

w
a
a
t

T
d
p
e
d

d
o
p
g
b
r

able 5
esults without any feature selection technique.
Regressor MSE MAE R2 Time (s)

ExtraTrees 5.39e−05 0.0055 0.98 1.56
AdaBoost 0.0004 0.016 0.911 0.44
SVR 0.001 0.026 0.765 0.016
K-Neighbors 5.09e−05 0.0053 0.98 0.045
Gaussian Process 1.71e−06 0.00098 0.9996 11.19
MLP 2.90e−05 0.0039 0.9935 0.69
Linear 1.043e−06 0.00087 0.99 0.04

Table 6
Results with feature selection technique.
Regressor MSE MAE R2 Time (s)

ExtraTrees 4.93e−05 0.005 0.98 1.4
AdaBoost 0.0003 0.015 0.91 0.42
SVR 0.001 0.028 0.75 0.01
K-Neighbors 5.45e−05 0.005 0.98 0.04
Gaussian Process 1.3e−06 0.001 0.99 10.6
MLP 2.86e−05 0.004 0.99 0.69
Linear 1.041e−06 0.00083 0.996 0.02

advanced, compared to linear regression. However, in this case,
linear regression is outperforming all of them. This shows that
linear regression can potentially be an excellent estimator based
on the dataset that we use.

5. Conclusion

Advancement in renewable energy technologies is coming up
ith several challenges and introducing new machine learning
pproaches is the best way to predict the accurate output gener-
ted by these technologies. The main contribution and results in
his paper are stated as follows:

• The solar irradiance, wind speed, temperature and humidity
have the most significant impact on the power output of the
PV–wind system relative to atmospheric pressure, precipi-
tation and wind direction for the data recorded at METU,
NCC.

• According to the data visualization results, the abrupt ele-
vation in humidity with the consecutive rise of temperature
and the continuous descend of humidity with increased
solar irradiance depicts the linear behavior.

• The feature selection technique applied results in increased
prediction accuracy and shows a significant reduction in
computational time and errors. The state-of-the-art regres-
sion models are compared and the linear regressor model
outperforms all others with an MSE of 0.0000001, MAE of
0.00083, R2 and computational time of 99.6% and 0.02 s

• The results investigated depict that the sustainable com-
putational scheme introduced has the potential to enhance
smart grids by efficiently predicting the energy produced by
renewable energy systems.

he main challenge in this study was the collection of precise
atasets, as inaccurate datasets may affect the prediction ap-
lication by the neural networks. To overcome this issue, lin-
ar regression and zero paddings were applied to the collected
atasets.
For future research, further investigation can be carried out to

eploy new strategies and implement the developed model based
n the predicted results. Particularly evaluating the performance
arameters using deep learning techniques to predict the power
enerated by the PV–wind farms on a larger scale, that can
e used for commercial and industrial purposes. Tapping into
enewable energy sources in the way forward to reduce carbon
8473
footprint and overcome the energy crisis. Improved prediction
and forecasting tools can make these PV-hybrid systems more
efficient and reliable.
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