
Computers and Education: Artificial Intelligence 7 (2024) 100331

Contents lists available at ScienceDirect

Computers and Education: Artificial Intelligence

journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence

Explainable artificial intelligence-machine learning models to estimate 

overall scores in tertiary preparatory general science course
Sujan Ghimire a, Shahab Abdulla b, Lionel P. Joseph a, Salvin Prasad e, Angela Murphy c, 
Aruna Devi d, Prabal Datta Barua a, Ravinesh C. Deo a,∗, Rajendra Acharya a, Zaher M. Yaseen f

a School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
b UniSQ College, University of Southern Queensland, Toowoomba, QLD, 4300, Australia
c Academic Portfolio, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
d School of Education and Tertiary Access, The University of the Sunshine Coast, Moreton Bay Campus, Petrie, QLD 4502, Australia
e Fiji National University, Suva, Fiji
f Civil and Environmental Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Keywords:

Tertiary preparatory program
Student performance prediction
Students at risk
Education models
Deep learning
Machine learning
Support vector regression

Educational data mining is valuable for uncovering latent relationships in educational settings, particularly 
for predicting students’ academic performance. This study introduces an interpretable hybrid model, optimised 
through Tree-structured Parzen Estimation (TPE) and Support Vector Regression (SVR), to predict overall scores 
(OT) utilising five assignments and one examination mark as predictors. Neural Network-based, Tree-Based, 
Ensemble-Based, and Boosting-based methods are evaluated against the hybrid TPE-optimised SVR model for 
forecasting final examination grades among 492 students enrolled in the TPP7155 (General Science) course 
at the University of Southern Queensland, Australia, during the 2020-2021 academic year. Additionally, Local 
Interpretable Model-agnostic Explanations (LIME) and SHapley Additive explanations (SHAP) techniques are 
employed to elucidate the inner workings of these prediction models. The findings highlight the superior 
performance of the proposed model, exhibiting the lowest Root Mean Squared Error (𝑅𝑀𝑆𝐸) and Relative Root 
Mean Squared Error (𝑅𝑅𝑀𝑆𝐸), as well as the highest Willmott’s index (𝑊 𝐼), Legates–McCabe index (𝐿𝑀), and 
Nash–Sutcliffe Efficiency (𝑁𝑆). With assignment and examination marks identified as pivotal predictors of OT. 
SHAP and LIME analyses reveal the examination score (ET) as the most influential feature, impacting predicted 
OT by an average of ±4.93. Conversely, Assignment 1 emerges as the least informative feature, contributing 
merely ±0.64 to OT predictions. This research underscores the efficacy of the proposed interpretable hybrid 
TPE-optimised SVR model in discerning relationships among continuous learning variables, thereby empowering 
educators with early intervention capabilities and enhancing their ability to anticipate student performance prior 
to course completion.
1. Background

This study develops explainable artificial intelligence (XAI)-based 
machine learning models to estimate overall student performance in 
a tertiary preparatory general science course. Given the high attri-
tion rates and academic struggles of students from low socioeconomic 
(SES) backgrounds, early and targeted academic interventions are essen-
tial. The Australian Government’s Higher Education Standards Framework
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(HESF) sets out minimum requirements for Australian universities to 
ensure high-quality education and equitable access across student de-
mographics. It mandates that institutions monitor and improve student 
outcomes, with particular emphasis on identifying and supporting at-
risk groups, such as students from low socioeconomic backgrounds. In 
the context of this study, the HESF’s guidelines underscore the impor-
tance of implementing data-driven tools to identify students at risk of 
academic failure. (Alyahyan & Düştegör, 2020).
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Academic underperformance is a major contributor to attrition. Pre-
vious models have explored factors such as financial and personal chal-
lenges (Li & Jackson, 2024; Zając et al., 2024), but often lack trans-
parency or practical applicability in university contexts. Additionally, 
many models overlook preparatory pathways such as enabling programs 
for students from low SES and other under-represented groups. This 
gap is significant as preparatory students face unique challenges, often 
struggling with academic preparedness and high attrition rates upon 
university entry, with attrition rates in preparatory programs reaching 
up to 50% in some cases (Chesters et al., 2018; Bookallil & Harreveld, 
2017; Hodges et al., 2013).

Our study employs explainable machine learning models to address 
this gap, offering interpretable, data-driven insights that enable targeted 
academic interventions tailored to the specific needs of students in en-
abling programs. EML models, such as decision trees or interpretable 
neural networks, play a crucial role in educational settings by allowing 
educators to understand and trust the model’s predictions and recom-
mendations. Unlike “black-box” models, which offer high accuracy but 
limited interpretability (Djurisic et al., 2020), explainable models pro-
vide transparency regarding which factors most influence a student’s 
predicted outcome (Jang et al., 2022). This informed, data driven ap-
proach empowers educators to make decisions that are not only based 
on statistical evidence but are also aligned with students’ real-world 
needs. By using explainable AI (xAI) models, educational institutions 
can promote accountability and equity in their support strategies, ensur-
ing that interventions are fairly distributed and that all students receive 
assistance based on transparent, evidence-based criteria (Khosravi et al., 
2022). This approach not only enhances the effectiveness of support 
programs by offering clear, interpretable explanations, but also strength-
ens the ethical foundation upon which these data-driven decisions are 
made (Hu et al., 2021).

2. Literature review

2.1. Student performance prediction models in enabling programs

Enabling programs, funded by the Australian government, aim to 
increase participation from low SES backgrounds and other under-
represented groups, promoting equity, economic opportunity, and social 
justice (Bradley et al., 2008). By 2013, 27 Australian universities of-
fered over 35 such programs (Hodges et al., 2013), with offerings and 
enrolments steadily increasing to meet demand (Lisciandro & Gibbs, 
2016). At the University of Southern Queensland (UniSQ), the Tertiary 
Preparatory Program (TPP) equips students lacking conventional entry 
credentials with essential academic skills and the confidence needed to 
succeed in university environments. TPP students face vulnerabilities 
(Chesters & Watson, 2013; Edwards & McMillan, 2015), often struggling 
with socioeconomic and personal barriers, including limited academic 
preparedness.

Attrition risk is heightened by factors such as family responsibili-
ties, financial pressures (e.g., student debt), limited support services, 
and academic challenges, especially poor performance (Li & Jackson, 
2024; Zając et al., 2024). Research indicates that students from low SES 
backgrounds experience lower completion rates (Cooper et al., 2000; 
Guenther & Johnson, 2010). Poor academic performance can lead to 
demotivation and depression (Kocsis & Molnár, 2024), reinforcing attri-
tion risks (Arias et al., 2024). Unlike studies focused on general univer-
sity cohorts, this research develops explainable machine learning mod-
els tailored for preparatory programs. These models predict academic 
outcomes and provide actionable insights to inform targeted interven-
tions, enhancing retention and academic success in enabling programs 
(Onyema et al., 2020).

Higher education institutions are increasingly using empirical data 
to improve student performance (Nguyen-Huy et al., 2022). Universities 
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have access to comprehensive data, including continuous assessment 
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data, academic performance metrics, attendance records, course eval-
uations, and demographic information. Analysing these data sources 
can provide valuable insights into students’ learning patterns, helping 
to identify strengths, weaknesses, and factors contributing to academic 
success. This analysis is crucial for monitoring TPP cohorts and facilitat-
ing early intervention when necessary. By leveraging learning analytics 
methods to predict student outcomes, educators can align their teach-
ing strategies with evidence-based pedagogies that have been shown 
to improve student engagement and retention. For example, predictive 
models may suggest that students identified as at-risk benefit from peer 
mentorship or collaborative learning, guiding educators to implement 
evidence-based interventions that are specifically tailored to student 
needs (Paolucci et al., 2024).

2.2. Educational Data Mining (EDM) and learning analytics in higher 
education

Educational data mining (EDM) has gained significant interest for 
its potential to improve educational support (Yağcı, 2022). EDM applies 
various analytical methods to student data, enabling personalised edu-
cational support by identifying learning patterns and providing frame-
works for the systematic analysis and interpretation of educational data 
(Buenaño-Fernández et al., 2019). EDM leverages statistical analysis and 
machine learning algorithms to extract actionable insights from com-
plex educational datasets. Both qualitative and quantitative data, such 
as assessment scores, interviews and student feedback, are used to ad-
dress educational inequities and optimise resource allocation (Hashim 
et al., 2020). EDM also contributes to achieving Sustainable Develop-
ment Goal 4 (SDG 4), aiming to provide quality education globally 
(Saini et al., 2023). By analysing student data, EDM enables the devel-
opment of personalised learning experiences (McKenney & Mor, 2015) 
improving learning outcomes, course effectiveness and student satisfac-
tion (Injadat et al., 2020). Various studies have focused on predicting 
student performance, utilising assessment data and other continuous 
learning activities as key indicators (Bertolini et al., 2022; Priyambada 
et al., 2023; Santos & Henriques, 2023). Continuous assessment, such 
as quizzes, assignments or projects, provides essential feedback that 
enhances teaching activities and helps educators identify areas for im-
provement (Yadav & Singh, 2011). The marks obtained from continuous 
assessments and final examinations are quantifiable and, therefore can 
be represented mathematically, making them valuable inputs for pre-
dicting the overall score (OT) which determines the final grades and the 
grade point average (GPA) (Ahmed et al., 2022).

2.3. Machine learning for predicting academic outcomes in preparatory 
programs

In recent years, machine learning (ML) techniques have gained 
prominence in educational research, particularly for predicting student 
success and enhancing academic support. ML methods, including deci-
sion trees, random forests, and neural networks, are well-suited to han-
dle complex datasets often encountered in higher education. Many stud-
ies have used tree-based models, neural networks, and kernel-based ma-
chine learning techniques for performance prediction. These models are 
effective in capturing complex relationships in student data and are par-
ticularly advantageous in settings such as preparatory programs, where 
students may face diverse challenges related to their socio-economic 
backgrounds, prior academic performance, and personal circumstances. 
The use of ML in educational settings supports inclusive pedagogy by 
providing early identification of students who may face barriers to suc-
cess, such as financial hardship or lack of prior academic preparation 
(Dubey, 2024). By offering targeted interventions, such as financial aid 
or additional academic resources, machine learning models ensure eq-
uitable access to education for all students, promoting greater inclusion 

and diversity in preparatory programs
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2.3.1. Decision trees and random forests

Decision trees are among the most widely used ML techniques in ed-
ucational contexts, especially for predicting student performance based 
on a set of input features (e.g., prior academic records, socio-economic 
status, attendance). In preparatory programs, where students often come 
from non-traditional backgrounds and may lack academic preparedness, 
decision trees can identify which factors, such as lack of prior study 
skills or limited access to educational resources, most influence aca-
demic success. Decision trees operate by splitting the data into subsets 
based on feature values, which allows for easy interpretation and visu-
alisation. Random forests, an ensemble of decision trees, can improve 
the robustness and accuracy of predictions. By aggregating the predic-
tions of multiple trees, random forests reduce overfitting and enhance 
model reliability, particularly when dealing with noisy or imbalanced 
data, common in preparatory program cohorts. For example, random 
forests could provide a more reliable prediction of a student’s likelihood 
of completing a preparatory program, factoring in the complex interplay 
of personal, academic, and financial challenges that these students face.

To explore the effectiveness of tree-structured models, Hussain and 
Khan (2023) developed a decision tree (DT) model to predict grades 
and forecast exam marks, achieving better accuracy than the k-nearest 
neighbour (KNN) model. Rai et al. (2021) applied a random forest (RF) 
model to predict student grades, showing that RF models can identify 
areas for improvement, demonstrating that the RF model effectively cap-
tured the complex relationships between the input features and student 
performance. The use of RF was particularly beneficial for students in 
the poor and average performance categories, as it provided insights 
that helped identify areas for improvement and tailor educational in-
terventions. Cheng et al. (2024) used extreme gradient boosting (XG-
Boost) to predict student performance, achieving an accuracy of 80.4%, 
outperforming other models like RF, DT, and KNN. Tree-based models 
(e.g., DT, RF, and XGBoost) are interpretable and offer better predictive 
accuracy than statistical models. This is mainly due to their capacity 
to capture complex, nonlinear relationships within the data. However, 
when applied to large datasets, a single tree can grow excessively large, 
resulting in a high number of nodes (Joseph et al., 2023; Hakkal & Lah-
cen, 2024). This increase in model complexity often leads to over-fitting, 
where the model performs well on training data but poorly on unseen 
test data.

2.3.2. Neural networks and deep learning

Neural networks, particularly deep learning models, have shown 
great promise in handling large and complex datasets, often with higher 
accuracy than traditional models. In the context of preparatory pro-
grams, these models can capture non-linear relationships between a 
variety of factors, such as mental health status, socio-economic back-
ground, and prior educational attainment, that influence student out-
comes.

Neural networks, such as artificial neural networks (ANN), utilise 
regularisation techniques and early stopping to address the overfitting 
issues often associated with tree-based models (Srivastava et al., 2014). 
Studies using ANN models such as Chavez et al. (2023) have achieved 
high predictive accuracy in predicting student outcomes, surpassing tra-
ditional models like RF and Naïve Bayes (NB). Similarly, Arsad et al. 
(2014) demonstrated that ANN models can predict the overall perfor-
mance of students in a Bachelor of Electrical Engineering programme, 
utilising grade points (GP) from fundamental core subjects as input 
parameters, outperforming a benchmark linear regression model. Toma-
sevic et al. (2020) employed an ANN model to predict final examination 
scores and identify students at high risk of dropping out utilising demo-
graphic data, student engagement metrics, and historical performance 
records. The model outperformed benchmark models such as KNN, de-
cision trees, and linear regression. An adaptive neuro-fuzzy inference 
system (ANFIS) model was trained using six input variables derived from 
assessments and examinations (Taylan & Karagözoğlu, 2009), achieving 
3

very low error in its predictions of student performance.
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Unlike decision trees, which focus on explicit splits in data, neural 
networks learn intricate patterns from vast datasets, allowing for more 
nuanced predictions. Additionally, deep learning models can be trained 
to assess the effectiveness of different interventions, enabling prepara-
tory programs to adapt and personalise their support strategies. While 
neural network-based models have demonstrated strong performance in 
the literature, it is important to note that they can sometimes get stuck 
in local minima during gradient descent optimisation (Pascanu et al., 
2013), which may prevent the model from converging to the global op-
timum, leading to sub-optimal performance.

2.4. Support vector machines and kernel-based models

Kernel-based models, such as support vector machines (SVM), ad-
dress some limitations associated with neural networks, particularly in 
avoiding local minima during training. Unlike neural networks, SVMs 
are grounded in the principle of margin maximisation, which aims to 
find a hyperplane that optimally separates data points while minimis-
ing classification error (Cao & Tay, 2003). Regularisation techniques, 
including adjustments to the regularisation parameter (C) and kernel 
coefficient (gamma) (Basak et al., 2007), help SVM models avoid over-
fitting and improve generalisation by controlling model complexity.

Studies have illustrated SVM’s predictive potential in educational 
contexts. For instance, Pang et al. (2017) applied SVM with simulated 
annealing to predict student graduation, incorporating features like 
demographics and psychological data, achieving high predictive accu-
racy. Samsudin et al. (2022), applied support vector regression (SVR), 
a regression-based variant of SVM, to predict student academic perfor-
mance during the Covid-19 pandemic by focusing on cumulative grade 
point averages (CGPA). Dewi and Widiastuti (2020) demonstrated the 
effectiveness of SVR for predicting CGPA in Indonesian students, using 
a radial basis function (RBF) kernel to yield an RMSE of 0.1861, outper-
forming standard linear regression.

Recent optimisations, such as particle swarm optimisation (PSO), 
have further refined SVR’s performance. Apriyadi et al. (2023) devel-
oped a PSO-SVR model based on a variety of demographic and aca-
demic features, achieving superior accuracy over models like decision 
trees and neural networks. However, while promising, effective SVR 
implementation requires careful hyperparameter tuning, as seen with 
the use of Bayesian optimisation through Tree-structured Parzen Esti-
mator (TPE), which outperformed PSO in other domains by achieving 
superior hyperparameter selection at lower computational costs (Vas-
anthanageswari, 2022). Without proper tuning, the model may suffer 
from poor accuracy and unreliable predictions, as indicated in several 
studies (Apriyadi et al., 2023; Pang et al., 2017). To address this, sev-
eral researchers (Jiang et al., 2024; Omotehinwa et al., 2023; Tao et al., 
2024) have identified the tree-structured Parzen estimator (TPE) as a 
highly effective method for hyperparameter optimisation. TPE employs 
a Bayesian optimisation approach, balancing exploration (evaluating di-
verse hyperparameter configurations) and exploitation (focusing on the 
most promising configurations) to efficiently search the hyperparameter 
space while minimising computational costs (Bergstra et al., 2011).

The TPE method’s effectiveness has been demonstrated in various 
applications, such as optimising SVM for crop yield prediction, where 
it outperformed PSO by selecting superior hyperparameters (Vasan-
thanageswari, 2022). TPE has also been used to fine-tune SVM for 
electron energy loss spectroscopy (EELS) spectra classification (del Pozo-
Bueno et al., 2023), significantly enhancing SVM’s performance com-
pared to random search (RS) optimisation. Furthermore, TPE has been 
applied to optimise SVR in predicting the remaining useful life of 
lithium-ion batteries, achieving an 89.84% reduction in RMSE compared 
to standalone SVR models (Deng et al., 2023).

Among the most widely used xAI techniques are SHapley Additive 
exPlanations (SHAP) (Lundberg et al., 2020) and Local Interpretable 
Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) methods. 

LIME has been effectively used in previous studies to interpret tree-based 
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models, such as XGBoost and DT, in the context of student performance 
prediction (Vultureanu-Albişi & Bădică, 2021). In these cases, LIME ef-
fectively provided insights into individual predictions. However, SHAP’s 
ability to provide global insights into feature importance, derived from 
Shapley values in cooperative game theory, makes it especially valuable 
for understanding overall model behaviour.

Our study applies TPE-optimised SVR to predict academic success 
in enabling programs. The use of TPE helps identify high-potential 
configurations for SVR’s hyperparameters, maximising prediction accu-
racy while maintaining computational efficiency (Bergstra et al., 2011). 
Furthermore, as SVR’s “black-box” nature can limit interpretability, 
which is crucial for practical educational applications, we enhance inter-
pretability by employing model-agnostic explanation methods to make 
SVR predictions more transparent for educational stakeholders. By de-
mystifying the SVR model’s predictions, educators and administrators 
can more effectively understand factors contributing to student success 
and attrition, thereby guiding targeted interventions in enabling pro-
grams.

3. Context and study objectives

This research reports the findings of the UniSQ Technology Demon-
strator project, which uses an SVR model as the primary algorithm 
to predict student performance in the Tertiary Preparatory (TPP115) 
General Science course. Building on earlier studies on student perfor-
mance models (Deo et al., 2020; Nguyen-Huy et al., 2022; Ahmed et 
al., 2022), this work aims to refine predictive methods for educational 
outcomes. The TPP7155 course, taught at UniSQ College under the Ter-
tiary Preparatory Program, covers topics such as scientific methods, 
measurement in science, matter, antibiotic resistance, climate change, 
and genetics. The course aims to enhance scientific literacy, particu-
larly in interpreting, analysing, and evaluating scientific data. With the 
increasing emphasis on STEM fields due to recent government initia-
tives, students in the course are provided with foundational concepts 
to pursue undergraduate degrees in nursing, teacher education, general 
science, and engineering.

In this research, the weighted scores of five independent assignments 
(W1 = 5%, W2 = 15%, W3 = 10%, W4 = 20%, W5 = 5%) and a final 
examination (ET = 45%) are used to determine the Overall Mark (OT = 
100%) for students in the TPP7155 course. The non-linear relationships 
between these components present challenges for conventional statisti-
cal models, such as autoregressive integrated moving average (ARIMA), 
linear regression, and partial and ordinary differential equations (Deo et 
al., 2020), which fail to capture the complex dependencies in the data. 
In contrast, AI-based machine learning models are better equipped to 
handle these non-linear patterns and interactions.

The primary objective of this research is to develop an explainable 
hybrid SVR model, optimised with the tree-structured Parzen estimator 
(TPE), to predict students’ Overall Marks (OT) in the TPP7155 General 
Science course. The model is designed to serve as a practical tool for 
academics, providing insights into how continuous assessments through-
out the term influence students’ final grades. This can help educators 
better understand the non-linear relationships between assessments, ul-
timately improving student performance. The key contributions of this 
research study include:

• Development of a robust SVR model to predict student performance 
in TPP7155 using empirical data from both assignments and exams.

• Optimisation of the SVR model through efficient hyperparameter 
tuning using the TPE algorithm, with rigorous benchmarking against 
other machine learning models.

• Application of SHAP (SHapley Additive exPlanations) for global in-
terpretability, enhancing the transparency of the SVR model and 
4

providing actionable insights for educators.
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Fig. 1. Schematic representation of the SVR algorithm showing the slack vari-
able (𝜉). The mathematical symbols are outlined in Section 4.1 along with the 
SVR model equations.

This research offers a novel predictive model for higher education, en-
abling accurate and interpretable predictions of OT. By supporting early 
identification of at-risk students, the model allows for timely interven-
tions, enhancing student success and retention.

4. Theoretical overview and methodology

4.1. Proposed Support Vector Regression (SVR) model

This study utilises Support Vector Regression (SVR) as the primary 
tool to predict OT of students in TPP7155 (General Science), a course 
that typically has students from diverse backgrounds with little experi-
ence in scientific related endeavours. The SVR model has been selected 
due to its efficacy in scenarios with limited training samples and compu-
tational resources (Ma’sum, 2022). SVR, grounded in statistical learning 
theory, excels in high-dimensional regression problems by offering ro-
bust data generalisation and achieving a global optimal solution, thus 
circumventing the “curse of dimensionality” (Ghimire et al., 2022). The 
superior performance of SVR in prediction tasks, compared to other 
non-linear models, has contributed to its extensive application in vari-
ous fields. For a training data set {(𝐱1, 𝑦1), ⋯ , (𝐱𝑛, 𝑦𝑛)|𝐱𝑖 ∈ℝ𝐷, 𝑦𝑖 ∈ℝ}, 
where ℝ𝐷 is a 𝐷-dimensional real input vector, 𝑦𝑖 ∈ ℝ is the corre-
sponding target value, and 𝑛 is the total number of data patterns, the 
regression function of the SVR model is expressed as follows (Zhang & 
O’Donnell, 2020):

𝑓 (𝐱) =𝐰𝑇 𝜙(𝐱) + 𝑏 (1)

where 𝐰 ∈ ℝ𝐷 is a weight vector, 𝑇 stands for the transpose operator. 
The term 𝑏 is a bias, 𝜙(⋅) is a nonlinear transfer function mapping the 
input vectors into a high dimensional feature space (Fig. 1).

The slack variables 𝜉𝑖 and 𝜉∗
𝑖

are defined to address infeasible con-
straints. The SVR algorithm’s optimisation problem can be expressed 
using Equation (2):

Subject to

⎧⎪⎪⎨⎪⎪⎩

𝑓 (𝐱𝑖) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖
𝑦𝑖 − 𝑓 (𝐱𝑖) ≤ 𝜖 + 𝜉∗𝑖
𝜉𝑖 ≥ 0 𝑖 = 1,2,⋯ , 𝑛

𝜉∗
𝑖
≥ 0 𝑖 = 1,2,⋯ , 𝑛

(2)

Again, transform the objective function into the unconstrained La-

grange objective function as Equation (3):
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𝐿(𝐰, 𝑏,𝜶,𝜶∗,𝝃,𝝃∗,𝝂,𝝂∗) = 1
2
𝐰2 +𝐶

𝑛∑
𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 ) −
𝑛∑
𝑖=1
𝜇𝑖𝜉𝑖 −

𝑛∑
𝑖=1
𝜇∗
𝑖
𝜉∗
𝑖
+

𝑛∑
𝑖=1
𝑎𝑖(𝑓 (𝐱𝑖) − 𝑦𝑖 − 𝜖 − 𝜉𝑖) +

𝑛∑
𝑖=1
𝑎∗
𝑖
(𝑦𝑖 − 𝑓 (𝐱𝑖) − 𝜖 − 𝜉∗𝑖

(3)

where the Lagrange multipliers are 𝑎𝑖 ≥ 0, 𝑎∗
𝑖
≥ 0, 𝜇𝑖 ≥ 0, and 𝜇∗

𝑖
≥ 0. 𝐶

is the punishment factor for the SVR.
Let the partial derivative of Equation (3) be 0 and introduce the so-

lution back into Equation (3); the dual SVR algorithm problem can be 
expressed by using Equation (6).

max
𝜶,𝜶∗

(
𝑛∑
𝑖=1
𝑦𝑖(𝑎∗𝑖 − 𝑎𝑖) − 𝜖(𝑎

∗
𝑖
+ 𝑎𝑖) −

1
2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑎∗
𝑖
− 𝑎𝑖)(𝑎∗𝑗 − 𝑎𝑗 )𝐱

𝑇
𝑖
𝐱𝑗

)
(4)

s.t

⎧⎪⎨⎪⎩
𝑛∑
𝑖=1

(𝑎∗
𝑖
− 𝑎𝑖) = 0

0 ≤ 𝑎𝑖, 𝑎∗𝑖 ≤ 𝐶

(5)

The dual problem should satisfy the Karush–Kuhn–Tucker condition as 
follows (Ghimire et al., 2019):

s.t

⎧⎪⎪⎨⎪⎪⎩

𝑎𝑖(𝑓 (𝐱𝑖) − 𝑦𝑖 − 𝜖 − 𝜉𝑖) = 0

𝑎∗
𝑖
(𝑦𝑖 − 𝑓 (𝐱𝑖) − 𝜖 − 𝜉∗𝑖 ) = 0

(𝐶 − 𝑎𝑖)𝜉𝑖 = 0, (𝐶 − 𝑎∗
𝑖
)𝜉∗
𝑖
= 0

𝑎𝑖𝑎
∗
𝑖
= 0

(6)

Finally, the SVR solution can be expressed using Equation (7),

𝑓 (𝐱) =
𝑛∑
𝑖=1

(𝑎∗
𝑖
− 𝑎𝑖)𝐱𝑇𝑖 𝐱 + 𝑏. (7)

The inner product 𝐱𝑇
𝑖
𝐱 can be replaced by the so-called kernel func-

tion 𝐾(𝑥𝑖, 𝑥) under Mercer’s condition. Therefore, the final form of SVR 
function can be expressed using Equation (8).

𝑓 (𝐱) =
𝑛∑
𝑖=1

(𝑎∗
𝑖
− 𝑎𝑖)𝐾(𝐱𝑖,𝐱) + 𝑏. (8)

The kernel function, as can be seen from Equation (8), plays a crit-
ical role in the SVR algorithm. In SVR model, polynomial, sigmoid, 
linear and radial basis function (RBF) can be used as kernel func-
tion (Ramedani et al., 2014). In this study, RBF kernel function was 
chosen because of it’s a) capability of modelling nonlinear relationships 
by mapping data points from the input space into high dimensional 
feature space in a nonlinear fashion, b) Compared to polynomial and 
sigmoid kernels, RBF needs less customisable parameters, making it 
straightforward and functional and c) RBF’s superior performance has 
been demonstrated in several literature (Halde, 2016; Ghimire et al., 
2023a).

The kernel function RBF is expressed as Equation (9):

𝐾(𝐱𝑖,𝐱) = 𝑒
− −‖𝑥𝑖−𝑥‖2

2𝜎2 (9)

where 𝜎 is variance and ‖𝐱𝑖 − 𝐱‖ is the Euclidean distance (𝐿2-norm) 
between two points 𝐱𝑖 and 𝐱.

𝐾(𝐱𝑖,𝐱) = 𝑒−𝛾‖𝐱𝑖−𝐱‖2 (10)

The RBF Kernel Support Vector Machines has two hyperparameters as-
sociated with it, 𝐶 for SVR and 𝛾 for the RBF Kernel. Here, 𝛾 is inversely 
proportional to 𝜎 and can be expressed as below (Ghimire et al., 2023b).

1

5

𝛾 =
2𝜎2

(11)
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4.2. Benchmark models

4.2.1. Neural network-based methods

To fully appraise the performance of the proposed SVR model for 
prediction of TPP7155 overall scores, this study utilises three neural 
network methodologies: the Multilayer Perceptron (MLP) (Deo et al., 
2018), Extreme Learning Machine (ELM) (Deo et al., 2020) and Deep 
Neural Network (DNN) (Zhang et al., 2016).

The MLP model is a fundamental architecture with an input layer, 
one or more hidden layers, and an output layer, facilitating the ac-
quisition of intricate patterns through backpropagation. This archi-
tecture is widely applicable across various tasks, including regression 
and classification (Borghi et al., 2021). ELM distinguishes itself with 
its swift training pace and commendable generalisation performance, 
achieved by randomly assigning weights between input and hidden 
layers, keeping these weights fixed, and analytically deriving output 
weights, which makes it particularly suited for scenarios requiring rapid 
training (Ghimire et al., 2022). DNNs, which extend the MLP framework 
by integrating multiple hidden layers, enable the acquisition of more nu-
anced hierarchical data representations, thereby excelling in intricate 
tasks like image and speech recognition, natural language processing, 
and various time-series prediction tasks (Elsayed et al., 2021). While 
MLPs offer simplicity and ELMs provide speed advantages, DNNs gener-
ally outperform both in handling high-dimensional data and addressing 
complex problems due to their deep architecture and sophisticated train-
ing algorithms (Kouassi & Moodley, 2020).

4.2.2. Tree-based methods

The second benchmark model comprises of three tree-based regres-
sion models: Decision Trees Regression (DTR) (Jayasinghe et al., 2022), 
Random Forests Regression (RFR) (Deo et al., 2020), and Extra Trees 
Regression (ETR) (Li et al., 2020). Decision Trees construct tree-like 
structures where each node corresponds to a feature and each leaf node 
signifies an outcome, providing interpretability yet results in suscep-
tibility to overfitting (Malakouti, 2023). Random Forests, composed of 
decision trees trained on random data subsets, mitigate variance by aver-
aging predictions and yield insights into feature importance, benefiting 
from parallelisation during training (Li et al., 2020). Extra Trees intro-
duce added randomness by selecting random split thresholds, aiming to 
further diminish variance and potentially enhance generalisation and 
computational efficiency compared to Random Forests, albeit at the ex-
pense of some interpretability (Junaid et al., 2023).

4.2.3. Ensemble-based methods

The third benchmark model involves two ensemble models: Light 
Gradient Boosting Machine (LGB) (Xu et al., 2021) and Extreme Gradi-
ent Boosting Machine (XGB) (Wahyuningsih et al., 2024). These meth-
ods, LGB and XGB, are formidable ensemble learning techniques ac-
claimed for their prowess. LGB, a creation of Microsoft, stands out for its 
efficiency and speed, especially adept with sizeable datasets, employing 
histogram-based algorithms and parallelisation. In contrast, XGB, devel-
oped by Chen and Guestrin (2016), garners recognition for its precision 
and competitive edge in predictive modelling competitions, employing 
a depth-wise tree growth strategy and regularisation methods to counter 
overfitting (Chen et al., 2015). Both approaches are extensively utilised 
to attain superior outcomes in predictive modelling endeavours, owing 
to their efficacy, adaptability, scalability, and resilience.

4.2.4. Boosting-based methods

The Support Vector Regression (SVR) model is further compared 
against boosting-based models: Adaboost Regression (ADBR) (Liu & 
Bai, 2023), Gradient Boosting Regression (GBR) (Tekgöz et al., 2022), 
and Bagging Regression (BGR) (Evangelista, 2023). Adaboost iteratively 
merges weak learners into a robust learner by targeting previously mis-
classified instances. Gradient Boosting constructs a strong learner by 

progressively rectifying errors using decision trees, thereby minimising 
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Table 1

Descriptive statistics of TPP7155 (General Science) student performance 2020–2021 data. The predictors (inputs) are: W1=As-
signment 1, W2= Assignment 2, W3=Assignment 3,W4=Assignment 4, W5=Assignment 5 and ET=Examination Score with 
the target OT=Overall mark. The cross-correlation coefficient (r) of each predictor with OT is shown in the last row. Note that 
a raw mark for each assessment has a different total with a particular percentage contribution towards the final grade.

Statistica properties Predictors Target

Assignment 1 Assignment 2 Assignment 3 Assignment 4 Assignment 5 Exam Overall Mark

5% 15% 10% 20% 5% 45%
W1 W2 W3 W4 W5 ET OT

Mean 8.086 25.759 25.44 32.661 10.842 45.772 79.701
Median 8.5 26.5 26 34 11.5 46.5 81
Standard Deviation 1.559 3.47 3.317 5.799 3.331 7.997 10.463
Minimum 0 8.5 7 7.5 0 17 37
Maximum 10 30 30 40 15 60 98
Skewness -1.284 -1.231 -1.301 -1.049 -1.015 -0.559 -0.776
Flatness 2.319 1.913 3.042 1.26 0.702 0.097 0.825
Correlation with
Target

0.593 0.663 0.625 0.721 0.666 0.886
the overall loss function (Sharafati et al., 2020). Bagging trains multi-
ple models on diverse bootstrap samples and aggregates their predic-
tions to diminish variance and enhance model stability and generalisa-
tion (de Oliveira et al., 2022). These methodologies augment predictive 
accuracy by harnessing the capabilities of multiple learners.

5. Project design context and SVR model performance criteria

5.1. Student course data and ethical procedure

This research paper reports the findings of a project: “Artificial intel-

ligence as predictive analytics framework for learning outcomes, assessment 
and student success: UinSQ Technology Demonstrator”. This study aims 
to design and evaluate a Support Vector Regression (SVR) (with sev-
eral competing benchmark) models to predict student success in the 
TPP7155 (General Science) Course.

To construct an SVR model, the dataset consisted of continuous as-
sessments and weighted scores of students for the period 2020 to 2021. 
Following a rigorous data-cleansing phase that removed any rows with 
missing values for student assessments, the TPP7155 dataset used in 
model design included 492 student records (from a pool of 727). Student 
performance was evaluated through a combination of five assignments, 
Assignment 1 (weight = 5%), Assignment 2 (weight = 15%), Assign-
ment 3 (weight = 10%), Assignment 4 (weight = 20%), and Assignment 
5 (weighted = 5%), alongside the final examination score (weight = 
45%). These assessments collectively contributed to an overall score 
(OT) expressed as a percentage. This OT score was then utilised to de-
termine a pass or fail grade for each student.

There was no direct recruitment of the participants in this study but 
instead, they were drawn from a TPP7155 course, which provides a 
strong foundation in General Science. This course is valuable for stu-
dents’ pursuing careers in Science, Technology, Engineering, and Math-
ematics (STEM) as well as for those intending to study early childhood 
and primary education. Through structured learning opportunities, stu-
dents in this course develop a broad understanding of scientific topics, 
building analytical and problem-solving skills that boost confidence in 
introductory sciences and enable informed decisions about further un-
dergraduate studies. Using self-paced instruction and principles of adult 
learning, participants are guided through a carefully sequenced series 
of topics designed to develop the scientific and mathematical literacy 
required for undergraduate education. Students study scientific meth-
ods, measurement, cellular biology, chemistry, climate change, and sus-
tainable energy. Throughout the course, they are taught to interpret, 
analyse, and evaluate scientific data and to communicate findings ef-
fectively. In this way, they engage with scientific thought processes and 
content that remain relevant both now and in the future.

Ethics approval for this study [H18REA236] was granted by the Uni-
6

versity of Southern Queensland Human Ethics Committee. Given the 
low-risk nature of the project, expedited ethical approval was granted, 
and all students details were anonymised before processing performance 
data. Therefore, this research did not collect or use student’s personally 
identifiable information, such as names, student identification numbers, 
gender, or socioeconomic status. To prevent bias in the proposed SVR 
model, any incomplete data records (e.g., students who did not sub-
mit assessments or did not take the examination) was removed during 
data pre-processing. Despite the exclusion of some records, we retained 
complete data for 498 students, including all assignment and exami-
nation scores, ensuring minimal impact on the SVR model’s ability to 
predict overall scores. As a result, only records containing all relevant 
data points for each student, along with an OT value, were included in 
the SVR model’s training phase.

5.2. Predictive model development

In Table 1, we show an overview of the statistical properties of course 
assessments W1, W2, W3, W4, W5, ET (Examination Mark) and the 
OT (Overall Score) in TPP7155. Additionally, the last row of Table 1
showcases the Pearson’s Correlation Coefficient (r) computed between 
each assignment W1, W2, W3, W4 and W5 and the examination (ET) 
against the OT. Details of these data reveal that all assignments and 
examination marks exhibited negative skewness (Skewness ≤ 0) which 
indicates a particular distribution where the tail on the left side is some-
what longer or fatter than the right side. Moreover, in terms of kurtosis 
(or flatness) factor, the distribution of assignments W1, W2, W3 and 
W4 is leptokurtic, implying heavier tails and sharper peaks compared 
with a normal distribution. Conversely, the distribution of W5 and ET is 
slightly platykurtic and mesokurtic, respectively, which indicates lighter 
tails and flatter peaks compared with a normal distribution.

A closer examination shows that the degree of association between 
assignments, examination marks and the OT demonstrates significant 
variability, which could also indicate non-linearity between these vari-
ables that determine overall student scores. Notably, there is a positive 
correlation between all continuous assessment marks and the OT value; 
however, the strength of this correlation with ET is notably higher 
with 𝑟 ≈ 0.886 followed that of W4 (𝑟 ≈ 0.721), W5 (𝑟 ≈ 0.666), W2 
(𝑟 ≈ 0.663), W3 (𝑟 ≈ 0.625) and W1 (𝑟 ≈ 0.593). This relationship can be 
further validated by the Kendall’s correlation heatmap shown in Fig. 2
where the ET value emerges to be highly positively correlated with the 
OT followed by W4, W5, W2, W3 and W1.

In terms of physical interpretation, this signifies that an increase in 
any assignment or examination marks tends to coincide with an increase 
in the OT, while a decrease in one tends to result in a corresponding de-
crease in the OT. This variance in correlation strength underscores the 
varying impacts of each assessment component on the overall student 
outcome and it also underscores the differing impacts of each assess-

ment component on the overall score. Using the correlation plot as a 
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Fig. 2. The Kendall’s correlation heat map used to explore the student performance data in TPP7155 (General Science).

Table 2

The input combinations based on TPP7155 (General Science) course student performance data used to construct the 
proposed SVR model.

Designated
model

Input combinations
(using predictors from Table 1)

Period Total data Training
(64%)

Validation
(16%)

Testing
(20%)

M1 OT = f(W1)
M2 OT = f(W1,W2)
M3 OT = f(W1,W2,W3)
M4 OT = f(W1,W2,W3,W4)
M5 OT = f(W1,W2,W3,W4,W5)
M6 OT = f(W1,W2,W3,W4,W5, ET)
M7 OT = f(ET)
M8 OT = f(ET,W1)
M9 OT = f(ET,W1,W2)
M10 OT = f(ET,W1,W2,W3)
M11 OT = f(ET,W1,W2,W3,W4)

2020-2021 492 314 79 99
guiding principle, we structured the input sequences of the proposed 
SVR model to clearly capture the progressively increasing significance 
of each predictor variable. Subsequently, we conducted a comprehen-
sive analysis of each predictor’s individual contribution to the prediction 
of the overall score. To achieve this objective, we introduced two dis-
tinct categories of predictive modelling schemes within this study.

The first modelling framework developed models that featured only 
W1 as an input variable. Subsequent iterations of the proposed SVR 
model incorporated W1, W2, W3, W5, and ET sequentially, resulting 
in the creation of six distinct SVR models designated as Models M1, M2, 
M3, M4, M5, and M6. In contrast, the second model framework, desig-
nated as Models M7–M11, placed exclusive emphasis on Examination 
Score (ET) as a primary predictor variable with subsequent addition 
of each assignment mark to determine the influence of this sequence 
of inputs on the SVR model. This category began with ET as the sole 
input for Model M7 (i.e., 𝑂𝑇 = 𝑓 (𝐸𝑇 )) gradually incorporating addi-
7

tional predictors W1, W2, W3, and W4 into successive SVR models (i.e., 
𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1), 𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2), 𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3), 
and 𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4)). The specific configurations of 
each SVR model and the respective input combinations are detailed 
in Table 2. This systematic modelling approach aims to elucidate the 
nuanced relationships between the predictor variables and the OT, ul-
timately enhancing both the predictive accuracy and interpretability of 
the developed SVR and benchmark models.

To construct the proposed SVR and the benchmark models, an initial 
step involves normalising all original data. This normalisation alleviates 
the influence of different data magnitudes, ensuring that each variable 
contributes to the model training process proportionately (Ghimire et 
al., 2023b). Following normalisation, the sample data were split into 
an 80:20 ratio, with 80% allocated to training and validation of the 
SVR model, and the remaining 20% reserved for testing. Within the 
training subset, an additional partition set aside 20% specifically for 
validation. Given that the total dataset comprised 492 observations, 314 

data points were designated for model training, 79 data points for val-
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idation, and 99 instances were earmarked as an independent test set to 
cross-validate the performance of the proposed SVR and all benchmark 
models.

For clarity, a normalised mathematical representation is delineated 
in Equation (12), where ‘𝑥’ symbolises the original value of the variable, 
𝑥𝑛𝑜𝑟𝑚 is the normalised value of 𝑥, max(𝑥) and min(𝑥) denote the highest 
and lowest values within the dataset, respectively.

𝑥𝑛𝑜𝑟𝑚 = 𝑥−min(𝑥)
max(𝑥) − min(𝑥)

(12)

where 𝑥 is the vector of values to be scaled, 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the normalised 
value of 𝑥, max(𝑥) and min(𝑥) are the maximum and minimum values 
of that vector, respectively.

Following normalisation, data were fed into various machine learn-
ing models. Optimising these model’s hyperparameters is crucial for 
enhancing their performance, thus mitigating over-fitting and under-
fitting, improving generalisation capability and reducing computational 
time. To address these critical objectives, the present study employs 
Hyperopt, which is a Python-based tool as the hyperparameter optimi-
sation (Hyperopt) tool (Komer et al., 2019). Hyperopt has a sophisti-
cated framework for systematically tuning hyperparameters, ensuring 
that the models are finely calibrated to yield optimal results across di-
verse datasets and scenarios. By leveraging Hyperopt, this study aims 
to develop robust and efficient machine learning models capable of ef-
fectively generalising the unseen data while conserving computational 
resources (Bergstra et al., 2015).

For an outline of the hyperparameters and search range of hy-
perparameters for the various models, including the objective model 
(i.e., SVR) as well as neural network-based models, tree-based mod-
els, ensemble-based models and the boosting-based models, readers 
should refer to Table A.9 and Table A.10. The model training was un-
dertaken on a high-performance computer with 32 GB of RAM and an 
Intel Core i7 processor. All models were meticulously constructed using 
Keras framework version 2.2.4 (Ketkar & Ketkar, 2017), tapping into 
its wide range of functionalities for neural network development. The 
TensorFlow backend version 1.13.1 (TensorFlow, 2018) seamlessly inte-
grated, leveraging its powerful computational capabilities for efficient 
model training. These frameworks collectively formed a robust envi-
ronment, supporting various machine learning tasks. The entire model 
development process occurred within a Python 3.6 environment, lever-
aging the language’s versatility and extensive library ecosystem (Ta-
ble 3).

5.3. Performance evaluation

In this study, a meticulous comparison of the proposed SVR model 
against a suite of benchmark models is made to predict OT by employing 
a judicious blend of visual and comprehensive descriptive statistics of 
model performance. The model evaluation framework categorises these 
metrics into two distinct classes: Class A, where an ideal value should 
be 1 and Class B, where the ideal value should be 0. Class A metrics, 
including the Coefficient of Determination (R2), Nash–Sutcliffe Effi-
ciency (NS), Willmott’s Index of Agreement (WI), Kling-Gupta Efficiency 
(KGE) and Legates and McCabe Index (LM), are utilised to evaluate the 
goodness-of-fit and predictive accuracy of the model.

Through these metrics, we aim to gain insights into the model’s abil-
ity to capture the underlying patterns and variability in data, thereby 
facilitating informed decision-making. Conversely, Class B metrics fo-
cus on quantifying the disparities between predicted and actual val-
ues, providing valuable insights into the model’s predictive precision. 
These metrics encompass the Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Absolute Percentage Bias (APB; %) Relative 
Mean Absolute Error (RMAE; %), and Relative Root Mean Square Error 
(RRMSE; %). The mathematical formulation of these metrics is shown 
8

below (Ghimire et al., 2023b):
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𝑅2 =
∑𝑛

𝑖=1(OT𝑎 − ⟨OT𝑎⟩)(OT𝑝 − ⟨OT𝑝⟩)√∑𝑛

𝑖=1(OT𝑎 − ⟨OT𝑎⟩)2√∑𝑛

𝑖=1(OT𝑝 − ⟨OT𝑝⟩)2 (13)

RMSE =

√√√√1
𝑛

𝑛∑
𝑖=1

(OT𝑝 − OT𝑎)2 (14)

MAE = 1
𝑛

𝑛∑
𝑖=1

|OT𝑝 − OT𝑎| (15)

RRMSE =

√
1
𝑛

∑𝑛

𝑖=1(OT𝑝 − OT𝑎)2⟨OT𝑎⟩ (16)

RMAE = 1
𝑛

𝑛∑
𝑖=1

|OT𝑝 − OT𝑎|
OT𝑝

(17)

WI = 1 −
∑𝑛

𝑖=𝑛(OT𝑎 − OT𝑝)2∑𝑛

𝑖=𝑛(|OT𝑝 − ⟨OT𝑎⟩|+ |OT𝑎 − ⟨OT𝑎⟩|)2 (18)

NS = 1 −
∑𝑛

𝑖=1(OT𝑎 − OT𝑝)2∑𝑛

𝑖=1(OT𝑎 − ⟨OT𝑎⟩)2 (19)

LM = 1 −
∑𝑛

𝑖=1 |OT𝑎 − OT𝑝|∑𝑛

𝑖=1 |OT𝑎 − ⟨OT𝑎⟩| (20)

KGE = 1 −

√
(𝑟− 1)2 +

(⟨OT𝑝⟩⟨OT𝑎⟩ − 1
)2

+
(CV𝑝

CV𝑎

)2
(21)

APB =
∑𝑛

𝑖=1(OT𝑎 − OT𝑝) ∗ 100)∑𝑛

𝑖=1 OT𝑎
, (22)

where 𝑟 is the correlation coefficient, CV is the coefficient of variation, 
OT𝑝 refers to the predicted OT, OT𝑎 is the actual OT , ⟨OT𝑎⟩ is the aver-
age value of the OT𝑎, ⟨OT𝑝⟩ is the average value of the OT𝑝 and finally 
𝑛 is the number of actual values.

This study also adopts the Promoting Percentage (Deo et al., 2022) 
of 𝐾𝐺𝐸 (ΔKGE), and WI (ΔWI) to further compare the various models 
completing models to validate the efficacy of the proposed SVR model 
used in OT prediction.

ΔKGE =
||||KGE1 − KGE2

KGE1

|||| (23)

ΔWI =
||||WI1 − WI2

WI1

|||| (24)

where, KGE1, and WI1 refers to the objective model (i.e., SVR) per-
formance metrics and KGE2, and WI2 refers to the benchmark model 
performance metrics.

5.4. Explainability of the proposed SVR model

In earlier studies on student performance predictions in the USQ 
Technology Demonstrator project (Deo et al., 2020; Nguyen-Huy et al., 
2022; Ahmed et al., 2022), explainability of the machine learning model 
was not explored. Therefore in this study, we have adopted SVR model 
explainability techniques: SHAP (SHapley Additive exPlanations) (Ra-
mon et al., 2020; Ghimire et al., 2024) and LIME (Local Interpretable 
Model-agnostic Explanations) (Dieber & Kirrane, 2020) to provide valu-
able insights into the inner workings of the complex machine learning 
model.

The SHAP method offers a global understanding of the importance 
of features by attributing the contribution of each feature to the pro-
posed SVR model’s output. This method can facilitate a better under-
standing of the SVR model’s overall behaviour (Man & Chan, 2021). 
In contrast, the LIME method offers local interpretability of the SVR 
model by approximating it’s decision boundaries around specific tested 
data instances, thus providing human-understandable explanations for 

the individual model predictions. The present study leverages both the 
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Table 3

The architecture of the Ensemble-based and the Boosting-based models developed to predict TPP7155 (General Science) course students’ overall scores.

Model Hyperparameter Seach range Optimal value

M1 M4 M6 M11

Number of Estimators
hp.choice(‘n_estimators’,

range(50,500,2)),
167.000 173.000 214.000 149.000

Learning rate
hp.uniform(‘learning_rate’,

0.01, 0.1),
0.085 0.034 0.050 0.059

Maximum Depth
hp.choice(‘max_depth’,

range(2,10,1)),
4.000 6.000 7.000 5.000

min_child_
weight

hp.choice(‘min_child_weight’,
range(1,50,1)),

23.000 10.000 12.000 4.000

subsample hp.uniform(‘subsample’,0.5, 1.0), 0.582 0.750 0.604 0.500

colsample_bytree
hp.uniform(‘colsample_

bytree’, 0.6, 1.0)
0.641 0.626 0.811 0.762

Extreme Gradient

Boosting (XGB)

L2 regularization
term

hp.uniform(‘reg_alpha’,;0, 1.0), 0.643 0.116 0.649 0.360

Number of
Estimators

hp.choice(‘n_estimators’,
range(50,500,2)),

94.000 38.000 209.000 142.000

min_child_
weight

hp.uniform(‘min_child_
weight’, 0.001, 0.2),

0.032 0.163 0.103 0.187

min_child_
samples

hp.choice(‘min_child_samples’,
range(5,51,5)),

1.000 1.000 2.000 1.000

lgb_colsample_
bytree

hp.uniform(‘lgb_colsample_
bytree’, 0.6;1.0),

0.960 0.601 0.743 0.818

subsample hp.uniform(‘subsample’;0.5, 1.0), 0.832 0.999 0.988 0.730

Learning rate hp.uniform(‘learning_rate’, 0.01, 0.3), 0.050 0.066 0.107 0.157

Maximum Depth hp.choice(‘max_depth’, range(2,10,1)), 5.000 2.000 7.000 5.000

number of Leaves hp.choice(‘num_leaves’, range(2, 50, 1)), 0.000 42.000 3.000 30.000

Ensemble-Based

Methods

Light Gradient

Boosting (LGB)

L2 regularization
term

hp.uniform(‘reg_alpha’0, 1.0) 0.643 0.765 0.297 0.815

Learning rate
hp.uniform(‘learning_rate’,

0.0001, 0.3),
0.105 0.166 0.235 0.195

Loss
hp.choice

(‘loss’, [‘linear’,
‘square’ ,’exponential’]),

square square exponential linear

AdaBoost

Regressor (ADBR) Number of
Estimators

hp.choice(‘n_estimators’,
range(5,800,2))

10.000 375.000 92.000 20.000

Number of
Estimators

hp.choice(‘n_estimators’,
range(40, 800,20))

240.000 160.000 60.000 80.000

bootstrap True True True True True

Bagging Regressor

(BGR) Estimator Decision Tree Regressor DTR DTR DTR DTR

Number of
Estimators

hp.choice(‘n_estimators’,
range(5,800,2)),

71.000 347.000 713.000 351.000

Learning rate
hp.uniform(‘learning_rate’,

0.0001, 0.3),
0.045 0.060 0.089 0.222

Boosting-Based

Method

Gradient Boosting

Regressor(GBR)
Maximum Depth

hp.choice(‘max_depth’,
range(1,110,1))

1.000 4.000 3.000 1.000
SHAP and the LIME approaches to achieve a comprehensive understand-
ing of the proposed SVR model predictions, which facilitates informed 
decision-making and enhances the trust in such AI systems used within 
the education industry (Muhamedyev et al., 2020).

In summary, the SHAP-based Kernel Explainer is employed for global 
explanation, highlighting the effects of the respective predictors (i.e., 
W1, W2, W3, W4, W5, ET) on the entire model performance in estimat-
ing OT through the SHAP summary and feature importance (i.e., visual) 
plots. Subsequently, the LIME approach explains every instance of the 
tested dataset, providing local explanations of the model. For discussion 
purposes, however, only the explanations for the six instances are pre-
sented including the 1st, 28th, 57th, 72nd, 85th, and 99th instances of 
the test datasets.

6. Results and comparative evaluation of SVR model performance

In this section, the results generated by the proposed SVR model, 
along with comparative counterpart models, are presented in respect to 
their capability to predict overall course score (OT) for grading purposes 
in TPP7155 (General Science) course taught in the Tertiary Preparatory 
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Program at the University of Southern Queensland, Australia.
6.1. Model performance with single assignment marks

We now compare the proposed SVR model with four machine learn-
ing models in the category of Neural Network-Based (ELM), Tree-based 
(ETR), Ensemble-based (XGB) and Boosting-based (GBR) methods. This 
comparison aims to evaluate the models’ accuracy in predicting OT us-
ing any single assignment (i.e., Assignment 1: W1, Assignment 2: W2, 
Assignment 3: W3, Assignment 4: W4 or Assignment 5: W5), or the Ex-
amination Mark (ET) as predictor variables. The model validation is 
then conducted by utilising R2, RMSE, APB, and KGE metrics, which 
are shown in Table 1.

The results indicate a superior predictive capacity of the proposed 
SVR model compared with ELM, XGB, ETR and GBR models when sin-
gle input variables are employed. Specifically, when W1 data are utilised 
to predict OT, we note that the SVR model exhibits the highest R2

and the KGE values whereas it attains the lowest RMSE and APB val-
ues. These values for SVR model are 𝑅𝑀𝑆𝐸 ≈ 8.061, 𝐴𝑃𝐵 ≈ 8.215, 
𝑅2 ≈ 0.467 and 𝐾𝐺𝐸 ≈ 0.483. Regarding the overall contributory influ-
ence of the assignments and the examination marks in predicting OT for 
TPP7155 course, the proposed SVR model demonstrates that W5 results 
in the most significant contribution (𝑅𝑀𝑆𝐸 ≈ 7.7833, 𝐴𝑃𝐵 ≈ 7.642, 

𝑅2 ≈ 0.503, and 𝐾𝐺𝐸 ≈ 0.363) with the smallest contribution originat-
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Table 4

Influence of each predictor variable used to predict the overall score (OT) us-
ing the proposed SVR model vs. ELM, XGB, ETR and GBR for TPP7155 General 
Science course in the model’s testing phase. The optimal model is blue and bold-
faced. [W1 = assignment 1; W2 = assignment 2; W3 = assignment 3; W4 = 
assignment 4; W5 = assignment 5; ET = exam score.

Predictor
variable

Model RMSE 𝑅2 APB KGE

SVR 8.061 0.467 8.215 0.483

ELM 8.393 0.422 8.753 -0.019
XGB 8.532 0.403 8.793 0.130
ETR 8.658 0.385 9.104 -0.211

W1

GBR 8.662 0.384 9.041 -0.014
SVR 7.837 0.496 8.459 0.712

ELM 24.284 -3.839 12.202 -0.245
XGB 8.245 0.442 9.036 0.254
ETR 8.514 0.405 9.418 0.107

W2

GBR 8.363 0.426 9.213 0.371
SVR 8.118 0.459 8.620 0.434

ELM 8.737 0.374 9.561 0.369
XGB 9.125 0.317 9.890 -0.601
ETR 9.038 0.330 9.914 -0.147

W3

GBR 8.744 0.373 9.555 0.257
SVR 7.389 0.552 6.988 0.213

ELM 7.550 0.532 7.014 0.255
XGB 7.451 0.544 7.071 0.285
ETR 7.503 0.538 7.087 0.177

W4

GBR 7.470 0.542 7.090 0.184
SVR 7.783 0.503 7.642 0.363

ELM 7.969 0.479 8.039 0.275
XGB 8.145 0.456 8.336 0.057
ETR 8.273 0.438 8.446 0.025

W5

GBR 8.109 0.461 8.067 0.315
SVR 4.588 0.827 4.535 0.913

ELM 4.846 0.807 4.878 0.715
XGB 4.908 0.802 5.101 0.656
ETR 5.136 0.784 5.208 0.648

ET

GBR 5.004 0.795 5.151 0.763

ing from W3 (𝑅𝑀𝑆𝐸 ≈ 8.118, 𝐴𝑃𝐵 ≈ 8.620, 𝑅2 ≈ 0.459, and 𝐾𝐺𝐸 ≈
0.434).

6.2. Performance with examination mark as predictor

The present results demonstrate that the ET value remains the most 
significant contributor towards predicting OT, yielding an 𝑅𝑀𝑆𝐸 ≈
4.588, 𝐴𝑃𝐵 ≈ 4.535, 𝑅2 ≈ 0.827, and 𝐾𝐺𝐸 ≈ 0.913. To provide deeper 
insights, the individual interaction of examination scores on assignment 
marks has been analysed using partial dependence plots (PDP). The PDP 
illustrate how the predicted outcome of an SVR model changes as a 
function of the two input features while averaging out the effects of all 
other features, as shown in Fig. 3.

It is noteworthy that the PDP plots show the causal relationships 
between ET and the five different assignment scores (W1 to W5) with re-
spect to the model’s predictions for OT. Here, the 𝑥 −𝑎𝑥𝑖𝑠 represents the 
values of ET whereas the 𝑦 − 𝑎𝑥𝑖𝑠 represents the individual assignment 
mark and the 𝑧 − 𝑎𝑥𝑖𝑠 or the Partial Dependence shows the predicted 
outcome (i.e., OT) from the proposed SVR model. In terms of its physical 
explanation, the upward slope in PDP plots indicates a positive relation-
ship between the input features and the predicted outcome from an SVR 
model. It is not surprising to state that the higher examination scores 
and assignment marks are associated with a higher predicted OT while 
a lower mark corresponds to a lower OT (Table 4).

6.3. Effect of combined inputs on predictive accuracy

After analysing the interactions of individual assignment marks and 
examination scores on the OT predictions, we now evaluate the pro-
posed SVR model’s performance based on input combinations listed in 
Table 2, designated as Model M1 to M11. In this analysis, the individual 
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predictor variables such as the assignment marks or the examination 
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scores have purposely been incrementally added to the proposed SVR 
model to predict the overall score.

Fig. 4 is a comparison of the actual and the predicted OT, repre-
sented in terms of the coefficient of determination (R2) for different 
input combinations for Models M1 to M11. Evidently, the proposed SVR 
model (specifically designated as M6 with input features of: W1, W2, 
W3, W4, W5 and ET, as well as M11 with input features of: ET, W1, W2, 
W3 and W4) exhibits the highest accuracy of all the machine learning 
models. Notably, the performance of the proposed SVR models desig-
nated as Model M6 and M11 significantly surpasses that of the Neural 
Network-based, the Tree-based, Ensemble-based and the Boosting-based 
models in terms of the R2 values between the actual and predicted over-
all scores.

To explore this result further, let us consider R2 value for the pro-
posed SVR model with Model M6 input combination, which registered 
an R2 ≈ 0.999 compared with ≈ 0.467, ≈ 0.646, ≈ 0.715, ≈ 0.809, 
≈ 0.861, ≈ 0.827, ≈ 0.877, ≈ 0.930, ≈ 0.945, and ≈ 0.993 for Models 
M1, M2, M3, M4, M5, M7, M8, M9, M10, and M11, respectively. It 
is therefore evident that with the addition of each assignment mark 
as an input variable (in Models M1 to M2 and so forth), the R2 value 
increases steadily reaching its maximum at Model M6 input combina-
tion. Furthermore, the comparison models (Neural Network-based) i.e., 
ELM and DNN with M6 input combination achieved an R2 value of 
≈ 0.999 followed by the comparison model MLP (≈ 0.994), Boosting-
based Model (GBR; ≈ 0.992), Ensemble-based model (XGB; ≈ 0.992), 
Tree-based model (ETR; ≈ 0.979), and the BGR model (≈ 0.878).

Fig. 5 illustrates the RMSE plot comparing the proposed SVR 
model with the Neural Network-based, Tree-based, Ensemble-based, and 
Boosting-based models. Evidently, all models with M6 input combina-
tion exhibit the lowest RMSE. Among these, the proposed SVR model 
recorded the lowest RMSE magnitude with M6 input combination. For 
instance, when comparing Tree-based model with SVR for the M6 input 
combination, the RMSE value for SVR was ≈ 0.305 whereas the models 
DTR, ETR and RFR (Tree-based Models) had RMSE values of ≈ 2.699, 
≈ 1.961, and ≈ 1.588, respectively. Similarly, when compared with the 
Ensemble-based model, the RMSE of ADBR, GBR, and BGR are ≈ 3.051, 
≈ 0.987, and ≈ 3.861, respectively. Additionally, for the Boosting-based 
model, the RMSE is ≈ 1.391 and ≈ 0.994 for LGB and XGB, respectively. 
The Neural Network-based model also generated low RMSE values of 
≈ 0.401, ≈ 0.395, and ≈ 0.862 for ELM, DNN, and MLP, respectively. 
Similarly, when comparing the SVR model with different input com-
binations, the RMSE values were ≈ 8.061, ≈ 6.569, ≈ 5.899, ≈ 4.824, 
≈ 4.112, ≈ 0.305, ≈ 4.588, ≈ 3.866, ≈ 2.928, ≈ 2.588, and ≈ 0.952 for 
M1 through M11, respectively. Notably, the RMSE value decreased by 
332% from M5 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5)); RMSE = 4.112) to 
M11 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4)); RMSE ≈ 0.952) input combina-
tion for SVR. Similarly, from M5 (with all assignment marks) to the M6 
(𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5, 𝐸𝑇 )) input combination, the RMSE

decreased by ≈ 93%.
In accordance with these findings, we conclude that the inclusion of 

the examination mark plays a vital role in predicting OT in TPP7155. 
Based on R2 and RMSE values, the proposed SVR model with the M6 in-
put combination exhibited the highest accuracy in predicting the overall 
score.

6.4. Error analysis: RMSE and RRMSE

Table 5 shows the performance of all models for input combinations 
M1 to M11 using Relative RMSE (RRMSE). Notably, the proposed SVR 
model has achieved the lowest RRMSE of 0.37% for the input combina-
tion M6 compared with 9.91%, 8.20%, 7.36%, 5.87%, 5.04%, 5.67%, 
4.76%, 3.63%, 3.21%, and 1.16% for input combinations M1, M2, M3, 
M4, M5, M7, M8, M9, M10, and M11, respectively. When considering 
only the M6 input combination, the BGR model performed the worst 
with the highest RRMSE(4.72%) followed by ADBR (3.79%) and DTR 

(3.29%). Additionally, the inclusion of the examination mark (ET) as 
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Fig. 3. Interactive effects of the examination (ET) and assignment marks (W1, W2, W3, W4, W5) features on the proposed SVR model prediction of overall scores 
(OT) in TPP7155 (General Science) Course.
an input along with assignment marks W1, W2, W3, W4, and W5 in 
Model M6 significantly improved the RRMSE by 95% compared to M5 
(𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5)). When M6 is compared with M7 (OT 
= f(ET)), the RRMSE shows an increase of 1420% (Fig. 6(e).

It is therefore conclusive that including the assignment marks re-

sults in a gradual decrease in RRMSE values: M8 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1)) 
shows a 1176% increase, M9 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2)) an 870% in-

crease, M10 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3)) a 760% increase, and M11 
(𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4)) a 210% increase. In summary, con-

sidering the RMSE and R2 values, the low RRMSE for M6 indicates that 
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the examination score remains the most significant predictor of overall 
scores. However, the contributions of assignments are also important 
and should not be overlooked.

6.5. Evaluation using MAE and RMAE

Table 6 shows MAE and RMAE to evaluate the predictive perfor-
mance of all machine learning models where MAE is seen to offer a 
clear indication of the average magnitude of the model errors. Unlike 
the 𝑅𝑀𝑆𝐸, the MAE values do not square the errors, meaning that 
it does not excessively penalise the larger errors, thus making it more 
robust to the outliers. Conversely, the RMAE normalises the error by 

a scale of the actual values, which facilitates easier comparison of the 
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Fig. 4. Using the correlation Coefficient of Determination (𝑅2) for a statistical evaluation of the proposed SVR model vs. the Tree-based, Neural Network-based, 
Ensemble-based and Boosting-based algorithms in the testing phase.

Table 5

Comparison of the predictive skill of the proposed SVR model for student’s OT prediction vs. benchmark methods in terms 
of the Relative Root Mean Square Error (RRMSE %).

SVR ELM XGB MLP ETR GBR DNN RFR DTR LGB ADBR

M6 0.37% 0.49% 1.22% 1.06% 1.96% 1.21% 0.48% 1.94% 3.29% 1.70% 3.79%

M1 9.91% 10.40% 10.63% 10.81% 10.79% 10.76% 10.88% 10.90% 10.96% 11.02% 10.76%
M2 8.20% 13.60% 9.05% 9.25% 9.21% 9.18% 9.69% 10.20% 9.32% 9.68% 9.10%
M3 7.36% 13.30% 8.21% 7.84% 8.35% 8.24% 9.19% 9.17% 9.41% 8.40% 8.71%
M4 5.87% 8.40% 5.94% 5.95% 6.48% 6.16% 6.09% 7.87% 8.22% 7.75% 7.16%
M5 5.04% 6.77% 6.00% 6.94% 5.91% 5.28% 5.53% 5.91% 7.44% 5.46% 6.52%
M7 5.67% 6.03% 6.13% 6.75% 6.40% 6.24% 6.29% 7.25% 6.62% 5.97% 5.99%
M8 4.76% 5.73% 5.16% 5.38% 5.29% 5.08% 7.23% 5.77% 6.89% 5.37% 5.92%
M9 3.63% 5.07% 4.25% 3.95% 4.42% 4.15% 5.52% 4.36% 5.87% 4.49% 5.08%
M10 3.21% 3.95% 6.64% 4.06% 4.00% 3.88% 5.86% 4.11% 5.89% 4.11% 4.88%
M11 1.16% 1.25% 1.70% 3.43% 1.91% 1.61% 1.52% 2.11% 3.57% 1.93% 3.96%
model performance across different datasets. Likewise, the RMAE pro-
vides a scale-invariant measure, which ensures that the metric is mean-
ingful regardless of the magnitude of the data values. Both MAE and 
RMAE values close to 0 therefore indicate excellent prediction accu-
racy.

In Table 6, the proposed SVR model is compared against best-
performing models in terms of MAE and RMAE from each category: 
neural network-based (ELM, DNN), tree-based (ETR), ensemble-based 
(XGB), and boosting-based (GBR). The results reveal that the SVR model 
designated as M6 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5, 𝐸𝑇 )), achieves 
the lowest MAE and RMAE values (MAE ≈ 0.268, RMAE ≈ 0.33). 
With the successive addition of assignment marks as an input, the 
SVR model continues to improve in terms of MAE and RMAE. For 
instance, comparing the SVR with input combinations M1 (OT = 
f(W1)), M2 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2)), M3 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3)), M4 
(𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4)), M5 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5)), 
and M6 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5, 𝐸𝑇 )), we note that the MAE
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gets reduced by 22% (M1 to M2), 12% (M2 to M3), 20% (M3 to M4), 
14% (M4 to M5), and 92% (M5 to M6). Furthermore, when compar-
ing the SVR model with M6 input combination to M7 (𝑂𝑇 = 𝑓 (𝐸𝑇 )), 
M8 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1)), M9 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2)), M10 (𝑂𝑇 =
𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3)), and M11 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4)), the 
MAE increased by 13% (M7 to M8), 25% (M8 to M9), 12% (M9 to M10), 
and 67% (M10 to M11). Consistent with earlier results, Table 6 further 
confirms that the proposed SVR model with M6 input combination had 
the most exceptional predictive power compared with the other models 
used currently in predicting the OT in TPP7155.

6.6. Further model validation: LM and NS indices

In the next part of SVR model evaluation, we now adopt the Legates 
and McCabe Index (LM) that measures its performance by comparing 
the average magnitude of absolute errors to the mean OT value of ac-
tual data. Note that LM is bounded by [0, 1] with 1 indicating a perfect 
prediction and 0 indicating a mediocre SVR model. In conjunction with 

LM, we adopt the Nash–Sutcliffe Efficiency (NS) to benchmark the pro-
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Fig. 5. Statistical evaluation of the proposed SVR model for student’s OT prediction against Tree-based, Neural Network-based, Ensemble-based, and Boosting-based 
algorithms in the test phase using Root Mean Square Error (𝑅𝑀𝑆𝐸).

Table 6

Mean Absolute Error (MAE) and Relative MAE (RMAE %) computed between the observed and the predicted OT generated 
by the proposed SVR model compared with the ELM, DNN, XGB, ETR and GBR models.

SVR ELM DNN XGB ETR GBR

MAE RMAE MAE RMAE MAE RMAE MAE RMAE MAE RMAE MAE RMAE

M6 0.268 0.33% 0.31 0.40% 0.311 0.40% 0.706 0.93% 0.973 1.29% 0.643 0.89%
M1 6.683 8.40% 7.063 8.92% 6.928 8.92% 7.057 8.95% 7.305 9.25% 7.278 9.23%
M2 5.418 6.95% 9.161 11.82% 6.328 11.82% 5.976 7.64% 6.248 7.96% 6.194 7.92%
M3 4.77 5.95% 6.374 17.99% 6.101 17.99% 5.57 7.05% 5.676 7.21% 5.519 7.13%
M4 3.832 4.73% 4.491 5.66% 3.982 5.66% 4.037 5.06% 4.366 5.40% 4.077 5.12%
M5 3.297 4.17% 3.839 5.12% 3.714 5.12% 3.996 5.03% 3.816 4.72% 3.516 4.42%
M7 3.668 4.66% 3.921 5.00% 4.087 5.00% 4.083 5.16% 4.176 5.32% 4.128 5.37%
M8 3.198 4.09% 3.511 4.44% 3.906 4.44% 3.387 4.40% 3.62 4.64% 3.393 4.42%
M9 2.387 3.14% 2.891 3.95% 3.177 3.95% 2.734 3.57% 2.839 3.66% 2.751 3.62%
M10 2.109 2.75% 2.466 3.27% 3.678 3.27% 4.295 5.41% 2.68 3.48% 2.584 3.35%
M11 0.701 0.89% 0.765 1.00% 0.972 1.00% 0.981 1.29% 1.087 1.44% 0.982 1.29%
posed SVR model against the other models across a range of model input 
combinations (i.e., M1–M11). We have selected NS index as an improve-
ment over LM as it penalises the larger errors more severely by squaring 
the differences between the predicted and the observed values, mak-
ing it more sensitive to significant deviations and highlighting the areas 
where the model may underperform. In contrast, the LM index, which 
uses absolute differences, is less sensitive to outliers and may underem-
phasise large errors.

As shown in Table 7 for the testing phase, the LM and NS are closely 
aligned, with the highest LM (≈ 1) and NS (≈ 0.97) achieved by the 
proposed SVR model, particularly for Model M6 (with all predictors), 
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compared to M7 (LM≈ 0.49, NS≈ 0.45), M8 (LM≈ 0.58, NS≈ 0.55), M9 
(LM≈ 0.72, NS≈ 0.67), M10 (LM≈ 0.76, NS≈ 0.72), and M11 (LM≈ 0.92, 
NS≈ 0.91).

Fig. 6(a), Fig. 6(b), Fig. 6(c), and Fig. 6(d) show scatterplots compar-
ing the predicted and observed overall scores generated by the proposed 
SVR model and the benchmark models: ELM, ETR, GBR, and XGB. Each 
plot includes the least-squares fit represented by 𝑦 = 𝑚𝑥 + 𝐶 , where 𝑚
= gradient and 𝐶 = y-intercept. A gradient (𝑚) close to 1 and a low 
𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝐶) indicate a strong linear relationship between 𝑦 and 𝑥.

The proposed SVR model (with 𝑦 = 1.00𝑥 + 0.15) using all predic-
tor variables for M6 demonstrates superior performance as its slope is 
within the proximity of 1 and with the smallest 𝑦-intercept. This indi-

cates a more accurate and stronger linear relationship with the actual 
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Fig. 6(a). Scatter plot of the predicted and the actual OT in the testing phase for all machine learning models (M1, M2,...., M11). The least square regression line is 
shown in each sub-panel.

Table 7

Statistical evaluation of the proposed SVR model against the benchmark models for OT prediction in the testing phase using 
the Nash–Sutcliffe coefficient (NS) and the Legates and McCabe’s Index (LM).

SVR ELM DNN XGB ETR GBR

LM NS LM NS LM NS LM NS LM NS LM NS

M6 0.999 0.966 0.978 0.921 0.887 0.928 0.969 0.949 0.929 0.951 0.976 0.952

M1 -0.394 -0.545 -0.158 -0.374 -0.765 -0.52 -0.832 -1.236 -0.171 -0.935 -1.881 -1.339
M2 0.19 -1.384 0.159 0.028 -0.109 -0.037 0.404 -3.464 0.387 0.032 -0.069 -0.001
M3 0.312 0.252 0.21 0.036 0.11 0.23 0.54 0.376 0.507 0.154 0.351 0.491
M4 0.473 0.435 0.521 0.446 0.337 0.478 0.725 0.589 0.789 0.722 0.599 0.736
M5 0.537 0.506 0.505 0.355 0.411 0.551 0.806 0.725 0.793 0.592 0.67 0.801
M7 0.494 0.449 0.568 0.401 0.373 0.436 0.726 0.688 0.803 0.648 0.611 0.696
M8 0.578 0.548 0.529 0.574 0.505 0.573 0.819 0.752 0.703 0.814 0.762 0.816
M9 0.721 0.666 0.659 0.673 0.65 0.677 0.919 0.845 0.855 0.882 0.86 0.893
M10 0.757 0.717 0.593 0.278 0.669 0.703 0.939 0.909 0.84 0.401 0.89 0.914
14

M11 0.922 0.914 0.893 0.887 0.872 0.89 0.992 0.991 0.988 0.983 0.977 0.985
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Fig. 6(b). Scatter plot of the predicted and actual OT in the testing phase for all the models (M1, M2,...., M11) using the Neural Network-based algorithm (ELM). 
The least square regression line is shown in each sub-panel.
OT data. Among the benchmark models, the GBR model (with equation 
𝑦 = 0.97𝑥 + 2.033) ranks first, followed by the ELM model (with equa-
tion 𝑦 = 0.97𝑥 +2.58), the XGB model (with equation 𝑦 = 0.96𝑥 +3.43), 
and the ETR model (with equation 𝑦 = 0.93𝑥 + 6.25), all using all pre-
dictors (M6).

When comparing SVR model with input combinations M6 (𝑂𝑇 =
𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5, 𝐸𝑇 )) and M11 (𝑂𝑇 = 𝑓 (𝐸𝑇 , 𝑊 1, 𝑊 2, 𝑊 3,
𝑊 4)), the gradients are nearly identical with a value of ≈ 1. How-
ever, the 𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 increases from 0.15 to 1.01, emphasising the 
significance of including all student evaluation components in predict-
ing the OT. Therefore, the proposed SVR model with the M6 input 
combination is well-suited for accurately predicting the OT of TP7155 
students.

In subsequent analysis, the frequency distribution of prediction er-
rors (|𝑃𝐸|) produced by SVR model with M6 (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3,
15

𝑊 4, 𝑊 5, 𝐸𝑇 )), M11, and M5 input combinations is compared to bench-
mark methods, as illustrated in Fig. 7(a), Fig. 7(b), and Fig. 7(c), respec-
tively.

Each error bin, displaying the percentage of all tested points at the 
top, has a size of 0.5 (0 ≤ |𝑃𝐸| ≤ 0.5) for the M6 and M11 input combi-
nations and 2.0 (0 ≤ |𝑃𝐸| ≤ 2.0) for the M5 input combination. Notably, 
the OT predictions using the SVR model with the M6 input combination 
(Fig. 7(a)) exhibited the highest frequency of errors within the smallest 
error bracket (0 ≤ |𝑃𝐸| ≤ 0.5), covering 96% of the test data.

In comparison, the ETR, ELM, DNN, GBR, and XGB models recorded 
33%, 88%, 75%, 53%, and 46%, respectively. Moreover, the frequency 
of errors exceeding 0 ≤ |𝑃𝐸| ≤ 1.0 for the SVR model was zero, while 
the ELM, GBR, XGB, and ETR models showed exceedances of 2%, 25%, 
23%, and 34%, respectively. Similarly, the SVR model with the M11 
input combination demonstrated superior performance with 46% of the 
test data falling within the 0 ≤ |𝑃𝐸| ≤ 0.5 error bracket, followed by the 

ELM, GBR, DNN, XGB, and ETR models.
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Fig. 6(c). Scatter plot of the predicted and actual OT in the testing phase for all the models (M1, M2,...., M11) using the Neural Tree-based algorithm (ETR). The 
least square regression line is shown in each sub-panel.
For the SVR model with the M5 input combination, 35% of the errors 
were within the 0 ≤ |𝑃𝐸| ≤ 2.0 range, compared to 34% for the ELM and 
GBR models, 32% for the ETR and DNN models, and 30% for the XGB 
model. As evidenced by Table 6, Table 7 and Fig. 7(a), Fig. 7(b), and 
Fig. 7(c), the SVR model with the M6 input combination generates most 
of its prediction errors within the lowest magnitude band, making it the 
most accurate in predicting the OT.

To further assess the predictive efficacy of the proposed SVR model, 
promoting percentage based on the Willmott’s Index (Δ𝑊 𝐼 ) and the 
Kling Gupta’s Efficiency (Δ𝐾𝐺𝐸 ) are utilised. Table 8 presents a com-
parative examination between the SVR model employing the M6 input 
combination and alternative input combinations. For instance, within 
the M11 input combination, in comparison to the SVR model, the Will-
mott’s Index (WI) and Kling Gupta’s Efficiency (KGE) exhibit reduc-
tions of 2.17% and 2.64%, respectively. Notably, all promotion per-
centage errors are non-negative, indicating that the SVR model utilis-
16

ing the M6 input combination (𝑂𝑇 = 𝑓 (𝑊 1, 𝑊 2, 𝑊 3, 𝑊 4, 𝑊 5, 𝐸𝑇 )) 
is deemed well-suited for predicting the overall scores of TPP7155 stu-
dents.

6.7. Model interpretability

In this phase of our study, we delve into eXplainable Artificial Intel-
ligence (xAI) techniques, employing the SHAP (SHapley Additive exPla-
nations) values analysis to shed light on the predictions derived from 
our SVR Model. In our research, the SVR model emerges as the most 
robust tool for forecasting overall scores in the TPP7155 course. This 
comprehensive analysis allows us to delve into the intricate details of in-
dividual features and their impact on the decision-making process of the 
model, offering profound insights into the determinants shaping overall 
scores.

Through the utilisation of SHAP’s KernelExplainer, our analysis de-
ciphers the predictions made by the SVR model by calculating SHAP 

values for the test dataset, thus revealing insights into feature impor-
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Fig. 6(d). Scatter plot of the predicted and actual OT in the testing phase for all the models (M1, M2,...., M11) using the Neural Ensemble-based algorithm (GBR). 
The least square regression line is shown in each sub-panel.

Table 8

The promoting percentage change in Willmott’s Index (Δ𝑊 𝐼 ) and Kling Gupta’s Efficiency (Δ𝐾𝐺𝐸 ) calculated with respect to the Model M6 
for OT prediction.

SVR ELM DNN XGB ETR GBR

Δ𝑊 𝐼 Δ𝐾𝐺𝐸 Δ𝑊 𝐼 Δ𝐾𝐺𝐸 Δ𝑊 𝐼 Δ𝐾𝐺𝐸 Δ𝑊 𝐼 Δ𝐾𝐺𝐸 Δ𝑊 𝐼 Δ𝐾𝐺𝐸 Δ𝑊 𝐼 Δ𝐾𝐺𝐸
M11 2.17% 2.64% 2.19% 2.36% 2.28% 1.09% 2.21% 1.59% 1.03% 1.31% 0.16% 1.30%
M10 3.44% 5.84% 4.15% 7.40% 6.14% 8.60% 9.64% 6.23% 3.85% 8.05% 3.86% 3.35%
M9 3.89% 8.15% 3.65% 9.19% 3.83% 7.25% 2.47% 9.19% 2.47% 10.76% 2.28% 7.68%
M8 3.76% 19.42% 5.30% 13.77% 7.49% 14.69% 3.95% 43.42% 4.22% 28.47% 3.88% 13.96%
M5 4.17% 21.95% 6.75% 20.31% 4.58% 13.14% 6.81% 13.27% 5.74% 21.59% 4.30% 14.78%
M7 5.53% 22.17% 6.21% 20.05% 5.13% 9.89% 6.43% 20.01% 6.81% 29.47% 6.23% 14.93%
M4 5.87% 27.02% 10.50% 28.46% 5.33% 8.10% 5.78% 32.30% 7.17% 30.23% 5.91% 21.90%
M3 9.33% 30.25% 21.06% 36.03% 11.45% 17.36% 13.27% 55.82% 11.75% 33.42% 10.71% 24.69%
M2 11.90% 34.81% 47.73% 132.68% 13.99% 24.57% 16.04% 53.49% 16.51% 56.78% 16.56% 54.59%
M1 24.30% 90.35% 27.28% 101.88% 23.33% 51.43% 26.58% 86.61% 30.54% 122.67% 29.03% 101.39%
17
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Fig. 6(e). Scatter plot of the predicted and actual OT in the testing phase for all the models (M1, M2,...., M11) using the Boosting-based algorithm (XGB). The least 
square regression line is shown in each sub-panel.
tance and individual predictions on previously unseen data instances. 
These SHAP values serve as crucial metrics of feature importance, il-
lustrating the degree to which each feature contributes, positively or 
negatively, to each individual prediction. This quantification enables a 
nuanced understanding of how each feature influences the model’s pre-
dictive outcomes.

We present two visually generated outputs in Fig. 8 and Fig. 9 to aid 
in the interpretation of model predictions through SHAP values analysis. 
This approach not only enhances the transparency and interpretability 
of the SVR model but also furnishes valuable insights into the underlying 
factors propelling OT predictions within the context of the TPP7155 
course.

The beeswarm plot in Fig. 8 depicts the distribution of SHAP val-
ues for each feature across the dataset. The x-axis position reflects the 
feature’s impact on the model’s output, with features increasing the pre-
diction shown on the right and those decreasing it on the left. The red 
18

and blue colours in the plot represent higher and lower values of the 
OT prediction, respectively. This distribution highlights the variability 
in each feature’s impact.

Fig. 8 clearly shows that ET (Examination Score) is the most sig-
nificant feature, as higher ET values (indicated in red) correspond to 
higher OT (overall score) predictions, suggesting a positive relationship 
between ET and OT. Although the beeswarm plots indicate a positive 
association between OT and assignment marks (W1, W2, W3, W4, W5), 
this correlation might introduce redundancy among these features, re-
ducing their importance in the feature ranking.

The global summary plot in Fig. 9 displays each feature’s mean ab-
solute SHAP values, which measure their overall importance. A higher 
value signifies a greater impact on the model’s predictions. The bars are 
colour-coded and show the mean absolute SHAP value for each feature, 
with a sign (±) indicating the direction of the impact. From Fig. 9, ET 
is identified as the most significant feature, affecting the predicted OT 
by an average of ±4.93. In contrast, W1 is the least informative feature, 

contributing only ±0.64 to the OT prediction.
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Fig. 7(a). Histogram illustrating the frequency (%) of absolute Prediction errors (|𝑃𝐸|) of the best performing algorithm during the test period compared with 
benchmarked models for the prediction of the student OT of the M6 model.
For explanability of the proposed SVR model, we now show the re-
sults of the LIME method to provide an interpretation of the predicted 
instances of the tested datasets at a local level. These results are pro-
vided for six specific test case instances: 𝑖 = 1, 28, 57, 72, 85, and 99. 
Fig. 10 illustrates the bar graphs that depict the contributions of six pre-
dictors to the model predictions for each 𝑖𝑡ℎ instance of tested OT value. 
In these graphs, the red bars indicate negative LIME values, suggesting 
a lower OT prediction, while the green bars indicate positive LIME val-
ues that suggest a higher OT prediction. The summary for each instance 
is also detailed below.

a. 𝑖 = 1

i. ET: When 𝐸𝑇 ≤ 40.50, this condition has a positive influence 
on the SVR model prediction as indicated by the green bar.

ii. In respect to W1 to W5: The conditions for W1, W2, W3, W4, 
and W5 similarly show how these assignment scores influ-
ence the proposed SVR predictions under the specified con-
ditions. For example, 𝑊 2 ≤ 24.00 and 33.00 < 𝑊 4 ≤ 36.00
also contribute positively to influence the prediction of the OT 
whereas the condition 24.00 <𝑊 3 ≤ 26.00 appears to have a 
slight negative influence.
19

b. 𝑖 = 28
i. ET: For the condition 46.00 < 𝐸𝑇 ≤ 52.00, the examination 
score appears to have a negative influence on the SVR model 
predictions, shown by the red bar.

ii. In respect to W1 to W5: 𝑊 4 ≥ 36.00 and 26.00 <𝑊 3 ≤ 28.00
contribute negatively to the prediction. On the contrary, 
8.50 <𝑊 1 ≤ 9.00 has a very slight positive influence.

c. 𝑖 = 57

i. ET: The condition 46.00 <𝐸𝑇 ≤ 52.00 negatively impacts the 
prediction, indicating that higher examination scores within 
this range reduce the prediction value.

ii. In respect to W1 to W5: 𝑊 2 ≤ 28.50, 𝑊 1 ≥ 9.00, and 24.00 <
𝑊 3 ≤ 26.00 have negative impacts, while 28.50 < 𝑊 4 ≤
33.00 shows a slight positive influence.

d. 𝑖 = 72

i. ET: 𝐸𝑇 ≤ 40.50 has a positive impact on the prediction, con-
tributing significantly.

ii. In respect to W1 to W5: 28.50 <𝑊 4 ≤ 33.00 and 𝑊 5 ≤ 9.00
also positively influence the prediction, while 24.00 <𝑊 2 ≤
26.50 and 𝑊 1 ≤ 7.00 show negative influence.
e. 𝑖 = 85
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Fig. 7(b). Histogram illustrating the % frequency of absolute prediction errors (|𝑃𝐸|) of the best performing model during the testing period compared with 
benchmarked models for the prediction of OT of the M11 model.
i. ET: 𝐸𝑇 ≤ 40.50 again shows a strong positive contribution to 
the prediction.

ii. In respect to W1 to W5: All the assignments scores (W1, W2, 
W3, W4, W5) are positively impacting the prediction when 
they meet the specified conditions.

f. 𝑖 = 99

i. ET: The condition 𝐸𝑇 ≥ 52.00 significantly negatively impacts 
the prediction, as indicated by the red bar.

ii. In respect to W1 to W5: 𝑊 2 ≤ 24.00 and 𝑊 1 ≥ 9.00 have 
positive impacts, whereas 11.50 < 𝑊 5 ≤ 13.00 and 24.00 <
𝑊 3 ≤ 26.00 show slight negative contributions.

The results presented underscore the growing necessity for explain-
ability in AI-based models across various domains, driven by regulatory 
demands for capabilities such as traceability, transparency, and inter-
pretability (Holzinger, 2021; Holzinger et al., 2022). In practice, how-
ever, powerful machine learning frameworks often exhibit sensitivity to 
minor variations in input data, making predictive outcomes challeng-
ing to explain. This sensitivity can introduce significant variability in 
results, especially in critical domains that frequently contend with low-
20

quality datasets due to non-ideal, non-independent, and non-identically 
distributed (i.i.d.) data (Holzinger, 2021). Moreover, ensuring AI mod-
els are legally and ethically compliant is essential to foster trust in AI 
systems moving forward (Holzinger et al., 2022).

In this context, enhancing explainability and performance robustness 
in AI models bolsters confidence and reliability, empowering human 
experts with greater control over the AI pipeline. Addressing these crit-
ical concerns, this research integrates trustworthy AI principles into 
the OT prediction framework using powerful model-agnostic xAI tools. 
The newly developed interpretable hybrid SVR model created through 
EDM and xAI tools, equips higher education institutions with consistent, 
transparent, and more accurate predictions of OT. This trustworthy and 
high-performing system holds significant promise as a decision-support 
tool, potentially driving strategic improvements in student retention and 
success rates in the near future.

7. Interpretation of findings and educational implications

This study aimed to assess the predictive accuracy of a hybrid 
TPE-optimised Support Vector Regression (SVR) model to predict fi-
nal academic performance using data from the TPP7155 (General Sci-
ence). Data included the Overall Mark (OT) and scores from written 
assignments (W1, W2, W3, W4, and W5) along with the final exam-

ination mark (ET). Through statistical and visual analyses of the pre-
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Fig. 7(c). Histogram illustrating the frequency (%) of absolute Prediction errors (|𝑃𝐸|) of the best performing algorithm during the test period compared with 
benchmarked models for the prediction of the OT of the M5 model.

Fig. 8. SHAP beeswarm plot displaying the combined view of feature importance and feature impacts on the OT prediction in the dataset with SVR algorithm using 
M6 input combination. Each point on 𝑥 − 𝑎𝑥𝑖𝑠 represents a Shapley value for a feature, while 𝑦 − 𝑎𝑥𝑖𝑠 displays six features arranged by their mean absolute Shapley 
values. The colour gradient from blue to red indicates the feature values, with blue representing low values and red representing high values.
dicted and actual OT values, a hybrid model integrating Tree-structured 
Parzen Estimation (TPE) and Support Vector Regression (SVR) effec-
tively captured the interdependence between predictors and the tar-
get variable. The developed model was meticulously tailored to fit the 
21

specific datasets sourced from the University of Southern Queensland, 
Australia, showcasing its adaptability and effectiveness in educational 
predictive analytics.

The findings indicated that the hybrid SVR model significantly out-
performed traditional predictive models such as linear regression and 

simple machine learning approaches, yielding a high degree of accuracy 
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Fig. 9. The SHAP Global Summary plot shows the mean impact of each input feature (i.e., assessment marks) on the proposed SVR model’s capability for OT prediction 
using the M6 input combination. Features are ranked by their importance. The length of the bar represents the mean absolute SHAP value for each feature, indicating 
its importance. Positive SHAP values indicate a feature’s increasing impact on the model’s prediction, while negative values indicate a decreasing impact.
in predicting final grades. Specifically, the model showed a Mean Abso-
lute Error (𝑀𝐴𝐸) and Relative Mean Absolute Error (𝑅𝑀𝐴𝐸) values 
(𝑀𝐴𝐸 ≈ 0.268, 𝑅𝑀𝐴𝐸 ≈ 0.33), which was lower than most compara-
ble predictive models found in the literature. Examination of prediction 
error distributions highlighted the model’s capability to yield a higher 
frequency of errors within a narrower error range (0 ≤ |𝑃𝐸| ≤ 0.5), cov-
ering 96% of the test data compared to alternative models. The model 
also exhibited a higher Legate’s & McCabe’s Index, a measure of its ro-
bustness and reliability. These results are in comparison to previous 
research by Ahmed et al. (2022) that recorded a Legate’s & McCabe’s 
Index of less than 0.80 when testing a multivariate regression splines 
(MARS) model. These results validate the utility of combining hyperpa-
rameter optimisation (via TPE) with SVR, which allowed for improved 
precision in predicting academic outcomes.

The model’s root-mean-square error (RMSE) and coefficient of de-
termination (R2) highlighted a strong predictive relationship between 
assessment marks (including examination scores and continuous assess-
ments) and the final grade. The simulations revealed that both the exam-
ination and assignments contributed significantly to the OT, with each 
assignment exerting a discernible influence. Examination scores, how-
ever, emerged as the most influential predictor. These findings demon-
strate the practical utility of the proposed hybrid TPE-optimised SVR 
model in educational contexts and aligns with existing research, which 
suggests that early evaluations in higher education significantly impact 
final academic success (Nguyen-Huy et al., 2022).

7.1. Comparison with previous studies

The results of this study align with and extend the work of other 
scholars in the field of academic performance prediction, particularly 
the use of assessments/examinations but with different statistical and 
machine learning models. For instance, Deo et al. (2020) demonstrated 
the value of extreme machine learning models, specifically Support 
Vector Machines (SVM), in predicting academic outcomes. While their 
study utilised a simpler SVM model without optimisation techniques, 
the present research builds on this by introducing TPE optimisation, a 
method that fine-tunes the hyperparameters of the model to improve its 
overall predictive performance. The improvements achieved by the hy-
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brid SVR model in this study show that optimisation techniques like TPE 
can effectively enhance model accuracy compared to traditional meth-
ods.

When compared to Nguyen-Huy et al. (2022), who used regression 
models in educational forecasting, our approach adds value by incorpo-
rating advanced machine learning algorithms. SVR has shown a remark-
able capacity to capture non-linear relationships, which is crucial in the 
context of predicting academic performance, as it allows the model to 
handle complex, multifaceted data. Unlike traditional regression mod-
els, SVR is particularly adept at learning from small datasets, such as the 
one used in this study, which may not have been possible using other 
methods.

In respect to the study of Nguyen-Huy et al. (2022), a direct com-
parison with the current study is impossible as that study has used a 
purely statistical/copula-based model with different performance met-
rics. However, their copulas-based model does provide a significant ad-
vantage over the proposed SVR model by generating a joint distribution 
model or a conditional probability plot showing the probability of an 
examination score, for example, being less than or equal to a threshold 
mark, conditional upon a specific assignment being less than or equal 
to a threshold mark value. Such a model can provide significant in-
sights into key decision-making regarding how each assessment impacts 
a probability-based outcome of overall mark in the course. Therefore, 
our study not only extends previous methodologies but also provides ev-
idence of the long-term potential of optimised machine learning models 
in the context of educational analytics.

7.2. Interpretation of results

To gain insight into the factors influencing the Overall Mark (OT), 
both global and local interpretations of the model were examined using 
Local Interpretable Model-agnostic Explanations (LIME) and SHapley 
Additive exPlanations (SHAP). This analysis clearly showed that Exami-
nation Score (ET) is the primary factor, with higher ET values correlating 
with increased OT predictions, suggesting a positive relationship be-
tween ET and OT. Specifically, ET was identified as the most influential 
feature, impacting the predicted OT by an average of ±4.93, whereas 
Assignment 1 (W1) was found to be the least informative, contributing 

only ±0.64 to the OT prediction.
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Fig. 10. Bar plots representing the LIME scores for the local instances (a) 1 (i.e., first data point in the test phase), (b) 28, (c) 57, (d) 72, (e) 85, and (f) 99 (i.e., last 
or 100 percentile data point) with SVR algorithm for M6. Note: The green bar (i.e., positive LIME score) indicates that the predictor favours a higher predicted OT 
23

and the red bar is when the predictor favours a lower predicted overall score.
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The hybrid model’s high performance is indicative of the predictive 
power of summative assessments, particularly examinations, in deter-
mining overall academic outcomes. The model’s sensitivity to exam 
scores underscores the importance of these evaluations in shaping stu-
dent trajectories. Findings suggest that while formative assessments are 
crucial for providing ongoing feedback and guiding instructional adap-
tations, it is the performance in summative assessments like final exams 
that ultimately correlates most strongly with final academic success in 
this context.

SHAP and LIME analyses of the hybrid model further support these 
findings by highlighting the importance of continuous assessments such 
as assignments, quizzes, and participation. These variables appeared to 
be the second most significant predictors of final academic performance, 
suggesting that ongoing student engagement with course material plays 
a key role in success. SHAP values provided a more granular understand-
ing of how each individual assessment factor influenced the final grade, 
reinforcing the importance of early feedback in identifying students who 
may need additional support.

Additionally, the model’s strong predictive power calls attention to 
the need for early intervention programs in higher education. Early 
identification of at-risk students, based on early assessments, can trig-
ger timely academic support and remediation efforts. This approach 
not only enhances individual student outcomes but also contributes to 
institutional success by reducing drop-out rates and fostering more per-
sonalised learning experiences.

7.3. Practical implications for education

The implications of these findings for educational practice, particu-
larly within preparatory programs serving potentially underprepared or 
previously disadvantaged students, are profound. By implementing pre-
dictive models such as the hybrid TPE-optimised SVR, universities and 
educational institutions can identify factors influencing student success 
and intervene early, long before final grades are assigned. For students in 
enabling programs, who may lack prior academic experience or face ad-
ditional barriers, this proactive approach could be transformative. Early 
in the semester, institutions could use predictive insights to offer tar-
geted support to students at risk of low academic performance, such 
as supplementary tutoring, access to specialised learning resources, or 
mentorship programs designed to build foundational skills and enhance 
engagement.

The ability to predict final grades accurately also brings a more data-
driven approach to academic advising. Advisers could use model in-
sights to guide their interactions with students, prioritising those flagged 
as needing additional support. Rather than relying solely on anecdotal 
or intuitive assessments, advisers could offer customised learning strate-
gies and discuss intervention plans that reflect individual student needs 
and potential risk factors. For students with historically limited access 
to academic guidance, this structured, data-informed approach could 
be especially impactful, creating a safety net that fosters their academic 
confidence and persistence.

Beyond individual support, the findings offer a path to more strate-
gic resource allocation within educational institutions. By identifying 
students most likely to benefit from additional resources, institutions 
could optimise staff time and materials, directing them where they will 
have the greatest impact. This ensures that resources are used effec-
tively and equitably, supporting students who might otherwise struggle 
to access essential academic assistance. In the context of preparatory 
programs, such resource allocation may be crucial in building a more 
inclusive educational environment that proactively bridges gaps in aca-
demic preparedness and promotes long-term student success. Moreover, 
predictive models enable real-time, dynamic monitoring of student per-
formance, a significant improvement over static, end-of-term assess-
ments. Educators can use these real-time insights to continually adjust 
teaching strategies, lesson plans, and curricula, thereby fostering a re-
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sponsive teaching environment that reflects students’ evolving needs.
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7.4. Implications for pedagogy and educational theories

The integration of predictive modelling into educational settings, 
particularly within preparatory programs, complements established 
pedagogical theories aimed at enhancing student-centred learning. Vy-
gotsky’s Zone of Proximal Development (ZPD) suggests that students 
learn best when engaged in tasks that challenge them at an appropriate 
level of competence (Cai et al., 2024). Predictive models can identify 
students who are within or outside their ZPD, empowering educators 
to provide personalised support that aligns with each student’s learning 
needs. For instance, students identified as struggling with early assess-
ments could receive customised guidance and resources to target specific 
areas of weakness, potentially bridging gaps in foundational knowledge.

In addition to personalising support, these predictive insights can 
support the creation of adaptive learning environments, tailoring the 
educational experience to meet diverse student needs. For students in 
preparatory programs, who may face unique challenges due to under-
preparedness, adaptive systems based on models like the SVR can help 
ensure equitable learning opportunities. By analysing various factors, 
such as engagement and prior performance, educators can adjust learn-
ing activities, support, and assessments to create more responsive, in-
clusive learning environments. Early identification of at-risk students 
empowers instructors to intervene proactively, supporting a more eq-
uitable distribution of learning resources and minimising the risk of 
disengagement.

In line with constructivist pedagogy, which values timely, person-
alised feedback (Huang et al., 2024), predictive models enable a forma-
tive assessment approach by flagging students who might benefit from 
targeted feedback before critical summative assessments. This approach 
can improve engagement and encourage active participation, foster-
ing a learning environment where students build on prior knowledge 
and receive support when they need it most. The SVR model’s ability 
to analyse engagement metrics (e.g., interaction frequency with course 
materials) could enable instructors to monitor motivation and intervene 
with engagement-centred strategies when needed (Xia et al., 2022). This 
data-driven approach enables the design of motivational interventions 
that are tailored to individual engagement patterns, helping educators 
reduce disengagement.

The SVR model also aligns with mastery learning principles (Al-
safadi et al., 2023), offering data-driven insights that allow educators 
to gauge when students are ready to progress to more advanced topics. 
Such mastery-based interventions are particularly beneficial for students 
in enabling programs, as they provide ample opportunities to master 
foundational skills before moving forward, fostering a more solid and 
self-paced learning foundation. Additionally, models like the SVR can 
inform curriculum design by analysing student data to suggest adjust-
ments that minimise cognitive overload. Curriculum elements could be 
structured based on common areas where students struggle, ensuring 
content sequences that support comprehension.

From a policy perspective, the SVR model also allows institutions to 
assess the effectiveness of specific interventions. By comparing predicted 
outcomes with actual results post-intervention, educators and adminis-
trators can refine their approaches and evidence-based practices. In sum-
mary, integrating SVR and similar predictive models within prepara-
tory programs could transform educational practice, helping to close 
achievement gaps and ensure that all students, especially those from 
disadvantaged backgrounds, receive the targeted support they need to 
thrive academically.

8. Limitations and future directions

While the proposed explainable hybrid TPE-optimised Support Vec-
tor Regression (SVR) model demonstrated promising results in predict-
ing final marks for the TPP7155 course, there are several limitations 

that should be considered when interpreting the findings.
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8.1. Model limitations

The TPE method’s tendency to struggle with global exploration can 
lead to premature convergence to suboptimal solutions, which could 
hinder its overall effectiveness, especially in larger and more complex 
datasets. The use of Hyperopt’s Tree-structured Parzen Estimator (TPE) 
algorithm for hyperparameter optimisation, although effective in im-
proving model accuracy, has inherent drawbacks. The TPE algorithm 
converges more slowly compared to other optimisation techniques such 
as Bayesian optimisation, leading to longer processing times, partic-
ularly when handling large datasets. Additionally, TPE’s tendency to 
converge prematurely to local optima may hinder its ability to fully 
explore the solution space, potentially limiting the model’s perfor-
mance.

In terms of xAI, both LIME and SHAP were used to explain the mod-
el’s predictions. While LIME provides local explanations, it is sensitive 
to kernel width parameters, potentially producing inconsistent results. 
SHAP offers global feature importance but is computationally expen-
sive and assumes feature independence, which may not always hold. 
Both methods have limitations that must be considered when interpret-
ing model predictions.

Support Vector Regression (SVR) is well-suited for smaller datasets 
but can become less efficient as the dataset size and dimensionality in-
crease. The optimisation process, requiring numerous iterations to fine-
tune accuracy, can be time-intensive and computationally expensive. 
Future research could explore alternative machine learning algorithms 
or hybrid approaches, such as deep learning or ensemble methods, that 
scale more efficiently with larger and more complex datasets. These 
approaches could better capture the intricate patterns of student be-
haviour and learning, providing more nuanced predictions of academic 
success.

8.2. Data limitations and generalisability

A significant limitation of the current study lies in the scope of 
the dataset. The model was developed using data from a single course 
(TPP7155) within a specific institution (University of Southern Queens-
land, Australia) for the 2020-2021 period. While the results are promis-
ing, this narrow focus on one course and academic year restricts the 
generalisability of the findings and the predictive model may perform 
differently across different academic disciplines, institutions, or cultural 
contexts. Therefore, future research should aim to validate the model 
across a wider range of educational contexts, using data from multiple 
academic years and diverse student populations. Key student attributes, 
such as gender, socio-economic status, and family background, which 
are known to influence academic performance, particularly in prepara-
tory learning environments, were excluded. Including such variables 
would provide a more comprehensive understanding of student out-
comes and improve the predictive accuracy of the model.

Another important limitation is the exclusive reliance on assign-
ments and examination marks as the sole predictors of student perfor-
mance. We had five fixed assignments, Assignment 1 (weight = 5%), 
Assignment 2 (weight = 15%), Assignment 3 (weight = 10%), Assign-
ment 4 (weight = 20%), and Assignment 5 (weighted = 5%), besides 
the final examination score (weight = 45%). These assessments collec-
tively contributed to an overall score expressed as a percentage. While 
these assessments provide valuable information, they fail to capture the 
dynamic nature of student engagement throughout the semester. The 
model does not account for changes in student learning behaviours or 
engagement, which may evolve over time and may not adapt effectively 
without retraining. To address this limitation, future research could in-
corporate real-time learning analytics, such as time spent on the Online 
Learning Management System (LMS), participation in group activities, 
or engagement with multimedia resources. Ouyang et al. (2023) high-
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collaborative writing, which could be incorporated into prediction mod-
els. By integrating continuous learning metrics, such as video watch 
time or interaction with discussion forums, the model could better re-
flect ongoing student engagement and its influence on academic success. 
Further research is needed to evaluate how these additional factors be-
yond fixed, quantitative assessments, could improve model accuracy and 
adaptability.

8.3. Model scalability and future directions

Further studies might examine multiple datasets and experiment 
with deep learning models, such as recurrent neural networks, to cap-
italise on advancements in technology and access to larger datasets. 
While this study focused on fixed, quantitative assessments, future re-
search could incorporate diverse data types such as qualitative feedback 
from both instructors and students, including course satisfaction, stu-
dent interactions, such as chat logs, and self-reported data (e.g., study 
habits). A modified methodology, using deep learning and natural lan-
guage processing (NLP) models, such as those proposed by Dann et al. 
(2022), could effectively leverage labelled student feedback before each 
assessment. This approach would not only demonstrate the value of AI 
in analysing student feedback but could also offer insights into how en-
gagement influences academic outcomes. Human-in-the-loop evaluation 
methods, wherein instructors and students assess the model’s predic-
tions throughout the term, could enhance the model’s practical rele-
vance and improve accuracy. Research that combines both quantitative 
and qualitative data will be essential for developing models that are not 
only statistically accurate but also reflect the complexities of real-world 
teaching and learning environments.

The current study focuses solely on a single course, but future re-
search could validate the model across a range of educational contexts. 
For example, adapting the model for undergraduate or postgraduate 
programs, or even diverse disciplines, would test its scalability and ro-
bustness. Exploring the application of the model in various educational 
settings could provide valuable insights into the broader applicability 
of predictive modelling for student success. Additionally, exploring ma-
chine learning techniques such as recurrent neural networks (RNNs) 
and deep learning could improve predictions for outcomes like student 
retention or dropout. These techniques could also be useful for devel-
oping personalised recommendations for students, such as suggesting 
remedial courses or additional support services based on predictive in-
sights.

8.4. Broader applications of the model

While the current study focuses on academic performance, the pre-
dictive model developed could have applications beyond the educa-
tional sector where data mining methods are required for pattern recog-
nition and predictive modelling. Among the applications are the hu-
manities, social sciences, health, psychology, cognitive science, and 
human behaviour, which provide practitioners with tools to analyse 
trends, forecast outcomes, and make decision-making (such as Liao et 
al. (2012); Mia et al. (2024); Qin (2024); Lin and Marques (2024)). Due 
to large datasets compiled from books, articles, and social media, the 
proposed model may also be used to predict cultural shifts in order to an-
ticipate changes in culture, linguistics, or social behaviour over time, or 
to analyse historical events in order to predict political or social revolu-
tions by identifying patterns in past events, understanding their causes, 
and modelling future events.

Similar models have been successfully applied in fields such as 
healthcare, where early indicators (such as symptoms or medical tests) 
are used to predict patient outcomes. By adapting this model to different 
contexts, it could be used to predict the health trajectories of individu-
als based on early diagnostic indicators. The hybrid SVR model could be 

used in social services to predict outcomes such as employment success 
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or social reintegration based on early engagement with support pro-
grams. Using the proposed predictive model in the social mobility space, 
we could determine how social policies, economic conditions, and ed-
ucational opportunities impact social mobility, especially providing a 
framework for reducing inequality and improving opportunities for dis-
advantaged groups in policymaking. The potential for this model to be 
generalised to other domains underscores its versatility and adaptabil-
ity, positioning it as a tool that can be used for a variety of predictive 
tasks.

9. Conclusion

This research underscores the promise of advanced predictive mod-
elling, specifically the TPE-optimised SVR approach, for predicting stu-
dent success. By accurately capturing the impact of key assessment 
variables, this model offers practical, actionable insights for educa-
tional institutions aiming to support student success, particularly within 
preparatory programs where students often face significant challenges 
in academic readiness and retention. The findings highlight both the 
potential of such models to enhance student support and the need for 
continuous refinement in model generalisability and interpretability to 
meet the demands of increasingly complex educational data.

The findings of this research highlight several practical implications. 
First, by identifying specific areas where students struggle, educational 
institutions can refine preparatory programs to address students’ unique 
needs, reducing their risk of early withdrawal. Furthermore, the positive 
outcomes observed in this intervention emphasise the value of regular, 
data-driven evaluations of support programs. Such evaluations enable 
continuous refinement, ensuring that support remains relevant and re-
sponsive to changing student profiles and needs.

Considering the unique challenges facing preparatory students, fu-
ture research should continue to explore and evaluate interventions 
aimed at enhancing academic readiness. These efforts are vital in build-
ing a supportive framework that can alleviate the barriers to success 
faced by preparatory students, ultimately improving retention rates and 
contributing to their long-term academic success. Future research ex-
panding on these methods across diverse contexts could further ad-
vance our understanding of the relationship between predictive analyt-
ics and educational outcomes, facilitating a more equitable and respon-
sive learning environment.
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Appendix A

Tables A.9 and A.10 show the hyperparameters and search range 
of hyperparameters for various models, including the objective model 
(i.e., SVR) as well as neural network-based models, tree-based models, 
ensemble-based models and the boosting-based models. It is important 
to note that, for brevity, only the optimal parameters for Models M1, M4, 
M6, and M11 are presented. These tables also serve as a reference for 
understanding the hyperparameter optimisation and the specific config-
urations used for each model in the study.
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Table A.9

The architecture of the proposed SVR model, including the Neural Network and the tree-based models developed for predicting TPP7155 General Science course 
overall score. Optimal hyperparameter for 4 models with different input combinations ((M1, M4, M6 and M11) are also shown. Note: 𝑅𝑒𝐿𝑈 = Rectified Linear 
Units; 𝐴𝑑𝑎𝑚 = Adaptive Moment Estimation, 𝑔𝑏𝑑𝑡 = traditional Gradient Boosting Decision Tree, 𝑟𝑏𝑓 = Radial Basis Function, 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 = Logistic Sigmoid Function, 
𝑡𝑎𝑛ℎ = Hyperbolic Tangent Activation Function, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑=sigmoid Activation Function, ℎ𝑝.𝑐ℎ𝑜𝑖𝑐𝑒= Selects a value from a list of discrete options, ℎ𝑝.𝑢𝑛𝑖𝑓𝑜𝑟𝑚= Samples 
a continuous value uniformly between two bounds, ℎ𝑝.𝑞𝑢𝑛𝑖𝑓𝑜𝑟𝑚= Samples a continuous value uniformly between two bounds and then quantizes it to a discrete step size, 
ℎ𝑝.𝑙𝑜𝑔𝑢𝑛𝑖𝑓𝑜𝑟𝑚= Samples a value uniformly in log-space (useful for parameters spanning several orders of magnitude, ℎ𝑝.𝑟𝑎𝑛𝑑𝑖𝑛𝑡= Samples an integer uniformly between 
two bounds (inclusive lower bound, exclusive upper bound, ℎ𝑝.𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙= Samples a value from a log-normal distribution and ℎ𝑝.𝑠𝑐𝑜𝑝𝑒= Defines parameter expressions 
using Python’s standard scope, allowing for complex parameter transformations and dependencies.

Model Hyperparameter Search range Optimal value

M1 M4 M6 M11

Kernel
hp.choice(’kernel’,

[’rbf’]),
rbf rbf rbf rbf

C
hp.loguniform
(’C’, -40,10 ),

551.745 321.103 84485.910 3229.949

gamma
hp.loguniform(’gamma’,

-40,10),
4.223 0.148 0.000 0.004

Objective Model
Support Vector

Regression (SVR)

epsilon
hp.quniform(’epsilon’,

1e-5,1e-1,1e-1),
0.100 0.100 0.100 0.100

Hiddden Layer
Size

50 + hp.randint(
’hidden_layer_sizes’,

100),
37.000 99.000 41.000 26.000

Activation
hp.choice(’activation’,

[’tanh’, ’relu’,’logistic’]),
relu relu relu relu

Solver hp.choice(’solver’, [’adam’]), Adam Adam Adam Adam

L2 regularization
term

hp.uniform(’alpha’, 0.05, 1.0), 0.129 0.648 0.920 0.133Multi-layer

Perceptron (MLP)

Learning rate
hp.uniform(

’learning_rate_init’,
0.01, 0.1)

0.074 0.051 0.023 0.021

Extreme Learning

Machine (ELM)
Hiddden Layer Size

hp.choice(
’num_hidden_units’,
np.arange(20,500,2,

dtype=int)

20.000 22.000 54.000 20.000

Activation
hp.choice(’num_input_nodes’,
[’sigmoid’,’hardlimit’,’fourier’]

Sigmoid Sigmoid Sigmoid Sigmoid

Dropout rate hp.uniform(’rate’,0.0001,0.3), 0.042 0.172 0.101 0.190

Dense Unit
scope.int(hp.quniform

(’units’,10,100,5)),
20.000 90.000 95.000 80.000

Batch Size
scope.int(hp.quniform

(’batch_size’,20,200,20)),
20.000 20.000 40.000 80.000

Neural Network-

Based Models

Deep Neural

Network (DNN)

Number of Layers
scope.int(hp.quniform

(’layers’,1,3,1))
2.000 3.000 3.000 3.000

Decision

Tree (DT)
Maximum Depth

hp.choice(’max_depth’,
range(1,200,1))

2.000 6.000 192.000 138.000

Number of Estimators
hp.choice(

’n_estimators’,
range(5,800,2)),

34.000 134.000 22.000 92.000

Extra Tree

Regressor (ETR) Maximum Depth
hp.choice(’max_depth’,

range(1,110,1))
3.000 7.000 16.000 22.000

Nmber of Estimators
hp.choice(

’n_estimators’,
range(5,800,2)),

150.000 3.000 23.000 108.000

Maximum Depth
hp.choice(’max_depth’,

range(1,110,1)),
104.000 38.000 19.000 100.000

Tree- Based

Models
Random Forest

Regressor (RFR)
Minimm Sample Leaf

hp.choice(’
min_samples_leaf’,
range(1,100,1)),

21.000 2.000 0.000 0.000
Chesters, J., & Watson, L. (2013). Understanding the persistence of inequality in higher 
education: Evidence from Australia. Journal of Education Policy, 28(2), 198–215.

Chesters, J., Rutter, K., Nelson, K., & Watson, L. (2018). Alternative pathways into univer-
sity: Are tertiary preparation programs a viable option?. The Australian Universities’ 
Review, 60(1), 35–44.

Cooper, N., Ellis, B., & Sawyer, J. (2000). Expanded future opportunities provided by a 
bridging course at a regional university campus. Ph.D. thesis. Queensland University 
of Technology.

Dann, C., Redmond, P., Fanshawe, M., Brown, A., Getenet, S., Shaik, T., Tao, X., Galligan, 
L., & Li, Y. (2022). Making sense of student feedback and engagement using artificial 
intelligence. Australasian Journal of Educational Technology.

de Oliveira, R. S., Reis Jr, A. S., & Sperandio Nascimento, E. G. (2022). Predicting the 
number of days in court cases using artificial intelligence. PLoS ONE, 17(5), Arti-
cle e0269008.

del Pozo-Bueno, D., Kepaptsoglou, D., Peiró, F., & Estradé, S. (2023). Comparative of ma-
chine learning classification strategies for electron energy loss spectroscopy: Support 
27

vector machines and artificial neural networks. Ultramicroscopy, 253, Article 113828.
Deng, Y., Zhu, Z., Shen, Z., Wang, Y., & Xu, Y. (2023). An online forecasting method of 
remaining useful life of lithium-ion batteries based on tpe-svr. Applied Mathematics, 
Modeling and Computer Simulation, 100–109.

Deo, R. C., Ghimire, S., Downs, N. J., & Raj, N. (2018). Optimization of windspeed predic-
tion using an artificial neural network compared with a genetic programming model.
In Handbook of research on predictive modeling and optimization methods in science and 
engineering (pp. 328–359). IGI Global.

Deo, R. C., Yaseen, Z. M., Al-Ansari, N., Nguyen-Huy, T., Langlands, T. A. M., & Galligan, L. 
(2020). Modern artificial intelligence model development for undergraduate student 
performance prediction: An investigation on engineering mathematics courses. IEEE 
Access, 8, 136697–136724.

Deo, R. C., Grant, R. H., Webb, A., Ghimire, S., Igoe, D. P., Downs, N. J., Al-Musaylh, 
M. S., Parisi, A. V., & Soar, J. (2022). Forecasting solar photosynthetic photon flux 
density under cloud cover effects: Novel predictive model using convolutional neural 
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Table A.10

The architecture of the Ensemble-based and the Boosting-based models developed to predict TPP7155 (General Science) course students’ overall scores.

Model Hyperparameter Seach Range Optimal Value

M1 M4 M6 M11

Number of Estimators
hp.choice(’n_estimators’,

range(50,500,2)),
167.000 173.000 214.000 149.000

Learning rate
hp.uniform(’learning_rate’,

0.01, 0.1),
0.085 0.034 0.050 0.059

Maximum Depth
hp.choice(’max_depth’,

range(2,10,1)),
4.000 6.000 7.000 5.000

min_child_
weight

hp.choice(’min_child_weight’,
range(1,50,1)),

23.000 10.000 12.000 4.000

subsample hp.uniform(’subsample’,0.5, 1.0), 0.582 0.750 0.604 0.500

colsample_bytree
hp.uniform(’colsample_

bytree’, 0.6, 1.0)
0.641 0.626 0.811 0.762

Extreme Gradient

Boosting (XGB)

L2 regularization
term

hp.uniform(’reg_alpha’,;0, 1.0), 0.643 0.116 0.649 0.360

Number of
Estimators

hp.choice(’n_estimators’,
range(50,500,2)),

94.000 38.000 209.000 142.000

min_child_
weight

hp.uniform(’min_child_
weight’, 0.001, 0.2),

0.032 0.163 0.103 0.187

min_child_
samples

hp.choice(’min_child_samples’,
range(5,51,5)),

1.000 1.000 2.000 1.000

lgb_colsample_
bytree

hp.uniform(’lgb_colsample_
bytree’, 0.6;1.0),

0.960 0.601 0.743 0.818

subsample hp.uniform(’subsample’;0.5, 1.0), 0.832 0.999 0.988 0.730

Learning rate hp.uniform(’learning_rate’, 0.01, 0.3), 0.050 0.066 0.107 0.157

Maximum Depth hp.choice(’max_depth’, range(2,10,1)), 5.000 2.000 7.000 5.000

number of Leaves hp.choice(’num_leaves’, range(2, 50, 1)), 0.000 42.000 3.000 30.000

Ensemble-Based

Methods

Light Gradient

Boosting (LGB)

L2 regularization
term

hp.uniform(’reg_alpha’0, 1.0) 0.643 0.765 0.297 0.815

Learning rate
hp.uniform(’learning_rate’,

0.0001, 0.3),
0.105 0.166 0.235 0.195

Loss
hp.choice

(’loss’, [’linear’,
’square’ ,’exponential’]),

square square exponential linear

AdaBoost

Regressor (ADBR) Number of
Estimators

hp.choice(’n_estimators’,
range(5,800,2))

10.000 375.000 92.000 20.000

Number of
Estimators

hp.choice(’n_estimators’,
range(40, 800,20))

240.000 160.000 60.000 80.000

bootstrap True True True True True

Bagging Regressor

(BGR) Estimator Decision Tree Regressor DTR DTR DTR DTR

Number of
Estimators

hp.choice(’n_estimators’,
range(5,800,2)),

71.000 347.000 713.000 351.000

Learning rate
hp.uniform(’learning_rate’,

0.0001, 0.3),
0.045 0.060 0.089 0.222

Boosting-Based

Method

Gradient Boosting

Regressor(GBR)
Maximum Depth

hp.choice(’max_depth’,
range(1,110,1))

1.000 4.000 3.000 1.000
Dewi, K., & Widiastuti, N. (2020). Support vector regression for gpa prediction. IOP conference 
series: Materials science and engineering: Vol. 879. IOP Publishing (p. 012112).
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of lime. arXiv preprint. arXiv :2012 .00093.
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Intelligence, 34(12), 941–955.
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(p. 287).
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Elsayed, S., Thyssens, D., Rashed, A., Jomaa, H. S., & Schmidt-Thieme, L. (2021). Do we 
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2101 .02118.
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