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Abstract. Owing to ever-increasing complexity of engineering structures, developing a 
methodology for the early detection of defects has become crucial to ensure their long-term 
safety and reliability with the least amount of expense. There are always discrepancies between 
experimental and numerical modal data because of unknown structural parameters and 
uncertainties. The finite element model (FEM) updating techniques attempt to minimize the 
differences by adjusting the unknown parameters of the FEM. Therefore, the FEM updating 
methods are essential for developing a baseline model and accurate damage identifications in 
subsequent steps. This paper employs the semi-rigidly connected frame element (S-RCFE) 
instead of the standard Euler-Bernoulli beam element for assembling the FEM of the 
experimental beam and establishing a high-fidelity numerical model. The S-RCFE with extra 
design parameters, including the end fixity factor of all connections, enables us to achieve a 
reasonable agreement between experimental and numerical models through the  
optimization-based procedure. In FEM updating step, two objective functions based on 
modified total modal assurance criterion (MTMAC) and changes in natural frequency are used 
to minimize by three optimization algorithms, viz, grey wolf optimizer (GWO), gradient-based 
optimization (GBO), and an improved version of GWO (IGWO). The influence of the S-RCFE 
and standard Euler-Bernoulli beam on the model updating accuracy is also examined, and the 
efficiency of S-RCFE is evaluated. The statistical results reveal that GWO-MTMAC and 
IGWO-MTMAC can be successfully implemented for FEM updating with almost the same 
performance. However, IGWO provides the most reliable results with a relatively extensive 
computation time for damage identification in all scenarios. In some damage scenarios, the 
GWO and GBO perform comparably with very similar running time. 

Keywords: Damage identification, Semi-rigidly connected frame element, Euler-Bernoulli 
beam element, Grey wolf optimizer, Gradient-based optimization, Modified total modal 
assurance criterion, Experimental beam 
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1. Introduction 

Civil asset owners often prioritise civil structure safety more than anything else since it directly 

impacts human lives [1]. In engineering structures like highrise buildings, bridges, tunnels, and 

dams, undetected changes in operational conditions can result in cumulative damage [2, 3]. 

These structures are susceptible to severe damage and potentially catastrophic failure if initial 

damage is not promptly discovered [4, 5]. These structures, especially the older ones, need to 

be monitored so that any damage can be found early. The essential retrofitting can be done to 

ensure they can remain operational safely and reliably without unexpected breakdowns [6]. 

Structural health monitoring (SHM) induces beneficial knowledge about a structure's function 

by analyzing responses, identifying damage, and assessing the present condition [7].  

According to Farrar et al. [8], the aims of the SHM strategy are classified into five levels. The 

first level is related to recognizing the presence of damages. The second to fourth levels are 

designed to report the location, type, and severity of damaged elements, respectively, whereas 

the last level gives information on the building's safety. To find the damaged elements and 

quantify their severities in model-based methods, researchers propose inverse analysis to 

compare the actual structural response with calculated responses from the numerical model 

during an optimization procedure [9]. However, the ill-posed inverse problem [10] appears in 

some indicators when one structural response may correspond to complete damage parameters. 

Robust optimization algorithms are well placed to solve this problem by exploring the search 

space and preventing the local solutions. The inverse analysis can be very computationally 

demanding [11], as it requires the simulation of the problem several times in each iteration. In 

metaheuristic algorithms, several times means a value equivalent to the population size. 

Therefore, employing a proper optimization algorithm is critical regarding computational cost. 

Moreover, the performance of optimization algorithms is guided by their control parameters, 

such as probabilities of crossover and mutation in the genetic algorithm [12]. However, the 

Jaya algorithm does not contain control parameters, making it flexible in solving various 

engineering problems [13]. The population size and the maximum number of iterations are only 

two algorithmic parameters for beginning optimization with the Jaya algorithm [14]. Although 

a smaller population increases convergence speed, it also increases the risk of trapping in local 

optima [15]. Overall, each problem requires specific tuning of these parameters to take full 

advantage of the algorithm potential [16]. Several studies have been conducted to date 

regarding the flexible and successful application of the Jaya algorithm for structural damage 

identification [11, 17, 18]. Additionally, for crack identification in plate structures, Khatir and 
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Wahab demonstrated the advantage of the Jaya algorithm in terms of accuracy and convergence 

rate compared to particle swarm optimization (PSO) [19]. Another optimization algorithm 

without control parameters is teaching-learning-based optimization (TLBO). Similar to the 

Jayal algorithm, algorithmic parameters are required to operate [20]. In recent years, TLBO 

has been extensively applied for different engineering problems such as structural damage 

identification [20-23]. Due to the limited number of sensors, measuring entire mode shapes 

from the experiment is not always practical [24]. Therefore, Das and Dhang [25] presented a 

damage detection method for frame  and truss structures utilizing an improved version of 

TLBO-PSO and iterated improved reduction system (IIRS). Model reduction techniques 

condense the degrees of freedom (DOFs) of the finite element model to match the measured 

DOFs [26, 27]. For further study, the accuracy of several finite element model (FEM) reduction 

strategies was studied by Ghannadi and Kourehli [28]. Dinh-Cong et al. performed a 

comparative study of different dynamic condensation techniques for optimization-based 

damage identification of plate-like structures [29]. Numerous attempts exist to combine the 

different optimization algorithms and model reduction techniques for damage identification, 

such as IIRS and lightning attachment procedure optimization [30], IIRS and PSO-gravitational 

search algorithm [31], second-order Neumann series expansion and adaptive hybrid 

evolutionary firefly algorithm [32]. Another strategy to address the challenge of limited 

measurements is the mode shape expansion method, which expands the experimental mode 

shapes to meet the FEM [33, 34]. Au et al. presented one of the earliest methodologies that 

integrate the system equivalent reduction expansion process (SEREP) and micro GA for 

damage detection [35]. After developing robust nature-inspired optimization algorithms, 

Ghannadi and Kourehli [36] introduced a damage identification method based on the grey wolf 

optimizer (GWO) and SEREP. In another study for damage assessment in three-dimensional 

structures, the SEREP is employed to estimate all DOFs. Then, the discrepancy between 

measured and calculated mode shapes is minimized to solve the optimization problem through 

the steepest descent method [37].  

The objective function is crucial for updating structural model parameters and successfully 

determining damage elements and severity [38]. Therefore, numerous objective functions have 

been developed and implemented for various damage detection problems [39]. For example, 

Ghannadi and Kourehli suggested a hybrid objective function based on modal assurance 

criterion flexibility and natural frequency for minimizing by moth-flame optimization [40]; 

Ding et al. proposed a new cost function relying on natural frequencies, mode shapes, and an 
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L0.5 regularization for beginning optimization procedure via an improved version on Jaya 

algorithm [41]; Pahnabi and Seyedpoor formulated an objective function using the nodal 

acceleration vectors [42]; Tiachacht et al. implemented a strategy based-on modal strain energy 

change ratio and two optimizers including slime mould algorithm and marine predators 

algorithm [43]; Ghannadi and Kourehli applied different kinds of objective functions such as 

modified total modal assurance criterion (MTMAC), modal assurance criterion (MAC) [44, 

45] and natural frequency vector assurance criterion [46].  

Several researchers studied the performance of hybridization of artificial neural networks 

(ANNs) and optimization algorithms for presenting efficient damage detection method.  For 

instance, Tran-Ngoc et al. [47] combined the ANNs and PSOGA by using the stochastic search 

capability of PSOGA to control the ANNs from entrapping in local minima; Nguyen-Ngoc et 

al. [48] employed the PSO to optimize the training parameters (weight and bias) of ANNs; in 

another study conducted by Khatir et al. [49], the Jaya algorithm was applied to find the most 

optimal values for training parameters of ANNs.  

To obtain accurate results in real-world damage detection problems, precise model updating 

strategy and calibrating the numerical model to describe the actual behavior of the structure is 

the most critical issue. The uncertain parameters, including Young’s modulus [50, 51]; Young’s 

modulus and mass density [52]; Young’s modulus and spring stiffness [53]; stiffness 

coefficients [54]; linear density, flexural rigidity, torsion spring coefficient and vertical spring 

coefficient [55], have routinely been selected by previous studies. However, the mentioned 

research could not provide the most accurate FEM strategy, and there are differences between 

experimental and updated natural frequencies. Additionally, the fidelity of the updated model 

is usually decreased at the higher modes. The semi-rigidly connected frame element (S-RCFE) 

with additional design parameters such as end fixity factors enables us to achieve exact 

solutions during the optimization-based FEM updating procedure. The S-RCFE is the 

generalized form of the Euler-Bernoulli beam element, initially developed to represent the 

semi-rigid connections in steel frames. Several researchers have introduced the  

optimization-based method to joint damage detection with the contribution of the S-RCFE [42, 

56-59]. To the best of the authors’ knowledge, no studies in the literature consider the end fixity 

factors and Young’s modulus as design parameters in FEM updating.  

Prompted by these limitations, this paper investigates how developed FEM based on S-RCFE 

influences the accuracy of the model updating procedure. Moreover, the sensitivity of two 

objective functions based on MTMAC and changes in natural frequency are analyzed through 
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statistical investigations, including mean and standard deviation in identifications. In addition, 

this study employs the improved GWO (IGWO) to address the imbalance between exploration 

and exploitation, the lack of population diversity, and the premature convergence of standard 

GWO [60]. The performance of IGWO in terms of convergence rate, computation time, and 

stability of results for different independent runs is compared to standard GWO and a newly 

developed algorithm called gradient-based optimizer (GBO).  

The rest of the paper is structured as follows: Section 2 presents the methodology of the inverse 

crack detection method, including stiffness and mass matrices of the S-RCFE for assembling 

the FEM, objective functions and uncertain parameters for FEM updating, and structural 

damage definition. The mathematical formulations of utilized optimization algorithms, 

including GWO, IGWO, and GBO, are briefly described in Section 3. Section 4 explains the 

free-free beam's experimental setup and measured vibration characteristics. The results and 

discussion are provided in Section 5. The paper is finally summarized in Section 6. 

2. Methodology 

This section presents the mathematical formulations of utilized FEM for simulating structures 

with semi-rigid joints, the FEM updating procedure with employed objective functions, the 

definition of structural damages, and the suggested inverse method for their identification. 

2.1. Local stiffness and mass matrices for semi-rigid connected elements 

Most joints in frame structures are actually semi-rigid, which means that depending on the 

fixity factor, they can rotate to a certain degree. The end fixity factor has a theoretical range of 

0 to 1, with a value of zero denoting an entirely hinged joint and a value of 1 indicating an 

utterly rigid joint. The most typical technique to describe semi-rigid connections is as 

infinitesimally short rotating springs hooked to the beam's ends [58, 61], as seen in Figure 1. 

In this paper, the semi-rigidly connected frame element (S-RCFE) is adopted instead of the 

Euler-Bernoulli beam element to assemble a FEM of a free-free beam. In reality, the behavior 

of beam-like structures is considered perfectly rigid without any connections. However, using 

the S-RCFE with extra design parameters such as end fixity factors allows us to update the 

FEM accurately through the optimization-based procedure. 

 
Figure 1. The semi-rigidly connected frame element with rotational stiffness kj
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The following equation provides the stiffness matrix for the semi-rigidly connected frame 

element [58, 61]: 
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where the following equation calculates a1, a2, and a3: 
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where J1 and J2 indicate the end fixity factors for joint 1 and joint 2, respectively. 

The mass matrix for the semi-rigidly connected frame element is given by the following 

equation: 
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where the parameters D, f1, f2, f3, f4, f5, and f6 are determined based on the end fixity factors as 

follows: 
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2.2. Dynamic characteristics 

The following eigenvalue equation is used to compute the dynamic properties [62], such as the 

ith natural frequencies and the corresponding mode shapes: 

2
i i iK Mφ ω φ= ,  i=1, 2,… ,n            (5) 

where K and M denote the stiffness and mass matrices, respectively. iφ  is the ith mode shape 

vector, and iω is the ith natural frequency. n symbolizes the number of DOFs. 

2.3. Optimization-based FEM updating procedure 

Real-world applications reveal notable differences between numerical estimations and 

measurements, regardless of the proper capability of FEM for characterizing the dynamic 

behavior of structures. These differences are predominantly caused by uncertain boundary 

conditions, imprecise material parameters, and uncertainties regarding geometry configuration 

[63, 64]. As a result, numerous techniques for addressing the inverse problems of FEM 

updating have been developed. The methods based on the minimization of objective function 

through optimization algorithms have received incredible attention due to their accuracy and 

relatively fast computation time. As mentioned in the introduction section, the objective 

function plays an undeniable role in accurately model updating and finalizing a high-fidelity 

numerical model for the subsequent usage in the damage identification step. Therefore, two 

objective functions based on MTMAC [44] and natural frequency [51] are adopted to conduct 

the statistical investigations for FEM updating. The MTMAC is an efficient objective function 

that integrates MAC and natural frequencies to satisfy both updating criteria in terms of mode 

shapes and natural frequencies [65, 66]. In this paper, Young’s modulus of all elements and the 

end fixity factor of all joints are assumed as uncertain parameters (X) in the model updating 

procedure. According to Eq. (1), there is a direct association between Young’s modulus and 

stiffness matrix. Therefore, uncertainties in elemental stiffness matrices are quantified by 

tuning Young’s modulus of each element. Additionally, Young’s modulus is sensitive to 

temperature changes [67-69], which can be caused uncertainty. 

( ) ( )
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1 ( )
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where: 



8 
 

( )
{ } { }( )

( ) ( )
( ) ( )

2 2

2 2

, ( )

( )
1

( )

m c
i i i

i
m c
i i

m c
i i

MAC X
MTMAC X

X

X

φ φ

ω ω

ω ω

=
−

+
+

        (7) 

where ( )c
i Xω  and m

iω demonstrate the ith calculated and measured natural frequencies, and the 

MAC value between two mode shape vectors is calculated as follows: 
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2.4. Damage definition 

Different defects such as cracks, holes, and abrasion generally induce a certain percent of  

stiffness reduction in elements [70]. The  changes in the elemental stiffness of the structure  

are represented by the stiffness reduction factor (SRF). The damaged stiffness matrix Kd is  

defined based on the SRF by the following equation [71]: 

1
(1 )

N

d e e
e

K SRF k
=

= −∑                     (10) 

where SRFe stands for the eth stiffness reduction factor, ranging from 0 to 1, while 0 denotes 

the undamaged condition and 1 indicates a severely damaged state. The number of elements 

and eth local stiffness matrix is also shown by N and ke, respectively.  

2.5. Optimization-based damage detection procedure 

Dynamic characteristics change as structures experience damage. Because of this, various  

vibration-based inverse techniques have been proposed to identify structural deterioration  

using changes in structural vibration characteristics [72]. Mode shapes and their derivatives as 

a fundamental component for damage identification have significant advantages over natural  

frequencies. However, the drawbacks are also prominent. For instance, the mode shapes  

must be measured using a series of sensors, and they are also more sensitive to noise  

contamination than natural frequencies [73]. Therefore, employing a damage detection  

strategy with the advantage of using only the first few natural frequencies without the mode  

shape components is applicable in real-world damage identification problems [74]. The  

following objective function relying on changes in natural frequencies is applied to minimize 
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by the optimization algorithms, including GWO, IGWO, and GBO. 

( ) ( ) ( )( )2 2

1
( ) /
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c m

e i i i
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y ef SRF SRFω ω ω
=

= −∑ ,      0 1eSRF≤ ≤              (11) 

Figure 2 displays the flowchart of the proposed damage detection strategy. 

 

Figure 2. The flowchart of the damage identification strategy 
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3. Optimization algorithms 

The aforementioned objective functions are minimized using three optimization algorithms: 

GWO, IGWO, and GBO. This section gives a brief explanation and mathematical description 

of each algorithm. 

3.1. Grey wolf optimizer (GWO) 

The social leadership and hunting tactics of grey wolves in nature served as inspiration for the 

grey wolf optimizer (GWO) algorithm. The GWO algorithm believes that three leader wolves, 

α, β, and δ, are the best solutions for leading the remaining wolves, ω wolves, in the direction 

of promising locations to discover the global solution. The three primary phases of  wolf 

hunting are encircling, hunting, and attacking the target [60, 75].  

Encircling phase: It is possible to simulate how the grey wolves encircle the prey, as shown 

in Eqs. (12) and (13). 

. ( ) ( )pD C X t X t= −
  

                                                                                                           (12) 

( 1) ( ) .pX t X t A D+ = −
  

                                                                                                        (13) 

where t represents the current iteration, A


 and C


 are coefficient vectors, pX


 is the position 

vector of the prey, and X


 represents the position vector of a grey wolf. The vectors A


 and C


  
 

are determined as follows: 

12 .A a r a= −
   

                                                                                                                          (14) 

22.C r=
 

                                                                                                                                 (15) 

where a is linearly decreased from 2 to 0 over the course of iterations and 1r
 , 2r

  are random 

vectors in [0, 1]. 

Hunting phase: It is supposed that α, β, and δ are more knowledgeable about the location of 

the prey. The other wolves (ω) are then required to follow the three best solutions, α, β, and δ, 

by taking into account their positions. The hunting behavior is given in the following equations: 

1 2 3. , . , .D C X X D C X X D C X Xα α β β δ δ= − = − = −
          

                                                      (16) 

1 1 2 2 3 3.( ), .( ), .( )X X A D X X A D X X A Dα α β β δ δ= − = − = −
          

                                          (17) 
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In Eq.(16), the first three best solutions at iteration t are denoted by Xα, Xβ, and Xδ. 

1 2 3( 1)
3

X X XX t + +
+ =

  


                                                                                                       (18)  

Attacking phase: The hunt is over when the prey stops moving, and the wolves begin their 

attack. This procedure can be represented mathematically by using the value of α


, which 

decreases linearly over the number of iterations, to manage exploration and exploitation. 

3.2 Improved grey wolf optimizer (IGWO) 

When using the GWO, α, β, and δ guide ω wolves to explore spaces that have the potential for 

discovering the best solution. However, trapping in the local optima may result from this 

behavior. Another shortcoming of the standard GWO is the reduction of the variety of the 

population, which makes the algorithm fall towards the local optimum. An improved grey wolf 

optimizer (IGWO) has been introduced by Nadimi-Shahraki et al. [60] to address the 

shortcomings of standard GWO. The initializing, movement, and selecting and updating are 

the three phase of the IGWO.  

Initialization phase: N wolves are dispersed randomly by Eq. (19) in the search space between 

[li, uj]. 

[ ] ( ) [ ] [ ]0,1 , 1, , 1,ij j j j jX l rand u l i N j D= + × − ∈ ∈                           (19) 

Movement phase: Individual hunting is a remarkable social behavior of grey wolves in 

addition to group hunting, enabling us to improve the standard GWO. The dimension  

learning-based hunting (DLH) search technique is a further movement technique used by the 

IGWO. Each wolf in DLH is learned by its neighbors as a candidate for the new position. The 

new position of the wolf is determined as follows: 

( ) ( ) ( ) ( )( ), , , ,1i DLH d i d n d r dX t X t rand X t X t− + = + × −                           (20) 

Selecting and updating phase: The superior candidate is initially determined in this phase by 

comparing the fitness values of the two candidates ( )1i GWOX t− +  and ( )1i DLHX t− + according 

to Eq. (21). If the fitness value of the selected candidate is smaller than Xi (t), Xi (t) is updated 

by the selected candidate to update the new position of Xi (t + 1). Xi (t) else stays the same. 

( ) ( ) ( )
( )

1 ,
( 1)

1
i GWO i GWO i DLH

i DLH

X t if f X f X
X

oth w
t

X t er ise
− − −

−

 + <+ =  +
                   (21) 
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where ( )1i GWOX t− +  is calculated by Eq. (18). 

3.3. Gradient-based optimizer (GBO) 

Ahmadianfar et al. [76] proposed gradient-based optimization (GBO) that incorporates 

gradient and population-based methods. The GBO relies on two operators, each of whom has 

a specific responsibility, to update the solutions. The gradient search rule (GSR) is the first 

operator, and it is used to enhance exploration. The second operator, known as a local escaping 

operator (LEO), is utilized to improve the capacity for exploitation [77].  

A population X with N solutions is created as the first step in GBO using the following 

formulae: 

( )min max min , 1, 2,...,ix x rand x x i N= + × − =                            (22) 

where xmin and xmax are the bounds of the search space and rand represent a random number 

between 0 and 1. Then, the best solution is selected after computing the fitness value for each. 

The solutions ( ), 1, 2,...,It
ix i N=  in the direction ( )It

b ix x−  are then updated using the GSR 

and direction movement. To perform this updating procedure, the new three solutions 1It
ix , 

2It
ix , and 3It

ix are  computed in the manner described below: 

( )11It It It
i i b ix x GSR rand x xρ= − + × × −                  (23) 

where xb represents the best solution and 1ρ is operated in the optimization process to achieve 

a more reasonable balance of exploration and exploitation, and can be defined as follows: 

1 2 randρ α α= × × −                                      (24) 

Where: 

( )( )sin 3 / 2 sin 3 / 2α β π β π= × + ×                               (25) 

( ) ( )( )23
min max min 1 / ItIt Maxβ β β β= + − × −                             (26) 

where βmin and βmax are defined as 0.2 and 1.2, respectively. It represents the current iteration, 

and MaxIt shows the total number of iterations.  

The following equation defines the GSR: 
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( ) ( )2 2 /It
i i iGSR randn x x yp yqρ ε= × × ×∆ × − +                               (27) 

whereε is a small value between [0, 0.1] and randn is a random number with a normal 

distribution. 2ρ is obtained according to Eq. (24). x∆ and δ can be respectively defined as: 

( ) ( )( )11: / 2It
b rx rand N x x δ∆ = × − +                             (28) 

( )( )1 2 3 42 / 4It It It It It
r r r r irand x x x x xδ = × × + + + −                            (29) 

where rand(1 : N) is a N-dimensional random vector, r1, r2, r3, and r4 are radomly selected 

integers between [1, N].  

Eqs. (30) and (31) are applied to update the locations ypi and yqi :  

( ) / 2i s iyp rand x x rand x= × + + ×∆                             (30) 

( ) / 2i s iyq rand x x rand x= × + − ×∆                             (31) 

where:  

( ) ( )2 /s i i worst bx x randn x x x x ε= − × ×∆ × − +                              (32) 

A new solution at iteration It + 1 is produced based on the positions 1It
ix , 2It

ix , and 3It
ix : 

( )( ) ( )1 1 1 2 1 3It It It It
i a b i b i a ix r r x r x r x+ = × × + − × + − ×                             (33) 

where ra and rb are two randomly generated integers. The following definitions of 2It
ix  and 

3It
ix  are possible: 

( )2 1 22It It It
i b r rx x GSR rand x xρ= − + × × −                             (34) 

                                 

                  (35) 

The LEO is used to increase the GBO's capacity for exploitation. This is accomplished by 

updating the solution It
ix using the following equation in accordance with the probability pr: 

1 1 1 2 1 3 2 2

1 1 2 1 3 2 2

/ 2 0.5
/ 2

It
It i
i

b

x f W f W u W pr
x

tx f W f W u W o herwise
ρ
ρ

+  + × + × × + × <
= 

+ × + × × + ×
                          (36) 

( )13 2 1It It It It
i i i ix x x xρ= − × −
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where: 

( )1 1 2
It

b kW u x u x= × − ×                               (37) 

( )2 1 2
It It
r rW x x= −                                (38) 

( )( )3 3 2 1It It
i iW u x x= × −                               (39) 

In Eq. (36) to (39), f1, f2, u1, u2, and u3 are random integers, and It
kx is also calculated by the 

proposed scheme in Ref. [76].  

4. Experimental example 

An experimental steel beam with a free-free boundary condition is used to verify the 

effectiveness of the proposed method for FEM updating and damage identification, as shown 

in Figure 3. The material properties, including Young’s modulus, mass density, and Poisson’s 

ratio, are listed in Table 1. The dimensions of the laboratory-scale beam are also given in  

Table 2.  

 
 Figure 3. Experimental set-up and simulated model of the free-free beam 

 

Figure 4. Dimension of the free-free beam with different crack scenarios (not to scale) 
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Table 1. The material properties of the experimental beam 
Young’s modulus (N/mm2) Mass density (kg/m3) Poisson’s ratio 

2.18×1011 7800 0.3 
 

Table 2. The dimensions of the experimental beam 
Length (m) Height (m) Width (m) 

0.8 0.05 0.015 

The impact hammer (PCB 086C03) is utilized to excite the free-free beam by the induced force 

and measure the acceleration responses using accelerometers (356A15) to perform 

experimental modal analysis. The data acquisition system (NI cDAQ-9184) and signal analyzer 

software (m+p SO Analyzer 4.3) are employed to collect and interpret the acceleration 

responses, respectively. The experimental facilities to conduct the modal analysis are shown in 

Figure 5.  

 
Figure 5. The experimental facilities for modal analysis 
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The peak picking method is also implemented to estimate the modal properties of the acquired 

signals. Figure 6 and Figure 7 illustrate the force-time history and acceleration-time history of 

the intact beam, respectively.  

 
Figure 6. The force-time history of the intact beam 

 
Figure 7. The acceleration-time history of the intact beam 

The frequency response function (FRF) of the intact beam is depicted in Figure 8, and the 

experimental mode shapes are presented in Figure 9. 

 

Figure 8. The experimental FRF of the intact free-free beam 
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Figure 9. The experimental mode shapes of the intact free-free beam 

The following four crack scenarios (double notches), according to Figure 4, were embedded in 

the middle of the free-free beam: 

Scenario (I): 2 mm  

Scenario (II): 4 mm  

Scenario (III): 6 mm 

Scenario (IV): 8 mm 

Figures 10 to 13 show the FRFs and extracted natural frequencies of four crack scenarios. It is 

clearly indicated that the natural frequencies decreased after introducing crack scenarios.  

The experimental modal analysis was repeated 17 times for healthy and four crack scenarios 

to examine the variability in measured data. Figure 14 displays the standard deviations and 

mean natural frequencies of 17 individual trials. In the undamaged condition and all cracked 

models, the standard deviations for the 5th mode are more extensive than the first four modes. 

To avoid false identification in damage detection methodology and develop an accurate model 

updating approach, this study adopts the first four natural frequencies because of the relatively 

small variation in 17 times measurements. The standard deviations in the undamaged dataset 

are considerably smaller than those calculated in crack scenarios. In damaged conditions, 

variations in different trials, especially in higher modes, are generally expected and can be 

observed in most measurements. For instance, the presented database by Esu [78] for pipeline 

monitoring is available for more studies. 
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Figure 10. The experimental FRF of the cracked free-free beam - double notches (2 mm) 

 

 
Figure 11. The experimental FRF of the cracked free-free beam - double notches (4 mm) 

 

 
Figure 12. The experimental FRF of the cracked free-free beam - double notches (6 mm) 

 

 
Figure 13. The experimental FRF of the cracked free-free beam - double notches (8 mm) 
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Figure 14. The standard deviations and mean natural frequencies of different measurements  

(error bars were multiplied by 100 and exaggeratedly plotted) 
5. Results and discussion 

Ten individual runs are performed for each FEM updating state and crack scenario to provide 

statistical results, computing time, and convergence curves. All computations were carried out 

using the MATLAB programming and computing platform on a laptop with an Intel (R) Core 

(TM) i7-6700 HQ, 8 GB RAM, and a 2.60 GHz CPU. During the optimization-based model 

updating procedure, ±50% of Young’s modulus and the end fixity factor of all elements are 

considered as the bounds of search space. Additionally, the upper bound and lower bound of 

exploration in the damage detection step are 1 and -1, respectively. 

Table 3 presents the statistical results of FEM updating obtained by the semi-rigidly connected 

frame element when applying different optimization algorithms (GWO, IGW, and GBO) and 

two objective functions based on MTMAC and changes in the natural frequencies. The worst 

value for each state is in bold. As shown in Table 3, the performance of GWO-MTMAC and 
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IGWO-MTMAC is the most reasonable. The updated first four natural frequencies and the 

corresponding mode shapes (MAC) of the free-free beam have a complete agreement with the 

measured modal data. In contrast, several errors are observed in the fourth mode when using 

the GBO-MTMAC. The statistical results of FEM updating based on the GWO-Frequency, 

IGWO-Frequency, and GBO-Frequency demonstrates acceptable accuracy for natural 

frequencies. However, there are some difficulties in establishing a good correlation between 

experimental and updated mode shapes. Therefore, using the changes in natural frequencies as 

an objective function could not provide the best results when applying different optimization 

algorithms (GWO, IGWO, and GBO). The statistical results of FEM updating based on the 

Euler-Bernoulli beam element are presented in Table 4. When using IGWO–MTMAC, GWO-

MTMAC, and GBO-MTMAC for FEM calibration, the correlation between updated and 

experimental mode shapes are almost acceptable. However, these algorithms and the objective 

function based on MTMAC could not provide significant results in updating frequencies, and 

relatively large errors are observed for all modes. As illustrated in Table 4, It is found that the 

GWO-Frequency, IGWO–Frequency, and GBO-Frequency fail to update the numerical model, 

and there is a poor agreement between experimental and updated models. Overall, the obtained 

results for FEM updating of the free-free beam based on the semi-rigidly connected frame 

element and employing GWO-MTMAC and IGWO-MTMAC are more efficient than those 

obtained from the same algorithms and objective function when utilizing the Euler-Bernoulli 

beam element. 

Figure 15 shows the convergence curves of the objective function values relying on GWO, 

GBO, and IGWO. It is clearly observed that the convergence of IGWO and GBO is better than 

GWO, which means these algorithms can provide more satisfactory results for identifying the 

2 mm crack. In addition, the convergence speed of the GBO is much faster than IGWO. The 

IGWO needs more iterations to converge (approximately 500). However, the GBO takes only 

less than 40 iterations. The statistical results of damage detection (double notches-2 mm) based 

on the GWO, GBO, and IGWO are demonstrated in Table 5 and Figure 16. The GBO and 

IGWO produce the best competitive results with the best mean value of the damage severity 

and minor standard deviation. GWO could find the damaged element with adequate accuracy. 

However, some false identifications with considerable standard deviation exist, especially at 

the 16th element. Therefore, the statistical results for the 2 mm crack identification illustrate the 

robustness of the GBO and IGWO. As shown in Figure 17, the IGWO needs significant 

computational effort to find the optimal solution. In contrast, the GWO and GBO only need 
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about 7 minutes. 

The convergence curves of the cost function values during the optimization procedure to 

determine the location and severity of the 4 mm crack based on GWO, GBO, and IGWO are 

displayed in Figure 18. Similar to the previous damage scenario (2 mm crack), GBO converges 

much faster than GWO and IGWO. Besides, the GBO and IGWO are pretty closer to the global 

optimum. Therefore, accurate results of damage identification are expected when applying the 

GBO and IGWO. Table 6 and Figure 19 present the statistical results of damage detection in 

the second scenario (4 mm crack). At first glance, the obtained results by all optimization 

algorithms seem excellent. The GWO is capable of identifying the location and severity of the 

damage. However, small false alarms exist at the 4th and 5th elements with minor standard 

deviations. It should be mentioned that when using the GBO and IGWO, only one false 

identification is observed at the 5th element. Generally, all algorithms yield the accurate mean 

value of the damage severity. The computation time to solve the optimization problem of crack 

identification (4 mm crack) based on IGWO is much greater than other algorithms, as shown 

in Figure 20. Similar to the previous damage scenario (2 mm crack), the GWO and GBO have 

the nearly same computation time.  

Figure 21 displays the convergence curves of the objective function values for solving the 

inverse problem of the crack identification (6 mm crack) based on GWO, GBO, and IGWO. It 

is clear that the convergence rate of the IGWO is considerably improved compared to GWO. 

Besides, the lowest convergence rate is related to GBO, which may appear in poor crack 

detection results. The statistical results of crack identification (double notches-6 mm) based on 

the GWO, GBO, and IGWO are listed in Table 7. For visualization of statistical results, the 

mean value with plus and minus standard deviation are plotted in Figure 22. The IGWO could 

locate the damaged element without false alarms on healthy members. However, the other two 

algorithms (GWO and GBO) could not find the promising stiffness reduction factor for the 8th 

element, and there are also two false identifications (5th and 9th elements). The computation 

time of IGWO is more expensive than two other algorithms, as shown in Figure 23. The 

considerable computation time is not a drawback for IGWO because the IGWO is more 

efficient in dealing with the crack identification problem.  

The convergence curves of the cost function values of the last crack identification scenario  

(8 mm crack) are presented in Figure 24. It can be found that the IGWO algorithm can converge 

to the optimal solution more effectively than the two other algorithms. Similar to the previous 
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scenario (6 mm crack), the most powerless convergence rate referred to the GBO algorithm. 

The poor convergence rate of GBO has resulted in unsatisfactory crack identification results, 

as statistically demonstrated in Table 8 and Figure 25. For further investigation, when using 

GBO, the mean stiffness reduction of false alarms at the 5th and 9th elements is more 

considerable than the false identification by the GWO. In contrast, the IGWO can successfully 

determine the exact damaged element and its severity without any false identification. 

Regarding the computational cost, the IGWO algorithm requires about 15 minutes (see Figure 

26), which is the highest computation time among the two other algorithms. 

Table 9 summarizes the performance of objective functions and optimization algorithms when 

considering the Euler-Bernoulli beam element and S-RCFE for FEM updating. A tick mark is 

used to indicate which ones are the best.The performance of optimization algorithms for crack 

identification in different scenarios is also embedded in Table 10. 

Table 3. Statistical results of FEM updating with the semi-rigidly connected frame element 
4 3 2 1 Mode 

3388.8000 2134.4000 1126.3000 418.7500 Experimental f (Hz) 

3388.8207 2134.3861 1126.2937 418.7508 mean f (Hz)  
 

GWO-MTMAC 2.8842E-02 1.1733E-02 7.9767E-03 1.5495E-03 std f 

6.1042E-04 6.5042E-04 5.5550E-04 1.9450E-04 error f (%) 
0.9956 0.9962 0.9970 0.9992 mean MAC 

2.5946E-04 3.5617E-04 6.3988E-04 2.7396E-04 std MAC 
3388.7991 2134.3947 1126.2957 418.7503 mean f (Hz)  

 
IGWO-MTMAC 

1.7047E-02 1.4436E-02 1.3867E-02 2.9998E-03 std f 
2.5988E-05 2.5026E-04 3.8090E-04 7.4742E-05 error f   (%)  

0.9961 0.9970 0.9964 0.9991 mean MAC 
3.8151E-04 2.8524E-04 2.9503E-04 2.2109E-04 std MAC 
3431.5377 2134.3903 1126.2981 418.7497 mean f (Hz)  

 
GBO-MTMAC 

3.8709E+01 3.7359E-02 3.1523E-03 1.8549E-03 std f 
1.2454E+00 4.5485E-04 1.6708E-04 6.5732E-05 error f   (%)  

0.9936 0.9955 0.9979 0.9989 mean MAC 
1.7536E-03 6.7137E-04 8.8633E-04 5.6443E-04 std MAC 
3388.7927 2134.3933 1126.3046 418.7500 mean f (Hz)  

 
GWO-Frequency 

3.7391E-02 1.8393E-02 1.4120E-02 4.1633E-03 std f 
2.1574E-04 3.1468E-04 4.1042E-04 4.7311E-06 error f   (%)  

0.9829 0.9588 0.8156 0.3959 mean MAC 
9.9230E-03 2.4970E-02 1.0493E-01 1.9452E-01 std MAC 
3388.7950 2134.4133 1126.2989 418.7532 mean f (Hz)  

 
IGWO-Frequency 

3.4668E-02 1.7883E-02 1.0154E-02 5.8050E-03 std f 
1.4623E-04 6.2212E-04 9.8779E-05 7.6481E-04 error f   (%)  

0.9879 0.9505 0.7898 0.4107 mean MAC 
6.2672E-03 1.9522E-02 4.6908E-02 1.0202E-01 std MAC 
3388.8000 2134.4000 1126.3000 418.7500 mean f (Hz)  

 
GBO-Frequency 

7.5206E-11 3.5756E-11 2.5420E-11 9.4414E-12 std f 
5.0993E-13 8.0961E-13 5.6525E-13 1.0045E-12 error f   (%)  

0.9914 0.9874 0.9691 0.7684 mean MAC 
3.9214E-03 5.0029E-03 3.1417E-02 1.5845E-01 std MAC 
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Table 4. Statistical results of FEM updating with Euler-Bernoulli beam element 
4 3 2 1 Mode 

3388.8000 2134.4000 1126.3000 418.7500 Experimental f (Hz) 
3497.0376 2134.4000 1113.1081 410.6928 mean f (Hz)  

 
GWO-MTMAC 9.1939E-02 2.5369E-04 2.0813E-02 7.4457E-03 std f 

3.0951E+00 1.4463E-06 1.1851E+00 1.9619E+00 error f (%) 

0.9924 0.9950 0.9989 0.9993 mean MAC 
1.0910E-05 5.0950E-06 1.0590E-06 1.7625E-07 std MAC 
3497.0941 2134.3997 1113.1230 410.7103 mean f (Hz)  

 
IGWO-MTMAC 

 

1.2615E-02 2.0935E-03 1.7761E-03 1.1885E-03 std f 
3.0967E+00 1.3847E-05 1.1838E+00 1.9575E+00 error f (%) 

0.9924 0.9950 0.9989 0.9993 mean MAC 
2.1913E-06 6.1676E-07 1.1489E-06 1.5383E-07 std MAC 
3497.1074 2134.4000 1113.1256 410.7133 mean f (Hz)  

 
GBO-MTMAC 

1.6249E-05 2.5406E-08 3.1530E-07 3.8863E-07 std f 
3.0971E+00 5.3854E-10 1.1836E+00 1.9568E+00 error f (%) 

0.9924 0.9950 0.9989 0.9993 mean MAC 
1.5441E-08 4.4580E-09 1.5125E-08 1.9661E-09 std MAC 
3386.6501 2140.7551 1122.8082 411.8114 mean f (Hz)  

 
GWO-Frequency 

1.9630E-01 1.0952E-01 2.4294E-01 2.4541E-02 std f 
6.3481E-02 2.9686E-01 3.1099E-01 1.6849E+00 error f (%) 

0.8741 0.9630 0.9960 0.9992 mean MAC 
2.4509E-02 7.9171E-03 8.6039E-04 4.1325E-05 std MAC 
3386.5661 2140.6599 1122.9640 411.8355 mean f (Hz)  

 
IGWO-Frequency 

 

8.7090E-02 3.0374E-02 8.3138E-03 6.1212E-04 std f 
6.5964E-02 2.9243E-01 2.9707E-01 1.6789E+00 error f (%) 

0.8616 0.9581 0.9954 0.9992 mean MAC 
7.3734E-04 1.7477E-03 4.0464E-04 4.0825E-05 std MAC 
3386.7589 2140.7414 1122.7285 411.8142 mean f (Hz)  

 
GBO-Frequency 

2.6424E-01 1.1287E-01 3.0316E-01 2.7523E-02 std f 
6.0266E-02 2.9623E-01 3.1811E-01 1.6842E+00 error f (%) 

0.8852 0.9662 0.9962 0.9992 mean MAC 
3.0645E-02 1.0089E-02 1.0936E-03 4.0131E-05 std MAC 

Table 5. The statistical results of damage detection-Scenario (I): 2 mm 
Element SRF (GWO) SRF (GBO) SRF (IGWO) 

Mean Std Mean Std Mean Std 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0119 0.0063 0.0148 0.0000 0.0148 0.0000 
5 0.0016 0.0041 0.0000 0.0000 0.0000 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.0475 0.0168 0.0521 0.0000 0.0521 0.0000 
9 0.0046 0.0144 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
13 0.0012 0.0039 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
16 0.0228 0.0575 0.0000 0.0000 0.0000 0.0000 
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Table 6. The statistical results of damage detection-Scenario (II): 4 mm 
Element SRF (GWO) SRF (GBO) SRF (IGWO) 

Mean Std Mean  Std Mean Std 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0003 0.0004 0.0000 0.0000 0.0000 0.0000 
5 0.0007 0.0008 0.0015 0.0000 0.0015 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.1849 0.0001 0.1848 0.0000 0.1848 0.0000 
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 7. The statistical results of damage detection-Scenario (III): 6 mm 
Element SRF (GWO) SRF (GBO) SRF (IGWO) 

Mean Std Mean Std Mean Std 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0013 0.0040 0.0038 0.0061 0.0000 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.2713 0.0953 0.2110 0.1456 0.3015 0.0000 
9 0.0280 0.0887 0.0841 0.1355 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 8. The statistical results of damage detection-Scenario (IV): 8 mm 
Element SRF (GWO) SRF (GBO) SRF (IGWO) 

Mean Std Mean  Std Mean Std 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0018 0.0056 0.0107 0.0092 0.0000 0.0000 
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
8 0.3558 0.1875 0.1779 0.2297 0.4447 0.0000 
9 0.0851 0.1794 0.2544 0.2190 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
12 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
Figure 15. The convergence curves of the objective function values-Scenario (I): 2 mm 

 

Figure 16. Identified results by using GWO, GBO, and IGWO-Scenario (I): 2 mm 
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Figure 17. The computation time of 2 mm crack identification based on GWO, GBO, and 

IGWO-Scenario (I) 

 
Figure 18. The convergence curves of the objective function values-Scenario (II): 4 mm 

 
Figure 19. Identified results by using GWO, GBO, and IGWO-Scenario (II): 4 mm 
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Figure 20. The computation time of 4 mm crack identification based on GWO, GBO, and 

IGWO-Scenario (II) 

 
Figure 21. The convergence curves of the objective function values-Scenario (III): 6 mm 

 
Figure 22. Identified results by using GWO, GBO, and IGWO-Scenario (III): 6 mm 
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Figure 23. The computation time of 6 mm crack identification based on GWO, GBO, and  

IGWO-Scenario (III) 

 
Figure 24. The convergence curves of the objective function values-Scenario (IV): 8 mm 

 
Figure 25. Identified results by using GWO, GBO, and IGWO-Scenario (IV): 8 mm 
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Figure 26. The computation time of 8 mm crack identification based on GWO, GBO, and  

IGWO-Scenario (IV) 
 

Table 9. The performance of objective functions and optimization algorithms when 
considering two types of beam elements for FEM updating 

Type of beam  
element 

GWO-MTMAC IGWO-MTMAC GBO-MTMAC GWO-Frequency IGWO-Frequency GBO-Frequency 

Euler-Bernoulli 
beam element 

•  •  •  •  •  •  

Semi-rigidly  
connected frame  

element  
(S-RCFE) 

    •  •  •  •  

 
Table 10. The performance of optimization algorithms for crack identification in different  

scenarios 
Scenario  GWO-Frequency IGWO-Frequency GBO-Frequency 

(I) •      
(II)       
(III) •    •  
(IV) •    •  

 
6. Conclusions 

This paper applies the semi-rigidly connected frame element (S-RCFE) instead of the Euler-

Bernoulli beam element to create the free-free beam's finite element model (FEM). The 

proposed method is employed optimization algorithms to minimize the objective function and 

calibrate the numerical model by adjusting the unknown parameters. Therefore, the sensitivity 

of three optimization algorithms, viz, grey wolf optimizer (GWO), gradient-based optimization 

(GBO) and an improved version of GWO (IGWO), and two objective functions based on 

modified total modal assurance criterion (MTMAC) and changes in natural frequency is 

investigated. The following results are obtained for optimization-based FEM updating when 

considering the S-RCFE and Euler-Bernoulli beam element: 

I) Regardless of optimization technique and objective function, there are significant 
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disparities between experimental and updated natural frequencies when applying 

the Euler-Bernoulli beam element. 

II) When using the S-RCFE, GWO-MTMAC and IGWO-MTMAC provide reliable 

and accurate results in FEM updating. However, GBO-MTMAC could not obtain a 

satisfactory agreement between all experimental and updated natural frequencies, 

and approximately 1.24% error is observed in the fourth mode. 

III) When using the S-RCFE and objective function based on natural frequency 

changes, no strong correlation exists between updated and experimental mode 

shapes, regardless of optimization algorithms. 

The following results are obtained for damage identification when using the updated model 

based on S-RCFE, an objective function relying on changes in natural frequency and three 

optimization algorithms: 

I) The IGWO provides the most accurate and reliable results among two other 

algorithms.  

II) The GBO competes efficiently with a lower computation time than IGWO in crack 

scenarios (I) and (II). 

III) The GWO could function properly only for crack scenario (II). 

IV) Overall, IGWO is the optimization algorithm that works perfectly to identify the 

crack in whole scenarios. In contrast to GWO and GBO, IGWO requires more 

computation time. 

7. Future directions 

The proposed approach based on S-RCFE and optimization algorithms should be examined 

under real measurement conditions and extended to other structures, such as simply supported 

beams, frames, pipelines, and full-scale bridges. More investigations on this method are 

currently underway and will be discussed in subsequent publications. 

Data availability 

The experimental dataset used in this study is available online. 
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Abbreviations 

FEM Finite element model 
S-RCFE Semi-rigidly connected frame element 

MAC Modal assurance criterion 
MTMAC Modified total modal assurance criterion 

GWO Grey wolf optimizer 
IGWO Improved GWO 
GBO Gradient-based optimization 
SHM Structural health monitoring 
PSO particle swarm optimization 

TLBO Teaching-learning-based optimization 
IIRS Iterated improved reduction system 
DOFs Degrees of freedom 

SEREP System equivalent reduction expansion process 
ANNs Artificial neural networks 
SRF Stiffness reduction factor 
GSR Gradient search rule 
LEO Local escaping operator 
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