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Abstract
Soil contamination by toxic metals is a major health issue that could be partly solved by using genetically-modified plants. 
For that, the recently developed technique of clustered regularly interspaced short palindromic repeats (CRISPR) has cre-
ated a new dimension in genetic engineering. CRISPR was first found as a part of the adaptive immune system in bacteria 
and archaea, and further refined to generate targeted breaks in DNA in a broad range of organisms. Various DNA changes 
can take place during the cellular repair process. Many plants, including crops, have the potential to tolerate, stabilize, and 
transform both organic and metal contaminants and have been already modified using the CRISPR method. Furthermore, 
many genes necessary to increase the absorption and tolerance of metals have been identified. Thus, using CRISPR, target 
genes could be activated or repressed to optimize phytoremediation in plants. Here we review the CRISPR/Cas9 technology 
applied to phytoremediation and sequestration of metals in the soil environment. The availability of the genome sequence 
plays a critical role in the adaptation of the CRISPR-mediated genome editing to specific plants. CRISPR has demonstrated 
outstanding potential for genome editing. However, the outcome depends on the selected target site, Cas9/Cpf1 function, 
gRNA design, delivery systems, and the off-target effects that may restrict its efficacy.
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Introduction

Anthropogenic activities remain a leading cause of pollu-
tion with increased industrialization that lacks adequate 
planning to manage waste (Wuana and Okieimen 2011). 
Phytoremediation uses plants—phyto-to reduce emissions 
of contaminants into the environment and related toxic 
effects by clean production technologies and remediation 
measures. Phytoremediation is more cost-effective, envi-
ronmentally friendly, and solar energy-driven than many 
other conventional remediation or mitigation methods 
such as solidification, soil washing, and permeable barri-
ers (Kotrba et al. 2009).

However, the main concern of phytoremediation tech-
nology is the handling and disposal of contaminated 
plants. Moreover, this technology is confined to small-
scale applications (Kafle et al. 2022). Plants can accumu-
late pollutants in different tissues (Dhankher et al. 2012), 
promoting their immobilization (phytosequestration). 
Sometimes they can also contribute to a reduction in pol-
lutants toxicity by different mechanisms that can act simul-
taneously. Table 1 summarizes the main phytoremediation 
strategies that involve phytoextraction, phytodegradation, 
phytofiltration, phytovolatilization, and phytosequestra-
tion (Morel et al. 1999; Lichtfouse et al. 2012;  Venegas-
Rioseco et al. 2021).

The process of heavy metals sequestration makes plants 
tolerant to metal toxicity/accumulation in hyperaccumulat-
ing plants. Metal transporters/genes of organelles seques-
ter heavy metals mainly to translocate their excess amount 
and reduce their toxicity (Jogawat et al. 2021). This vacu-
olar sequestration process is an important pathway that 
helps in increasing the removal capabilities of contami-
nants and thus reduce the amount of contaminated waste 
in the environment.

The phytoremediation capacity of commonly used 
macroplant species is generally limited by the type of 
contaminant (Abhilash et al. 2009; Basharat et al. 2018). 
Plants performing phytoremediation, known also as phy-
toremediators, also have several limits, including slow 
growth rate and low biomass production, metal selectivity, 
and different environmental growing conditions (Kären-
lampi et al. 2000; Grataõ et al. 2005). Therefore, mul-
tifaceted approaches, including genetic engineering and 
multi-omics, should help to obtain hyperaccumulating 
plants with high biomass production and a wide range of 
growth conditions (Mosa et al. 2016; Shriram et al. 2016).

Genome editing remains a potential tool for modifying 
the expression of the gene of interest (GOI) (Moradpour 
and Abdulah 2020). Before the advent of CRISPR, zinc-
finger nucleases (ZFNs; Bibikova et al. 2002) and tran-
scription activator-like endonucleases (TALENs; Christian 

Ta
bl

e 
1  

P
hy

to
re

m
ed

ia
tio

n 
m

ec
ha

ni
sm

s i
n 

pl
an

ts

Te
ch

ni
qu

e
M

ec
ha

ni
sm

 o
f a

ct
io

n
Re

po
rte

d 
pl

an
ts

Re
fe

re
nc

es

Ph
yt

os
eq

ue
str

at
io

n
C

on
ta

m
in

an
ts

 fr
om

 so
il 

or
 w

at
er

 re
m

ai
n 

en
tra

pp
ed

 in
 

pl
an

t t
is

su
es

 o
nl

y
Ag

ro
st

is
 c

as
te

lla
na

, P
hy

la
 n

od
ifl

or
a,

 G
en

tia
na

 p
en

ne
l-

lia
na

, L
ol

iu
m

 it
al

ic
um

, F
es

tu
ca

 a
ru

nd
in

ac
ea

, A
nt

hy
l-

lis
 v

ul
ne

ra
ri

a

N
um

an
 e

t a
l. 

(2
01

8)
, K

um
ar

 a
nd

 V
er

m
a 

(2
01

8)
, P

as
to

r 
et

 a
l. 

(2
01

5)
 a

nd
 Y

oo
n 

et
 a

l. 
(2

00
6)

Ph
yt

oe
xt

ra
ct

io
n

C
on

ta
m

in
an

ts
 a

re
 a

ds
or

be
d 

vi
a 

ro
ot

 sy
ste

m
 b

ut
 st

or
ed

 
in

 a
er

ia
l p

ar
t w

hi
ch

 is
 fu

rth
er

 b
ur

nt
 to

 re
cy

cl
e 

th
e 

m
et

al

Yo
un

gi
a 

er
yt

hr
oc

ar
pa

, T
hl

as
pi

 c
ae

ru
le

sc
en

s (
sy

no
ny

m
: 

N
oc

ca
ea

 c
ae

ru
le

sc
en

s)
, B

ra
ch

ia
ri

a 
de

cu
m

be
ns

, A
ly

s-
su

m
 v

ul
ne

ra
ri

a
Ph

yt
od

eg
ra

da
tio

n
C

on
ta

m
in

an
ts

 a
re

 d
eg

ra
de

d 
in

 si
tu

 b
y 

pl
an

t e
nz

ym
e

M
yr

io
ph

yl
lu

m
 a

qu
at

ic
um

, E
lo

de
a 

ca
na

de
ns

is
, 

Sp
iro

de
la

 o
lig

or
rh

iz
a

Ph
yt

ov
ol

at
ili

sa
tio

n
C

on
ta

m
in

an
ts

 a
re

 c
on

ve
rte

d 
to

 le
ss

er
 to

xi
c 

co
m

po
un

d 
an

d 
re

le
as

ed
 in

 th
e 

ai
r

Br
as

si
ca

 ju
nc

ea
, A

ra
bi

do
ps

is
 th

al
ia

na

Ph
yt

ofi
ltr

at
io

n
C

on
ta

m
in

an
ts

 a
re

 ta
ke

n 
up

 b
y 

ro
ot

 fr
om

 g
ro

un
d 

w
at

er
M

an
ih

ot
 e

sc
ul

en
ta

, B
. j

un
ce

a,
 B

er
kh

ey
a 

co
dd

ii,
 E

ic
h-

ho
rn

ia
 c

ra
ss

ip
es

, H
yd

ro
co

ty
le

 u
m

be
lla

ta
,

Le
m

na
 m

in
or

, M
ic

ra
nt

he
m

um
 u

m
br

os
um

, C
al

lit
ri

ch
e 

st
ag

na
lis

, P
ot

am
og

et
on

 n
at

an
s



431Environmental Chemistry Letters (2023) 21:429–445	

1 3

et  al. 2010) were used as editing tools to modify the 
genome at the transcriptional level (Chen and Gao 2015). 
ZFNs and TALENs employ the protein-based endonucle-
ase Fok I by producing double-stranded breaks (DSBs) in 
the DNA for gene knockout (Gaj et al. 2013). DSBs at the 
targeted site by sequence-specific nuclease (SSN) were 
the primary strategy to introduce genetic changes in cells. 
In higher eukaryotes, the repair mechanism primarily fol-
lows non-homologous end joining pathways and, minorly, 
homology-directed repair (HDR). ZFNs and TALENs 
are difficult to use in practice due to their protein/DNA 
interaction-mediated mechanism determining specificity. 
In addition, these techniques need two different protein 
hybrid designs to locate infrequently existing regions 
flanking the target DNA (Li et al. 2011).

Recently, the advances of the clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-asso-
ciated9 (Cas9) tool demonstrated many advantages over the 
forerunners since Cas9 only requires simple cloning steps 
and has easy multiplexing and library building capacity 
(Sharma et al. 2017). The CRISPR system was first used in 
2012 (Jinek et al. 2012), followed by the employ in mamma-
lian cells (Cong et al. 2013; Mali et al. 2013a) and plants in 
2013 (Li et al. 2013; Nekrasov et al. 2013; Shan et al. 2013) 
and has been becoming more advanced in the fields of plant 
sciences (Chen et al. 2019; Zhang et al. 2018a, b) succeed-
ing the earlier technologies such as targeted mutagenesis 
(Ma et al. 2016; Schindele et al. 2018; Yin et al. 2017), base 
editing (Kim 2018), precise editing by HDR (Huang and 
Puchta 2019) and transcriptional regulation (Mahas et al. 
2018). The CRISPR/Cas system (Bortesi and Fischer 2015) 
is more effective on monocotyledon crop plants due to their 
high GC (guanine-cytosine) content (Miao et al. 2013).

Recently, the applicability of CRISPR-assisted genome 
editing technology for phytoremediation of heavy metals/
metalloids has been tested. CRISPR-mediated plant modifi-
cations help to withstand, immobilize, and stabilize various 
pollutants. The precision, cost-effectiveness, and promise of 
CRISPR-mediated genome editing offer exciting opportuni-
ties in many phytotechnologies such as phytoremediation 
(Venegas-Rioseco et al. 2021) (see Table 1). The present 
review aims to depict and critically evaluate the research 
reports published on CRISPR/Cas9 technology concern-
ing phytoremediation, mainly addressed to sequestration of 
heavy metals with notes on biotechnological interventions 
and limitations of this system in plant genome engineering.

Bibliometry

A systematic literature review was carried out to comprehen-
sively assess the literature concerning phytoremediation and 
the sequestration of heavy metals using CRISPR/Cas9. A 

search with the SCOPUS database, in all the paper fields, for 
"CRISPR" and "phytoremediation or sequestration" showed 
the existence of more than 2000 papers in this group. When 
the search was limited to "heavy metal", as pollutant source, 
the number of papers was 310. The attention of this review was 
devoted to mostly these papers.

The information of the papers extracted from the SCOPUS 
platform includes authors, document title, keywords, abstract, 
and references for the data analysis, synthesis, and interpreta-
tion. In particular, an analysis of all data from the bibliometric 
database, investigating the co-occurrence of text data, allows a 
cluster analysis of the literature (see Fig. 1). For this aim, data 
analysis was performed by "VOSviewer version 1.6.16," 2020. 
The study design, with the connected literature, was updated 
on September 12, 2021.

Figure 1a, based on the co-occurrence analysis of abstracts 
text data of bibliography, shows that the already available 
papers can be grouped in 2 clusters. The first one—66 items 
-, highlighted by red bubbles, is mainly devoted to technolo-
gies and their development, correlated, for example, with bio-
technology and genomic applications. The second cluster—44 
items—is represented by green bubbles and is mainly devoted 
to the metal remediation mechanisms.

Figure 1b shows the results of the co-occurrence network 
of keywords of the papers extracted from the SCOPUS search, 
revealing that these works can be grouped into 5 clusters. The 
first one—94 items -, represented by red bubbles, is mainly 
devoted to bioremediation, with great attention to non-human 
genetic engineering and genomic editing. The second clus-
ter—74 items—highlighted by green bubbles is devoted to 
plant degradation of specific metals (connected with differ-
ent plant tissues), with great attention to gene expressions and 
genotypes. The third cluster—54 items -, represented by blue 
bubbles, mainly concerns soil pollution, biochemistry, and 
chemical contamination. The fourth one—38 items—high-
lighted by yellow bubbles involves genome analysis, enzyme 
activities, and microbiology.

Finally, the last cluster—1 item -, is represented by a 
violet bubble, and is focused on the chemistry. Then, based 
on the cluster analysis results, the literature discussion was 
realized through reading the selected full-text papers. These 
papers were carefully analysed with regards to heavy metals' 
phytoremediation and sequestration ability. The review sec-
tions are organized to discuss the CRISPR/Cas9 system and 
plant genome engineering in Sect. 3, and the advancements in 
CRISPR/Cas9-mediated phytoremediation in Sect. 4. Finally, 
future directions are also presented in Sect. 5.
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Fig. 1   Bibliometric cluster analysis results. The “co-word” analy-
sis was realized to highlight emerging and popular themes for the 
investigated topic, based on the bibliography text data and keywords. 
The Figure shows a graphical representation of how frequently the 
selected variables, which are represented by a node, appear together. 
a The co-occurrence of text words in the abstracts, concerning 
"CRISPR", "heavy metals" and "phytoremediation (or sequestra-

tion)"; b The co-occurrence network of the keywords for the same 
papers selected for cluster analysis reported in a. The study was real-
ized by using the SCOPUS database as a paper source, and the anal-
ysis was obtained by "VOSviewer version 1.6.16," 2020. The study 
design was updated on November 20, 2021. CRISPR clustered regu-
larly interspaced short palindromic repeats
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CRISPR/Cas9 and plant genome engineering

CRISPRs are short repeat DNA sequences separated by 
spacer regions. These are commonly found in bacteria and 
archaea. The CRISPRs, which are also known as CRISPR 
arrays, contain genes that encode Cas proteins used to 
classify diverse CRISPR systems depending on various 
factors, including phylogenetic, functional, and structural 
properties. CRISPR systems can be broadly classified 
into two types, class 1, where a single protein mediates 
the antiviral mechanism, and, otherwise, class 2 system 
(Makarova et al. 2015). Each class is further subdivided 
into multiple groups, class 1 has type I (Cas3), III (Cas10) 
and IV (Csf1) systems and class 2 systems have type II 
(Cas9), type V (Cas12a, Cas12b, Cas12c, Cas12d (also 
called as CasY), Cas12e (CasX), Cas12g, Cas12h, Cas12i, 
Cas14a, Cas14b, Cas14c) and type VI (Cas13a, Cas13b, 
Cas13c, Cas13d) (Burstein et al. 2017; Harrington et al. 
2018; Liu et al. 2019; Shmakov et al. 2015; Yan et al. 
2019). Each type is further divided into multiple subtypes 
depending on multiple factors, including the Cas protein 
types, and the classification system is constantly growing.

Cas 9 belongs to class 2, type II CRISPR system, and 
binds to a single-guide RNA [sgRNA; a fusion of crRNA 
and trans-activating crRNA (tracrRNA)]. Cas 9 then inter-
acts with the target DNA sequence near a protospacer adja-
cent motif (PAM). Streptococcus pyogenes Cas9 (SpCas9) 
is the most diffused, using a simple PAM (NGG) for the 
target site recognition. This system is used in a wide range 
of organisms, including humans (Homo sapiens; hCas9) 
(Mali et al. 2013a, b), plants (pcoCas9 and Cas9p) (Li 
et al. 2013; Ma et al. 2015), Arabidopsis thaliana (Ate-
Cas9) (Fauser et  al. 2014), maize (Zea mays; zCas9) 
(Wang et al. 2015; Lee et al. 2019) and soybean (Glycine 
max; GmCas9) (Michno et al. 2015). The Cas9 nickase 
(nCas9) is generated by introducing the point mutations 
D10A in the RuvCI domain or H840A in the HNH domain, 
which selectively cleaves the targeting or non-targeting 
strand, respectively (Cong et al. 2013; Mali et al. 2013a, 
b; Ran et al. 2013).

However, the nuclease activity is suppressed when both 
mutations are introduced, leading to a generation of cata-
lytically inactive or dead Cas9 (dCas9) (Qi et al. 2013). 
Nevertheless, Cas9 nuclease, nCas9, and dCas9 have dif-
ferent genetic engineering uses. CRISPR provides excel-
lent opportunities for plant genetic engineering despite 
the challenges generated due to the diversity. CRISPR/
Cas9 will foster progress in areas where multiple genetic 
factors are involved, such as complex genetic architecture 
and ploidy levels. CRISPR/Cas9 is also useful to discover 
the genes and interrelated traits in plant species (Table 2).

Generation of transgene‑free edited plants

The CRISPR-mediated transgenic plants should be free 
from transgene so that they do not appear invasive to native 
species, limit ecological consequences and improve public 
acceptance. So, CRISPR transgenes are removed mainly by 
attaching a fluorescent marker or herbicide susceptibility to 
CRISPR encoded genes (Gao et al. 2016; Lu et al. 2017). 
However, this approach is unsuitable for plants with vegeta-
tive growth, plants with longer life cycles, self-incompatible 
and polyploid plants. The mutated plants are therefore gener-
ated without integrating a transgene at all.

The CRISPR machinery is either expressed in the cel-
lular system (Iaffaldano et al. 2016; Zhang et al. 2016) or 
the CRISPR/Cas RNPs (ribonucleoproteins) are delivered to 
plant protoplasts via polyethylene glycol mediated transfor-
mation in Arabidopsis, wild tobacco (Nicotiana attenuata), 
lettuce (Lactuca sativa), rice (Kim et al. 2017; Woo et al. 
2015), apple (Malus pumila), grape (Vitis vinifera) (Malnoy 
et al. 2016), Petunia × hybrid (Subburaj et al. 2016) and soy-
bean (Kim et al. 2017).

However, protoplast-mediated plant regeneration can 
cause somaclonal variations (Li et  al. 2019). RNPs are 
delivered into plant tissues and plant zygotes by particle 
bombardment (Liang et al. 2017; Svitashev et al. 2016; 
Toda et al. 2019). RNP reduces the random DNA integra-
tion and off-targeting effects by reducing the exposure time 
of genomic DNA to CRISPR reagents. In recent advances, 
edited T1 rice plants have been made with a transgene killer 
CRISPR system (He et al. 2018).

Off‑target effects

The off-target effect of Cas proteins is a major challenge in 
gene therapies. DSBs caused by Cas9 can result in genome 
rearrangements and large deletions (Kosicki et al. 2018). 
Whole-genome sequencing has been carried out to find the 
off-target in Arabidopsis, rice, and cotton (Feng et al. 2014; 
Tang et al. 2018; Li et al. 2019).

Most of the mutations in transgenic plants have been 
due to somaclonal variation since Cas9 and Cas12a have 
high specificity. Whole-genome sequencing suggested that 
CBEs (cytosine base editors that change target G-C into 
A-T) instead of ABEs (adenine base editors that change 
A-T to G-C) promote genome-wide off-target effects. For 
example, in more than one cytosine presence in the cata-
lytic window, non-target cytosine-to-uracil conversion takes 
place (Jin et al. 2019). Modified base editors have signifi-
cantly reduced their RNA editing activity (Rees et al.2019; 
Grünewald et al. 2019). To minimize off-targets, paired 
nCas9 (that reduces off-target mutation) is often used 
(Ran et al. 2013). Modified high fidelity SpCas9, such as 
SpCas9-HF1-4 (Kleinstiver et al. 2016), SpCas9 (K855A) 
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and eSpCas9 (1.1) (Slaymaker et al. 2016), HypaCas9 (Chen 
et al. 2017), evoCas9 (Casini et al. 2018), sniper-Cas9 (Lee 
et al. 2018) and HiFi Cas9 (R691A) has shown to decrease 
Cas binding and increasing editing specificity. The eSpCas9 
(1.0 and 1.1) and SpCas9–HF1 in rice have maintained on-
target editing activity with enhanced specificity when using 
the T-RNA–sgRNA processing system (Zhang et al. 2017).

Two other Cas9 variants, eHF1-Cas9 and eHypa-Cas9, 
are also reported in rice (Liang et al. 2018). Compared to 
wild-type, Cas9xCas9 has higher targeting specificity in rice 
(Zhong et al. 2019), although many high-fidelity SpCas9s 
may not be used for plant genome editing due to intrinsi-
cally lower nuclease activities (Zhang et al. 2017; Zhang 
et al. 2018a, b).

Temperature sensitivity

Cas9 and Cas12a function optimally at a higher temperature 
in mammalian cells compared to plants (Xiang et al. 2017; 
Moreno-Mateos et al. 2017; LeBlanc et al. 2018; Malzahn 
et al. 2019). However, an increase in Cas9 and Cas12a effi-
ciency has been shown upon elevation of temperature in 
rice, Arabidopsis, and maize (Malzahn et al. 2019; LeBlanc 
et al. 2018). Cas9 exhibited optimal nuclease activity in 
human cells at 37–39 °C (Xiang et al. 2017), and improved 
Cas9 editing was observed in plants after heat stress at 37 °C 
(LeBlanc et al. 2018).

On the other hand, Cas12a nucleases showed optimal 
activities at around 28–29 °C in plants, and 22–29 °C is 

Table 2   Genes involved in phytoremediation

Genes/proteins Mechanism of action References

Toluene-o-monooxygenase (TOM) Plays crucial role in removal of trichloroeth-
ylene

Mahendra and Alvarez-Cohen (2006) and 
Aburto-Medina et al. (2017)

Toluene 4-monooxygenases (T4MO) Removal of nonaromatic nitrosodimethyl-
amine (NDMA)

Scott et al. (2008), Li et al. (2013), Bouhajja 
et al. (2017) and Yamaguchi et al. (2018)

Polyphosphate kinase (PPK) Removal of uranium Ibanez et al. (2015), Daghan (2019) and Kaur 
et al. (2019)

Mercuric resistance operon regulatory protein 
(MerR)

Provides resistance against Hg(II) Checcucci et al. (2017), Wei et al. (2018) and 
Singh et al. (2019)

Metallothionein-like protein (MTL) Degradation of lignin and polyaromatic 
hydrocarbons

Peng et al. (2017) and Khan et al. (2018)

Biphenyl-polychlorinated biphenyl (bph) 
operon

Degradation of polychlorinated biphenyls and 
biphenyls

Jiang et al. (2018) and Kour et al. (2019)

Organophosphorus hydrolase (OPH) Deduction organophosphorus Scott et al. (2008)
lux Helps in bioluminescence by specific aromatic 

compounds like naphthalene
Ariani et al. (2015), Stolarikova-Vaculıkova 

et al. (2015) and Rome et al. (2016)
Cytochrome P450CAM Oxidation of hexane and 3-methylpentane Azab et al. (2016), Legault et al. (2017) and 

Daudzai et al. (2018)
Ortho-dechlorination gene Degradation of chlorobenzoic acids Chakraborty and Das (2016)
Chlorobenzoate dehalogenase (CBAD) 2,4-dinitrotoluene Agullo et al. (2019) and Kumar and Pannu 

(2018)
Polynucleotide phosphorylase (pnp) gene 

operon
Degradation of paraoxon Ye et al. (2015) and Gupta and Kumar (2017)

Xylose operon regulatory protein (XylR) Reduction of atrazine Wu et al. (2015) and Zhao and Huang (2018)
Arylsulfatase B/C (arsB/C) Removal of arsenate Mergeay et al. (2003)
Vitreoscilla globin (vgb) Increases growth Khleifat et al. (2006) and Aburto-Medina et al. 

(2017)
AtHMA4 Restricts Cd transport from the roots to the 

shoots
Siemianowski et al. (2014)

Copper resistant protein C (CopC) Hyperaccumulation of Cu in the shoots Rodriguez-Llorente et al. (2012)
ATP-binding cassette (ABC) Enhanced accumulation of Cd and Pb in the 

shoots
Bhuiyan et al. (2011)

HvNAS1 Enhanced accumulation of Ni reducing Ni-
toxicity

Kim et al. (2005)

Phytochelatin synthase (PCS) Higher accumulation of Cd and Pb, more 
tolerant to Cd

Huang et al. (2012) and Chen et al. (2015)

Glutamyl cysteine synthetase (GCS) Enhances PCS activity, higher production of 
phytochelatins in relation to Cd tolerance

Zhao et al. (2014)



435Environmental Chemistry Letters (2023) 21:429–445	

1 3

the most suited temperature range for most plants. Further 
knowledge on the effects of heat treatment will help to facili-
tate a more robust editing toolkit in plants. However, the 
temperature sensitivity of Cas12a nucleases should not hin-
der applying CRISPR-based genome editing in various other 
plants (Malzahn et al. 2019).

Genome editing in polyploid plants

Many crops are either triploids [citrus, banana (Musa 
acuminata, M. balbisiana, and Musa × paradisiaca), seed-
less watermelon (Citrullus lanatus) and some varieties of 
apples]; tetraploids [Triticum durum, cotton, potato, canola 
(Brassica napus), rapeseed, peanut (Arachis hypogaea), 
tobacco, Panicum virgatum and some varieties of apple], 
hexaploids [Camelina sativa, bread wheat and oats (Avena 
sativa)] or octoploids [sugar cane (Saccharum officinarum) 
and strawberry (Fragaria × ananassa)].

As gene knockout provides low output in polyploid spe-
cies compared to diploid species, there is a need for a highly 
active Cas nuclease and an efficient expression system. This 
has been successfully achieved in many polyploid plant spe-
cies (Ryder et al. 2017; Shan et al. 2018; Andersson et al. 
2017; Braatz et al. 2017; Gao et al. 2017; Jiang et al. 2017; 
Liu et al. 2018; Morineau et al. 2017; Wang et al. 2014; 
Wang et al. 2018; Zhang et al. 2016; Zhang et al. 2019). So 
far, genome editing has improved oil quality and disease 
resistance in crop plants (Jiang et al. 2017; Wang et al. 2014; 
Jia et al. 2017).

Floral dip transformation‑mediated germline 
editing

The generation of germline-edited plants remains challeng-
ing for plants such as Arabidopsis since the Agrobacterium-
mediated floral dip method to deliver the CRISPR transgene 
has low editing efficiency in germlines (Lee et al. 2019). 
Agrobacterium delivers the CRISPR-carrying T-DNA to the 
egg cells, but germline edits are only possible when CRISPR 
makes modifications after the Agrobacterium infection but 
before the embryogenic cell division; otherwise, the results 
can be considered as chimeric plants.

Egg cell-specific promoters for Cas9 expression can over-
come this challenge by limiting or boosting genome edit-
ing in germinal cells. Such promoters are EC1.2 (Lee et al. 
2019), the sporogenesis expression promoter SPOROCYTE-
LESS (Mao et al. 2016) and meiosis I-specific promoter (Eid 
et al. 2016), as well as CDC45, DMC1, SOP11, YAO, and 
RPS5A promoters (Yan et al. 2015; Tsutsui and Higashi-
yama 2017). The use of preselected transgenic lines with 
high germline expression of Cas9 in Arabidopsis helped to 
achieve HDR (Miki et al. 2018). However, similar problems 
persist in other crops such as Camelina (Jiang et al. 2017). 

Different goals, which were achieved by CRISPR in plant 
genetic engineering, are summarized in Fig. 2.

Advancements in CRISPR/Cas9‑mediated 
phytoremediation

Many phytoremediators have been sequenced partially or 
completely, as Thlaspi caerulescens (synonym: Noccaea 
caerulescens; hyperaccumulator for Cd, Zn, and Ni), Arabi-
dopsis halleri (hyperaccumulator for Cd and Zn), Hirschfel-
dia incana (capable for withstanding Pb), Pteris vittata, and 
Brassica juncea (Basharat et al. 2018; Mandàkovà et al. 
2015; Auguy et al. 2016; Briskine et al. 2017). The avail-
ability of the genome sequence plays a fundamental role in 
the adaptation of the CRISPR-mediated genome editing to 
specific plants.

Phytoremediation provides an efficient, environmentally 
non-destructive, and cost-effective remediation method. 
Table 3 lists the application of different biotechnological 
tools for phytoremediation. Engineering genes can geneti-
cally manipulate the efficacy of phytoremediation for metal 
uptake, transport, and sequestration. Genes such as metal 
chelator, metal transporter, metallothionein, and phytochela-
tin have been transferred to plants to improve metal uptake 
and sequestration.

For example, the CRISPR-mediated control of the metal 
transporter gene OsNRAMP5 resulted in low Cd-accumula-
tion in indica rice without compromising yield (Tang et al. 
2017). In addition, transgenic plants have been developed 
with the ability to detoxify, to tolerate or to accumulate 
toxic metals and metalloids (Eapen and D'Souza 2005) as 
increased tolerance to toxic metals can lead to hyperaccu-
mulation thereby promoting phytoremediation (Huang et al. 
2019).

Finally, the phytoremediation of toxic metal mainly 
focuses on the increased synthesis of metal ligands like 
metallothioneins, phytochelatins, metal transport proteins 
like CDF, HMA, and ZIP families, plant growth hormones 
like CKs and GAs, and root exudates like siderophores. For 
example, overexpressing the NAS1 gene in Arabidopsis 
and tobacco plants increased tolerance against metals like 
Cd, Cu, Fe, Ni, and Zn and uptake of metals like Mn and 
Ni. Increased capacity of Cd, Cu, and Zn accumulation was 
observed during overexpression of metallothioneins encod-
ing genes (such as MTA1, MT1, and MT2) in tobacco and 
Arabidopsis (Xia et al. 2012; Sebastian et al. 2019). The 
overexpression of ATP Sulfurylase gene (APS) and Seleno-
cysteine Methyltransferase gene (SMT) in B. juncea led to 
increased tolerance towards Se (LeDuc et al. 2006). Simi-
larly, expressing the two metallothionein genes BcMT1 and 
BcMT2 from B. campestris increased the tolerance to Cd and 
Cu in A. thaliana (Lv et al. 2013).
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Fig. 2   Multifaceted applications of CRISPR-mediated genetic modi-
fications in plants: a in tissue-culture dependent and independent 
process, where Cpf1 or Cas12a (CRISPR associated protein 12a) is 
an RNA guided endonuclease and Cpf1 is co-transformed with guide 
RNA (gRNA) in the callus culture to propagate transgenic plants b 
in homozygous-edited transgene-free line generation, where an elite 
line i.e. with the desired trait is crossed with an inducer plant having 

CRISPR construct. This results in haploid seeds which are made dip-
loid by mainly self- crossing. c In domestication where CRISPR edit-
ing is used to augment a metabolite level like vitamin C or increased 
fruit size or day length insensitivity and in d in targeted chromosomal 
breaks to induce recombination. CRISPR clustered regularly inter-
spaced short palindromic repeats

Table 3   Different biotechnological tools involved in phytoremediation process

Name of the editing tool Mechanism of action References

CRISPR-Cas9 It is a DNA endonuclease that mediates its action in a 
RNA-guided manner and targets specific sequences in 
the genome

Ebbs et al. (1997), Feng et al. (2018), Tang et al. (2017), 
Habibi et al. (2017), Agnihotri and Seth (2019), Kaur 
et al. (2019) and Pandey and Singh (2019)

CRMAGE CRISPR-Cas9 in combination with the Lambda (l) and is 
engineered with the MAGE technique

Ronda et al. (2016) and Mukherjee (2017)

MuGENT Genome integration with mutants that consists of high 
efficiency

Agnihotri and Seth (2019)

TALENs Nonspecific exonuclease targets DNA-binding domain 
for modifications

Basharat et al. (2018) and Mahfouz et al. (2014)

ZFNs Genome editing by DNA-binding proteins at targeted 
sites by forming commencing double-strand breaks in 
the DNA

Miller et al. (2007), Gabriel et al. (2011) and Noman et al. 
(2016)
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The transformation of highly toxic mercury Hg2+ to 
Hg0 is carried out using genetically modified Liriodendron 
tulipifera (yellow poplar). Besides this, in tissue culture, this 
plant can grow in higher mercury concentrations (Rugh et al. 
1998). Explosives like TNT were shown to be cleaned up 
by Vetiveria zizanioides with a success rate of 97% (Das 
et al. 2010) and by Nicotiana tabacum, which produces 
nsfI nitroreductase enzyme in the roots (Hannink et  al. 
2007). Similarly, Populus deltoides plants were found to be 
involved in converting hexahydro-1,3,5-trinitro-1,3,5-tria-
zine to metabolic components (Just et al. 2004). Rhizodegra-
dation is a process where bacteria and mycorrhizae degrade 
toxins. Rhizomes of Typha latifolia were found to degrade 
terbuthylazine (TER) (Papadopoulos et al. 2019). Polycyclic 
hydrocarbons are carcinogenic and mutagenic and are often 
accumulated in soil and plant parts (Bryselbout et al. 2000). 
Rhizophora mangle mangrove with plant growth-promoting 
rhizobacteria (Pseudomonas aeruginosa and Bacillus sp.) 
was found to degrade carcinogenic and mutagenic polycyclic 
aromatic hydrocarbons (Harvey et al. 2002; Sampaio et al. 
2019; Nedjimi 2021).

However, tweaking metal accumulation can result in 
the development of hypersensitivity. For example, overex-
pression of the plasma membrane protein in tobacco plants 
caused an increased capacity for accumulation of Pb but also 
resulted in an increased sensitivity of the plant to Pb. Simi-
larly, overexpression of the merC gene caused both increased 
accumulation and hypersensitivity towards Hg in Arabidop-
sis and tobacco plants (Fasani et al. 2018).

In addition to editing plant genes to increase phytore-
mediation, the plant–microbe interaction should not be 
neglected. Microbe's interaction provides plants the toler-
ance to adverse conditions by promoting phytohormone pro-
duction (by fungi such as Laccaria bicolor, Tuber borchii, 
and T. melanosporum in Cistus incanus (Boivin et al. 2016), 
siderophore production (for example, by the members of 
Vibrionaceae (Thode et al. 2018), root nodule formation and 
nitrogen fixation (by the nodule endophytic Bacillus mega-
terium strain from Medicago polymorpha (Chinnaswamy 
et al. 2018).

Earlier, several studies have indicated the potential of 
plant–microbe interactions in removing heavy metals from 
contaminated and polluted sites. Novel and efficacious 
microbes and their promising applications in the plant rhizo-
sphere can further be utilized in the phytoremediation of 
different soil contaminants (Mandal et al. 2016).

CRISPR has opened the way of phytoremediation for 
many plants, like maize and poplar, which were considered 
capable but not yet investigated due to the complex architec-
ture of their genome. Recent advances have suggested modi-
fying maize plants by CRISPR despite the complex genome 
and high ploidy levels (Agarwal et al. 2018). Since maize 
is a fast-growing crop with a high yield of biomass and the 

potential of accumulating metals, the sustainability of the 
phytoremediation must be further investigated in this case. 
Poplar is also of potential candidate for CRISPER due to the 
available intensive root system that penetrates deep into the 
soil and accumulates contaminants (Baldantoni et al. 2014).

Furthermore, computational biology and multi-omics 
approaches, such as genomics, proteomics, metagenomics, 
and transcriptomics, are essential to obtain target genes. 
The constraint-based mathematical modelling system (Zhu 
et al. 2016), flux balance analysis for metabolic pathway 
assessment (Cheung et al. 2015), and genome integration 
assessment via omics tools (Yoshida et al. 2015; Do Amaral 
and Souza 2017) have been used to explain the physiology 
and molecular manifestations of the edited plants. Figure 3 
represents the applications of multi-omics and genetic engi-
neering in CRISPR-mediated phytoremediation.

Perspective

CRISPR-assisted genome editing holds immense promise 
for exploring plant genomes to facilitate phytoremediation. 
Editing the target genes, modulating their expression, manip-
ulating the pathway(s) and pollutant homeostasis networks 
involved in hyperaccumulation, degradation, or tolerance 
can be wide-ranging and far-reaching for a pollution-free 
environment using phytoremediation. Recombinant DNA 
technology and synthetic biology-based approaches pave 
newer ways to confer desired phenotypes in the organism of 
interest. Besides, the progress in plant genome editing can 
provide a new dimension in improving plants for phytore-
mediation. From single-base alteration to mega alteration 
and copy number variation, genome editing provides tools to 
advanced phenotype generation. The gRNA-Cas9 facilitates 
the targeting of multiple sequences simultaneously, allowing 
the simultaneous manipulation of multiple traits involved 
in enhanced plant growth and biomass production, abiotic 
and biotic stress tolerance, and metal accumulation. Since 
the discovery, the CRISPR-Cas9 system has revolutionized 
genetic engineering, providing a convincing and prospective 
approach for transgenic plant generation.

Table 3 presents the different biotechnological tools in 
relation to phytoremediation. To date, most of the CRISPR-
based studies are performed in mammalian cells, making 
laborious to easily replicate these results in plants. Further 
improvement of the CRISPR system needs the optimization 
of the sgRNA scaffold with a good binding affinity for Cas9. 
Plants with complex genomes, such as wheat and sugarcane, 
have not yet been studied using CRISPR. The generation of 
more competent Cas proteins and their optimization would 
open new areas in genetic engineering. Further, screening 
of transgenic plants in actual environmental conditions is 
necessary.
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Nevertheless, challenges to utilizing CRISPR in plant 
genome editing remain in target specificity, delivery sys-
tem, and genetic makeup of the plant. Although CRISPR 
has shown convincing potential in increasing the reme-
diation rate, further advancements are required to over-
come the challenges. Progress may include the immediate 
transfection of Cas9 alongside gRNAs into the plant proto-
plasts, T-DNA-conveyed gRNA_Cas9, and plant retrieval 
from single-cells (Mikami et al. 2015). The binding abil-
ity of Cas9 protein also helps in controlling the expres-
sion at the level of transcription by the regulation mode 
of the transcription factors (TFs) (Miglani 2017), that can 

function precisely over 1000-fold range (Piatek et al. 2015; 
Lowder et al. 2015).

In bacteria and Chlorophyta, Cas9 has exhibited toxicity, 
hence compromising growth. However, no report on Cas9 
toxicity has been noted in higher plants. However, DSBs 
and Cas9 are known to cause genome instability in various 
systems, limiting the application of CRISPR/Cas9. In Strep-
tomyces, DSBs result in large-scale genome deletions and 
rearrangements in the 6–12 Mb linear chromosome (Hoff 
et al. 2018). DSB-free, highly accurate single-nucleotide 
resolution-based CRISPR-Base Editing System, CRISPRi, 
and deaminase-based DNA base editors have been efficiently 

Fig. 3   CRISPR-mediated phy-
toremediation: applications of 
multi-omics including genom-
ics, transcriptomics, network 
analysis and mathematical 
modelling in identification, iso-
lation, and genetic engineering 
of regulatory genes. CRISPR 
clustered regularly interspaced 
short palindromic repeats
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employed to avoid such a scenario tool for genome engineer-
ing (Tong et al. 2020).

In addition, in various polyploid plants, the CRISPR/
Cas editing strategy is limited because of their high copy 
numbers, large genome size, and lack of annotated genomes 
to prepare the appropriate sgRNAs. However, the CRISPR/
Cas9 toolkit demonstrates many benefits compared to the 
conventional editing strategies as CRISPR/Cas9 can simul-
taneously target several genes without demonstrating any 
linkage drag (Montecillo et al. 2020; Wada et al. 2020; Zhou 
et al. 2020).

However, many regulatory and ethical issues have been 
raised lately regarding plants' CRISPR/Cas9 editing. In July 
2018, the European Court of Justice stated that organisms 
obtained as results of directed mutagenesis are to be reck-
oned as genetically modified organisms within the meaning 
of Directive 2001/18. Michael M. Landa, J.D., Director of 
the US Food and Drug Administration (FDA), Center for 
Food Safety and Applied Nutrition, stated in 2014 that FDA 
is "confident that the genetically engineered (GE) foods in 
the US marketplace today are as safe as their conventional 
counterparts." The FDA further declared that manufacturers 
are responsible for assuring the GE food products' safety, 
and the FDA is not responsible for testing their products. 
Therefore, regulatory and ethical considerations of novel 
genome engineering techniques, including CRISPR, must 
evaluate their likely yet unrealized hazards and uncontrolled 
applications (Gelinsky and Hilbeck 2018). Recently, Robin 
Fears, director of the European Academies Science Advisory 
Council's Biosciences Program, criticized the current EU 
regulations regarding the use of CRISPR/Cas and advocated 
broader use of this technique by saying, "There is a societal 
cost of not using new genome editing techniques or being 
slow in adoption."

Conclusion

The present review article summarizes the potential of 
CRISPR-Cas genome editing in phytoremediation aiming on 
breakthrough advancements and future perspectives in the 
field. A wide variety of plants were considered for genetic 
manipulation with the availability of codon-optimized Cas9 
versions for both monocots and dicots. Many plant genes 
have been edited with different techniques to improve differ-
ent steps and boost phytoremediation. CRISPR has emerged 
as a great genome-editing toolkit, improving day by day and 
making editing possible even in plants with challenging 
genomes. However, the latest research also investigates the 
possible role of plant–microbe interactions and the involve-
ment of microbial genes as regulators of different aspects of 
phytoremediation.

Chronic exposure to heavy metals and human diseases are 
potentially interlinked since many metals and metalloids are 
carcinogenic with a long half-life and are non-degradable. 
The ever-changing environment and climate and the plants' 
resilience and subsequent adaptations are crucial factors in 
phytoremediation practice. Engineering plant genomes for 
metal hyperaccumulation could provide new opportunities 
to eliminate such problems. Although CRISPR has dem-
onstrated a huge potential for genome editing, the outcome 
depends on the target site selection, Cas9/Cpf1 function, 
gRNA design, delivery systems, and the off-target effects 
that may restrict the efficacy. Further research is required 
to use these advanced genome-editing tools for precise and 
targeted modifications in order to facilitate phytoremediation 
to secure sustainable development.
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