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Random forest predictive model development with

uncertainty analysis capability for the estimation of

evapotranspiration in an arid oasis region

Min Wu, Qi Feng, Xiaohu Wen, Ravinesh C. Deo, Zhenliang Yin,

Linshan Yang and Danrui Sheng
ABSTRACT
The study evaluates the potential utility of the random forest (RF) predictive model used to simulate

daily reference evapotranspiration (ET0) in two stations located in the arid oasis area of northwestern

China. To construct an accurate RF-based predictive model, ET0 is estimated by an appropriate

combination of model inputs comprising maximum air temperature (Tmax), minimum air temperature

(Tmin), sunshine durations (Sun), wind speed (U2), and relative humidity (Rh). The output of RF models

are tested by ET0 calculated using Penman–Monteith FAO 56 (PMF-56) equation. Results showed that

the RF model was considered as a better way to predict ET0 for the arid oasis area with limited data.

Besides, Rh was the most influential factor on the behavior of ET0, except for air temperature in the

proposed arid area. Moreover, the uncertainty analysis with a Monte Carlo method was carried out

to verify the reliability of the results, and it was concluded that RF model had a lower uncertainty and

can be used successfully in simulating ET0. The proposed study shows RF as a sound modeling

approach for the prediction of ET0 in the arid areas where reliable weather data sets are available, but

relatively limited.
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HIGHLIGHTS

• Evapotranspiration is an essential hydrological property used for the computation of water

balance, including the scheduling of irrigation systems, water resources planning, and

management for agricultural purposes, especially in an arid region.

• Random forest model is designed for estimation of evapotranspiration in an arid oasis region.

• The Monte-Carlo method is carried to analyze uncertainty of simulation results.

• The model can be used successfully in simulating evapotranspiration in arid regions where

weather data are limited.

• Model has a lower uncertainty and can provide reliable tool of modeling evapotranspiration

under the same climatic conditions.
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GRAPHICAL ABSTRACT
INTRODUCTION
Evapotranspiration (ET) is the process of transfer of water

from the surface of the earth to the atmosphere including

evaporation and transpiration (Shiri et al. ; Nourani

et al. ), and often used to estimate actual evapotranspira-

tion in water balance studies and water resources

management (Tao et al. ). In arid oasis conditions,

crops are a material basis on which human beings depend

for their survival as well as being an ecological protection

barrier in such areas. Knowledge of crop-water demands is

an important practical consideration for improved water-

use efficiency (Benli et al. ). This is because ET is a pri-

mary source of water loss, so its accurate evaluation can

provide valuable information for water balance, irrigation

system design, and water resources management (Torres

et al. ; Wen et al. ). This is especially true for arid

regions, such as the northwest region in China, where popu-

lation growth, expansion of agriculture, and other socio-

economic activities are significantly constraining the avail-

able water resources.

Due to the lack of observation data, the precise esti-

mation of ET has produced the need for another

comprehensive concept called reference evapotranspiration

(ET0) (Abdullah et al. ). ET0 can be measured directly

using lysimeters which are characterized by providing accu-

rate measurement results; however, the application of the
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
methods is limited due to their cost and complexity (Fer-

reira et al. ), which increases the requirements of

employing data-based methods to predict ET0. Several con-

ventionally empirical models like Hargreaves equation,

Priestley–Taylor equation, and Ritchie equation have been

developed to estimate ET0 using meteorological data.

Because the PMF-56 equation takes into account moisture

availability, mass transfer, and required energy for the

process (Granata ), it has been recommended for

the computation of ET0 by the Food and Agricultural

Organization of the United Nations (FAO) as the only

standard equation which is usually applied to validate

other models and has been accepted in many regions

across the world. PMF-56 equation can be broadly applied

in various environments and climate conditions due to its

good precision and stability (Huang et al. ). However,

some restrictions still exist in the application of PMF-56

equation, for example, it is difficult to obtain all meteoro-

logical data required in the estimation process,

particularly in a developing country, where the number

of meteorological stations is limited and weather data

records could be scarce (Abdullah et al. ). Within

this context, an alternative data-driven model which

requires easily available input variables is necessary and

significant.



650 M. Wu et al. | Uncertainty analysis of random forest model in prediction of evapotranspiration Hydrology Research | 51.4 | 2020

Downloaded fr
by guest
on 22 April 202
As the ET0 depends on several interacting meteorologi-

cal factors, such as temperature, humidity, wind speed,

and radiation, it is difficult for the ordinary formula to

express all the related physical processes (Yassin et al.

; Yin et al. ). In this context, artificial intelligence

or data-driven models are considered as efficient tools to

deal with non-linear relationships between independent

and dependent variables. In the past few decades, artificial

intelligence models, including artificial neural network

(ANN), extreme learning machine (ELM), support vector

machine (SVM), and so on, have been extensively used in

the area of predicting and forecasting (Kisi & Cimen ;

Yoon et al. ; Tabari et al. ; Acharya et al. ; He

et al. ; Deo & Şahin ). In terms of ET0 prediction,

Traore et al. () assessed the performance of feed forward

backpropagation neural network (BPNN) algorithm (a type

of ANN) based on different inputs in estimating ET0 in the

Bobo-Dioulasso region. The results showed that the BPNN

algorithm had a better performance than conventional Har-

greaves equation and that wind was found to be the most

effective variable significantly required for modeling with

high accuracy when added into inputs. Huo et al. () com-

pared the performance of ANN models with multiple linear

regressions, the Penman equation, and two empirical

equations for calculation of ET0 in northwest China, con-

cluding that ANN models exhibited higher accuracy than

the others, and they also concluded that temperature, Rh,

was the most important input affecting ET0. Abdullah

et al. () proved that ELM was efficient, simple in appli-

cation, of high speed, and had a very good generalization

performance at predicting Penman–Monteith (P-M) ET0

using four different complete and incomplete meteorologi-

cal input combinations in Iraq. Patil & Deka ()

developed the ELM model utilizing three different input

combinations to calculate ET0 in the Thar Desert, India,

and Hargreaves equation, ANN and least-square support

vector machine (LS-SVM) models were used for a contrast.

The results revealed that ELM is a simple yet efficient algor-

ithm and superior to the other two methods. Tabari et al.

() estimated the performances of SVM, adaptive neuro-

fuzzy inference system (ANFIS), multiple linear regression

(MLR), and multiple non-linear regression (MNLR) for esti-

mating ET0 using six input vectors of climatic data in a semi-

arid highland environment in Iran. The results displayed
om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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that the capability of SVM and ANFIS models for ET0 pre-

diction was better than those achieved using the regression

and climate-based models. Kisi & Cimen () used the

SVM approach for modeling ET0 in three stations in central

California. The results were compared with empirical

models and ANN model and revealed that the SVM

method could be employed successfully in simulating the

ET0 process. These models have demonstrated promising

prediction ability of ET0 in many parts of the world, but

some deficiencies exist. ANN models become easily stuck

in a local minimum, and the optimization process is effort-

lessly influenced by initial point selection. SVM and

numerous ELM models are machine learning methods

based on kernel function, and generalization abilities

depend largely on the choice of the kernel function.

Random forest (RF) is another emerging machine learn-

ing technique and a natural non-linear modeling tool, the

superiority of which is good tolerance for outliers and

noise, difficulty in producing an over-fitting phenomenon.

As well, it can overcome the ‘black-box’ limitations of

ANN and provides evaluation of the importance degree of

input variables (Rodriguez-Galiano et al. ). RF with its

merits has been widely used in classification and prediction

(Gislason et al. ; Cutler et al. ; Heung et al. ;

Gong et al. ). Wang et al. () proposed the RF

model to evaluate flood hazard risk and implemented the

method in Dongjiang River Basin, China; consequently,

the capacity of the RF model was similar to the SVM

model with a correlation coefficient of 0.916, but the RF

method had a better performance with its advantages

including providing credible assessment consequences of

importance degree of input variables. Dong et al. ()

classified whether rockburst will happen and the intensity

of rockburst in underground rock projects utilizing RF

method, and selected some main control factors of rock-

burst, including the values of in-situ stresses, uniaxial

compressive strength and tensile strength of rock, and the

elastic energy index of rock to analysis. The results indicated

that the RF model exhibited high classification accuracy

compared with the ANN and SVM approach with misjudg-

ment ratios of 0, 10%, and 20%, respectively. In RF

modeling of ET0, Fukuda et al. () accessed the applica-

bility of RF model for estimating mango fruit yields using

10-day rainfall and irrigation data in response to water
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supply under different irrigation regimes. The RF models

accurately estimated the maximum and mean values of

mango fruit yields, and the results displayed the applicability

of RF in the field of agricultural engineering. Feng et al.

() proposed RF and generalized regression neural net-

works (GRNN) models for daily ET0 estimation in

southwest China, and the result revealed that the RF

model was slightly better than GRNN model for estimating

daily ET0. Although the RF model demonstrated significant

potential in many studies, the use of RF model for evaluating

ET0 has been rarely recorded by research, especially in the

arid environment of northwest China. It is, thus, important

to predict ET0 using the RF model to provide a reliable

method in data-limited areas.

Despite these advantages, there is a deficiency in the

application of the RF model for ET0 predictions. Almost

all the artificial intelligence models are stochastic algor-

ithms, the RF approach is no exception, and running the

model will not reproduce the same result even in an identi-

cal situation. Uncertainty analysis is an indispensable

procedure for getting reliable results in model simulations.

For uncertainty analysis, two primarily different aspects of

uncertainty include uncertain input variables, model par-

ameters, and model structure. By means of its general

applicability, the Monte Carlo simulation technique is a

widely used method for uncertainty analysis in hydrological

modeling (Shrestha et al. ; Antanasijević et al. ).

However, one remarkable issue is that the uncertainty of

the model in estimation is usually ignored by most studies,

and no such studies have been reported adding uncertainty

analysis in predicting ET0 so far. In this condition, uncer-

tainty analysis is conducted in the paper for assessing the

precision of the RF model.

The present study was carried out in an arid oasis area

of the middle reaches of the Heihe River Basin, northwest

China (Figure 1), where water resources play an important

role in the sustainable development of the ecological

environment. Besides, the study area is a typical irrigated

agricultural area as well as an important commodity grain

base of Heihe River. Agriculture consumes most water,

plus water resources are in severely short supply in this

region. As a vital component to describe the hydrological

cycle, estimate water balance, and schedule irrigation

(Rawat et al. ), ET0 determination with reliable
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
accuracy is significant in such a water-scarce region

(Nourani et al. ). Hence, the objective of this paper

was to investigate the precision of the RF model by

using different variables’ combination of meteorological

data including Tmax, Tmin, U2, Rh, Sun in an arid region,

northwest China. The results obtained from the RF

modes for various input combinations are compared to

each other, and subsequently determine the effects of

different meteorological arguments on ET0 according to

the importance degree of variables. Moreover, the uncer-

tainty analysis is performed for the RF model by Monte

Carlo simulations for the purpose of a better accurate

result applying to arid areas.
MATERIALS AND METHODS

PMF-56 equation

As a standard method to estimate ET0, PMF-56 equation

was used to be a RF target output to train and test the

model in this paper and proposed by Allen et al. () as

follows:

ET0�PMF�56 ¼
0:408Δ(Rn �G)þ γ

900
T þ 273

U2(es � ea)

Δþ γ(1þ 0:34U2)
(1)

where ET0-PMF-56 is the reference evapotranspiration (mm

day�1); Rn is the net radiation at the crop surface (MJ m�2

day�1); G is the soil heat flux (MJ m�2 day�1); γ is the psy-

chrometric constant (kPa �C�1); T is the mean daily air

temperature at 2 m height (�C); U2 is the mean daily

wind speed at 2 m height (m s�1); es is the saturation

vapor pressure (kPa), ea is the actual vapor pressure

(kPa), es� ea is the saturation vapor pressure deficit

(kPa); Δ is the slope of the saturation vapor pressure-

temperature curve (kPa �C�1). Allen et al. () described

the calculation process of each parameter required to

compute ET0 in detail, and all parameters could be calcu-

lated by meteorological data obtained directly by weather

stations.



Figure 1 | Location study area and the climate data measured sites.
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RF

The RF was developed by Breiman () based on a CART

decision tree model, including regression (RFR) and classifi-

cation (RFC) algorithm. The basic idea based on statistical

theory is that extracting repeatedly and randomly K samples
om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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from the original training sample set N for generating a new

set of training samples through the bootstrap resampling

method, then producing K decision trees and comprising

random forest according to the bootstrap sample set. In

terms of the classification model, the classified results of

new data depend on the number of votes obtained by



653 M. Wu et al. | Uncertainty analysis of random forest model in prediction of evapotranspiration Hydrology Research | 51.4 | 2020

Downloaded from http
by guest
on 22 April 2021
classification tree votes, and for the regression model, all the

averages of the predictive value of decision trees are

regarded as final prediction outcomes (Figure 2).

This paper uses the regression algorithm whose calcu-

lation processes are as follows.

First, randomly generate k training samples (Θ1, Θ2,…,

Θk) from the total training sample using the bootstrap

sampling method, corresponding to K decision trees can

be constructed.

Second, at each node of the decision tree, the m features

are randomly selected from the M features as the splitting

features set of the current nodes, then selecting one node

from the m features to split according to the principle of

node purity minimum, each decision tree is grown to the lar-

gest extent possible, no pruning.

Third, for new data, the predictive value of a single

decision tree can be obtained through the average of the

observations of the leaf node 1(x, Θ). If an observation

value Xi is a leaf node 1(x, Θ) and not 0, the weight ωi(x,Θ)

is set as:

ωiðxΘÞ ¼ 1 xiϵRl x;Θð Þf g
# j : xjϵRl x;Θð Þ� � (2)

where the sum of weights equals 1.

Fourth, the prediction of a single decision tree gained by

the weighted average of the observations of dependent vari-

ables is defined as:

μ xð Þ ¼
Xn
i¼1

ωi xΘð ÞYi (3)

where Yi (i¼ 1,2,…,n) is the observation of the dependent

variable.
Figure 2 | Schematic of random forest workflow.
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Finally, given weight of decision tree ωi(x,Θt) (t¼ 1, 2,

…, k), the weight of each observation as Equation (4):

ωi xð Þ ¼ 1
k

Xk
i¼1

ωi xΘtð Þ Y (4)

thus, the final predicted value of RFR is:

μ(x) ¼
Xn
i¼1

ωi(x)Yi (5)

the flowchart of RF for regression is shown as follows.

In addition, index importance assessment is a promi-

nent advantage of the RF algorithm, the purpose of which

lies in evaluating the effect of each variable on the accuracy

of the RF model. IncNodePurity index adopted in this

research was used to assess the importance of each par-

ameter, and compare that by calculating the reduced

values of impurity of the nodes of all tree variables. That

higher index importance measurement can intuitively reflect

the main factors affecting estimated ET0. Besides, in this

research, we applied the randomForest package to train

data and access variable importance in the R environment.
Uncertainty analysis

Uncertainty analysis by Monte Carlo simulations is used for

evaluating the analysis of final models. Input parameter uncer-

tainty considered in this paper is related to the precision and

representativeness of the input data applied for predictions

(Antanasijević et al. ). In this method, the input parameter

is described using a probability distribution and a single input

data set involves the generation of random input respecting

this distribution, then running the model and obtaining
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output (Noori et al. ). In the present work, we randomly

resample the input data set without replacement for 1,000

times, keeping the ratio between the training and validation

sets unchanged (Dehghani et al. ; Gao et al. ). Finally,

the 95% confidence intervals are determined by finding the

2.5th (XL) and 97.5th (XU) percentiles of the cumulative distri-

bution consisting of 1,000 data. The ratio of observed values

that lie within the 95% confidence interval is calculated as jud-

ging the robustness metric of the final model; the higher the

ratio is, the stronger the robustness is, and vice versa. The

95% prediction uncertainties (95PPU) are represented as:

Bracketed by 95PPU ¼ 1
n
Count(NjXL �N �XU) × 100 (6)

where the n indicates the number of observed data points.N is

increasing with the value of PMF-56 ET0 falling between cor-

responding XL and XU increase, the ‘Bracketed by 95PPU’ is

100 when all of the PMF-56 ET0 values are within the range

of XL � N � XU .

In addition, d-factor (Ghorbani et al. ) is applied for

computing the average width of the confidence interval, and

can be evaluated according to Equation (7):

d� factor ¼ dx=�σx (7)

dx ¼ 1
n

Xn
i¼1

(XU �XL) (8)

where �dx is the average distance between the upper (97.5th)
Table 1 | Statistical parameters of climatic data and the PMF-56 ET0 at two stations

Station Climatic data and the PMF� 56 ET0 Maximum

Zhangye Tmax (�C) 39.60
Tmin (�C) 22.80
Sun (h) 14.00
U2 (m/s) 8.00
Rh (%) 100.00
PMF� 56 ET0 (mm/day) 11.67

Gaotai Tmax (�C) 39.80
Tmin (�C) 25.90
Sun (h) 13.80
U2 (m/s) 7.20
Rh (%) 100.00
PMF� 56 ET0 (mm/day) 11.62

Std., standard deviation; SK, skewness; CV, coefficient of variation.
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and lower (2.5th) bands, �σx is the standard deviation of the

observed data. It is relevant to note that the better results

would have a d-factor value which is close to 0.
CASE STUDY

Observation data and statistical analysis

The weather data for this study were obtained from two sites

in Zhangye (100�170E, 39�050N) and Gaotai (99�500E,

39�220N), as shown in Figure 1. In this study, five years of

meteorological data was sourced from the National Climatic

Centre of the China Meteorological Administration. The

duration of the data is from 2013 to 2017 at daily timescales,

which includes Tmax, Tmin, U2, Rh, Sun. There were 1,826

records and these were divided into two parts: the training

part composed of 1,461 daily records which account for

about 80% of the total data set, and the testing part, the

remaining 365 records, which accounts for about 20% of

the total data set. The statistical characteristics of daily

weather data and the PMF-56 ET0 for each station are

shown in Table 1. In terms of the skewness values, Tmax,

Tmin, and Rh showed lower skewed distribution than other

variables. Also, it can be seen that U2 shows a higher

skewed feature than the other variables (1.06 and 1.21 for

the two sites, respectively). Tmax, Tmin, and PMF-56 ET0

demonstrate a strong variability and the CV values exceed

0.62, which principally resulted from seasonal changes. The
Minimum Mean Std. SK CV

�13.50 17.09 11.42 �0.31 0.67
�28.60 1.91 11.84 �0.26 6.20
0 8.58 3.38 �0.96 0.39
0.90 2.84 0.98 1.06 0.35
10.00 45.91 16.96 0.47 0.37
0.11 3.63 2.52 0.59 0.69

�11.70 17.64 11.61 �0.32 0.66
�26.70 2.65 11.20 �0.18 4.27
0 8.40 3.35 �0.91 0.40
0.50 2.07 0.84 1.21 0.41
13.00 46.27 15.68 0.38 0.34
0.16 3.30 2.30 0.55 0.70
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variation intensity of the rest of parameters is intermediate

(CV is bounded between 0.25 and 0.75). Additionally, there

are no significant differences for other data between the

two weather stations.

Model development

The selection of appropriate input variables has a direct

impact on the performance of the model; moreover, finding

suitable inputs can provide an efficient way of estimating

ET0 for many regions where weather data are not always

available. For the development of the RF model, this study

selected different combinations of various daily climatic

data as input, and ET0 computed by daily PMF-56 equation

as output for training and testing the models. Eight different

combinations were considered in the present study and are

referred to in the short form as shown in Table 2. Tempera-

ture is the most influential variable on ET0 and predominant

physical factor in the evaporation process (Jain et al. ;

Wen et al. ). Thus, combination 1, as the base inputs,

consists of Tmax and Tmin and the other combinations are

formed by integrating Sun; Rh and U2; Rh, U2 and Sun; Rh,

U2, and Sun into combination 1, respectively. Each combi-

nation was trained and tested by the RF model.

In order to eliminate the influence of the dimension, the

input and output data were normalized to obtain data with a

mean of 0 and a variance of 1 before running models; the

equation is used as follows:

xnew ¼ (x� μ)=σ (9)

where χnew is the normalized dimensionless data, μ is the

average data and σ is the standard deviation.
Table 2 | Input combinations of RF models used in the study

Input combination Model Inputs

Combination 1 RF1 Tmax, Tmin

Combination 2 RF2 Tmax, Tmin, Sun

Combination 3 RF3 Tmax, Tmin, U2

Combination 4 RF4 Tmax, Tmin, Rh

Combination 5 RF5 Tmax, Tmin, Sun, U2

Combination 6 RF6 Tmax, Tmin, Sun, Rh

Combination 7 RF7 Tmax, Tmin, U2, Rh

Combination 8 RF8 Tmax, Tmin, Sun, U2, Rh
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Models’ performance criteria

For the assessment of the performances of the RF model,

statistical indices such as coefficient of correlation (r), root

mean squared error (RMSE), mean absolute error (MAE),

and Nash–Sutcliffe efficiency coefficient (NS) were applied

in this research. r measures the correlation between esti-

mated and observed values; the smaller the differences

between r and 1.0 are, the stronger the correlation is.

RMSE and MAE provide different types of information

about the measurement of the prediction capability of the

models. RMSE demonstrates the goodness-of-fit relevant to

high values whereas MAE yields a more balanced perspec-

tive of the goodness-of-fit at moderate values (Citakoglu

et al. ). The small RMSE and MAE values indicate

that the error between the estimated and calculated values

is small and the performance of the models is good. The r,

RMSE, MAE, and NS are computed by the following

equations:

r ¼
Pn

i¼1 (E
p(i)� Ep(i))(Eo(i)� Eo(i))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (Ep(i)� Ep(i))
2
(Eo(i)� Eo(i))

2
q (10)
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (E
p(i)� Eo(i))2

n

s
(11)
MAE ¼
Pn

i¼1 j(Ep(i)� Eo(i))=Eo(i)j
n

(12)
NS ¼ 1�
Pn

i¼1 (E
o(i)� Ep(i))2Pn

i¼1 (Eo(i)� Eo(i))
2 (13)

where Ep(i) and Eo(i) are the ith ET0 values computed

through different models and PMF-56 equation, respect-

ively; Ep(i) and Eo(i) are the average of Ep(i) and Eo(i);

and n is the number of data. In terms of these metrics, the

model is denoted as a perfect fit when r¼ 1, RMSE and

MAE¼ 0, and NS¼ 1, respectively.
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RESULTS AND DISCUSSION

Model performance

The performance of RF model for PMF-56 ET0 applied to

the studied stations for the training and testing periods are

summarized in Tables 3 and 4, which demonstrate the pre-

cision of the proposed RF model by the formulae of r,

RMSE, MAE, and NS. As can be seen, there were no signifi-

cant changes in respect to all of the metrics of these models

in training as well as testing periods. This research selected

the criteria during the testing phase to compare the capabili-

ties of these models in the prediction of PMF-56 ET0 and all

of the following analyses were performed in the testing

period.

Considering all models for the two stations, it can be

observed that the RF8 model outperforms all of the other
Table 4 | Performance analysis of the RF models at Gaotai station during the training and tes

Training

Models r RMSE MAE NS

RF1 0.967 0.594 0.412 0.93

RF2 0.980 0.474 0.329 0.95

RF3 0.982 0.448 0.320 0.96

RF4 0.986 0.394 0.270 0.97

RF5 0.989 0.334 0.231 0.97

RF6 0.991 0.319 0.213 0.98

RF7 0.993 0.271 0.185 0.98

RF8 0.996 0.206 0.142 0.99

Table 3 | Performance analysis of the RF models at Zhangye station during the training and te

Training

Models r RMSE MAE NS

RF1 0.962 0.705 0.480 0.923

RF2 0.970 0.621 0.404 0.940

RF3 0.975 0.571 0.387 0.949

RF4 0.988 0.395 0.277 0.976

RF5 0.985 0.451 0.287 0.968

RF6 0.992 0.319 0.213 0.984

RF7 0.995 0.256 0.177 0.990

RF8 0.996 0.238 0.156 0.991

om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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models in the four-estimation norm, with the highest r and

NS values as well as the lowest RMSE and MAE values.

We also clearly see all of the r and NS values surpass 0.8

for both stations, indicating the performances of RF

models in PMF-56 ET0 prediction were encouraging. Thus,

it was selected as the best-fit model for estimating the

PMF-56 ET0 at the two stations. In the remaining models,

RF5, RF6, and RF7 models including four parameters as

inputs had a higher r and NS values, lower RMSE and

MAE values and were found to be better than RF2, RF3,

and RF4 models with three input parameters at each individ-

ual site. Alternatively, RF1 with only Tmax and Tmin as inputs

had the biggest errors rates compared to other models. This

demonstrated that the performance of the models relied on

the number of input parameters. However, weather factors

were usually incomplete in data-limited regions, especially

in arid environments, such as northwest China. The
ting periods

Testing

r RMSE MAE NS

5 0.907 0.967 0.716 0.814

8 0.951 0.694 0.524 0.904

3 0.952 0.689 0.510 0.905

1 0.951 0.698 0.505 0.903

9 0.974 0.515 0.389 0.947

1 0.968 0.562 0.416 0.937

6 0.971 0.540 0.389 0.942

2 0.987 0.352 0.267 0.975

sting periods

Testing

r RMSE MAE NS

0.909 1.019 0.747 0.823

0.946 0.795 0.570 0.893

0.934 0.873 0.634 0.871

0.965 0.638 0.453 0.931

0.964 0.645 0.472 0.929

0.973 0.561 0.394 0.947

0.978 0.509 0.361 0.956

0.990 0.339 0.255 0.981
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selection of the model should be decided according to the

available meteorological parameters. The models whose

input comprised Tmax and Tmin are needed and can be

used in this study for practical application.

Concretely, in terms of Zhangye station, the corporation

of Rh can significantly improve the performance of RF

models. Adding Rh to temperature-based inputs, the RF4

model improved r, RMSE, MAE, and NS by 6.2%, 37.4%,

39.4%, and 13.1%, respectively. Likewise, the RF6 and

RF7 models introducing Rh as input variable achieved

higher simulation precision (with the higher r and NS

values, the lower RMSE and MAE values) than the RF5

model with the absence of Rh. From these results, it was

shown that the addition of Rh was more sensitive to

output relative to the Sun and U2. The RF2 model performed

the second best in ET0 estimation among the RF2, RF3, and

RF4 models. Note that RF3 including U2 on the basis of RF1

improved r, RMSE, MAE, and NS value by 4.1%, 22%,

23.7%, and 8.5%, respectively. It was an objective fact that

RF6 was superior to RF5 according to four evaluation cri-

teria. This result showed that inserting Rh was more

effective than U2 to the estimation of ET0. The RF3 model,

whose inputs included Tmax, Tmin, and U2 were found to

be worse than RF2 and RF4 models among the three

models. As a result, the ET0 is most easily affected by Rh, fol-

lowed by Sun and U2. This conclusion is in disagreement

with the findings of many studies (Dai et al. ; Petkovic

et al. ; Tao et al. ; Xing et al. ), namely, the Sun
is considered as the most effective parameter for simulating

PMF-56 ET0. Generally, the results depend on the selected

geographical location and climate type of the study area.

For the case of Gaotai station, there were different

results compared with those of Zhangye station. It was

shown that the RF3 model performed slightly better than

RF2 and RF4 models in terms of four statistical indicators,

and it can be stated that PMF-56 ET0 was easily influenced

by U2. This was also confirmed by RF5 and RF7 models with

the insertion of U2 into the inputs presented in Tables 3 and

4. The RF5 and RF7 models remarkably increased the r and

NS values of 0.6% and 1.1%, and 0.3% and 0.5%, respect-

ively, and decreased the RMSE and MAE values of 8.4%

and 6.5%, and 3.9% and 6.5%, respectively, relative to the

RF6 model, exhibiting the superiority of RF5 and RF7

models to the RF6 model significantly. The results of this
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
comparison revealed that integrating U2 improved the accu-

racy of the model significantly. Accordingly, adding U2 is

found to be more influential than Sun and Rh on ET0 simu-

lation, which is the same outcome obtained by Traore et al.

() and Karimaldini et al. (). It is observed that the

input scenarios listed in Table 2 have a distinct performance

for the two stations due to the different geographical locations.

To compare the performance of the temperature-based

models and the other models with the absence of tempera-

ture, the Supplementary material lists performance statistics

of four input combinations including: (1) Sun and U2; (2)

Sun and Rh; (3) U2 and Rh; (4) Sun, U2 and Rh, and the four

inputs are expressed as RF9, RF10, RF11, and RF12, respect-

ively. It is apparent that all the RF models produced higher

RMSE (more than 1.38) and MAE (more than 1.08) as well

as lower r (less than 0.81) and NS (less than 0.66), and were

inferior to combinations 1–8 inserting Tmax and Tmin into

inputs for PMF-56 ET0 forecasting (Supplementary material,

Tables A1 and A2). As the best fitting models, RF12 had r

values of 0.809 and 0.790, RMSE values of 1.427 and 1.382,

MAE values of 1.097 and 1.082, and NS values of 0.654

and 0.619 for Zhangye and Gaotai stations, respectively,

which cannot meet the prediction standards of PMF-56

ET0. In such circumstances, RF9–RF12 models should not

be selected as techniques to estimate PMF-56 ET0. Therefore,

the following does not elaborate on the four models, but

mainly focuses on RF1–RF8 models.

Figures 3–6 exhibit the hydrograph and scatter plots of the

ET0 values computed by the PMF-56 equation and the values

estimated by different combinations of the RFmodel of the vali-

dation period for the two stations. A total of eight combinations

of RF model displayed a good prediction of ET0. In addition, it

is obviously seen that the ET0 values estimated by the RF8

model were closer to the PMF-56 ET0 values and followed

the same trend than the othermodels while the RF1model per-

formed the worst in this area. From the fit line with the form of

y¼ axþ b, the coefficients a and b of the RF8 model were

closer to 1 and 0 than the other models, because the lowest

values of b (equal to 0), and the highest values of the slope

(equal to 1) denote the best fit of models. Thesewere confirmed

by r, RSME, MAE, and NS values shown in Tables 3 and 4. As

well, it was observed that the fitting performance of the maxi-

mum and minimum PMF-56 ET0 was not very good,

especially that of peaks of the first few models.



Figure 3 | Comparison of the ET0 values estimated by the PMF-56 equation and the RF models for Zhangye station during the testing period.

Figure 4 | Relationship between ET0 values estimated by the PMF-56 equation and the RF models for Zhangye station during the testing period.
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Due to the importance of PMF-56 ET0 in irrigation and

agricultural water use, water resources planning and man-

agement, the estimation of total PMF-56 ET0 obtained by
om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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different combinations of RF model was also considered in

this paper. The total ET0 amounts calculated by PMF-56

and RF models in the testing phase are given in Table 5. It



Figure 5 | Comparison of the ET0 values estimated by the PMF-56 equation and the RF models for Gaotai station during the testing period.

Figure 6 | Relationship between ET0 values estimated by the PMF-56 equation and the RF models for Gaotai station during the testing period.
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is remarkable that all models had a quite good estimation of

total PMF-56 ET0 value since there was a smaller relative

error (all values less than 3.5%) for both sites, especially
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
the RF1 model, whose input parameters were only Tmax

and Tmin at Zhangye station, with a relative error of

�0.2%. In addition, noting the fact that the RF8 model



Table 5 | Total ET0 values and relative error calculated by different combinations of RF

models during the testing period

Input

Zhangye Gaotai

Total ET0 (mm) relative
error (%)

Total ET0 (mm) relative
error (%)

PMF-56 1,332.40 – 1,208.60 –

RF1 1,329.65 �0.2 1,239.70 2.6

RF2 1,289.10 �3.2 1,213.55 0.4

RF3 1,329.98 �0.2 1,202.84 �0.5

RF4 1,338.79 0.5 1,218.12 0.8

RF5 1,320.52 �0.9 1,188.09 �1.7

RF6 1,327.80 �0.3 1,203.06 �0.5

RF7 1,343.31 0.8 1,194.60 �1.2

RF8 1,330.26 �0.2 1,188.33 �1.6
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with all the variables as inputs did not have the lowest rela-

tive error (�1.6%) among all the models at Gaotai station, it

still performed well and its value fell within the reliable

range. Although generally, reliable weather data sets such

as Rh, U2 and Sun are limited in the arid regions, combining

the above calculation results and demands of practical use,

the RF model can be employed to predict PMF-56 ET0

where restricted data are available.
Evaluation of the importance of variables

Index importance assessment is an advantage of the RF

model which can directly obtain an order of all of the
Figure 7 | Importance degree of evaluation indicators for the two stations.

om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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weather parameters. As shown in Figure 7, temperature is

the most relevant variable connected with the estimation

of PMF-56 ET0 in the two stations, with IncNodePurity

values individually accounting for 69% and 71%, which

illustrates that Tmax and Tmin can be employed to predict

PMF-56 ET0 combined with Tables 3 and 4; on the contrary,

the RF model cannot simulate ET0 with higher accuracy

when temperature is missing. In addition, for the impor-

tance degree of the other three factors there existed a

similarity at the two sites; Rh can be considered as an influ-

ential index due to higher IncNodePurity values at Zhangye

and Gaotai stations. It is relevant to note that this result is

inconsistent with the consequence obtained at Gaotai

station (described by Table 4). The aforementioned out-

comes are achieved by different combinations among all

parameters, indicating that inserting U2 into inputs has

higher precision compared to adding other variables for

Gaotai site. Nevertheless, IncNodePurity value of random

forest explains each index’s contribution to ET0, therefore,

in terms of importance of variables, there is no doubt that

Rh is the most relavant factor affecting ET0 in this area. Simi-

lar results were also carried out in Shiyang River Basin,

northwest China by Huo et al. (), where Rh has a large

effect on daily PMF-56 ET0 except for air temperature in

an arid region, northwest China.

Uncertainty analysis

The techniques of Monte Carlo simulations were used to

corroborate the applicability of RF models in modeling
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PMF-56 ET0, an important hydro-meteorological parameter

for agriculture, ecosystems, and several other socio-econ-

omic activities. The method proposed here has been used

to quantify the uncertainty by predicting the confidence

intervals of the simulation results. Figures 8 and 9 illustrate

95% confidence intervals for the estimates of daily PMF-56

ET0 applying the RF model for Zhangye and Gaotai stations

during the testing period. From these two figures, we find

that there was a good match between 95% confidence inter-

vals and results obtained by the RF model, and most of the

observed ET0 data lay within the confidence intervals at the

two stations. Results of Monte Carlo analysis of the RF
Figure 8 | The ET0 values estimated by the PMF-56 equation and the 95% confidence intervals

Zhangye station.

://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
model for the two stations are given in the upper left

corner of the panels. In general, satisfactory results indicate

that more observed data were bracketed within the 95PPU

(all values are over 60%), while a lower d-factor value can

be obtained (d-factor values less than 1 are considered

appropriate). Remarkably, the RF8 model produced accepta-

ble d-factor values, noting that the d-factor values were 0.26

and 0.27 at Zhangye and Gaotai station, respectively. Also,

the PMF-56 ET0 values bracketed by 95PPU were more sig-

nificant for both stations; it was observed that 91% and 87%

of the PMF-56 ET0 data were bracketed by the 95PPU at

Zhangye and Gaotai station, respectively. In addition, 95%
estimated by Monte Carlo simulation of RF models with randomly sampled input vectors in



Figure 9 | The ET0 values estimated by the PMF-56 equation and the 95% confidence intervals estimated by Monte Carlo simulation of RF models with randomly sampled input vectors in

Gaotai station.
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confidence intervals of RF3 to RF8 models were found to be

a relatively good fit to the peak of PMF-56 ET0 for the two

sites. Although the RF1 model has wider 95% confidence

and higher d-factor values than other combinations for the

two stations, the uncertainty is still within acceptable

limits. As can be seen from these figures, the trend of 95%

confidence intervals calculated by the RF1 model is basi-

cally close to that of PMF-56 ET0. The values bracketed by

95PPU were more than 62%, and the d-factor values were

less than 0.58, indicating that the RF1 model is able to pre-

dict daily PMF-56 ET0 with smaller uncertainties.

Considering the purpose of this paper and the above
om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
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discussion, the prediction uncertainties of the RF1 model

were determined to further illustrate the application of this

model and therefore find a reliable model in an arid area

with a lack of sufficient meteorological data. Besides, it is

worth noting that the maximum and minimum ET0 values

cannot be simulated perfectly by models, consistent with

the previous conclusion (as shown in Figures 3–6), which

also further illustrates the differences between the total

ET0 amounts computed by PMF-56 and RF models as dis-

played by Table 5. In spite of some errors, taking the

discussion of the section on evaluation of the importance

of variables into account, we find that the RF model with
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only Tmax and Tmin as inputs is still considered as an appro-

priate technique to simulate daily PMF-56 ET0 in arid

conditions.
CONCLUSIONS

Water resources play an essential role in arid environ-

ments, so new modeling and water assessment methods

are crucial for maintaining sustainability of water

resources, strategies for water quality and usage. ET0 pro-

vides a vital parameter of water resources calculation,

regional water resources management, and irrigation plan

development. This research discussed the performance of

the RF model to predict PMF-56 ET0 using different combi-

nations of daily climatic data, including maximum air

temperature (Tmax), minimum air temperature (Tmin), sun-

shine duration (Sun), wind speed (U2), and relative

humidity (Rh) for Zhangye and Gaotai stations, in an arid

region, northwest China. It was found that the precision

of the models was respectively improved when adding

Sun, U2, and Rh into the temperature-based model. More-

over, the importance evaluation of indices indicated

PMF-56 ET0 was more readily influenced by Rh with the

exception of air temperature in this region. The best per-

formance was achieved by the RF8 model with all the

meteorological arguments as inputs. Although the pre-

cision of the model depends on the number of input

climatic variables, all of the combinations of RF model

turned out to be capable of producing reliable precision

in ET0 modeling, as mentioned above. Thus, the RF

model should be the recommended model for PMF-56

ET0 modeling in arid regions where weather data are lim-

ited. The Monte Carlo simulation technique was also

employed for quantifying RF model uncertainty. The

results of uncertainty analysis indicated that the PMF-56

ET0 values bracketed by 95% confidence interval

(95PPU) were larger, namely, most of the PMF-56 ET0

values fell within 95PPU, and d-factor values calculated

by upper and lower limits of the confidence interval were

smaller in the studied area. In summary, the RF model is

considered as an appropriate way of forecasting PMF-56

ET0 and can provide an alternative tool under a minimal
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
amount of climate data, as well as a reference for water

resources management.

It should be noted that there have been extensive studies

comparing the performance of RF and other artificial intelli-

gence models for simulating ET0, regarding the fact that

almost all studies confirmed that RF model achieved

higher simulation precision than others. Under these cir-

cumstances, this article did not conduct comparative

research. In addition, although the RF model provides sig-

nificant potential for more accurate estimation of the ET0

with a lack of appropriate weather data in arid regions, cer-

tain drawbacks still persist. In this investigation, the selected

sites are insufficient and the amounts of data size used to

develop the model are smaller; besides, maximum and mini-

mum ET0 values simulated by RF model cannot accurately

reflect the observed data. Therefore, further study can poten-

tially focus on choosing more studied points with different

climate types and combining RF method and another algor-

ithm, such as Kalman filtering and wavelet transform

techniques, for obtaining more reliable and practical results.
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Deo, R. C. & Şahin, M.  Application of the extreme learning
machine algorithm for the prediction of monthly effective
drought index in eastern Australia. Atmos. Res. 153, 512–525.

Dong, L. J., Li, X. B. & Peng, K.  Prediction of rockburst
classification using Random Forest. T. Nonferr. Metal. Soc.
23 (2), 472–477.

Feng, Y., Cui, N. B., Gong, D. Z., Zhang, Q. W. & Zhao, L. 
Evaluation of random forests and generalized regression
neural networks for daily reference evapotranspiration
modeling. Agric. Water Manage. 193, 163–173.

Ferreira, L. B., Cunha, F. F., Oliveira, R. A. & Filho, E. I. F. 
Estimation of reference evapotranspiration in Brazil with
limited meteorological data using ANN and SVM – A new
approach. J. Hydrol. 572, 556–570. https://doi.org/10.1016/j.
jhydrol.2019.03.028.

Fukuda, S., Spreer, W., Yasunaga, E., Yuge, K., Sardsud, V. &Müller,
J.  Random Forests modelling for the estimation of mango
om http://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf

1

(Mangifera indica L. cv. Chok Anan) fruit yields under different
irrigation regimes. Agric. Water Manage. 116, 142–150.

Gao, M., Yin, L. & Ning, J. C.  Artificial neural network model
for ozone concentration estimation and Monte Carlo
analysis. Atmos. Environ. 184, 129–139.

Ghorbani, M. A., Zadeh, H. A., Isazadeh, M. & Terzi, O.  A
comparative study of artificial neural network (MLP, RBF)
and support vector machine models for river flow prediction.
Environ. Earth Sci. 75. doi:10.1007/s12665-015-5096-x.

Gislason, P. O., Benediktsson, J. A. & Sveinsson, J. R. 
Random Forests for land cover classification. Pattern Recogn.
Lett. 27 (4), 294–300.

Gong, H. R., Sun, Y. R., Shu, X. & Huang, B. S.  Use of
random forests regression for predicting IRI of asphalt
pavements. Constr. Build. Mater. 189, 890–897.

Granata, F.  Evapotranspiration evaluation models based on
machine learning algorithms – a comparative study. Agric.
Water Manage. 217, 303–315.

He, Z. B., Wen, X. H., Liu, H. & Du, J.  A comparative study of
artificial neural network, adaptive neuro fuzzy inference
system and support vector machine for forecasting river
flow in the semiarid mountain region. J. Hydrol. 509,
379–386.

Heung, B., Bulmer, C. E. & Schmidt, M. G.  Predictive soil
parent material mapping at a regional-scale: a random forest
approach. Geoderma 214–215, 141–154.

Huang, G. M., Wu, L. F., Ma, X., Zhang, W. Q., Fan, J. L., Yu, X.,
Zeng, W. Z. & Zhou, H. M.  Evaluation of CatBoost
method for prediction of reference evapotranspiration in
humid regions. J. Hydrol. 574, 1029–1041. https://doi.org/10.
1016/j.jhydrol.2019.04.085.

Huo, Z., Feng, S., Kang, S. & Dai, X.  Artificial neural network
models for reference evapotranspiration in an arid area of
northwest China. J. Arid. Environ. 82, 81–90.

Jain, S. K., Nayak, P. C. & Sudheer, K. P.  Models for
estimating evapotranspiration using artificial neural networks,
and their physical interpretation. Hydrol. Process. 22,
2225–2234.

Karimaldini, F., Shui, L. T., Mohamed, T. A., Abdollahi, M. &
Khalili, N.  Daily evapotranspiration modelling from
limited weather data by using neuro-fuzzy computing
technique. J. Irrig. Drain. Eng. 138 (1), 21–34.

Kisi, O. & Cimen, M.  Evapotranspiration modeling using
support vectormachines. Hydrol. Sci. J. 54 (5), 918–928.

Noori, R., Hoshyaripour, G., Ashrafi, K. & Araabi, B. N. 
Uncertainty analysis of developed ANN and ANFIS models
in prediction of carbon monoxide daily concentration.
Atmos. Environ. 44, 476–482.

Nourani, V., Elkiran, G. & Abdullahi, J. Multi-station artificial
intelligence based ensemble modeling of reference
evapotranspiration using pan evaporation measurements.
J. Hydrol. 577, 123958.

Nourani, V., Elkiran, G. & Abdullahi, J.  Multi-step ahead
modeling of reference evapotranspiration using a multi-
model approach. J. Hydrol. 581, 124434.

http://dx.doi.org/10.1016/j.jhydrol.2015.04.073
http://dx.doi.org/10.1016/j.jhydrol.2015.04.073
http://dx.doi.org/10.1007/s00382-013-1942-2
http://dx.doi.org/10.1007/s00382-013-1942-2
http://dx.doi.org/10.1007/s00382-013-1942-2
http://dx.doi.org/10.1007/s00382-013-1942-2
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
http://dx.doi.org/10.1016/j.agwat.2005.05.003
http://dx.doi.org/10.1016/j.agwat.2005.05.003
http://dx.doi.org/10.1016/j.agwat.2005.05.003
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11269-013-0474-1
http://dx.doi.org/10.1007/s11269-013-0474-1
http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.1890/07-0539.1
http://dx.doi.org/10.1002/hyp.7153
http://dx.doi.org/10.1002/hyp.7153
http://dx.doi.org/10.1002/joc.3754
http://dx.doi.org/10.1002/joc.3754
http://dx.doi.org/10.1016/j.atmosres.2014.10.016
http://dx.doi.org/10.1016/j.atmosres.2014.10.016
http://dx.doi.org/10.1016/j.atmosres.2014.10.016
http://dx.doi.org/10.1016/S1003-6326(13)62487-5
http://dx.doi.org/10.1016/S1003-6326(13)62487-5
http://dx.doi.org/10.1016/j.agwat.2017.08.003
http://dx.doi.org/10.1016/j.agwat.2017.08.003
http://dx.doi.org/10.1016/j.agwat.2017.08.003
http://dx.doi.org/10.1016/j.jhydrol.2019.03.028
http://dx.doi.org/10.1016/j.jhydrol.2019.03.028
http://dx.doi.org/10.1016/j.jhydrol.2019.03.028
http://dx.doi.org/10.1016/j.agwat.2012.07.003
http://dx.doi.org/10.1016/j.agwat.2012.07.003
http://dx.doi.org/10.1016/j.agwat.2012.07.003
http://dx.doi.org/10.1016/j.atmosenv.2018.03.027
http://dx.doi.org/10.1016/j.atmosenv.2018.03.027
http://dx.doi.org/10.1016/j.atmosenv.2018.03.027
http://dx.doi.org/10.1016/j.patrec.2005.08.011
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.017
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.017
http://dx.doi.org/10.1016/j.conbuildmat.2018.09.017
http://dx.doi.org/10.1016/j.agwat.2019.03.015
http://dx.doi.org/10.1016/j.agwat.2019.03.015
http://dx.doi.org/10.1016/j.jhydrol.2013.11.054
http://dx.doi.org/10.1016/j.jhydrol.2013.11.054
http://dx.doi.org/10.1016/j.jhydrol.2013.11.054
http://dx.doi.org/10.1016/j.jhydrol.2013.11.054
http://dx.doi.org/10.1016/j.geoderma.2013.09.016
http://dx.doi.org/10.1016/j.geoderma.2013.09.016
http://dx.doi.org/10.1016/j.geoderma.2013.09.016
http://dx.doi.org/10.1016/j.jhydrol.2019.04.085
http://dx.doi.org/10.1016/j.jhydrol.2019.04.085
http://dx.doi.org/10.1016/j.jhydrol.2019.04.085
http://dx.doi.org/10.1016/j.jaridenv.2012.01.016
http://dx.doi.org/10.1016/j.jaridenv.2012.01.016
http://dx.doi.org/10.1016/j.jaridenv.2012.01.016
http://dx.doi.org/10.1002/hyp.6819
http://dx.doi.org/10.1002/hyp.6819
http://dx.doi.org/10.1002/hyp.6819
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000343
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000343
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000343
http://dx.doi.org/10.1623/hysj.54.5.918
http://dx.doi.org/10.1623/hysj.54.5.918
http://dx.doi.org/10.1016/j.atmosenv.2009.11.005
http://dx.doi.org/10.1016/j.atmosenv.2009.11.005
http://dx.doi.org/10.1016/j.jhydrol.2019.123958
http://dx.doi.org/10.1016/j.jhydrol.2019.123958
http://dx.doi.org/10.1016/j.jhydrol.2019.123958
http://dx.doi.org/10.1016/j.jhydrol.2019.124434
http://dx.doi.org/10.1016/j.jhydrol.2019.124434
http://dx.doi.org/10.1016/j.jhydrol.2019.124434


665 M. Wu et al. | Uncertainty analysis of random forest model in prediction of evapotranspiration Hydrology Research | 51.4 | 2020

Downloaded from http
by guest
on 22 April 2021
Patil, A. P. & Deka, P. C.  An extreme learning machine
approach for modeling evapotranspiration using extrinsic
inputs. Comput. Electron. Agrc. 121, 385–392.

Petkovic, D., Gocic, M., Trajkovic, S., Shamshirband, S.,
Motamedi, S., Hashim, R. & Bonakdari, H. 
Determination of the most influential weather parameters on
reference evapotranspiration by adaptive neuro-fuzzy
methodology. Comput. Electron. Agrc. 114, 277–284.

Rawat, K. S., Singh, S. K., Bala, A.& Szabó, S. Estimation of crop
evapotranspiration through spatial distributed crop coefficient in
a semi-arid environment. Agric. Water Manage. 213, 922–933.

Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J.,
Chica-Olmo, M. & Ribeiro, L.  Predictive modeling of
groundwater nitrate pollution using Random Forest and
multisource variables related to intrinsic and specific
vulnerability: a case study in an agricultural setting (Southern
Spain). Sci. Total. Environ. 476–477, 189–206.

Shiri, J., Nazemi, A. H., Sadraddini, A. A. & Landeras, G. 
Comparison of heuristic and empirical approaches for
estimating reference evapotranspiration from limited inputs
in Iran. Comput. Electron. Agrc. 108, 230–241.

Shrestha, D. L., Kayastha, N. & Solomatine, D. P.  A novel
approach to parameter uncertainty analysis of hydrological
models using neural networks. Hydrol. Earth Syst. Sci. 13,
1235–1248.

Tabari, H., Kisi, O., Ezani, A. & Talaee, P. H.  SVM, ANFIS,
regression and climatebased models for reference
evapotranspiration modeling using limitedclimatic data in a
semi-arid highland environment. J. Hydrol. 444–445, 78–89.

Tao, X. E., Chen, H., Xu, C. Y., Hou, Y. K. & Jie, M. X. 
Analysis and prediction of reference evapotranspiration with
climate change in Xiangjiang River Basin, China. Water Sci.
Eng. 8 (4), 273–281.
://iwaponline.com/hr/article-pdf/51/4/648/730660/nh0510648.pdf
Torres, A. F., Walker, W. R. & McKee, M.  Forecasting
daily potential evapotranspiration using machine learning
and limited climatic data. Agric. Water Manage. 98 (4),
553–562.

Traore, S., Wang, Y. M. & Kerh, T.  Artificial neural network
for modeling reference evapotranspiration complex process
in Sudano-Sahelian zone. Agric. Water Manage. 97 (5),
707–714.

Wang, Z. L., Lai, C. J., Chen, X. H., Yang, B., Zhao, S. W. & Bai,
X. Y.  Flood hazard risk assessment model based on
random forest. J. Hydrol. 527, 1130–1141.

Wen, X. H., Si, J. H., He, Z. B., Wu, J., Shao, H. B. & Yu, H. J. 
Support-vector-machine-based models for modeling daily
reference evapotranspiration with limited climatic data in
extreme arid regions. Water Resour. Manage. 29 (9),
3195–3209.

Xing, X. G., Liu, Y., Zhao, W. G., Kang, D. J., Yu, M. & Ma, X. Y.
 Determination of dominant weather parameters on
reference evapotranspiration by path analysis theory.
Comput. Electron. Agrc. 120, 10–16.

Yassin, M. A., Alazba, A. A. & Mattar, M. A.  Artificial neural
networks versus gene expression programming for estimating
reference evapotranspiration in arid climate. Agric. Water
Manage. 163, 110–124.

Yin, Z. L., Wen, X. H., Feng, Q., He, Z. B., Zou, S. B. & Yang, L. S.
 Integrating genetic algorithm and support vector
machine for modeling daily reference evapotranspiration in a
semi-arid mountain area. Hydrol. Res. 48. doi:10.2166/
nh.2016.205.

Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. & Lee, K. K.  A
comparative study of artificial neural networks and support
vector machines for predicting groundwater levels in a
coastal aquifer. J. Hydrol. 396 (1–2), 128–138.
First received 17 January 2020; accepted in revised form 3 April 2020. Available online 3 June 2020

http://dx.doi.org/10.1016/j.compag.2016.01.016
http://dx.doi.org/10.1016/j.compag.2016.01.016
http://dx.doi.org/10.1016/j.compag.2016.01.016
http://dx.doi.org/10.1016/j.compag.2015.04.012
http://dx.doi.org/10.1016/j.compag.2015.04.012
http://dx.doi.org/10.1016/j.compag.2015.04.012
http://dx.doi.org/10.1016/j.agwat.2018.12.002
http://dx.doi.org/10.1016/j.agwat.2018.12.002
http://dx.doi.org/10.1016/j.agwat.2018.12.002
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
http://dx.doi.org/10.1016/j.scitotenv.2014.01.001
http://dx.doi.org/10.1016/j.compag.2014.08.007
http://dx.doi.org/10.1016/j.compag.2014.08.007
http://dx.doi.org/10.1016/j.compag.2014.08.007
http://dx.doi.org/10.5194/hess-13-1235-2009
http://dx.doi.org/10.5194/hess-13-1235-2009
http://dx.doi.org/10.5194/hess-13-1235-2009
http://dx.doi.org/10.1016/j.jhydrol.2012.04.007
http://dx.doi.org/10.1016/j.jhydrol.2012.04.007
http://dx.doi.org/10.1016/j.jhydrol.2012.04.007
http://dx.doi.org/10.1016/j.jhydrol.2012.04.007
http://dx.doi.org/10.1016/j.wse.2015.11.002
http://dx.doi.org/10.1016/j.wse.2015.11.002
http://dx.doi.org/10.1016/j.agwat.2010.10.012
http://dx.doi.org/10.1016/j.agwat.2010.10.012
http://dx.doi.org/10.1016/j.agwat.2010.10.012
http://dx.doi.org/10.1016/j.agwat.2010.01.002
http://dx.doi.org/10.1016/j.agwat.2010.01.002
http://dx.doi.org/10.1016/j.agwat.2010.01.002
http://dx.doi.org/10.1016/j.jhydrol.2015.06.008
http://dx.doi.org/10.1016/j.jhydrol.2015.06.008
http://dx.doi.org/10.1007/s11269-015-0990-2
http://dx.doi.org/10.1007/s11269-015-0990-2
http://dx.doi.org/10.1007/s11269-015-0990-2
http://dx.doi.org/10.1016/j.compag.2015.11.001
http://dx.doi.org/10.1016/j.compag.2015.11.001
http://dx.doi.org/10.1016/j.agwat.2015.09.009
http://dx.doi.org/10.1016/j.agwat.2015.09.009
http://dx.doi.org/10.1016/j.agwat.2015.09.009
http://dx.doi.org/10.1016/j.jhydrol.2010.11.002
http://dx.doi.org/10.1016/j.jhydrol.2010.11.002
http://dx.doi.org/10.1016/j.jhydrol.2010.11.002
http://dx.doi.org/10.1016/j.jhydrol.2010.11.002

	Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region
	INTRODUCTION
	MATERIALS AND METHODS
	PMF-56 equation
	RF
	Uncertainty analysis

	CASE STUDY
	Observation data and statistical analysis
	Model development
	Models' performance criteria

	RESULTS AND DISCUSSION
	Model performance
	Evaluation of the importance of variables
	Uncertainty analysis

	CONCLUSIONS
	This research was funded by the National Key Research and Development Program of China (2017YFC0404305), Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-DQC031), Natural Science Foundation of Gansu province, China (18JR4RA002,18JR3RA393), CAS &lsquo;Light of West China&rsquo; Program and the USQ-CAS collaborative research agreement USQ943692018 (2019&ndash;2021). The authors thank all the anonymous reviewers for their constructive comments.
	SUPPLEMENTARY MATERIAL
	REFERENCES


