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Abstract 

A computer model was developed to employ runoff data in the calculation of the infiltration parameters 

of the modified Kostiakov equation. The model (IPARM) uses a simple volume balance approach to 

estimate the parameters from commonly collected field data. Several data sets have been used to verify 

the procedure. Infiltration parameters were calculated using both advance and runoff data combined 

and advance data alone. Simulations of each example using SIRMOD were compared to the measured 

data to identify the possible benefits of the procedure. The inclusion of runoff did not compromise the 

ability to reproduce the advance curve however the simulations are more capable of reproducing the 

measured runoff rates and volumes and therefore offer better estimations of the total volume applied to 

the soil (in one case a reduction in error of the total infiltration from 22% to 1%). This procedure will 

be of most benefit where the infiltration parameters are expected to represent soil hydraulic 

characteristics for times greater than the completion of the advance phase. Further analysis has shown 

that the infiltration parameters are more sensitive to runoff than the advance highlighting the 

requirement for accurate field measurement and a weighting factor between the advance and runoff 

errors. 

 

Surface irrigation; Infiltration; Runoff; Optimisation; Simulation; IPARM; 

Kostiakov; Volume balance 

 

Introduction 

Surface irrigation is the oldest yet still the most common form of irrigation throughout 

the world although it traditionally suffers from many problems such as low efficiency 

and low uniformity. It is possible to improve the performance of most surface 
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irrigation systems through the implementation of optimal management practices such 

as selection of correct inflow rates and cut-off times. Identification of the correct 

management requires the study of the complex interaction between irrigation water 

and the agricultural soil. Therefore it is fair to infer that a significant obstacle in the 

path of improving irrigation performance is the difficulty of estimating the infiltration 

function (Elliott et al., 1983). 

  

A common assumption is that data collected during the advance stage provides 

sufficient information to determine the hydraulic behaviour of a soil. Two such 

methods in common use are the two-point method (Elliott and Walker, 1982) and the 

INFILT optimisation (McClymont and Smith, 1996). Both approaches are based on 

the simple yet robust combination of the modified Kostiakov equation and the volume 

balance model. 

 

The flaw of such infiltration from advance schemes is that the soil behaviour may 

change during the irrigation. Large variability is often noted between the infiltration 

functions in the same field, which is more noticeable where the water reaches the end 

of the field early compared to the total inflow time (Scaloppi et al., 1995). 

Simulations using the estimated infiltration characteristic often provide a good fit to 

the advance data but commonly result in a poor reproduction of the run-off and 

recession curves thereby indicating the inadequacy of the infiltration function. It is 

more beneficial to gain precise knowledge of the total infiltrated volume than just 

providing an accurate reproduction of the advance data.  

 

Variations in the inflow rate often occur in the early stages of an irrigation event. The 

volume balance equations usually employ a “step inflow” assumption; that is, the 

inflow is assumed to reach its final steady rate immediately. Techniques based on 

advance data alone can be adversely affected by any initial variation of inflow rates 

(Renault and Wallender, 1996). In most cases any initial inflow variation has little 

impact on the run-off from the tail end of the field. 

 

Previous studies have indicated the benefits of including the run-off phase in the 

optimisation. Scaloppi et al., (1995) deduced that it provides a better fit to measured 

data compared to parameters based on advance or run-off data alone. Also infiltration 
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parameters based entirely on the advance phase are more sensitive to errors in the 

estimation of surface storage volumes (Renault and Wallender, 1997). 

 

 

The multilevel calibration technique (Walker, 2005) is one recent example of such a 

procedure. It uses the advance time, runoff hydrograph and recession time to calculate 

the infiltration parameters and the value of Manning n. The multilevel approach 

provides a closer fit to the runoff curve than the two point method; however it lacks 

the same capacity to predict the advance trajectory. The requirement for recession 

data may be a problem, often water does not drain freely from the field following the 

conclusion of the irrigation.  

 

 

The aim of this paper is to present a simplified optimisation scheme that calculates 

infiltration parameters based on both the advance and storage phases of furrow 

irrigation. The proposed technique gives improved estimates of the final infiltration 

rate over those techniques based on the advance only, without the requirement for the 

irrigation to last long enough to reach a steady run-off rate. Such a technique should 

provide an infiltration function that is applicable for longer times, that is, for a larger 

portion of the irrigation time.  

 

Model Development 

The volume balance equation (law of conservation of mass) can be used to describe 

the flow of water longitudinally down the furrow, including the infiltration of water 

into the soil. To represent the storage phase a run-off term is added to the volume 

balance equation of the two-point method: 

  (1) RSIO VVVtQ ++=

where QO is the steady inflow rate (m3/min), VI is the volume infiltrated, VS is the 

volume temporarily stored on the soil surface, VR is the volume of run-off, and t is the 

time (min). 

The modified Kostiakov equation yields the cumulative infiltrated volume as a 

function of time: 
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  (2)

  

tfktZ o
a +=

where Z is the cumulative infiltration (m3/m), a and k are fitted constants, fo is the 

steady infiltration rate (m3/min per m length) and t is the period of time (min) that 

water is ponded on the soil surface (Walker and Skogerboe, 1987). The infiltrated 

volume in (1) is determined by integration of equation (2) over the wetted length of 

the field: 

  (3) xtfktV oz
a

zI )( 21 σσ +=

where x is the length of the field submerged and σz1 and σz2 are subsurface shape 

factors. During the advance phase they are defined (Elliott and Walker, 1982) 

(assuming a power curve advance function) as: 
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where r is the exponent in the power curve advance function: 

  (6) rptx =

The constants p and r are selected so that the function best matches the advance data 

(performed by least squares). 

 

Following completion of the advance phase the values of the shape factors change; σz1 

is represented by an incomplete gamma function that is approximated by a binomial 

expression (Scaloppi et al., 1995): 
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and: 
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where λ is the ratio of the current time to the complete advance time; consequently 

both sub-surface shape factors are functions of time. 

 

The surface storage portion of the volume balance is difficult to measure and 

therefore is usually estimated. One common method is to assume that the average 
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cross sectional area of flow is found by multiplying the upstream cross sectional area 

Ao by a constant surface shape factor (represented by σy) typically assumed to have a 

value of 0.77 (McClymont and Smith, 1996), giving: 

 xAV oyS σ=  (9) 

Once the storage phase commences the surface shape factor becomes a function of 

time that approaches unity. Scallopi et al. (1995) utilized a function that gives the 

flow depth down the furrow during the advance phase: 
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where y is the flow depth, yo is the upstream flow depth, s is the distance from the 

upstream end, x is the length of the advance profile at the particular time, and β is a 

curvature constant. A value for β of 0.25 results in a σy of approx. 0.77 for most 

furrow geometries.  

 

From this equation an expression for the surface shape factor of the storage phase σys 

can be developed for any time during the storage phase: 
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where σy is the shape factor for the advance phase, L is the length of the field and Xt is 

an imaginary advance distance for the particular time, assuming that the advance can 

continue unimpeded past the end of the furrow (fig 1). This imaginary distance Xt is 

calculated from the volume balance equation of the advance phase.  

 

 

x=L Xt x = 0 

Y0 Volume

 
Figure 1 Calculating the surface storage during the storage phase 

 

In this case the volume stored in the furrow is: 

 LAV oysS σ=  (12) 
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The cross sectional area Ao may be measured, predicted from the inflow using the 

Manning equation, or calculated from a measured depth of flow.  In the latter case the 

furrow geometry is presented as a power curve with provision for a flat bottom: 

  (13) m
B cyWW +=

where W is the surface width of the flow, WB is the bottom width and y is the flow 

depth. The parameters c and m are fitted by the model from measurements of the 

bottom, middle and top widths and maximum height of the furrow. Flow area is then 

simply calculated by integrating the flow width over the flow depth. 
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As well as the measured advance (distances and times), the model requires 

measurements of the run-off volumes at various times during the storage phase. In 

field trials it is usual to measure the run-off hydrograph (run-off rate). The run-off 

volume at any particular time is calculated by the trapezoidal rule, assuming that the 

run-off hydrograph is linear between each run-off measurement. 

 

The model attempts to minimize the difference between: (i) the calculated and 

measured advance distances during the advance phase, and (ii) the calculated and 

measured run-off volumes during the storage phase, by incrementing the parameters 

of the modified Kostiakov equation.  The algorithms for each phase are: 
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where SSE is the standard square error, xi, ti and VRi are the measured advance 

distance, time and run-off volumes, respectively, Na is the number of advance points, 

and Nr is the number of run-off volumes. Finally, the objective function is formed by 

non-dimensionalising and summing the advance and run-off errors, weighted by a 

predetermined factor.  
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The weighting factor, w is included to enable the user to easily change the relative 

sensitivity of the objective function to the errors of the advance distance or runoff 

volume.  

 

This objective function can also be expressed in terms of errors in both advance and 

runoff time. This results in parameter values very similar to those from equation 17 

but requires further iterative computations as some of the terms in the model such as 

the subsurface shape factors (equations 7 and 8) are time dependant. 

 

The optimisation scheme is based on the technique introduced by McClymont and 

Smith (1996); each of the three parameters (a, k and fo) is incremented individually 

until the error reduces no further. Following this the parameters are incremented in the 

same direction as before but as a group until the error again cannot be reduced further. 

These two steps are repeated until the objective function is not improved by either the 

individual or group search. Now the step size is reduced and the whole process 

repeats.  

 

During the design process it was noticed that occasionally the program jumped to the 

next smallest step size too quickly or remained incrementing at a particular step size 

for a long period of time. To overcome these problems the optimisation increases the 

group step size each time the program loops back to the individual parameter search. 

 

The initial step sizes for the parameter optimisation are selected based on maximum 

stability combined with minimum execution time. The initial step sizes can be 

changed but experimentation has found 0.01, 0.0001 and 0.00001 for the step sizes of 

a, k and f0 respectively work with most data sets. 

 

Comprehensive tests were carried out to determine the sensitivity of the model to 

various inputs. These showed that the model is not significantly sensitive to furrow 

geometry but is influenced by other inputs such as the Manning constant.  

 

Convergence can be compromised by the selection of improper starting estimates. 

This is overcome by the inclusion of an algorithm to perform an initial rough 
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parameter search. Also, limits have been included to ensure that the parameters do not 

reach unrealistic values (for example all three parameters are kept positive). 

 

The model has been coded in C++ to create an executable program (IPARM); once it 

is loaded the user is required to enter input data. 

 

The model requires a number of input measurements. Firstly the advance data in the 

form of distances and corresponding times, the technique requires a minimum of two 

advance points. Secondly the run-off data is made up of run-off rates (in l/s) measured 

at various times during the storage phase (the model is not valid during the depletion 

and recession phases). Other inputs include field slope, Manning n or upstream flow 

depth, inflow rate and the field length. 

 

Model Verification 

Trials of the model have been carried out using a number of data sets, six of which 

(Table 1) have been selected for discussion. The selected irrigations cover a wide 

range of soil types, flow rates and irrigation durations. 

 
Table 1: Comparing the selected data sets 

Name
Furrow length 

(metres)
Advance time 

(minutes)
Inflow Time 
(minutes)

Cut off time 
(minutes)

Inflow   
(L/s)

Benson 625 199 705 705 0.787
Printz 350 120.5 173 173 3.424
Downs 1 565 424 605 605 3.422
Downs 2 565 520.5 605 605 3.675
Brazil 200 128 300 300 1.270
Merkley 225 38.5 67.2 67.2 2.670

 
 

The Benson and Printz trials were carried out in Colorado on clay loam and sandy 

loam soils, respectively (Walker, 2005). The Benson case study is an example where 

the advance phase of the irrigation is relatively short compared to the storage phase. 

 

The two Downs case studies represent field measurements from neighboring furrows 

in the same irrigation on cracking clay soil at Macalister, Darling Downs, Australia 



9 

(Dalton et al., 2001). The two data sets are titled Downs1 (Irrigation 2 furrow 3) and 

Downs2 (Irrigation 2 furrow 2). 

 

The final two data sets, Brazil and Merkley, were sourced from Scaloppi et al. (1995). 

Both of these, in particular the Merkley trial are typical examples of where the 

advance data does not cover an adequate time to enable the accurate calculation of the 

infiltration function from the advance data alone. 

 

Infiltration parameters were calculated for each irrigation using the maximum 

available number of both run-off and advance points for each data set. The 

optimisation was performed with equal weighting on both the advance and storage 

phases (see equation 17). To identify the improvement offered by of the proposed 

technique, the infiltration parameters were also calculated from advance data alone, 

with results similar to those produced by INFILT (McClymont and Smith, 1996). 

Values for the upstream flow area were calculated from estimates of Manning n and 

the furrow geometry. 

 

The surface irrigation simulation model SIRMOD (Walker 1999) was then used to 

simulate the irrigation events using the different sets of infiltration parameters. In 

each case the values for a, k and fo were entered into the model and the value of the 

Manning n was adjusted to cause the model to predict the end of the advance phase 

correctly. All simulations were performed by SIRMOD II using the full 

hydrodynamic model option. SIRMOD produces advance curves and run-off 

hydrographs that can be compared with the measured data. Other outputs include the 

total infiltration and total outflow. 

 

Results and Discussion 

Model Performance 

The IPARM model was able to calculate infiltration functions for all of the case 

studies (Table 2). The values of the individual parameters a, k and fo vary 

considerably from those calculated using the advance only.  However, despite these 
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differences, the cumulative infiltration functions (fig 2.a-f) have similar shapes within 

each trial. In most cases the two infiltration curves indicate similar infiltrated volumes 

at times less than the end of the advance phase, in fact the curves cross at a time close 

to the advance time. The greatest difference between the curves is seen after the end 

of the advance phase where after the two curves diverge substantially. This difference 

or error will continue to increase if the curves are extrapolated to greater times.  This 

has enormous implications if the infiltration parameters are to be used in the 

simulation or management of an irrigation at times greater than the advance time. 

 
Table 2: Estimated Infiltration Parameters 

a k f0
Advance 0 0.00163 0.000070

Advance + Runoff 0.4553 0.00058 0.000041
Advance 0 0.02624 0.000372

Advance + Runoff 0.0960 0.01539 0.000477
Advance 0 0.04731 0.000320

Advance + Runoff 0.2932 0.01889 0.000149
Advance 0 0.09316 0.000275

Advance + Runoff 0.1673 0.05037 0.000176
Advance 0.6831 0.00212 0.000000

Advance + Runoff 0.3354 0.00463 0.000263
Advance 0.5449 0.00284 0.000000

Advance + Runoff 0.2890 0.00264 0.000402

Trial Data Kostiakov Parameters

Benson

Merkley

Printz

Downs 1

Downs 2

Brazil

 
 

For a number of the trials the value of a is reduced to zero when using the advance 

data only (Table 2). In some cases this may be a limitation of that approach, but in 

some instances, such as Downs 1 and 2, it may simply be reflecting the cracking 

nature of the soil.  In those cases IPARM also returns very low values for a. 
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 Figure 2 a – f Infiltration functions estimated by using either advance or advance and runoff data. 



For each trial both sets of infiltration parameters resulted in similar predictions of the 

advance trajectories. A calibration of SIRMOD for each parameter set was performed by 

adjusting the value of Manning n. The resulting n values ranged between 0.016 and 0.05 

reflecting realistic values. In each example the Manning n in SIRMOD more closely 

reflected the assumed value for the parameter optimisation where runoff data was used. 

The example in fig 3 demonstrates the typical behaviour found for all data sets studied. 

That is the inclusion of run-off data in the calculation of the infiltration parameters does 

not compromise the ability of the simulations to reproduce the advance data.  
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Figure 3 Comparing the measured advance curve of the Benson data with simulated advance curves. 

 

Any differences between the simulations caused by the different infiltration parameters 

become more apparent in a comparison of the predicted run-off hydrographs (fig 4). The 

results of the simulations show that in every case (perhaps with the slight exception of 

Downs 2) the run-off volume and shape of the run-off hydrograph is more accurately 

predicted from infiltration parameters calculated from the advance and run-off data 

combined rather than the advance alone. Consequently it is concluded that the inclusion of 

run-off data improves the accuracy of the estimation of the infiltration parameters. When 

only the advance data is used, in some cases the run-off is over predicted, e.g. Printz and 

in other cases it is under predicted e.g. Downs 1. 
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Figure 4 a-f Comparing the measured runoff hydrograph to SIRMOD simulated runoff using infiltration 

parameters from either advance or advance and runoff data.  
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Table 3  Summary of results from SIRMOD simulations 

Measured 5.84 7.76 26.89
Advance 1.63 -72.1% 2.13 -72.6% 32.81 22.0%

Advance + Runoff 5.82 -0.3% 8.02 3.4% 26.61 -1.0%
Measured 0.74 1.64 62.91
Advance 3.01 305.3% 6.41 292.3% 54.05 -14.1%

Advance + Runoff 1.10 48.6% 2.10 28.7% 62.04 -1.4%
Measured 15.13 96.55
Advance 5.72 -62.2% 104.87 8.6%

Advance + Runoff 15.44 2.0% 96.28 -0.3%
Measured 9.73 109.45
Advance 9.62 -1.1% 109.55 0.1%

Advance + Runoff 10.08 3.6% 109.14 -0.3%
Measured 1.97 2.30 128.51
Advance 3.06 55.2% 3.31 44.0% 122.19 -4.9%

Advance + Runoff 2.08 5.2% 2.34 1.8% 128.25 -0.2%
Measured 1.11 2.20 47.60
Advance 2.05 84.1% 4.07 85.1% 37.22 -21.8%

Advance + Runoff 1.35 21.1% 2.46 11.9% 46.15 -3.1%

Data

Downs 2

Brazil

Merkley

Benson

Printz

Downs 1

Trial
Infiltration 

mm
Infiltration 

Error

At end of 
recorded time

Total, at end of irrigation         
(Italic cells are estimated)

Runoff 
(m3)

Runoff 
Error

Runoff 
(m3)

Runoff 
Error

 
 

Similarly, the error in the predicted run-off volumes is also significant (Table 3), for 

example, the run-off volume is over predicted by nearly 300% for the Printz irrigation, 

which corresponds to an under prediction of the average infiltrated depth by an estimated 

14%. 

 

In summary the inclusion of the run-off data in the identification of the modified 

Kostiakov parameters gives a greatly improved estimate of the parameters and hence 

improved cumulative infiltration curve. It retains the ability of the simulations to predict 

the advance function and it improves the accuracy of run-off and infiltration predictions 

during later stages of the irrigation.  

 

Number of Run-off and Advance Points 

The Merkley data (Tables 4 & 5) were selected for further analysis to determine the 

sensitivity of the infiltration parameters to the number of run-off and advance points.  For 
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this data there was a large difference between the infiltration functions calculated by the 

two methods.  

 

 
Table 4: Advance data for Merkley 

Distance (m) Time (min)
1 25
2 50
3 75
4 100 13.4
5 125 17.6
6 150 22.3
7 175 27.4
8 200 32
9 225 38.5

2.3
5.4
8.8

 

 

 
Table 5: Run-off data for Merkley 

Time (min) Outflow (L/s)
1 46.3
2 49.2
3 52.2
4 57.2
5 62.2
6 67.2

0.55
0.65
0.72
0.79
0.91
0.91  

 

Varying the number of advance points gave the results shown in Fig. 5. Selecting different 

data points for parameter calculation has a large impact when only advance data is used. 

There is a remarkable difference when only the first four advance points are used; the 

predicted infiltration is much greater. This further illustrates the benefits of using 

irrigation data spread over longer time periods. The optimisation technique using both 

advance and run-off points is not particularly sensitive to the selection of advance points 

indicating that the run-off data moderates the infiltration estimation. This may indicate 

towards reducing the number of advance points in order to simplify data collection. Recall 

that the chosen model includes the exponent r (equations 7 and 8) and therefore any use of 

this technique demands sufficient information to fit the power curve to the advance data. 
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Figure 5 Comparing the two methods and their sensitivity to the correct selection of advance points 
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Figure 6 Impact of using different run-off points in the calculation of the infiltration function 

 

The second part of the analysis investigated the effect of changing the selected run-off 

points used in the model (Fig. 6). Choosing different points does have some impact on the 

final outcome of the method. Even the use of just the first run-off point results in a far 
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better infiltration function than using no run-off data. Including the first two points is 

sufficient to provide an accurate estimation of the infiltration curve. When only the steady 

outflow rate is included, the model produces a poor answer indicating that the shape of the 

run-off hydrograph is important, not just the final outflow rate. There is little difference 

between using all six points and only the even numbered points indicating that the number 

of points is not important as long as the points used represent a significant portion of the 

storage phase.  

 

Weighting between Run-off and Advance Data 

The weighing factor allows the user to change the relative importance of the advance and 

run-off data in the optimization of the infiltration function.  It functions as a multiplier on 

the sum of errors in the predicted run-off volumes in equation 17. A value of 1 (100%) 

causes the relative error of the advance (equation 15) and the run-off (equation 16) to be of 

equal significance. The model will ignore the run-off if the weight is 0 and will ignore the 

advance data if the weight is given an extremely large value.  

 

A small weighing factor (Fig 7) causes a significant change in the infiltration function; in 

this case once the weight of the run-off data has reached 5% of the advance data there is 

no added change by further increasing the importance of the run-off. All tests performed 

on the Merkley data seem to suggest that the infiltration function is much more sensitive 

to the run-off than the advance data. The use of both advance and run-off data in the 

optimisation will reduce the need for high precision advance data providing that the run-

off input is accurate. Small errors in the measured run-off will have a significant impact 

on the infiltration parameters. The objective function operates by minimizing errors in 

advance distance and run-off volume. An incremental change in the infiltration parameters 

will cause a relatively modest percentage change in the calculated advance distance. The 

same change in infiltration will have a magnified effect on the error of run-off volume 

prediction of the storage phase; a small increase in the infiltration may reduce the run-off 

volume to zero. The high sensitivity of the optimisation to the run-off part of the volume 

balance suggests that the weighting should usually take a value equal to or less than 100%. 
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Figure 7 Effect of changing the weight of the run-off error in the Kostiakov parameter optimisation (100% is 

equal weight, <100% increases importance of the advance data) 

 

Recommendations for the technique 

The proposed parameter estimation procedure performed satisfactorily for the case studies 

presented here, however the volume balance model is based on a number of 

simplifications that may limit its application in certain conditions. The inflow rate 

throughout the entire irrigation should be constant with time as relatively small 

fluctuations may significantly impact on both the advance trajectory and runoff 

hydrograph. The model is only designed to apply during the storage phase therefore it is 

only valid to use runoff data collected during the inflow time. Further the location of the 

runoff measurement should be such that the measurement does not impose a backwater on 

the flow in the furrow. 

 

Conclusions 
The results of this study suggest that infiltration can be calculated more accurately from 

the combination of advance data and run-off rates measured during the storage phase of an 

irrigation. Current techniques that depend completely on the advance phase result in 
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infiltration parameters that cannot accurately predict run-off volumes. The use of run-off 

data enables the extrapolation of the infiltration curve to greater times, which is of 

particular importance where the advance reaches the end of the furrow early in the 

irrigation time. 
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