
Joopal and Drumla

Sam Moffatt, Joomla!

September 13, 2009

1 Introduction

Joopal and Drumla grew out of a curiousity of mine. I wondered if it would be possible
to integrate Drupal 6 into Joomla! 1.5 (hence creating Joopal, Joomla! is the primary
system with Drupal underneath it) and once I didn’t get much traction with that project
after two major attempts, if I could put Joomla! into Drupal (Drumla under the same
rules). This paper details the methods undertaken in the process, some of the interesting
results and some learnings that were found along the way with the two projects.

2 Background

Drupal and Joomla! are two major web based PHP content management systems. As a
Joomla! developer I hear all of this cool stuff about Drupal and the awesome extensions
that they seem to have within their community. I do at times wonder why we don’t have
these extensions in our community but I’m sure that they are coming if we give them
a bit of time. But then I had a brilliant idea: why don’t we just encourage the Drupal
developers to come along to the Joomla! side of the fence and start writing some really
awesome hybrid Drupal/Joomla! applications. How hard can it be?

2.1 Joomla! structure

Joomla! as a CMS is comprised of various ’extensions’ that can be installed to provide
functionality in addition to the core supplied system. Joomla!’s extensions fall into a few
categories: the main ’page’ style extension is called a component. The component’s handle
the heavy lifting of the majority of the system and the user interface that is presented. If it
is sitting in the middle of a Joomla! page, it is almost always a component doing something
cool. Examples of components include the content component, the user component and
the weblinks component. On the side of pages we have what we call ’modules’. Modules
hang off the side of a page somewhere and provide utility style functionality. Examples
of modules include stuff like menus, status indicators, login forms and footers. Modules
on their own don’t provide any major functionality, this is usually delegated to the com-
ponents to handle. So the login form will send its data into the user component which
also has its own login form and also calls the login logic that is available in the Joomla!
framework. The last major code based extension is the plugin. Plugins are basically event
handlers that respond to events and sign up to be notified of events. Examples of uses in
the system of plugins include editors, authentication plugins and plugins which provide
legacy library functions.

Components are called by simply including a file into the system - nothing particularly
special. Modules also behave in a similar way though they have a different on disk location
within the filesystem. Plugins behave differently by having a class that is initialised and
then having the functions of that class called when particular events are triggered.

1

The way that plugins behave is actually how most people expect that hooks would
behave in systems such as Drupal. In Drupal you might have a function called ”module-
name block”, a Joomla! plugin would provide this with a function called ”block” within
the class that the module was exposing. Plugins are also unique in the way that they
can be scoped to different operations and only included as required however plugins can
participate in a system scope and listen to requests from different parts of the system.

2.2 Drupal Structure

Drupal has the concept of a module which contains a set of code that should be executed in
a single logical block. It uses the technique of having a few files within a module directory
that are responsible for handling the way the module displays itself both as a page and as
a block.

Drupal modules thus display two distinct extensions within Joomla!: the component
and the module type. Within Drupal a Joomla! module is termed a ’block’ and a com-
ponent would be a Drupal module. So a Joomla! component is a Drupal module and a
Joomla! module is a Drupal block.

As both the module and the block co-exist within the same file, Drupal has some logic
which determines which ’hook’ function to call and execute. For example to display a
block in Drupal requires the creation of ’modulename block’ which returns a list of ways
it can be displayed and also as an alternative option displays that information. Another
hook registers menu callback functionality for links to the page display of the item.

3 Joopal

Joopal was the first project that I undertook. I had heard so much about how great Drupal
was that I thought I would do something really cool: bring Drupal to Joomla!. In doing
so I figured that I would get a deeper understanding of what made Drupal tick , how to
take it apart and then how to put it back together again. At this point in time I think I
have certainly succeeded in increasing my understanding of the underside of Drupal which
has been a most depressing excursion of knowledge however it has taught me some new
and interesting things.

3.1 Attempt 1

The first attempt at Joopal that I made involved me creating a new component directory
within Joomla! and dumping a copy of Drupal in there with a slight change to add a single
file that would cause Joomla! to load Drupal. To give the system a fighting chance I had
taken it from an existing install and configuration to see if it would work. I had to make
a slight alteration to the way that Joomla! behaved to ensure that the correct database
was selected after the Drupal code was run and away I went. This method appeared to
fail very heavily as Drupal’s assumption that it was at the root of the system caused it
to break almost all of the file includes. I tried for a day to try to get it to work and I
didn’t get much traction. I eventually gave up on that tact and decided to take a steadier
approach to the matter. At this point I realised that integrating the systems together was
going to be much harder than earlier expected as for Drupal’s file inclusion to work within
Joomla!, I’d need to at the very least rewrite how Drupal included its files.

3.2 Attempt 2

The second attempt to get Drupal to work under Joomla! turned out to be more successful.
I wrote a small module for Joomla! that facilitated loading up Drupal blocks. It took me
a lot of time and effort in hacking Drupal to get it to play nicely but eventually I got the
basic Drupal logo display block working fine within a Joomla! module. So I thought I

2

would try something more significant, so I started slowly adding more classes to the system
to support more and more features. As I was going I started to rewrite parts of Drupal
to be more object orientated with class versions of common functions and the ability to
remove the plague of global variables that seem to infect Drupal so deeply.

I ran into problem after problem and my original goal of trying to get it up and running
without touching significant portions of the code base were slowly dashed. The nail in
the coffin was the fact that all over Drupal were includes that made the assumption that
Drupal was being called from its own index.php file and that the file structure would be
where it expected to be all of the time. I had discovered this in the first attempt but I
didn’t realise just how extensive this was. In this second attempt I had copied all of the
modules across into a different directory under the Joomla! one to keep things clean. This
so horribly broke parts of the system that it wasn’t worth continuing. As a final fall of
the hammer I gave up when I started to realise that Drupal was storing file system paths
within its database. Some of the modifications I had made fixed up the problems but
when I started having to rewrite entire chunks to ensure that things sort of worked fine
I had pased my line. At this point it was becoming more and more like third party code
wouldn’t be able to run on it without very heavy modifications that I was trying to avoid.

The solution to this was to replace each of the PHP functions that load external files
(include, include once, require, require once) with equivalents that automatically worked
out how to handle the provided path. The equivalent functions check to see if the first
character of the passed path is a slash or not. A slash would mean that the path is
absolute where as the absence of a slash indicates that the path is probably relative. This
presently doesn’t work properly for Windows, however will work well on UNIX like systems
(e.g. UNIX, Linux, Mac OS X). The functions pass absolute paths directly to the PHP
equivalent built in function and then returns the result. Relative paths are prefixed with
the Drupal root directory and then this is given to the PHP equivalent and the result is
returned. This means that absolute paths work properly when being included and relative
paths are also dereferenced back to the right place. The next problem with this approach
is that the functions being replaced are built ins which don’t require parentheses for their
arguments so further modifications were required to handle these situations. This means
that when a path is retrieved from the Drupal database it can either be relative (which
is the default Drupal style) or absolute (the way that Joomla!’s influence is presently
working).

So far this attempt is still in progress which is currently slowly porting Drupal into
an OO interface which will fit better into Joomla!’s model better and provide the ability
to easily handle items within Joomla!’s infrastructure. The benefit of this model in the
long run is that it is then easy for Joomla! extensions to utilise Drupal functionality.
Where possible ported functionality is using the newer style and so features like Drupal’s
Watchdog system is now presently independent and will eventually support Joomla!’s
plugin infrastructure to demonstrate how the two systems are similar and can interact.

4 Drumla

So after giving up on Joopal for a while I decided that I would try my hand at making
Drumla. Drumla took me about three hours to go from nothing to a Drupal module
that loaded blocks from Joomla!’s module system and the ability for it to run Joomla!’s
components. Those three hours weren’t perfect mind you, there were still issues with
the session system not deserialising objects properly after I had nuked Joomla!’s session
system to prevent it from destroying Drupal’s session object but this was solved by altering
Drupal’s bootstrap.inc file to include Joomla!’s object autoloader. Interestingly to get to
this point I had hand crafted a Joomla! configuration file, loaded its SQL file into the
system (I realise Drupal have a method for automatically creating the schema’s however
I didn’t evaluate this point) and had extracted the base package out and added a Drupal
module file and its support info file as well as two extra files, one for neatness and another

3

to override the JSession class. The only change made to Joomla! itself was to edit the
import loader file to prevent it from cleaning the request, this was effectively commenting
out a single line, so that Drupal didn’t have its information wiped out.

5 Conclusions

When considering application design we have two completely different situations. We have
that presented to us of Joomla! which made integration into a third party application
incredibly easy against that of Drupal which started to lead to a complete rewrite of the
system to work around the inflexibility built deep into the system.

Overall, the integration of Drupal into Joomla! was complicated by Drupal’s heavy use
of relative pathing and storing copies of paths in the database. This effectively means that
systems that discover these paths and include different files require significant updates to
work properly. Another area of integration pain is in session handling. Both systems offer
their own method of handling sessions so one needs to be disabled otherwise the two clash
and cause issues. Particularly for Joomla!, part of its process involves cleaning out the
entire session system which when being run within Drupal (Joomla! into Drupal) causes
Drupal’s information to be deleted.

Fortunately both systems feature the ability to respond to user events (e.g. cre-
ation/registration, editing, delete) which makes user synchronisation between the systems
very easy.

So when designing a new system the following recommendations come to mind:

• Do not rely on a particular filesystem path existing, where possible implement a
function or configuration item that enables a path to be specified to aide portability.
This includes a relative path as well because an application might be running from
a different location.

• Provide the ability to easily disable any functionality that could interfere with other
systems (such as cleaning session or request variables). This includes the ability to
defer session management to a different system properly.

• Provide the ability for different applications to adequately hook in and provide func-
tionality. Particularly for users and sessions which interconnection between parts of
the application.

Implementing these three features in an application provides the ability for another
application to easily integrate. When looking at both Joomla! and Drupal, some of these
features are missing. Drupal lacks the ability to easily be ported in the file system but
easily provides the ability to replicate the session. Joomla! doesn’t have an easy way of
disabling its cleaning processes which interfere with Drupal.

4

6 Appendix

6.1 Drumla Changes

• Custom Joomla! Configuration:
The live site variable in the configuration needs to be set to the path to the Drupal
site and then have “joomla” appended, for example:

var $live_site = ’http://localhost/~pasamio/drupal/drupal-6.6/joomla/’;

• Change to Joomla!:

silversaviour:joomla-1.5.11 pasamio$ diff ./libraries/joomla/import.php
33c33
< JRequest::clean();

> //JRequest::clean();

• Change to Drupal:

silversaviour:drupal-6.6 pasamio$ diff ./includes/bootstrap.inc
993a994
> include_once(’sites/all/modules/joomla/bootstrap.php’);

5

