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ABSTRACT Harmful exposure to erythemally-effective ultraviolet radiation (UVR) poses high health risks
such as malignant keratinocyte cancers and eye-related diseases. Delivering short-term forecasts of the solar
ultraviolet index (UVI) is an effective way to advise UVR exposure information to the public at risk. This
research reports on a novel framework built to forecast UVI, integrating antecedent lagged memory of cloud
statistical properties and the solar zenith angle (SZA). To produce the forecasts at multi-step horizon we
design a 3-phase hybrid convolutional long short-termmemory network (W-O-convLSTM)model, validated
with Queensland-based datasets in near real-time (i.e., 10-minute, 20-minute, 30-minute and 1 hour forecast
horizon). Our approach in optimizing the performance also entails a robust selective filtering method using
the BorutaShap algorithm, data decomposition with stationary wavelet transformation and hyperparameter
optimization using theOptuna algorithm.We assess the performance of the proposedW-O-convLSTMmodel
alongside the baseline and benchmark models. The captured results, through statistical metrics and visual
infographics, elucidate the superior performance of the objective model in short-term UVI forecasting. For
instance, at a 10-minute forecast horizon, our objective model yields a relatively high correlation coefficient
of ∼0.961 in the autumn, 0.909 in the summer, 0.926 in the spring and 0.936 in the winter season. Overall,
the proposed O-convLSTM model outperforms its competing counterpart models for all forecast horizons
with the lowest absolute forecast error. The robustness of our newly proposed model avers its practical
utility in delivering sun-protection behavior recommendations that can mitigate UV-exposure-related public
health risk. We also recommend that future integration of aerosol and ozone effects with cloud cover data can
enhance our forecasting framework for wider applications in solar energy or skin health monitoring systems.

INDEX TERMS Ultraviolet index forecasting, cloud effects, convolutional long short-term memory net-
work, stationary wavelet transform.

I. INTRODUCTION
Solar ultraviolet radiation (UVR) has benefits and risks
for the people, industry, and the natural terrestrial environ-
ment. Exposure to erythemally-effective UVR poses high
health risks of skin-based diseases, such as malignant ker-
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atinocyte cancers, and eye diseases (pterygium and cataracts)
in humans [1], [2]. In the agricultural sector, UVR reduces
a plant’s photosynthetic rate, CO2 intake and oxygen out-
puts, thus hindering its water use efficiency [3]. However,
solar radiation is a vital renewable energy resource in the
energy sector for harnessing clean energy using solar pho-
tovoltaic (PV) technologies. Factors that affect terrestrial
UV radiation are inclusive of time of the day, season,
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geographical latitude, surface reflection, altitude and cloud
cover [4]. While the intensity of solar UVR is largely depen-
dent on solar zenith angle (SZA), the ground-level UVR is
significantly affected by cloudmovement. To implement sun-
protection from such incident UVR, the World Health Orga-
nization (WHO), International Commission on Non-Ionizing
Radiation Protection (ICNIRP), World Meteorological Orga-
nization (WMO) and United Nations Environment Pro-
gramme (UNEP) developed the global solar ultraviolet index
(UVI) for mitigating skin and eye health risks [5]. It is known
that under unbroken cloud cover conditions, UVI reduces
by 50 to 60%, and even further during precipitation [6].
However, under particular partial cloud cover conditions,
scattering can escalate ground-based UV levels above the
nominal cloud-free surface UV irradiation [7]. Thus, accurate
forecasts of cloud-affected UVI are essential in delivering
real-time sun-exposure advice to the public at risk of skin and
eye-related diseases.

Malignant melanoma cases, which are more prevalent
in fair skin types, increase with decreasing latitudes [8].
In Australia, 1726 and 714 deaths were reported in 2019 for
cutaneous malignant melanoma and keratinocyte cancer
(squamous cell carcinoma and basal cell carcinoma), respec-
tively [9]. A survey in 2011-2014 revealed that among the
Australian populations, Queensland recorded the highest
person-based incidence of keratinocyte cancer excisions with
2679 per 100, 000 [10].

In this paper, we propose a deep learning (DL)-based novel
wavelet hybrid convLSTM, to advance an earlier study [7],
to forecast short-term UVI with cloud cover effects by inte-
grating cloud segmented statistical properties extracted from
whole sky images and SZA. The earlier study [7] neither
considered cloud cover factor nor incorporated deep learning
methods and multiple forecast horizons for solar UVI pre-
dictions. Considering the seasonal and diurnal variations of
SZA, and the cloud movement, in this study, we also present
forecasts of the four seasons tailored for multiple-step time
horizons. Prior to modeling UVI, we utilize an intelligent
BorutaShap algorithm to select the most informative input
features from the cloud chromatic properties. In address-
ing the issues of non-stationarity, intermittent or stochastic
variations, periodicity, and trends in the predictor variables,
we apply a stationary wavelet transform (SWT) to decom-
pose these input signals. To optimize the hyperparameters of
the wavelet hybrid convLSTM, we employ a state-of-the-art
Optuna (O) algorithm with powerful sampling and pruning
efficiency. Hereafter, we designate the proposed 3 phase
wavelet hybrid convLSTM model with O optimization as
W-O-convLSTM. Thus, the contributions of this paper, which
are distinct from an earlier study [7], are summarized as
follows:

1) A novel hybrid W-O-convLSTM is proposed to fore-
cast UVI for the first time using antecedent fluctuations
in cloud cover condition and SZA at multi-step fore-
cast horizon (i.e., 10-minute, 20-minute, 30-minute &
1 hour).

2) An efficient self-adaptive Python tool is developed to
segment cloud chromatic properties using real-time sky
images from total sky image repositories.

3) In optimizing the performance of W-O-convLSTM,
an intelligent wrapper-based BorutaShap algorithm is
designed to select the most relevant features from the
cloud segmented statistical properties. Further opti-
mization is achieved through hyperparameter tuning
using a state-of-the-art O optimizer.

4) The non-stationarity behavior, periodicity and random
fluctuations in the cloud chromatic properties and
SZA over the temporal scales are addressed through
the application of SWT with high and low frequency
decompositions.

5) The efficacy of W-O-convLSTM in forecasting UVI
is explored for the four seasons with robust statistical
score metrics and visual analysis of all tested data
alongside other competing benchmark and baseline
models.

The rest of this paper is organized as follows: In Section II,
we briefly present the related work and in section III, we dis-
cuss the theoretical overview. Afterward, we provide the
methodology detailing the comparative experiments for UVI
forecasts in section IV and then we present the results and
discussion in section V. Finally, in section VI, we discourse
the concluding remarks and future work.

II. RELATED WORK
While UVI measurement can be achieved using mechanis-
tic surface measurement methods including the use of a
pyranometer or spectroradiometer, its potential for broad
application can be constrained by high costs and calibration
issues [11]. Previous researches have applied deterministic
methods to predict UVI but such approaches are restricted
by assumed fixed or estimated initial conditions [12], [13].
Artificial intelligence (AI) based data-driven and DL algo-
rithms are robust, cost-effective and user-friendly [14] but
have not yet been applied to predict short-term UVI by utiliz-
ing stochastic cloud cover conditions. Though solar UVI has
been forecasted with applications of artificial neural networks
(ANN) [15], extreme learning machine (ELM) [7], deep
belief networks (DBN) [16] and long short-term memory
(LSTM) [17], integrating cloud effects can further boost the
performance of highly competitive machine learning (ML)
and DL methods.

A multiple-input DL convolutional long short-term mem-
ory (convLSTM) is currently gaining prominence as a pow-
erful predictive tool. Having the convolutional operation
embedded inside the long short-term memory (LSTM) cell,
it robustly extracts statistically significant antecedent lagged
inputs from the predictive variables whilst the LSTM learns
from the sequentially incorporated features for low latency
predictions [18], [19]. Recently, convLSTM was applied for
flood index forecasts [20] and precipitation forecasts [21],
and these studies illustrated the superiority of convLSTM
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over the benchmarked counterparts. Being an intelligent and
versatile predictive model, convLSTM is highly suitable for
modeling cloud-affected UVI.

Feature selection approaches are essential components of
the model designing phase to achieve the optimum perfor-
mance of a forecast model. The Python-based BorutaShap
algorithm remarkably eliminates irrelevant and largely redun-
dant features, as revealed in a study where it was employed in
identifying the strongest data series of winning and losing the
Belgian professional soccer [22]. Along with utilizing selec-
tive filtering, the application of robust data decomposition
schemes such as SWT efficiently accomplishes dimensional-
ity reduction of the input variables. As a pre-processing tool,
SWT was applied by [23] to effectively decompose the input
signals into low-frequency and high-frequency components.
The non-stationarity in electrocardiogram signal inputs [24]
was also exploited using SWT decomposition.

III. THEORETICAL OVERVIEW
This section provides a brief overview of the opera-
tional mechanism of convLSTM in designing the proposed
hybridized W-O-convLSTM model. Furthermore, we briefly
discuss the three major phases of the UVI forecasting frame-
work that includes feature selection by BorutaShap, data
decomposition using SWT and Hyperparameter optimization
by O algorithm.

A. OPERATIONAL MECHANISMS OF ConvLSTM
ConvLSTM is fundamentally an extension of LSTM net-
works that encapsulates the convolutional operation to
robustly capture the underlying spatial features in large scale
sequential and multi-dimensional datasets [25], [26]. With
a time-series predictive framework as in our case, the con-
volutional operation at each gate (input, forget and output)
of the LSTM cell replaces matrix multiplication to suit-
ably extract spatiotemporal patterns in the 2-dimensional
inputs [21], [25]. The future state of a cell in convLSTM is
determined by its local neighbors’ input and past state. While
convLSTM retains the strengths of LSTM to capture long
short-term memory, it further minimizes the redundancy of
the fully connected structure, thus improving the training and
prediction efficiency [27]. The key equations governing the
operation of a single convLSTMunit are as follows [26], [28]:

Forget Gate f t = σ (Wf ∗ [ht−1, xt ]+Wcf ◦ Ct−1 + bf ) (1)

Input Gate it = σ (W i ∗ [ht−1, xt ]+Wci ◦ Ct−1 + bi) (2)

Intermediate State S t = tanh(W c ∗ [ht−1, xt ]+ bc) (3)

Update Cell C t = ft◦Ct−1 + it◦S t (4)

Output Gate ot = σ (Wo ∗ [ht−1, xt ]+Wco ◦ Ct + bo) (5)

Output ht = ot ◦ tanh(Ct ) (6)

where ‘∗’ denotes convolution operator, ‘◦’ denotes
Hadamard product, ht is hidden state at sequential time t ,
Ct is cell state, St is intermediate state and the convLSTM

gates it , ft , ot , are 3-dimensional tensors having the last two
dimensions as spatial dimensions (rows and columns).

The operational mechanisms and explanations of the
benchmarked models constructed using CNN [29], SVR [30]
and PA [31] are elucidated elsewhere, as these methods are
well-renowned.

B. WRAPPER-BASED BORUTASHAP
BorutaShap is an elegant Python-based wrapper method that
combines the Boruta feature selection algorithm with shapely
additive explanations. It is highly compatible and facilitates
any tree-based learner such as RF, XGBoost, decision tree
(DT), etc. as the base model [22], [32]. To select the most
significant features, the Boruta algorithm creates shadow
features (exact replicas) of each feature and shuffles the
values in the shadowed features to remove their correla-
tions with the response variable [33]. Thereafter, it passes
the actual and shadow-shuffled features in the tree-based
model to predict the target variable using the tree-based
learner. It then determines the permutation importance or
Mean Decrease Accuracy (MDA) for the actual and the
shadow-shuffled inputs for overall trees (mtree), given by the
expression [34], [35]:

MDA =
1

mtree

∑mtree

m=1

∑
t∈OOB I (yt = f (xt ))−

∑
t∈OOB I

(
yt = f

(
xnt
))

|OOB|
(7)

where, xt is group of predictor variables (xt ∈ Rn) and yt is
target variable (yt ∈ R) for n number of inputs in the set T
(where t = 1, 2, . . . .,T ), I (•) is indicator function, OOB is
Out-of-Bag predictive error, yt = f (xt) is predicted value
before permuting and yt = f

(
xnt
)
is predicted value after

permuting.
By performing a two-sided hypothesis test (t-test) for

equality of both actual and shadowed, the algorithm cal-
culates the z-score [32]. The z-score is determined by the
expression:

z score =
MDA
SD

(8)

where SD represents the standard deviation of accuracy
losses. A threshold is set by the algorithmwhere the z-score of
the actual feature must be greater than the maximum z-score
(zmax) of the randomized shadow features. If the thresh-
old criteria is met, the feature is selected to be important.
Additionally, comparisons are made between the features
and corresponding shadow features in terms of their shapely
importance values (SHAP values), which produces a more
consistent result [36].

C. STATIONARY WAVELET TRANSFORM (SWT)
SWT is a powerful mathematical tool for dimensionality
reduction and data decomposition, which takes care of non-
stationary, nonlinear and noisy signals [37]. It is a modified
version of conventional discrete wavelet transform (DWT)
that is designed to handle the issues of signal decimation in
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DWT [38]. For a given signal, x(t), its wavelet transform can
be determined by the expression [37]:

X(τ, a) =
1
√
|a|

∫
∞

−∞

x (t) ψ∗
(
t − τ
a

)
dt (9)

where ‘∗’ denotes complex conjugate, ψ is analyzing
wavelet, a is time dilation, and τ is time translation. There-
fore, the DWT of a signal, x[m], is given by the expression:

X [k, l] = 2−(k/l)
∑∞

m=−∞
x [m]ψ[2−km− 1] (10)

By performing a DWT decomposition for the signal x[m],
the respective sub-signals of detailed components (DC) and
approximation components (AC) are acquired [39]. However,
due to signal decimation after each level of decomposition,
the transform by DWT is not time-invariant, which makes the
signal unsuitable for data preprocessing [37]. To overcome
this drawback, SWT (an extension of DWT) is employed, as
it uses the a-trous algorithm to solve the problem of shift-
invariance [38]. Having undecimated wavelet transform, the
size of SWT data is efficiently preserved through the low-
pass and high-pass filters. Thus, the length of the detailed and
approximation coefficients are the same in comparison with
the original signal [40]. Using SWT, the decompositions can
be computed using the expressions [41]:

cASWTn,m =
∑

u
cASWTn−1,m+2n(u)g(u) (11)

cDSWTn,m =
∑

u
cDSWTn−1,m+2n(u)h(u) (12)

where cASWTn,m is the approximation coefficient of SWT,
cDSWTn,m is the detailed coefficient of SWT, n, m is the number
of decomposition levels and the position, g(u) is the low pass
filter and h(u) is the high pass filter. The Python-based SWT
presents several mother wavelets for data decomposition and
signal denoising, among which ‘haar’ and ‘db’ are widely
utilized [23], [24].

D. OPTUNA (O) OPTIMIZER
The O algorithm is a next-generation hyperparameter opti-
mization framework with a define-by-run API that provides
the platform to construct the parameter search space dynam-
ically via efficient searching and pruning strategies [42].
In searching ideal hyperparameter values, O utilizes vari-
ous samplers such as random, grid, Bayesian, and genetic
calculations [43]. During the process of optimization, the
O algorithm achieves optimal solution by repeatedly calling
and evaluating the objective function of different parameter
values. The following steps describe the optimization process
by O algorithm [44]:
Step 1: Determine the direction of optimization, type of
parameter, range of values and the maximum number of
iterations.
Step 2: Enter the loop;
Step 2.1:Uniformly select a population of individuals within
the function defining the parameter value range;

FIGURE 1. (a) Geographic location of the USQ-based experimental site in
Toowoomba, Australia to validate wavelet hybrid convLSTM model.
(b) Roof-top mounted Bentham DTM300 Spectroradiometer for UVR
measurement. (c) Co-located 501 broadband UVR Biometer.
(d) Synchronous Total Sky Imager, TSI440 set-up to capture sky images
and record SZA.

Step 2.2: Automatically terminate the hopeless population
individuals according to the trimming conditions with a
trimmer;
Step 2.3: Determine the objective function value of the
unpruned individual populations;
Step 2.4: Repeat the above steps for the loop and exit when
the maximum number of iterations is reached.
Step 3: Provide the output as the optimal solution and optimal
function value.

The O optimizer is gaining eminence as it provides an
optimum combination of hyperparameters with relatively
lower computation cost in comparison with other optimiza-
tion methods such as exhausted grid search and random grid
search [45].

IV. METHODOLOGY
In this section, we describe our study location and datasets
for the UVI modeling experiments. Thereafter, we discuss
the process of segmenting cloud statistical properties from
the sky images. Finally, we present the stages involved in
designing the proposed W-O-convLSTMmodel, followed by
a discussion onmodel evaluation using robust statistical score
metrics.

A. EXPERIMENTAL SITE AND DATASETS
To validate the W-O-convLSTM model, the study site of the
experimental set-up was based at the University of Southern
Queensland (USQ) in Toowoomba (Latitude of 27.60 ◦S and
Longitude of 153.93 ◦E), Australia, as illustrated in Fig.
1(a). Geographically, the experimental site is located approx-
imately 100 km inland relative to the ocean and experiences
limited marine aerosol and anthropogenic effects [7]. Being
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a subtropical region, Queensland receives a large number of
sunshine days annually, which poses a significant impact on
the public health sector in terms of UV-exposure-related skin
and eye diseases.

We measured the time-series solar spectral irradiance
using the Bentham DTM300 Spectroradiometer (Bentham
Instruments Inc., UK), mounted on a roof-top at the USQ
Toowoomba campus, as shown in Fig. 1(b). Using the mea-
sured solar spectral irradiance, the UVI data was calcu-
lated based on the International Commission on Illumina-
tion (CIE) reference action spectrum for UV-induced ery-
thema on the human skin [5]. As per the CIE guidelines,
we first determined the erythemally active UV irradiance
(UVE) by integrating the monochromatic UV irradiance
(S(λ)) that is weighted with the CIE spectral action function
CIE(λ) and bounded within the wavelengths of 280 nm to
400 nm as follows [46]:

UVE =

400∫
280

S (λ) .CIE (λ) .dλ (13)

Having one unit of UVI equivalent to 25 mW m−2 of ery-
themally effective exposure to UVR, we calculated the UVI
from the UVE as follows [46], [6]:

UVI =
1

25mWm−2

400∫
280

S (λ) .CIE (λ) .dλ (14)

The calculated UVI is a unitless normalized index, for which
the values range globally from 0 to 11+. As the UVI
increases, the exposure severity and potential for damage to
the skin and eye rises.

We acquired the UVI datasets at a time resolution of
10 minutes. However, there were instances when these
datasets were missing due to power failure or maintenance of
the spectroradiometer. The missing datasets were recovered
with the UVI calculated using the minimal erythema dose
(MED) measurements of a co-located 501 broadband UVR
Biometer (Solar Light Co., USA), as shown in Fig. 1(c).
To avoid any UVI anomalies measured by two different
instruments, the Biometer was initially calibrated to the Ben-
tham spectroradiometer using a time-dependent conversion
factor (CF). Consequently, the Biometer-derived UVI was
calculated as follows:

UVI = (MED× CF × 40)/300 (15)

where MED is the minimal erythema dose measured by the
Biometer at every 5 minutes (300 s) and CF is a conversion
factor (different for each season). Considering that one unit of
MED is equivalent to 200 J/m2 of erythemally weighted UV
radiation [47], MED is converted to J/m2 by multiplying with
CF. UVI is calculated from the erythemally weighted UV by
multiplying the erythemal irradiance in units of W/m2 by 40.
Thereafter, we extracted the sky images that were captured

by a synchronous co-located Total Sky Imager - TSI440 (TSI)

(Yankee Environmental Systems Inc., USA), as shown in
Fig. 1(d). These sky images were stored in the TSI repository.
The records of SZA were also extracted from the TSI at
10 minutes intervals. We extracted the UVI, sky images and
SZAdata series for a complete year (from 01-Mar-2003 to 29-
Feb-2004) to obtain the datasets for all 4 seasons. For each
day, the datasets were extracted from 7.40 am to 4.10 pm.
We segmented the sky images to extract the cloud statistical
properties. While we utilized the UVI datasets as the target
input, the cloud statistical properties and SZA datasets were
employed as the input features in model building.

B. SEGMENTING CLOUD STATISTICAL PROPERTIES
Cloud statistical properties were essential input predictor
variables in designing the W-O-convLSTM model and these
variables were segmented from the sky images stored in the
TSI repository. The TSI repository saves a suite of files that
contain colored sky images in JPEG format, a properties
text file and a TSI segmented image in PNG format with
cloud and non-cloud parts of the clear sky. The properties
text file contains the sun position, SZA and cloud fraction
information. We utilized the TSI segmented PNG image and
cloud fraction information to validate our segmented sky
images through comparisons of blue sky and cloud cover.
To segment the sky images from the suite of files, we designed
an automated Python tool that reads all the 10 minutes sky
images in JPEG format and extracts the cloud statistical
properties for each image. The image segmentation algo-
rithm, referred as the Python tool has been designed in the
Python (version 3.7.9) environment. A flowchart shown in
Fig. 2 demonstrates the algorithm execution process of the
proposed automated Python tool to segment the cloud chro-
matic statistics. The Python-based ‘‘glob’’, ‘‘os’’ and ‘‘cv2’’
libraries were utilized to locate and read the real-time sky
image and properties files. Using the ‘‘linecache’’ library,
a common linewas read from the properties file and if this line
was missing, the image was reported as corrupt. Otherwise,
the image of background, camera housing, camera arm and
sun-shield captured in the sky image were all masked using
the ‘‘numpy’’ library, as shown in Fig. 3. Thereafter, the sky
image was split into red (R), green (G) and blue (B) channels,
from which R and B channel arrays were utilized for further
analysis by applying previously reported image segmenta-
tion techniques [48]. Using the R and B channels, the red-
blue ratios (RBR) of the pixels were determined. RBR has
been a commonly applied threshold in segmenting cloud
cover and blue sky that maintains a high resolution of the
image despite getting downsampled when saved in JPEG
format [49]. To increase contrast, the RBR pixel values were
scaled within 0 to 255 [50], [48]. A calculated threshold (T )
was applied to binarize and segment the RBR-scaled pixels
into black and white. The T was determined as follows:

T=(255× TF)/RBR_max (16)

where TF is a threshold factor of 0.56 [48] (usually between
0 to 1) andRBR_max is themaximumRBR. If the pixel values
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FIGURE 2. Flowchart describing the algorithm execution process of the
proposed automated python tool for extracting the cloud statistical
properties from the TSI440 repository-based sky images.

were greater than T , they were assigned 255 (white color) to
represent the cloud cover, else, they were assigned 0 (black
color) to represent the blue sky. The binarized pixel values of
cloud cover and blue sky were masked onto the pixels of red
and blue channels to obtain the segmented statistics of the sky
image. Finally, the Python-based tool was automated via a for
loop to perform the same operations in segmenting the entire
JPEG sky images within the suite. Our segmentation program
is an improvement of the previously reported methods [48],
which shows very close segmentation with the segmented
TSI PNG image, as illustrated in Fig. 3. Upon comparing our
image segmentation with the TSI-based image segmentation
in terms of cloud percentages, we achieve a very low cloud

FIGURE 3. Sky image segmentation and comparisons with TSI segmented
PNG image.

percent difference of 1.84%. Further comparisons showed
that the original and calculated cloud fraction data of the
segmented images had a very strong correlation of 0.991.
The cloud statistical properties are segmented as red and
blue channel pixel averages, standard deviations, ratios, dif-
ferences, TSI-based thin cloud and TSI-based opaque cloud.
The cloud chromatic properties and SZA provided 16 time-
dependent predictor inputs to validate the proposed multi-
ple input multi-step output W-O-convLSTM model for UVI
forecasts. We present the descriptions of these 16 predictor
variables and UVI (predictand) in Table 1.

C. MISSING DATA RECOVERY
After acquiring the data series, it was noted that there were
some missing values in the UVI and cloud statistical prop-
erties data. However, the SZA datasets were complete. The
cloud statistical properties were incomplete due to some
missing and corrupt images from the TSI repository. In the
case of the UVI datasets, some incomplete values were
observed because the 501 Biometer UVI used to recover
the Bentham UVI were missing occasionally. These missing
values were duly imputed with the monthly median of the
respective variable at the same daily time domain. Among the
three commonly used imputation methods of mean, median
and listwise deletion, themedian imputation approach ismore
accurate and robust [51].

D. DEVELOPMENT OF THE PROPOSED PREDICTIVE
MODEL
The scope of this research was to develop a wavelet
hybrid convLSTM model that entails 3 major phases, which
include feature selection by BorutaShap, decomposition of
the selected features using SWT and hyperparameter opti-
mization by O algorithm. In designing this AI-based UVI
forecasting model, the Python programming language (ver-
sion 3.7.9) was implemented. For hyperparameter optimiza-
tion using the O algorithm, we used Google Colab with
python programming as it provides freely available comput-
ing resources that include a graphics processing unit (GPU).
The Python tool is highly versatile, as its virtual environ-
ment provides the platform for both ML and DL-based data
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TABLE 1. Descriptions and inferential statistics of the predictor and target variables used to develop the proposed W-O-convLSTM model to forecast UVI.

analysis through its eminent packages such as Scikit-learn,
Tensorflow and Keras [52], [53], [54].

The schematic diagram in Fig. 4 provides an overview
of the stages involved in designing the proposed predic-
tive model. In accordance with the stages illustrated in the
schematic diagram, the details of the methods adopted at each
stage of the UVI forecasting framework are as follows:
Stage 1: This stage involves an assessment of the cross-
correlations (rcross) between the 10 minutes measured UVI
(i.e.UVI(t)) and each of the 16 predictor variables (i.e. X1(t−
n),X2(t−n),X3(t−n), . . . . . . ,X16(t−n), where t is time and n
is the most significant antecedent lag). Statistically, the indi-
vidual predictors exhibiting the most significant correlation
from the lagged combinations were selected to generate UVI
forecasts. Table 1 enumerates the rcross values and the infer-
ential statistics of these input variables. Once the significant
antecedent lagged inputs of UVI and the 16 attributes were
determined, the data series were reshaped for simulating the
future UVI over multi-step horizons. We describe these fore-
cast horizons in Table 2, where the 10 minutes, 20 minutes,
30minutes and hourly ahead forecasts are designated as 10M,

TABLE 2. Designation of models and forecast horizons (Note: 10M
indicates a 10-minute forecast horizon).

20M, 30M and 60M, respectively. In reshaping the datasets,
a lagged matrix was constructed for each of the four forecast
timescales.
Stage 2: This stage describes the application of a wrapper-
based BorutaShap algorithm for effective feature selection.
After feeding the UVI and 16 attributes into BorutaShap,
it robustly selected the pertinent features and captured the
significant antecedent memory of UVI behavior to deliver

24710 VOLUME 10, 2022



S. S. Prasad et al.: Cloud Affected Solar UV Prediction

FIGURE 4. Schematic diagram detailing the construction of the proposed multiple input, multi-step output
model for solar UVI forecasts.

multi-step forecasts. In identifying the most significant input
variables, XGboost was utilized as the base model for screen-
ing each of the four forecast horizon data series. During
the process of screening, consistency was maintained in
identifying the feature importance through the aggregated
and sorted SHAP values. The outcome of feature selection
revealed that all the 16 predictor variables in each of the
four forecast horizon datasets were pertinent and BorutaShap
selected them as important features for model building. For
instance, Fig. 5(a) presents the outcome of feature selection
for 10minutes forecast horizon datasets using the BorutaShap
feature importance plot. The plot marks all the 16 predictors
as pertinent. In addition, Fig. 5(b) presents a bee-swarm
plot that illustrates the feature importance of these predictors
based on their SHAP values.

The criterion in designing the proposed W-O-convLSTM
model is to utilize the historical memories and BorutaShap
feature selection of the inputs acquired from the diversified
characteristics of UVI and cloud statistical properties data
series. If the lagged values delay the two samples (i.e. pre-
dictors and predictand), by applying this criterion, they can
be regarded as statistically independent.
Stage 3:This stage describes the segregation of input datasets
into respective seasons, followed by the train-test split.
The time-series datasets prepared for each forecast hori-
zon were initially segregated into four different seasons.
As detailed in Table 3, autumn (01-Mar-2003 to 31-May-
2003), winter (01-Jun-2003 to 31-Aug-2003), spring (01-
Sep-2003 to 30-Nov-2003) and summer (01-Dec-2003 to

29-Feb-2004) were assigned with 4784, 4784, 4732 and
4732 data points, respectively. Thereafter, each seasonal-
based data series was split into a training set (84.6% to
84.8%), a validation set (10% of training data) and a testing
set (15.2% to 15.4%). Such training and testing split were
employed because we utilized 11 weeks datasets for training
and 2 weeks datasets for testing during all four seasons.
These datasets were extracted at 10 minutes interval, so we
had a sufficient number of data points (4732 to 4784) for
each season to develop the proposed model. Some earlier
studies have also employed a similar train-test split. For
instance, the study by [55] employed a train-test split on
monthly-based datasets with a training split of 71.45% to
75.01% and a testing split of 12.59% to 14.39% for four sites.
A similar approach for the train-test split was also adopted
by [19] and [56]. Subsequently, all the model input datasets
as per Table 1 were normalized between [0 – 1] to improve
the efficiency and accuracy during training and testing
phases [7].
Stage 4: This stage employs SWT to address the issues
pertaining to non-stationarity and noise in the input data
signals. The train-test split of the input datasets was con-
ducted prior to SWT decomposition to prevent the leak-
age of training data into the testing sets, as this could
add bias into the forecast [57]. In decomposing the lagged
feature data series, SWT convolved each cloud statistical
property and SZA signal through high and low pass filters
into detailed components (DC) and approximation compo-
nents (AC) without performing any decimation. Identifying
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FIGURE 5. (a) BorutaShap-derived feature importance of the cloud segmented properties and SZA for 10 minutes forecast, (b) Beeswarm plot of feature
importance based on shapely values.

TABLE 3. Seasonality-based data segregation into training, validation and testing phases to experiment the time-series W-O-convLSTM model in
Toowoomba, Queensland.

the type of SWT scaling filter and level of decomposition
was a critical task to achieve a remarkable wavelet-coupled
model, as no specific method for such selection is confirmed
in the literature [30], [39]. In our case, a trial and error
method was adopted in selecting the best mother wavelet and
decomposition level [58]. Among the SWT mother wavelets
(that includes Daubechies (db), Haar (haar), Symlets (Sym),
Coiflets (coif), Biorthogonal (bior), Reverse biorthogonal
(rbio) and Gaussian (gaus)) and decomposition levels (that
includes 2, 3, 4, 5, 6 and 7), optimum performance was
achieved in designing the proposed model using haar wavelet
at a decomposition level of 2. These SWT parameters search
space and optimum parameters are highlighted in Table 4.
Moreover, Fig. 6 illustrates the training phase decomposition
of the attribute CBRd into its detailed coefficients (D1 and
D2) and approximation coefficient (A2) at 10 minutes fore-
cast horizon in summer. The other attributes were decom-
posed in a similar manner for all four forecast timescales.
While A2 seems to be in phase with the original undecom-
posed predictor variables, D1 and D2 turn out to replicate

greater details of the subtle but significant patterns in the
time-series inputs.
Stage 5: In this stage, we discuss the architectural design
of the proposed hybridized convLSTM model and hyperpa-
rameter optimization using the O algorithm. The architecture
of the deep learning convLSTM model consists of double
convLSTM2D layers that robustly extract the complex behav-
ior of antecedent lagged features. With RELU assigned as
the activation function for the two layers, each layer was
allocated with 100 and 44 filters, respectively. These were the
optimal number of filters tuned by employing the powerful O
algorithm. A flattening layer was integrated after each convL-
STM2D layer. Finally, a dense layer was utilized to generate
forecasts of future UVI as output. An improved performance
was achieved with O optimized hyperparameters that include
a batch size of 104 and epochs of 189. In adopting regu-
larization to reduce overfitting and to improve the training
performance, a good dropout of 0.1 was applied. To further
minimize the issue of overfitting, we adopted a 10 fold cross-
validation strategy. Table 4 presents the search space and
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TABLE 4. Search space in the model design phase with optimum
architecture of the objective model.

optimal hyperparameters of the proposed W-O-convLSTM
model (also labeled as M1). To comprehensively bench-
mark the proposed W-O-convLSTM model, we deployed
other highly competitive counterparts. These counterparts
were non-wavelet-based models that were developed using

convLSTM, convolutional neural network (CNN), support
vector regression (SVR) and passive-aggressive (PA) models.
The hyperparameters of these benchmarkedmodels were also
optimized using the O algorithm.We designated thesemodels
as O-convLSTM (also labeled as M2), O-CNN (M3), O-SVR
(M4) and O-PA (M5), respectively. In an earlier study by [7],
UVI was forecasted by developing machine learning models
using a single predictor input of SZA without considering
the cloud cover effects. In this study, we design our deep
learning UVI forecasting model (M1) using the attributes
of cloud statistical properties (that define the cloud cover
conditions) and SZA to claim that M1 will yield superior
performance in comparison with a deep learning baseline
model developed using the predictor input of SZA alone.
We designated the baseline model developed using SZA as
W-O-convLSTMsza (also labeled as M6). Though M1 and
M6 were fed with different predictor inputs, they were both
wavelet hybrid convLSTM models with similar architectural
designs. It was important to compare the performance of our
objective model (M1) with the baseline model (M6) due to a
significant dependence of UVI on SZA. It is known that when
the sun is out, we have SZA and SZA is highly correlated with
UVI. For instance, Table 1 displays the highest correlation
(0.89) between SZA and UVI in comparison with all other
predictors. Themodel designations andO-based hyperparam-
eter search space of the objective, benchmarked and baseline
models are presented in Table 2.

E. PERFORMANCE EVALUATION OF THE MODEL
To confirm the superiority of the W-O-convLSTM model in
UVI forecasting, we evaluated this model against the base-
line and benchmarked models. To validate that the use of
cloud cover effects could further improve the performance
of the objective model, we evaluated our model alongside
the baseline model. Additionally, by evaluating our objective
model (SWT-based model) alongside the benchmarked mod-
els (non-SWT-based models), we validated the superiority of
employing SWT over non-SWT model design in forecasting
UVI. Here, our focus was to evaluate SWT against non-SWT-
basedmodels, so other wavelet transforms such as DWTwere
not evaluated. While DWT is a known standard frequency
transform, it was not applied to benchmark SWT in our study
because the DWT algorithm exhibits significant problems
associated with signal decimation. Such decimation effects
induce a bias in the model that makes the signal unsuitable
for data preprocessing [30], [37]. On the other hand, SWT is
a modified version of the conventional DWT that utilizes an
a-trous algorithm to overcome the issues of signal decima-
tion [38]. This drawback of DWT confirms the superiority of
SWT during data preprocessing, thus eliminating the need for
evaluating the DWT-based models.

A number of robust statistical metrics were applied
to rigorously evaluate the hybridized W-O-convLSTM
model alongside other competing counterparts in forecasting
short-term UVI. For this study, the commonly adopted model
score metrics, such as Pearson’s Correlation Coefficient (r),
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TABLE 5. The testing phase performance of W-O-convLSTM model against competing counterparts in terms of correlation coefficient (r), root mean
squared error (rmse), mean absolute error (mae) for UVI forecast.

Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), Coefficient of Determination (R2), Legate-
McCabe’s Index (LM), Willmott’s Index (WI), Nash-
Sutcliffe Efficiency (NSE), Relative Root Mean Square Error
(RRMSE) and Relative Mean Absolute Error (RMAE) [18]
were employed.

r =

∑N
i=1 (UVI

O
i −

¯UVIO)(UVIFi −
¯UVIF )√∑N

i=1 (UVI
O
i −

¯UVIO)
2
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RRMSE =
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i − UVI

O
i )

2

1
N
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RMAE =
1
N

∑N

i=1

∣∣∣∣∣UVIFi − UVIOiUVIOi

∣∣∣∣∣× 100 (24)

whereUVIOi ,UVI
F
i = observed and forecasted UVI for the ith

observation, ¯UVIO, ¯UVIF = average observed and forecasted
UVI, N = Total number.
It is to be noted that the results obtained through these

score metrics may also be due to chance or decisive. So,
to prevent rejection of an equally good parallel model due
to stochastically generated performance metrics, we further
evaluate their forecast accuracies using an efficient statistical
test, known as Diebold–Mariano (DM) test. For details of the
DM test, the readers may refer to [59].

V. RESULTS AND DISCUSSION
This section presents an account of the empirical results to
appraise and demonstrate the merits of the newly designed
W-O-convLSTM model (M1) in UVI forecasting. The fore-
casting performance and efficacy are assessed against highly
competitive counterparts of O-convLSTM (M2), O-CNN
(M3), O-SVR (M4), O-PA (M5) and W-O-convLSTMsza
(M6) at multi-step horizons using a plethora of statistical
score metrics, as described in (17) – (24).
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Table 5 presents the testing phase performance evaluation
of the developed models for the seasons of autumn, winter,
spring and summer at different forecasting timescales (the
optimal performance is highlighted in red). For almost all the
experimentally captured modeling aptitudes having the high-
est Pearson’s correlation coefficient (r), lowest mean absolute
error (MAE) and lowest root mean square error (RMSE), the
proposed hybridized W-O-convLSTM model outperforms
the comparative models in forecasting seasonal-based UVI at
10M, 20M, 30M and 60M horizons. Overall, the proposed
model highlights its best performance against the compet-
ing counterparts in autumn-based 10M forecast horizon with
statistical scores of r = 0.961, MAE = 0.017 and RMSE
= 0.024 with respect to r = [0.873-0.958], MAE = [0.020-
0.043] and RMSE = [0.025-0.055], where [-] denote lower
and upper statistical bounds. In terms of r values, the W-
O-convLSTM model shows the best performance in all the
seasons for each forecast horizon, except for the summer-
based 10M forecast. At this instance, the non-wavelet hybrid
O-convLSTMmodel executes slightly better. Despite the sub-
tle variation, our objective model shows a very close perfor-
mance with respect to the O-convLSTMmodel, having a very
low difference in r values (≈0.004). The MAE and RMSE
values approach 0, indicating that our model is approaching
a high level of precision. Moreover, a decline in performance
accuracy is observed with increasing forecast horizons.

To completely gauge and understand the W-O-convLSTM
model, it was rigorously evaluated with Willmott’s Index
(WI), Nash-Sutcliffe efficiency (NSE) and the most strin-
gent metrics of Legate-McCabe’s index (LM). These eval-
uation statistics are presented after aggregating the initial
results of the four seasons with averages so that extensive
comparative outcomes could be delivered at multiple fore-
casting timescales. The observed trends in aggregated and
non-aggregated statistics were very similar. In Fig. 7, the
comparisons of WI, NSE and LM aided by line graphs reveal
that the W-O-convLSTMmodel performs significantly better
than other predictive models. The objective model achieved
the highestWI andNSEwithWI= 0.962 andNSE= 0.864 at
10M, WI= 0.960 and NSE= 0.851 at 20M, WI= 0.946 and
NSE = 0.801 at 30M and WI = 0.940 and NSE = 0.780 at
60M forecast horizons. Verification of the performance mea-
sure using LM consolidates superior performance by the
hybrid W-O-convLSTM model, as it yields lowest stringent
errors and highest LM statistics, where LM = 0.713 at 10M,
LM= 0.706 at 20M, LM= 0.627 at 30M and LM= 0.609 at
10M forecast horizons. Again, the model performance drops
with increasing forecast timescales.

In conjunction with the statistical metrics, the percentage
errors, such as RRMSE and RMAE were further employed
as alternative score metrics to enable the model compar-
ison during the four different seasons. For instance, the
seasonal-based performance comparison of the proposed
W-O-convLSTM model against the counterparts are pre-
sented using radar plots in Fig. 8 at 10M forecast horizon.
The objective model captured the lowest RRMSE and RMAE

FIGURE 6. SWT decomposed detailed coefficients (D1 and D2) and
approximation coefficient (A2) of CBRd (predictor input) in the training
period for summer-based 10 minutes forecast horizon.

FIGURE 7. Line graphs of seasonal aggregated Legate-McCabe’s Index
(LM), Willmott’s Index (WI) and Nash-Sutcliffe Efficiency (NSE) for
W-O-convLSTM model (M1) against its comparatives (M2 – M6) during the
testing phase.

values with RRMSE = 18.226% and RMAE = 28.426%
in autumn, RRMSE = 26.324% and RMAE = 19.318%
in winter, RRMSE = 17.697% and RMAE = 18.936% in
spring and RRMSE = 17.173% and RMAE = 16.224% in
summer. By displaying relatively better performance with
respect to the comparative models in all four seasons, our
newly designed model is highly competent for delivering
more accurate forecasts of UVI at 10M forecast horizon.
Similar performance was achieved by the objective model at
all the other forecast horizons.

A DM test was implemented to compare the forecasting
performance of the objective model with its counterparts. The
null hypothesis (HO) was set as: the observed differences
between the performances of two forecasting models are not
significant. HO was tested against the alternative hypothesis
(HA), which was set as: the observed differences between
the performances of two forecasting models are significant.
By conducting this statistical test at a 5% level of significance,
we rejected HOif |DM|> 1.96. The outcomes of DM tests are
presented in Table 6 for 10M horizon, where the calculated
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FIGURE 8. Radar plots showing the seasonal-based testing phase
performance for W-O-convLSTM model (M1) against its comparatives (M2
– M6) measured by: (a) Relative Root Mean Square Error (RRMSE %) and
(b) Relative Mean Absolute Error (RMAE %) at 10M forecast horizon.

DM statistics are mostly greater than 1.96 and less than
-1.96. In accordancewith these statistics, we conclude that the
difference in UVI forecasts from the two predictive models
is statistically significant in most cases (HO is rejected).
The test implies that our W-O-convLSTM model mostly
shows greater accuracies. The only exceptions are for com-
parisons of our objective model with O-convLSTM (M2) in
spring and summer, where the DM statistics are −0.359 and
0.161, respectively. Possibly due to stochastic interference,
the observed differences between the performances of these
two forecast models are not significant and they capture the
same accuracies. Otherwise, in most cases, our proposed
model delivers superior performance. Similar outcomes of
DM tests were yielded for other forecast horizons.

To further examine the success of the W-O-convLSTM
model in UVI forecasting, the observed and forecasted val-
ues were plotted as ordinate and abscissa (for the objective
model) in Fig. 9 and as the absolute forecasted error (for all
predictive models) in Fig. 10 for 10M horizon. The scatter-
plots presented in Fig. 9 display a least squares regression
line (UVIfor = mUVIobs+ c, where c is the ordinate intercept
and m is the gradient) between the observed and forecasted
UVI. For an optimal performing model, its R2 value is closer

FIGURE 9. Scatterplots of the observed and forecasted UVI data in the
testing phase with the optimal W-O-convLSTM model (M1) for 10M
forecast horizon. Equations of linear regression and the coefficient of
determination (R2) are shown in each panel.

FIGURE 10. Boxplots of the absolute forecasted error |FE| in the
seasonal-based testing datasets of UVI at 10M forecast horizon for
W-O-convLSTM model relative to its counterparts.

to 1, while the m and c values are very close to 1 and 0,
respectively [58]. In our case, the W-O-convLSTM model
performs very well in all seasons, having the most efficient
performance in autumn with R2

= 0.923, m = 0.918 and
forecasts with robust adaptability to seasonal and diurnal
variations, particularly for stochastic cloud cover conditions.
As enumerated in Fig. 10, the boxplots of absolute forecasted
error |FE| (i.e. |FE| = UVIfor- UVIobs) explore the precision
of the W-O-convLSTM model against comparative models
in terms of statistics of the lower quartile, upper quartile,
median, maximum, minimum and data outliers. Upon com-
parisons, the boxplots justify that the distributed errors for the
objective model acquire significantly lower statistical error
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TABLE 6. Outcomes of Diebold-Mariano (DM) tests to compare the forecast accuracy of W-O-convLSTM Model (M1) against the competing counterparts
at 10M Forecast Horizon.

criteria with smaller spread and relatively lower magnitude
of quartile and median statistics. Due to the reason that the
designed models did not achieve a correlation coefficient
of 1, some outliers were observed in |FE|. Mostly in summer
and spring, the designed models could not capture all higher
variability in cloud type, ozone column and aerosol effects
(i.e. dust and smoke). Despite the presence of some outliers
in |FE|, the proposed W-O-convLSTM model yielded high
values of r, (mostly greater than 0.9) in all four seasons and
at all the forecast timescales, as indicated in Table 5.

The newly designed W-O-convLSTM model yielded high
correlation coefficients (r values) in UVI forecasting. The
high r values were achieved because the predictor inputs
displayed a high correlation with the UVI. The study by [60]
revealed that there is a high correlation between the monthly
average SZA and UVI (≈88% or 0.88). Similarly, in our
study, Table 1 shows a high r value of 0.89 between 10 min-
utes SZA and UVI. Together with SZA, we further integrated
cloud statistical properties that were also correlated with UVI
to generate UVI forecasts. Having highly correlated features
with the target, the simulations of UVI forecasts in this study
yielded high r values. Another similar study by [61] integrated
SZA and cloud statistical properties with a CNN-LSTM
model to forecast photosynthetic photon flux density (PPFD).
The outcomes revealed that the model captured a high r
value of 0.92 in generating forecasts of PPFD. Moreover, our
study forecasted very short-term UVI at 10M, 20M, 30M and
60M. For a very short-term forecast, there would be a high
correlation of immediate past value with the current value,
and a high correlation of current value with future value.
To further justify the high r values captured by the objective
model we calculated Murphy’s skill score (SS). The work
of [62] reveals that the derived decompositions of SS yield
analytical relationships between the respective skill scores
and the coefficient of correlation between the observations
and forecasts. Table 7 presents the SS of theW-O-convLSTM
model in generating UVI forecasts at multi-step horizons for

TABLE 7. Skill score (SS) of the W-O-convLSTM model at Multi-Step
Forecast Horizon.

the four seasons. High values of SS validate high r values
captured in UVI forecasts.

Overall, the evaluation outcomes and results exemplified in
Table 5-6, as well as in Fig. 7-10 demonstrate the robustness
and efficacy of the newly proposed W-O-convLSTM model
in generating cloud-affected UVI forecasts with respect to its
counterpart models at multi-step timescale. It was essential
to apply several statistical criteria, as a single indicator may
not portray the shortcomings of each predictive model [63].
After exploring the performance against benchmarked and
baseline models, the findings reveal that our wavelet-based
hybrid W-O-convLSTM captures comparatively larger val-
ues of r, WI and ENS, smaller values of MAE and RMSE,
lower percentage errors of RRMSE and RMAE and better
values of R2, m and c. The superiority of W-O-convLSTM
is further elucidated by larger values of the most stringent
metric, i.e. LM. In terms of the forecast timescales, more
accurate and efficient forecasts of cloud-affected UVI are
achieved at a lower forecast horizon (10M). The stochastic
nature of the cloud is best captured on short time scales,
as even the slightest position change can vastly change the
available UV. While our objective model presents the most
precise performance by having lower |FE|, it demonstrates its
forecasting adaptability for all four seasons in Queensland.
Out of the four seasons, the aforementioned performance
metrics statistics indicate that our wavelet-hybridized model
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generates the best forecasts in autumn and delivers slightly
lower performance in winter at all the forecasting timescales.
However, such observed discrepancy is subtle and relative
to other counterpart models, the proposed W-O-convLSTM
model still delivers the best forecasting skills for all four
seasons. The robustness of our SWT-based objective model
over the non-SWT-based benchmarked models is an outcome
of exploiting SWT that successfully addressed the issues of
non-stationarity in the cloud statistical properties prior to
simulating UVI forecasts.

To validate the influence of cloud movements on UVI,
our cloud properties-basedW-O-convLSTMmodel is gauged
against the SZA-based W-O-convLSTMsza model (baseline
model developed with a single predictor input of SZA).
In accordance with the captured results in Table 5-6 and
Fig. 7-10, the objective model displays superior performance
over the baseline model, thus affirming the significance of
stochastic cloud effects on ground level UVR.

In this study, the development of a multiple input multi-
step output W-O-convLSTM model entails many advan-
tages. Firstly, after rigorous evaluation using robust statistical
metrics, the model displays superior and enhanced perfor-
mance in forecasting short-term UVI for Australia. Sec-
ondly, the enhancement in simulations of future UVI can
serve as a powerful clinical tool to inform more accurate
sun-protection times to the public and mitigate skin and eye
health risks under different cloud cover conditions.Moreover,
our improved image segmentation technique avers its poten-
tial applicability in modeling UVI with cloud cover condi-
tions for other temperate countries. Our image segmentation
techniques may also be applicable in designing robust pre-
dictive models to improve solar radiation forecasts. This may
benefit the energy sector for solar energy monitoring under
cloud-affected skies. Additionally, such cloud segmentation
techniques can be integrated into modeling photosynthetic
active radiation to facilitate healthy plant growth and benefit
the agricultural sector. Despite an excellent performance by
the newly proposed W-O-convLSTM model, it exhibits a
minor limitation. In model designing, we did not use the
aerosol and ozone datasets, as these were not available for
our site at 10 minutes time resolution. These are two impor-
tant atmospheric variables that also affect the ground-based
UVI through the absorption and scattering processes. How-
ever, in our study, we utilized the time-lagged Bentham UVI
datasets that already captured some ozone and aerosol effects.
For future studies, integrating ozone and aerosol datasets may
further improve the UVI forecasting framework.

VI. CONCLUSION
We proposed a novel solar UVI forecasting framework by
building a hybrid deep learning and multi-step input system,
denoted as W-O-convLSTM model, integrating antecedent
lagged memory of cloud cover properties with SZA. The
newly developed model was further validated with data
extracted for four different seasons at study sites in Queens-
land, Australia where solar UV radiation currently poses

a serious risk in terms of increasing skin cancer and eye
diseases such as Pterygium, cataracts, or other eye health
ailments. A 3-phase model design approach was employed,
which entailed an input selection process with BorutaShap,
data decomposition using the SWT and a hyperparameter
optimization stage with the Optuna algorithm. We performed
a holistic evaluation of the predictive model through statisti-
cal metrics and diagnostic plots of predicted and measured
UVI to elucidate the superior forecasting skill of the pro-
posed W-O-convLSTM model over its benchmark models.
For the forecast horizon of 10 minutes (10M), 20 minutes
(20M), half-hourly (30M) and hourly (60M) scales we noted
an accurate performance of the proposed W-O-convLSTM
model that has also captured the stochastic effects of cloud
cover. Thus, our newly proposed model is a likely tool to be
adopted in real life for benefits to the public health area such
as delivering sun protection behavior recommendations that
can help mitigate skin cancer and eye disease risk.

Our study, advancing an earlier work [7] that has used
solar zenith angle as a single input to predict the solar UV
index, was a next stage pioneering research in developing
an artificial intelligence-based predictive model particularly
by integrating cloud cover conditions. However, in a future
study, we may integrate the actual measured values of aerosol
and ozone effects together with the solar zenith angle and the
cloud cover effects to further enhance the predictive frame-
work for real-time UVI forecasting.
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