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Abstract

The dry-bulb temperature is a critical parameter in weather forecasting, agriculture, energy
management, and climate research. This work proposes a new hybrid prediction model
(FBSE-GA-LSTM) that integrates the Fourier—Bessel series expansion (FBSE), genetic algo-
rithm (GA), and long short-term memory (LSTM) networks together to predict the dry-bulb
air temperature. The hybrid model FBSE-GA-LSTM utilises the FBSE to decompose time
series data of interest into an attempt to remove the noise level for capturing the dominant
predictive patterns. Then, the FBSE is embedded into the GA method for the best feature
selection and dimension reduction. To predict the dry-bulb temperature, a new model
(FBSE-GA-LSTM) was used by hybridising a proposed model FBSE-GA with the LSTM
model on the time series dataset of two different regions in Saudi Arabia. For comparison,
the FBSE and GA models were hybridised with a bidirectional LSTM (BiLSTM), gated
recurrent unit (GRU), and bidirectional gated recurrent unit (BiGRU) models to obtain the
hybrid FBSE-GA-BiLSTM, FBSE-GA-GRU, and FBSE-GA-BiGRU models along with their
standalone versions. In addition, benchmark models, including the climatic average and
persistence approaches, were employed to demonstrate that the proposed model outper-
forms simple baseline predictors. The experimental results indicated that the proposed
hybrid FBSE-GA-LSTM model achieved improved prediction performance compared with
the contrastive models for the Jazan region, with a mean absolute error (MAE) of 1.458 °C,
a correlation coefficient (R) of 0.954, and a root mean squared error (RMSE) of 1.780 °C, and
for the Jeddah region, with an MAE of 1.459 °C, an R of 0.952, and an RMSE of 1.782 °C,
between the predicted and observed values of dry-bulb air temperature.

Keywords: genetic algorithm; Fourier Bessel series expansion; dry bulb temperature; long
short-term memory
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1. Introduction

The dry-bulb temperature (DBT) is a critical weather parameter which is used as a
representative of temperature for many applications such as environmental monitoring
of industrial and agricultural processes. It is the temperature of the air as measured by
a thermometer freely exposed to the air but shielded from radiation and moisture. The
accurate prediction of DBT is important in several domains such as weather forecasting,
the analysis of climate change, and the management of renewable energy, and precision
agriculture DBT predictions contribute to energy optimisation, building climate control as
well as natural disaster preparations [1,2].

In the literature, DBT estimations have been traditionally based on the numerical
weather prediction (NWP) model and statistical methodologies, for example on autoregres-
sive integrated moving averages (ARIMA) or regression methods [3]. Although these are
widely applied techniques, it is frequently difficult for these techniques to effectively repre-
sent non-linear, highly complex, and dynamically interacting influences on meteorological
variables [4]. This limitation has led to the investigation and application of advanced
artificial intelligence (AI) and machine learning (ML) tools to improve the accuracy of
predictions [5,6].

Significant recent advances in deep learning (DL) have made DBT prediction more
accurate through big data solutions to recognise the highly complex patterns of atmosphere
behaviour. In the last few years, there has been an increasing use of machine learning (ML)
for DBT prediction, especially since the conventional statistical methods have shortcomings
in dealing with nonlinear relationships between input—output variables, and the temporal
relationships between the variables in climatic time series.

Among these models, artificial neural networks (ANNSs), the convolutional neural
network (CNN), recurrent neural networks (RNNs), and long short-term memory (LSTM)
have demonstrated a lot of potential. ANNs have been heavily utilised in DBT prediction
because of their capacity to model complex, nonlinear relationships. For example, Giin-
dogdu and Elbir [7] used a feedforward ANN to forecast maximum daily temperatures and
better results were obtained compared to regression-based approaches. Similarly, Tehrani
et al., [8] used ANN models to predict hourly temperatures in urban areas, obtaining high
accuracy in the representation of short-term DBT variability. Currently LSTM networks
(an RNN variant that captures long-term dependencies) have been established as being
some of the best methods for DBT prediction. Hasan et al., [9] used LSTM models with
features including humidity, solar radiation, and wind speed to forecast the daily DBT with
substantial enhancements in the accuracy of prediction. Huang et al., [10] found that LSTM
models could successfully manage nonstationary temperature patterns to be applicable in
long-term climate interpretation. Yet independent ML and DL models can be ineffective
toward noisy imaging data because they are restricted by their own model capacity, and
they may not entirely represent subtle nuances in DBT [11].

In order to overcome these issues, hybrid modelling paradigms have been considered
as the more promising alternative. In recent works, excellent results have been achieved
by coupling signal processing methods such as multivariate variational mode decompo-
sition (MVMD), with state-of-the-art neural network designs such as the bidirectional
long short-term memory (BiLSTM) networks. To improve the accuracy of temperature
prediction, in recent years, some signal decomposition methods have been widely used
for preprocessing the nonstationary and nonlinear time series data inputs for the machine
learning or deep learning models in the era of signal processing and data science technol-
ogy. Decomposition methods aim at decomposing complex climate signals into simpler
sub-structures which have more stable statistical properties to facilitate the physical in-
terpretation of a model prediction. Empirical mode decomposition (EMD) is one of the
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early adaptive decomposition techniques used in this regard. It is a versatile instrument
to perform signal decomposition into the IMFs without a predetermined set of basis func-
tions [12]. However, mode mixing and noise degradation are two drawbacks of EMD.
Ensemble empirical mode decomposition (EEMD) was proposed to solve these problems,
which adds white noises to cut down the mode mixing and improve stability [13]. Fur-
ther developments, such as the improvement based on the complete ensemble empirical
mode decomposition with adaptive noise [14], have enhanced the robustness and the
accuracy of the decomposition of signals. Wavelet transform (WT) and discrete wavelet
transform (DWT) are other methods that have been extensively used for predicting DBT.
These models decompose a time series into multiple time resolutions based on fixed basis
functions and are well suited to capturing localised features in non-stationary data [15].
However, unlike EMD-based approaches, wavelet techniques necessitate a priori choice
of the wavelet basis and this can be too restrictive for real-time implementations, as new
wavelet representations are to be selected each time new segments of the learning data
are processed.

More recently, variational mode decomposition (VMD) and its multivariate extension
MVMD has been presented to accomplish this task. VMD formulates the decomposition as
an optimisation problem, thereby improving the mode mixing and ensuring a compacted
and band-limited modes [16]. An extension of MVMD allows joint decomposition of the
multivariate signals, retaining the inter-channel dependencies and gaining improved per-
formance in multi-sensor and multivariate problem predictions [17]. Multivariate empirical
mode decomposition (MEMD) is another approach to process multichannel data with
shared modes among the signals, to increase interpretability in multivariate systems [18].
These approaches of decomposition together with the advanced deep learning models like
BiLSTM, have shown to be successful in improving prediction performance. For instance,
Tang et al., [19] utilised VMD with BiLSTM for the hourly temperature forecast and demon-
strated great improvement on the forecasting accuracy compared with raw-data-based
models. Similarly, Ahmed et al., [20] also suggested EEMD-BiLSTM for air temperature
forecasting and demonstrated that hybrid decomposition and deep learning models were
able to handle both seasonal patterns and non-linear relations. These findings highlight the
importance of decomposition methods as a pre-processing stage for modern temperature
predictors in which the deep learning models can work over thousands of more regularised
and interpretable signals. These hybrid methods provide further improvement in the fore-
casting accuracy since complex signals can be effectively decomposed by those methods,
noise is reduced, and critical temperature patterns are preserved [21,22]. Through this
comparison, it was shown that the hybrid models that combine the ML and DL models
performed the best for DBT prediction. For example, Zhou et al., [23] developed an HBA-
optimised hybrid ANN model which is denoted as HBA-ANN. They compared HBA-ANN
model with the classical ANN and gene expression programming (GEP) models to predict
DBT in extreme regions, the Furnace Creek Death Valley, USA, and Vostok Station, Antarc-
tica. Within the prediction horizons of 1-3 months, the HBA-ANN model performed better
than the benchmark models. Comparison on the performance of this approach versus their
counterparts’ classical artificial neural networks (ANN) and RNN were performed. They
employed a genetic algorithm (GA) for meta-learning to optimise abstract network architec-
ture selection as well. They confirmed that the GA-LSTM hybrid model was better than the
ML and DL models. One such contemporary hybrid model is the combination of CNN and
LSTM, termed as CNN-LSTM. This is to take advantage of the CNN'’s property to process
low dimensional time series data and the LSTM's ability to learn long distance relationships
to capture temporal patterns present in wide datasets (i.e., large temperature datasets).
In [24], authors showed that CNN-LSTM outperformed CNN and LSTM for daily DBT
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forecast at the John F. Kennedy International Airport (New York). Similarly, Hou et al., [25],
using CNN-LSTM tightening methods, presented a better hourly DBT forecasting accuracy
in Yinchuan, China. The superiority of hybrid deep learning models is justified also by the
integration of pre-processing methods to enhance the model performance [26]. In this paper,
we attempt to construct an accurate prediction model for the DBT prediction problem and
exploit the combination of the hybrid models derived from the FBSE, genetic algorithm
(GA), and long short-term memory (LSTM) networks. We investigate the performance
of the hybrid model FBSE-GA-LSTM and other deep learning model structures in the
context of DBT prediction at various horizon lengths (i.e., one hourly /monthly /weekly
ahead horizon) [27]. The performances of the proposed FBSE-GA-BLSTM models were
tested across various evaluation metrics such as root mean square error (RMSE), mean
absolute error (MAE), correlation coefficient (R), linear model efficiency (LME), and rel-
ative percentage error (RPE) to critically measure the correctness of predictions from
different perspectives.

Previous studies have demonstrated the potential of hybrid models for improving
weather prediction accuracy; however, many have been limited by suboptimal noise han-
dling, inadequate feature selection, or insufficient evaluation against naive benchmarks.
The proposed FBSE-GA-LSTM framework addresses these gaps by integrating Fourier—
Bessel series expansion (FBSE) for effective noise reduction and extraction of dominant
predictive patterns, genetic algorithm (GA) for optimal feature selection and dimensionality
reduction, and long short-term memory (LSTM) networks for capturing temporal depen-
dencies in the data. Unlike earlier approaches, the present model has been systematically
compared with both advanced deep learning hybrids (FBSE-GA-BiLSTM, FBSE-GA-GRU)
and simple baseline predictors (persistence and climatic average), demonstrating superior
predictive performance across two distinct climatic regions. This design not only enhances
accuracy but also provides robustness in forecasting highly repetitive variables such as the
dry-bulb temperature.

2. Materials and Methods
2.1. Dataset and Study Location

The data used in this study were collected from selected areas in the Kingdom of
Saudi Arabia as shown in Figure 1. These data were retrieved from the Department of
Meteorology, ranging from the period of 1978 to 2013 on daily basis. Jazan is located
in the southwest of Saudi Arabia at about 16.8892° N latitude and 42.5511° E longitude
with a tropical type of climate. In Jazan, temperatures always remain slightly high dur-
ing all year, complimented by moderate humidity. Jazan City experiences a hot, humid
summer with temperatures exceeding 40 °C, but relatively mild winters with temper-
atures not dropping below 20 °C and monsoon-like rains which occur during June to
September when Jazan receives heavy rainfall, contributing to vegetative growth and
crop productivity. The topographical nature of Jazan includes coastal, plain, and moun-
tainous areas, forming valleys. All along the coast of the Red Sea, one can see sandy
beaches and low-lying areas. The mountains of the SAWARAT range the picturesque
hills parallel to the sea lines and change weather of the area by varying the temperature
and precipitation. Transport Jazan is situated in a region of Saudi Arabia which is of
great strategic importance regarding trade as well as an access point to the rest of the
Arabian Peninsula. Jeddah lies along the western coast of Saudi Arabia at the coordinates
21.2854° N 39.2376° E. The city has a desert climate with blistering summer heat (with
temperatures often exceeding 40 °C) and mild winters (with temperatures dropping to
15 °C). Jeddah encounters limited precipitation, predominantly during the winter season.
Nonetheless, the summer months are marked by elevated humidity levels attributable to
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its coastal geography. The city is susceptible to flash flooding during infrequent heavy
precipitation events, primarily due to the presence of adjacent wadis (dry riverbeds) and
minor valleys. Jeddah functions as a significant port and commercial centre, establishing a
connection between the Kingdom and international markets, thereby facilitating trade and
economic activities.
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Figure 1. Map of the study locations in Saudi Arabia where the proposed FBSE-GA-LSTM hybrid
model was implemented.

A geographical overview of the research region is illustrated in Figure 1, highlighting
the positions of the meteorological stations located in Jazan and Jeddah.

The dataset consisted of various input variables recorded at daily intervals. These
variables included the mean wind speed, maximum wind direction, maximum wind speed,
timing of the maximum wind speed, mean station-level pressure, mean sea level pressure,
mean relative humidity, mean vapour pressure, mean sky cover (measured in oktas),
maximum station-level pressure, maximum sea level pressure, maximum air temperature
(dry bulb), maximum air temperature (wet bulb), maximum relative humidity, minimum
station-level pressure, minimum sea level pressure, minimum air temperature (dry bulb),
minimum air temperature (wet bulb), minimum relative humidity, total rainfall, SynOps
hours, four primary synoptic observations, individual synoptic observations, and mean air
temperature (wet bulb). Figure 2 presents a summary and descriptive analysis of the data
utilised in this study.
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Jazan Jeddah
Wind mean speed -0.64 2 Wind mean speed 2
Win max. direction Win max. direction
Wind max. speed -0.63 Wind max. speed
Wind max time (day) k8 Wind max time (day) 3
Pressure mean station level -1.93 m Pressure mean station level -1.63 m
Pressure mean sea level Pressure mean sea level
Relative humidity mean 1 Relative humidity mean 1
Vapor pressure mean -0.63 Vapor pressure mean
Sky cover oktes mean Sky cover oktes mean
Pressure max station level 05 Pressure max station level 05
Pressure max sea level Pressure max sea level
Air temperature max DB -0.63 Air temperature max DB
Air temperature max WB 0 Air temperature max WB 0
Relative humidity max -0.64 Relative humidity max
Pressure min station level Rz 1.97 Pressure min station level
Pressure min sea level 05 Pressure min sea level 05
Air temperature min DB -0.63 Air temperature min DB
Air temperature min WB Air temperature min WB
Relative humidity min | 1 Relative humidity min 1
Rainfall total Rainfall total
Synops Hrs -0.64 -0.77 Synops Hrs -0.64 -0.69
Main 4 syn -0.63 4% Main 4 syn 0.65 -0.77 4%
Syn Obsrvn -0.65 Syn Obsrvn -0.65

Air temperature mean WB
Air temperature mean DB

Skew  Kurt Min

Mean  Std Mean Std Skew Kurt

Max

Figure 2. Descriptive analysis of the normalised data collected from the Jeddah and Jazan stations
used to evaluate the efficacy of the proposed FBSE-GA-LSTM hybrid model.

2.2. The Proposed Model

In this study, we adopted three distinct modelling methods based on the Fourier-Bessel
series expansion, genetic algorithm and the long short-term memory network models to
improve the prediction of dry-bulb air temperature. The details of the model development
methodology are given below.

2.2.1. Fourier—Bessel Series Expansion (FBSE)

FBSE has been well-applied to non-stationary signal analysis [27], and many works
show the great advantages of FBSE compared to FFT. Firstly, compared with Fourier
transform (FT), the FBSE method does not require a window function for spectrum analysis.
Second, the FBSE has two-time interval processing and the DFT length is the same as the
signal length of the filter that produces coefficients. When we compared the Bessel function
(BF) with the FT, it is shown in Figure 3 that the BF was non-stationary and had amplitude
modulation. Most importantly, in contrast to FBSE, which uses the non-stationary BF, the
FT uses the stationary BF, according to [27], the FBSE in fact can offer and achieve a more
compact representation than the FT, and the FBSE method has obtained a good frequency
resolution compared with the FT. Dash et al. [28] when analysing non-stationary signals,
showed that the FBSE coefficients were unique and had a better spectral resolution than
FT, with the number of unique FBSE coefficients needed for representation of the spectrum
being equal to the length of the discrete time signal, in contrast to FFT which was two times
the length of the discrete time signal.
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Figure 3. Basis function plot (a) with FFT coefficients and (b) with BF coefficients.

The Fourier—Bessel series expansion’s fundamental idea is that any function can be
expressed as the sum of Bessel functions. Friedrich Bessel was a German mathematician
who first studied them in the early 19th century, and thus it was named after him. The
second-order differential Bessel equation has a regular singular point at the origin. Bessel
functions are solutions to this differential equation. The second-order ordinary differential
equation of the following form is Bessel’s equation of order a (with « > 0):

X2z 4 xz' + (x2 - 0(2)2 =0 (1)
The general solution of Equation (1) is
z(x) = AJa(x) + BZy(x) ()

where w =0, 1, 2,.. ., is the Bessel function’s order, A and B are constants, and the J,(x)
and Z,(x) are the solutions to this equation and are referred to as Bessel functions of the
first and second kinds, respectively. The solutions to the Bessel differential Equation (2) are
Bessel functions J,(x) of the first type of order «, which are also referred to as cylindrical
functions. For the negative non-integer «, these solutions diverge as x approaches zero, but
for integer or positive «, they are finite at x = 0. The Bessel differential equation of order
zero is a second-order ordinary differential Equation with the following formula:

X2 4 xz +x%2 =0 3)

By extending Bessel functions, a function can be expressed in terms of Bessel functions
of a specific type and order. The Fourier—Bessel series expansion, which represents a
function in terms of Bessel functions of the first class, is a frequently used example. The
formula for this type of expansion is as follows:

flx) = il Cilu(x ) @

where z; denotes the positive roots and C; denotes the expansion’s coefficients. Usually, the
orthogonality characteristics of the Bessel functions—such as the orthogonality integral are
used to derive the coefficient C; . There are also other types of Bessel function expansions.
For instance, the Fourier-Bessel series makes use of the Bessel function of the second kind
Z4(x). The Fourier—Bessel transform which is an effective method for the investigation
of functions in the frequency domain can be carried out by the Fourier—Bessel series.
To analyse the spectral content of a function, the Fourier-Bessel transform can be used
to decompose a process into a sum of Bessel functions and their coefficients [28]. In
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FBSE Coefficient

signal processing, the Fourier—Bessel series is an expansion of functions in terms of Bessel
functions. Bessel functions are chosen as the basic functions in the Fourier—Bessel series
expansion, based on their orthogonality property (which will be explained later), to allow
the series to converge to the original function in a suitable domain. The Bessel functions
are used by the FBSE mainly due to their orthogonality. The recurrence relation of the
Bessel function is also used to compute the Fourier-Bessel transform and its inverse,
which improves computation efficiency [28]. Figure 4 shows FBSE coefficients for the

different variables.
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Figure 4. The FBSE coefficients for the different variables of Jazan station.

2.2.2. Genetic Algorithm (GA)

The genetic algorithm (GA) was utilised to extract key attributes from the time se-
ries dataset. As shown in Figure 5, the procedure began with the creation of an initial
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population composed of random candidates. These individuals were assessed through
a fitness evaluation metric. Top-performing candidates were retained without alteration
for the subsequent iteration, while the remaining members undergo recombination and
modification operations to produce the next generation [29].

Population creation

crossover

Mutation

] [l E B
B B B B
-] [® M B
B B B ]
B B Fl H
B B B B
| [ | [
| B B B
— — — —
" " " -
B B B B
B B Fl B
B ] = Il
| B ] Fl
B B Bl B
B B M B
B N B B

Figure 5. The main process of GA.

The dataset included 28 distinct parameters relevant to forecasting air temperature.
To identify the most impactful ones, a binary encoding approach was applied, where
sequence like [1, 0,0, 1, 1, ...] signified inclusion (1) or exclusion (0) of each parameter.
Each sequence acted as a candidate solution, and each binary digit within it was termed a
“gene”. These genes were initialised randomly. According to Figure 5, the number of genes
was N = 12 with a population size of 8. Each candidate was scored using an evaluation
criterion, with higher-scoring solutions advancing. Poorly performing candidates were
discarded. Through genetic operations, namely crossover and mutation, a new generation
of candidates was generated, as depicted in Figure 5.

Table 1 presents the GA parameters. As previously mentioned, selecting an optimal
number of chromosomes was a crucial step in the evolutionary computation process.
Existing research provided varying insights on the appropriate population size, with some
studies indicating that a small population may lead to suboptimal solutions, while a larger
population demands higher computational resources. To define a subset of features, a
trapping function is utilised to assess the suitability of each subset. We adopted the {@(x)
-var(X_all.* x, 0, ‘all’)} function as the fitness function. GA effectively minimised the error
rate and selected individuals with the best fitness scores, thereby reducing the number of
features. The prediction process evaluated the entire training dataset to identify the most
similar K instances for generating new data points. Various population sizes were tested in
this study to determine the optimal configuration.
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Table 1. Genetic algorithm configuration settings.
Parameter Value
Total Features Considered 27
Size of the Population 30
Genome Length 27
Population Representation doubleVector
Fitness Function @(x) -var(X_all.* x, 0, “all’)
Number of generations 20
Crossover Mechanism crossoverscattered
Crossover Probability (CP) 0.5 default
Mutation Strategy mutationadaptfeasible
Mutation Rate Adaptive (auto)
Selection Strategy selectionstochunif
Number of Elites Retained ceil(0.05 * PopulationSize) — 2

2.2.3. LSTM

The architecture of LSTM is constructed as follows [30]: Within the memory block,
there are one or more core cells that are self-connected to three multiplicative units known as
the input, output, and forget gates. The presence of additional units in a system influences
the transmission of information. Specifically, the multiplication of input values safeguards
the memory block from disturbances caused by irrelevant inputs. Additionally, the output
gates shield other units from obtaining irrelevant information pertaining to the current
block [30,31]. The units function as gates to prevent weight conflicts. The input gate
determines when to retain information or omit material within the block, and the output
gate determines the timing of accessing the block and prevents interference with other
blocks. At the time ¢, the inputs of the LSTM module contain the combined significant
wave height representation x and the memory cell state c. At time ¢, the inputs of the LSTM
module contain the combined significant wave height representation x;, the memory cell
state c;_1, and the output of the LSTM module h;_;. y; denotes memory information. The
LSTM computing process is as follows:

Iy = sig(Wr x¢ + Urhy—1 + br) 5)
fi = sig(Wy 2+ Ughy 1 +by ) (6)
ot = sig(Wp x¢ + Uphy—1 + b, ) (7)
v, = tanh(W, x; + Uchy—q + be ) 8)
ct = It cr 1+ fryr )

hy = ortanh(cy) (10)

where W and U denote weight matrices and b denotes bias vectors. Sig and tanh are smooth
step functions and hyperbolic tangent functions. The output of the LSTM module ¢; and #;
were the input of the LSTM module as shown in Figure 6.



Forecasting 2025, 7, 46

11 of 25

- M
Ct-1 €, @D, P Ct
Eanh>
€9 €
(G ] A
hta —pp- D
vy

Xt

Figure 6. The structure of the LSTM.

2.2.4. Model Development

In this section, the model development is explained. To predict the daily, weekly,
and monthly dry-bulb air temperature, we designed a hybrid architecture utilising the
Fourier-Bessel series expansion (FBSE), a genetic algorithm (GA), and an LSTM. The time
series data were passed through FBSE, then the GA was applied to extract the important
features from the FBSE coefficients and reduce the dimensionality. Then, the outputs of the
GA were sent to the GRU, BiGRU, LSTM, and BilSTM models [32-34].

The structure of the model designed for forecasting the dry-bulb air temperature
is illustrated in Figure 7. The data were segmented into three subsets: training (60%),
validation (20%), and testing (20%). Model fitting was carried out using the training subset.
To monitor and evaluate performance during training, the validation data were utilised
independently and excluded from the fitting phase. The validation loss served as the
criterion for selecting the model’s optimal parameter configuration. No random sampling
or shuffling was applied to avoid temporal information leakage. The FBSE decomposition
was applied exclusively to the training data. The decomposition parameters obtained
from the training set were then used to transform the validation and testing sets. This
ensured that no information from the testing set was available during training, preserving
the integrity and reproducibility of the prediction model.

4.5dlo crate chikd
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— : .Q 4
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S I h = o 4o 1,0 0'1].
E - ' (&) o 1 O
m e 1 o
~ 1

Data decomposition Feature selection

Time series data

Deep learning models
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Prediction 29 e
results 70 & L

104 p = 0.0018
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© 123 456 7

Figure 7. Proposed model for dry-bulb air temperature prediction.

3. Experimental Results

This section reports the results of the dry-bulb air temperature prediction based
on the proposed model for the two regions in Saudia Arabia. This study evaluated the
performance of the proposed model, which integrated FBSE, GA, and LSTM techniques
to predict one-day, one-week, and one-month dry-bulb air temperatures. For the one-
day-ahead prediction, we used the time series data from a single day (t — 1) as the input
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to forecast the next day (t). For the one-week-ahead prediction, we used the complete
preceding week of the time series data (t — 7 to t — 1) to forecast the aggregated value for
the following week. Similarly, for the one-month-ahead prediction, we used the preceding
month of the time series data (t — 30 to t — 1) to predict the aggregated value for the
following month. The dataset was segmented chronologically into 60% training, 20%
validation, and 20% testing sets respectively. No random sampling was applied. The FBSE
decomposition was applied exclusively to the training data.

3.1. Evaluation Metrics

The test set was utilised to evaluate the performance of the completed model. Several
metrics were used to measure this performance, and Table 2 summarises all the metrics
applied in the evaluation of the proposed model [35-38].

Table 2. Statistical performance metrics used in this paper.

Metrics Equations
Mean absolute error (MAE) MAE = mean( ¥ [T, — Ty, [)
i€ Atestingset
CORR = L 7
Y (Ti — mean(T:, (Ti. — meanT!, ))
Correlation coefficient (CORR) L Y l (T ‘ (Ta) IZL = ‘
|SPItest‘ ictesting_set Zi (Tz;ir — mean (T;ir) )22?:1 (T;ir _ meanT;ir) )2
ZtN estin, (m_]—gir)2
Willmott’s index (WI) WI=1- l 5 Sl z]
ZiEtestingset (‘Tzlzir_T;ir | Toir = T )
Zleestin se afTéi»Z
Root square error (RSE) RSE =1— | = t(ff i )2
ictestinggop (Tair air)
Zf\] testingge ;ir _Téir
Legates and McCabe’s index (LM) LM =1~ [ ; - T i
ictestinggey | ~air air
] 1 N Ti. _ Ti-
Relative percentage error (RPE) RPE= - ¥  |-#=—=—%[x100

Etesting_set air

Where T, denotes the actual values and E refers to the predicted air temperature values. Low MAE and RSE
values indicate a high performance.

3.2. Benchmark Models

In this paper, the proposed FBSE-GA was hybridised with several benchmark models:
GRU, BiGRU, LSTM, and BiLSTM. The following section provides a brief description of
these models. Table 3 lists all the hyperparameters of the proposed models.

GRU: GRU was utilised as a foundational model to benchmark the performance of the
hybrid approach for temperature prediction. A hybrid approach can significantly enhance
the accuracy of dry-bulb air temperature predictions. This model can leverage various
components.

BiGRU: Incorporating the bidirectional gated recurrent unit (BiGRU) effectively cap-
tures bidirectional dependencies within the data, leading to improved prediction accuracy.

BiLSTM: Employing bidirectional long short-term memory (BiLSTM) as an alterna-
tive to standard LSTM can reveal its advantages in recognising complex patterns within
the dataset.
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Table 3. Hyperparameters of all models used for dry-bulb air temperature prediction.

Model

Parameters

Jeddah

Jazan

FBSE-GA-LSTM

R =1, alpha =1, N =200, PS = 20;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.3,
learning rate = 0.001-0.005, batch size = 64,
epoch = 200.

R =1, alpha =1, N =200, PS = 30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.2,
learning rate = 0.001-0.005, batch size = 64,
epoch = 100.

FBSE-GA-BIiLSTM

R =1, alpha =1, N =200, PS = 30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.3,
learning rate = 0.001-0.005, batch size = 64,
epoch = 200.

R =1, alpha =1, N =200, PS = 30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.2,
learning rate = 0.001-0.005, batch size = 64,
epoch = 100.

FBSE-GA-GRU

R =1, alpha =1, N =200, PS =30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.3,
learning rate = 0.001-0.005, batch size = 64,
epoch = 200.

R =1, alpha =1, N =200, PS =30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.2,
learning rate = 0.001-0.005, batch size = 64,
epoch = 100.

FBSE-GA-BiGRU

R =1, alpha =1, N =200, PS =30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.3,
learning rate = 0.001-0.005, batch size = 64,
epoch = 200.

R =1, alpha =1, N =200, PS =30;

MG =100; MP = 0.1, ER = 0.01, CP = 0.5,
PP = 0.3, CT = uniform’, dropout = 0.2,
learning rate = 0.001-0.005, batch size = 64,
epoch = 100.

R =1, alpha =1, N =200, dropout = 0.3,

R =1, alpha =1, N =200, dropout = 0.2,

BiLSTM learning rate = 0.001-0.005, batch size = 64, learning rate = 0.001-0.005, batch size = 64,
epoch = 200. epoch = 100.
R =1, alpha =1, N =200, dropout = 0.3, R =1, alpha =1, N =200, dropout = 0.2,
BiGRU learning rate = 0.001-0.005, batch size = 64, learning rate = 0.001-0.005, batch size = 64,
epoch = 200. epoch = 100.
R =1, alpha =1, N =200, dropout = 0.4, R =1, alpha =1, N =200, dropout = 0.3,
GRU learning rate = 0.001-0.003, batch size = 64, learning rate = 0.001-0.003, batch size = 64,
epoch = 150. epoch = 100.
R =1, alpha =1, N =200, dropout = 0.3, R =1, alpha =1, N =200, dropout = 0.2,
LSTM learning rate = 0.001-0.005, batch size = 32, learning rate = 0.001-0.005, batch size = 64,
epoch = 200. epoch = 200.
. Temporal split = Chronological Temporal split = Chronological
Persistence (no shuffling) (no shuffling)
Climatic Avg Temporal split = Chronological Temporal split = Chronological

(no shuffling)

(no shuffling)

Upper limit of interval (R), number of coefficients (N), population size (PS), max generations (MG), mutation
probability (MP), elitism ratio (ER), crossover probability (CP), parents portion (PP), crossover type (CT).

While the hybrid model harnesses the strengths of its components, it may demand
substantial computational resources, especially when processing large datasets. Further-
more, the model’s performance can be sensitive to the choice of hyperparameters, requiring
meticulous tuning and optimisation.

The complexity of the models and techniques involved may create challenges in in-
terpreting results and understanding the underlying relationships within the data. By
exploring the integration of FBSE with GRU, BiGRU, and BiLSTM in a hybrid frame-
work, a more accurate and robust model for predicting the dry-bulb air temperature can
be developed.
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4. The Obtained Results
4.1. One-Day-Ahead Prediction Results

Table 4, the prediction results are listed for the two regions, Jazan and Jeddah; in
terms of the regression (R), RMSE, and MAE, a perfect predictor score is indicated by
R values close to 1, while the ideal RMSE/MAE values are close to 0. In addition, with
the metrics Willmott’s Index (W), Nash—Sutcliffe Efficiency (NSE), and Legate-McCabe
Efficiency (LME), the accurate prediction model is expected to be close to 1, while the
mean absolute percentage error (MAPE) and root mean square percentage error (RMSPE)
should approach 0%.

Table 4. One-day-ahead prediction results for Jazan and Jeddah stations.

Jazan Stations

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.986 1.754 1.432 0.965 0.943 7.200 8.786
FBSE-GA-BIiLSTM 0.954 1.773 1.465 0.961 0.942 7.200 8.791
FBSE-GA-GRU 0.943 1.864 1.472 0.953 0.938 7.600 8.793
FBSE-GA-BiGRU 0.952 1868 1.512 0.951 0.936 7.610 8.995
BiLSTM 0.876 2.282 1.842 0.853 0.874 10.23 9.772
BiGRU 0.854 2.887 1.863 0.851 0.873 10.25 9.781
GRU 0.843 2.921 1.878 0.849 0.863 10.28 9.792
LSTM 0.901 2.123 1.782 0.864 0.882 10.29 9.632
Persistence 0.947 1.766 1.422 0.769 0.821 7.18 8.811
ClimaticAvg 0.728 3.211 1.932 0.478 0.592 10.52 9.975

Jeddah Station

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.982 1.742 1.410 0.954 0.933 7.176 8.732
FBSE-GA-BiLSTM 0.946 1.771 1.456 0.951 0.931 7.182 8.681
FBSE-GA-GRU 0.938 1.868 1.479 0.942 0.931 7.700 8.892
FBSE-GA-BiGRU 0.948 1869 1.537 0.948 0.924 7.770 8.999
BiLSTM 0.872 2.284 1.846 0.850 0.871 10.53 9.777
BiGRU 0.852 2.881 1.864 0.843 0.863 10.56 9.787
GRU 0.841 2.920 1.876 0.837 0.834 10.37 9.798
LSTM 0.900 2.125 1.786 0.852 0.877 10.33 9.633
Persistence 0.945 1.763 1.432 0.762 0.820 717 8.812
ClimaticAvg 0.719 3.200 1.953 0.475 0.591 10.51 9.976

From the results in Table 4, it was noted that the hybrid models FBSE-GA-BiLSTM,
FBSE-GA-GRU, FBSE-GA-LSTM, and FBSE-GA-BiGRU showed superior prediction re-
sults compared to individual models. The FBSE-GA-LSTM scored the highest predictive
accuracy with an R = 0.986, RMSE = 1.754, and MAE = 1.432, WI = 0.965, NSE = 0.943,
MAPE = 7.200, and MSPE = 8.786 for the Jeddah region, and R = 0.982, RMSE = 1.742,
and MAE=1.410. WI = 0.954, NSE = 0.933, MAPE = 7.176, and RMSPE = 8.732 for
the Jazan region. The results indicated strong predictive abilities for the hybrid models
compared with individual models. However, the LSTM showed high prediction results
compared with other individual models GRU, BiGRU, and BiLSTM. Overall, the results
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One day ahead prediction (Jeddah station)
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indicated the superior performance of the FBSE-GA-LSTM and FBSE-GA-BiLSTM models
compared to the other individual and hybrid models. The improved DBT prediction can be
recognised in the FBSE-GA model which showed a strong resistance to noise.

The results for the two regions, Jazan and Jeddah, demonstrated that the hybrid models
delivered the highest performances as shown in Table 4, with the lowest RMSE at 1.754 and
1.773 and a MAE of 1.432 and 1.465 recorded for FBSE-GA-LSTM and FBSE-GA-BiLSTM,
respectively, proving that the proposed model closely corresponding observed values.
All hybrid models coupled with the FBSE-GA model demonstrated higher performance;
for example, FBSE-GA-LSTM and FBSE-GA-BiLSTM achieved the second and the highest
prediction rates in terms of WI and NSE. Figure 8 reports the results in terms of LME. It can
be noted that all hybrid models outperformed individual models, with LME values ranging
from 0.901 to 0.912, significantly improving the performance of LSTM, GRU, BiLSTM,
and BiGRU models. These results confirmed the effectiveness of integrating LSTM, GRU,
BiLSTM, and BiGRU models with FBSE-GA in enhancing model accuracy. In addition, the
persistence model showed a high performance compared to deep learning models.
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Figure 8. LME of each model for one-day ahead prediction in both stations.

4.2. One-Week-Ahead Prediction

In this experiment, hybrid models were tested one week before the prediction of DBT.
From the results obtained in Table 5, it was observed that all hybrid models outperformed
individual models with the FBSE-GA-LSTM model scoring the highest prediction with
R =0.975, and an RMSE = 1.778 showed a high correlation with observed values. This high
correlation proved the proposed FBSE-GA was effective in accurately replicating weekly
DBT prediction in both regions.

Table 5 reports the one-week-ahead prediction rates for the Jazan region, and these
findings confirmed that integrating the LSTM, GRU, BiLSTM, and BiGRU models with
FBSE-GA improved their prediction accuracy and surpassed standalone approaches. Fur-
thermore, all hybrid (FBSE-GA-LSTM, FBSE-GA-GRU, FBSE-GA-BiLSTM, and FBSE-GA-
BiGRU) models demonstrated consistent precision rates for one week ahead and their
MAPE values were under 8%. The obtained results indicated that hybridisation improved
the predictive accuracy of LSTM, GRU, BiLSTM, and BiGRU compared to their standalone
performance. It was noted that the persistence model kept showing a good performance in
the one-week prediction and delivered consistently low prediction errors.
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Table 5. Prediction results based on different evaluation metrics (one week ahead) for Jazan and

Jeddah stations.
Jazan Station

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.975 1.778 1.453 0.954 0.937 7.300 8.794
FBSE-GA-BiLSTM 0.965 1.779 1.457 0.955 0.938 7.301 8.797
FBSE-GA-GRU 0.963 1.779 1.454 0.955 0.938 7.304 8.798
FBSE-GA-BiGRU 0.954 1.781 1.464 0.943 0.939 7.308 8.799
BiLSTM 0.866 2.286 1.845 0.855 0.876 10.26 9.776
BiGRU 0.843 2.889 1.868 0.856 0.877 10.27 9.785
GRU 0.832 2971 1.888 0.839 0.853 10.29 9.798
LSTM 0.900 2.125 1.785 0.862 0.880 10.39 9.636
Persistence 0.939 1.755 1.427 0.901 0.894 7.545 8.932
ClimaticAvg 0.711 3.180 1.949 0.703 0.699 11.23 9.987

Jeddah Station

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.973 1.781 1.456 0.942 0.926 7.304 8.797
FBSE-GA-BiLSTM 0.953 1.783 1.459 0.945 0.926 7.305 8.799
FBSE-GA-GRU 0.951 1.786 1.462 0.957 0.921 7.308 8.781
FBSE-GA-BiGRU 0.950 1.783 1.468 0.931 0.921 7.309 8.817
BiLSTM 0.852 2.289 1.848 0.832 0.843 10.28 9.779
BiGRU 0.831 2.898 1.871 0.832 0.835 10.29 9.788
GRU 0.830 2.975 1.895 0.828 0.821 10.36 9.899
LSTM 0.899 2.127 1.788 0.851 0.858 10.69 9.686
Persistence 0.936 1.754 1.429 0.900 0.885 7.543 8.931
ClimaticAvg 0.709 3.177 1.950 0.700 0.687 11.22 9.984

The performance of all hybrid models was evaluated in term of LME. From the results

in Figure 9, hybrid models showed their superior performances, with FBSE-GA-LSTM and

FBSE-GA-BiLSTM scoring the highest values of 0.9337 and 0.903, respectively.
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The comparative analysis revealed that the proposed FBSE-GA model improved the

performance of all models, with an increase in R ranging 7-9%. The best hybrid model was
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the FBSE-GA-LSTM, which showed its superior ability to predict the weekly dry-bulb air
temperature. Moreover, the FBSE-GA-BiLSTM recorded the lowest RMSE.

4.3. One-Month-Ahead Prediction Results

The proposed hybrid model FBSE-GA-BILSTM was evaluated to predict the one-
month-ahead dry-bulb air temperature. As shown in Table 6, all hybrid models outper-
formed when compared to the individual models. Specifically, the FBSE-GA-BiLSTM model
achieved the highest R of 0.954, with an RMSE of 1.780. This highest R indicated that the
proposed FBSE-GA-BiLSTM model effectively reproduces the monthly-ahead DBT in the

two regions, Jazan and Jeddah.

Table 6. One-month-ahead prediction results for the Jazan and Jeddah stations.

Jazan Station

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.954 1.780 1.458 0.943 0.931 7.331 8.798
FBSE-GA-BiLSTM 0.943 1.783 1.459 0.935 0.928 7.305 8.799
FBSE-GA-GRU 0.941 1.785 1.456 0.923 0.931 7.307 8.799
FBSE-GA-BiGRU 0.936 1.789 1.468 0.923 0.928 7.319 8.782
BiLSTM 0.832 2.288 1.848 0.823 0.832 10.29 9.781
BiGRU 0.831 2.894 1.876 0.835 0.831 10.39 9.792
GRU 0.826 2.989 1.893 0.821 0.827 10.67 9.876
LSTM 0.884 2.176 1.791 0.854 0.875 10.56 9.674
Persistence 0.929 1.732 1.541 0.897 0.873 7.621 8.945
ClimaticAvg 0.699 3.200 1.976 0.688 0.678 11.32 9.993

Jeddah Station

Models R RMSE MAE WI NSE MAPE RMSPE
FBSE-GA-LSTM 0.952 1.782 1.459 0.942 0.930 7.330 8.799
FBSE-GA-BiLSTM 0.940 1.781 1.469 0.931 0.925 7.307 8.819
FBSE-GA-GRU 0.940 1.787 1.457 0.920 0.930 7.308 8.811
FBSE-GA-BiGRU 0.930 1.789 1.467 0.920 0.920 7.322 8.789
BiLSTM 0.830 2.289 1.849 0.820 0.830 10.33 9.787
BiGRU 0.830 2.892 1.872 0.830 0.830 10.43 9.791
GRU 0.820 2.994 1.895 0.810 0.811 10.69 9.879
LSTM 0.870 2.178 1.795 0.840 0.860 10.59 9.679
Persistence 0.922 1.731 1.543 0.895 0.872 7.624 8.946
ClimaticAvg 0.697 3.180 1.977 0.687 0.674 11.35 9.995

In addition, the FBSE-GA-LSTM scored the second-highest prediction rate compared
to the other hybrid models, FBSE-GRU and FBSE-BiGRU.

A further assessment was carried out using the LME metric, as shown in Figure 10,
which demonstrated that the FBSE-GA-BiLSTM model scored the highest prediction rates of
0.903, 0.8337, and 0.893, respectively. These results proved that combining the models into
hybrid (FBSE-GA-BiLSTM, FBSE-GA-LSTM, FBSE-GA-GRU, FBSE-GA-BiGRU) models
surpasses standalone models. Additionally, based on the MAPE metric, all hybrid models
(FBSE-GA-BiLSTM, FBSE-GA-LSTM, FBSE-GA-GRU, FBSE-GA-BiGRU) recoded lower
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MAPE values <10%. These results support the superior predictive output of hybrid models
over individual models.

One month ahead prediction (Jazan statlon)
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Figure 10. LME for the monthly performance evaluation.

Across all experiments, the proposed FBSE-GA-BiLSTM model scored the highest
prediction rate for the one-day, one-month, one-week predictions. These findings indi-
cated that the proposed FBSE-GA model effectively improved the performance of deep
learning models.

5. Discussion

The findings highlight the importance of integrating the decomposition model with
deep learning architectures for achieving accurate predictions. The article “Hybrid Model
of Feature-Based Selection and Extraction and Genetic Algorithms GA for Optimizing the
Prediction of Complex and Non-Stationary Time Series” was submitted for hybrid models to
predict nonstationary and complex time series data, which extended the concept of hybrid
models by integrating feature-based selection and extraction (FBSE) and genetic algorithms
(GA), that optimised model parameters, performed data decomposition with selected
features, and eliminated the abnormal values of selecting features. This complementary
relationship enabled us to seek out significant patterns from complex data and to optimise
model parameters for accurate forecast. Combining these methods enabled us to handle the
difficulty of nonlinearity, non-stationarity, and noise in time series data, thus improving the
prediction accuracy. In addition, the FBSE-based GA demonstrated a strong performance
in analysing the nonstationary and complex time series data. The relationship between the
novelty of the decomposition model, feature selection, and deep learning models became
clear in cases where the datasets did not necessarily satisfy the independent and identically
distributed requirement. In our work to tackle these problems in DBT prediction, we
introduced a hybrid model of FBSE, GA, and BiLSTM. The main discovery is described in
this section.

1. Figure 11 reports the results using Taylor diagrams. From the results, we can observe
that all hybrid models were close to actual values. The proposed FBSE-GA coupled
with LSTM, GRU, BiLSTM, and BiGRU models scored the highest R values for the
two (Jeddah and Jazan) stations. The values generated by the individual LSTM, GRU,
BiLSTM, and BiGRU models differed significantly from those generated by the actual
model. For weekly and monthly air temperature predictions, it can be observed the
proposed FBSE-GA-LSTM outperformed all hybrid and individual models.
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Figure 11. Tayler plots for Jeddah and Jazan stations.

2. Figure 12 reports the prediction error (FE) boxplots for the daily, weekly, and monthly
dry-bulb air temperature predictions for all hybrid models using the Jazan station
data. The results revealed that with monthly dry-bulb air temperature prediction, all
models exhibited low error forecasting accuracy across the two regions compared to



Forecasting 2025, 7, 46 20 of 25

the daily and weekly predictions. For the daily prediction, all hybrid models showed
lower FE, while the individual models exhibited high FE. These findings indicated
the ability of integrating FBSE-GA with deep learning models to improve dry-bulb air
temperature prediction.
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Figure 12. Boxplots for Jeddah and Jazan stations.

3. To validate the efficiency of the proposed model, FBSE-GA-LSTM, it was compared
with the classic decomposition models fast Fourier transform (FFT) and discrete
wavelet transform (DWT). Comparisons with DWT and Fourier transform (FF) were
also conducted. In this experiment, FFT and DWT were integrated with GA and
LSTM for fair comparison. Table 7 reports the comparison results. It was observed
that FBSE outperformed FFT and DWT in terms of R and WI. In addition, the FBSE
was faster, and utilised less computation time compared with FFT and DWT.
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Table 7. Comparison among FFT, BSE, and DWT for dry-bulb air temperature prediction.
Jazan Jedda
One Day One Week One Month One Day One Week One Month
R WI R WI R WI R WI R WI R WI
FBSE-GA-LSTM 0986 0966 0975 0954 0954 0943 0965 0.953 0973 0942 0952 0.942
FF-GA-LSTM 0921 0912 0913 0904 0.892 0.88 0923 0915 0931 0921 087 0.86
DWT-GA-LATM 088 0.864 0.872 0.862 0.812 0.832 0864 0.854 0.821 0.812 0.802 0.800
4. This study also examined the effect of GA on the prediction rate. Figure 13 shows

Performance Value
© © © o ©°
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the performance of all hybrid models without GA. The FBSE coefficients were sent
directly to all models without GA. The results showed that all models” performance
was degraded and poor. The results confirmed that the combination of FBSE and GA
improved the predictive accuracy of all models.
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Figure 13. Performance evaluation without GA for Jeddah and Jazan stations.

5.

The computational cost of the proposed FBSE-GA-LSTM and the state-of-the-art

models were evaluated in terms of complexity time. Based on the results, the statistical

model’s persistence and climatic average scored the lowest computational times,
with training times below 16 s, reflecting their simplicity and absence of model
parameter optimisation. In contrast, most of the deep learning models, particularly the
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proposed models, exhibited longer training times due to the additional cost associated
with the GA-based feature selection phase. For example, FBSE-GA-LSTM scored
approximately 320 s to train, compared to 180 s for the LSTM, exhibiting the added
optimisation overhead. Overall, these results demonstrated that the proposed models
offer a favourable trade-off between improved accuracy and acceptable computational
overhead, especially in applications where training is performed offline, as shown in
Figure 14.
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Figure 14. Training time for each model.

To enhance the interpretability of the proposed model, we conducted a feature
analysis to show which features were selected by the GA across 100 optimisation
runs. The results showed that WIND_MEAN_SPEED, RELATIVE_HUMIDITY_MEAN,
AIR_TEMPERATURE_MAX_DB, WIND_PREVAILING_DIRECTION, WIND_MAX_SPEED,
AIR_TEMPERATURE_MAX_WB, AIR_TEMPERATURE_MIN_DB, AIR_TEMPERATURE_
MIN_W, WIND_MAX_TIME_OF_DAY_HH, and VAPOR_PRESSURE_MEAN were the top
ten features, each with a selection frequency exceeding 75%. Based on our findings these
features capture influential meteorological conditions influencing temperature dynamics,
such as wind patterns, humidity, and temperature extremes. Figure 15 presents a bar chart
of the selection frequencies, which demonstrated that the GA effectively identifies the most
relevant inputs, thereby enhancing model efficiency and reducing redundancy without
compromising predictive performance. The feature wind direction had the most significant
influence on DBT because it directly affects heat advection and air mass movement in the
study area. Certain wind directions are associated with the transport of warmer or cooler
air masses, which can substantially alter the local dry-bulb temperature. This relationship
reflects the climatological patterns of the region, where prevailing winds often coincide
with the specific thermal characteristics of incoming air.

The integration of decomposition models with deep learning architectures has shown
promise in enhancing the predictive accuracy of hybrid models for nonstationary and
complex time series data. Nevertheless, there are still restrictions, and future prospects
should be considered to achieve more perfection on these models. The challenges are
largely related to the integration of models, computational constraints, and the handling
of more diverse datasets. The work presented here could be extended to better models
for such issues and other approaches for better accuracy and performance. One of our
future works is that the proposed model will be applied to predict other variables such
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WIND_MAX_TIME_OF_DAY_HH

AIR_TEMPERATURE_MIN_WB
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WIND_PREVAILING_DIRECTION

VAPOR_PRESSURE_MEAN
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WIND_MEAN_SPEED
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as the relative humidity and wind speed as it was designed to work on multivariate time
series data.
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Figure 15. Top selected features by GA.

6. Conclusions

In this study, an accurate model of FBSE, GA, and BiLSTM was developed for predict-
ing the DBT, indicating the extraordinary precision of these models to predict temperature
fluctuation. Using hybrid techniques, the research assured that the predictive quality was
enhanced by combining FBSE-GA with LSTM rather than the separated models. The results
highlighted the importance of GA in choosing the essential features for enhancing the
model robustness. Results also showed that the predictive accuracy of hybrid models was
superior in the case of the changing seasonality.

While the proposed model showed high performance against the standard models,
this study did not include comparisons with established regional or numerical weather
prediction (NWP) models for temperature forecasting. Such models, which include broader
atmospheric dynamics and regional climate data, could improve the evaluation phase of
the paper. Including these comparisons in future work would help contextualise the results
within the wider environment of temperature prediction models.
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