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ABSTRACT
The destabilizing effect of Hall diffusion in a weakly ionized Keplerian disc allows the
magnetorotational instability (MRI) to occur for much lower ionization levels than would
otherwise be possible. However, simulations incorporating Hall and Ohm diffusion give the
impression that the consequences of this for the non-linear saturated state are not as significant
as suggested by the linear instability. Close inspection reveals that this is not actually the case
as the simulations have not yet probed the Hall-dominated regime. Here we revisit the effect
of Hall diffusion on the MRI and the implications for the extent of magnetohydrodynamic
(MHD) turbulence in protoplanetary discs, where Hall diffusion dominates over a large range
of radii.

We conduct a local, linear analysis of the instability for a vertical, weak magnetic field sub-
ject to axisymmetric perturbations with a purely vertical wave vector. In contrast to previous
analyses, we express the departure from ideal MHD in terms of Hall and Pedersen diffusivities
ηH and ηP, which provide transparent notation that is directly connected to the induction equa-
tion. This allows us to present a crisp overview of the dependence of the instability on magnetic
diffusivity. We present analytic expressions and contours in the ηH–ηP plane for the maximum
growth rate and corresponding wavenumber, the upper cut-off for unstable wavenumbers and
the loci that divide the plane into regions of different characteristic behaviour. We find that
for sign(Bz)ηH < −2v2

A/�, where vA is the Alfvén speeds and � is the Keplerian frequency,
Hall diffusion suppresses the MRI irrespective of the value of ηP.

In the highly diffusive limit, the magnetic field decouples from the fluid perturbations
and simply diffuses in the background Keplerian shear flow. The diffusive MRI reduces to
a diffusive plane-parallel shear instability with effective shear rate (3/2)�. We give simple
analytic expressions for the growth rate and wavenumber of the most unstable mode.

We review the varied and confusing parametrizations of magnetic diffusion in discs that
have appeared in the literature, and confirm that simulations examining the saturation of the
instability under Hall–Ohm diffusion are consistent with the linear analysis and have yet to
probe the ‘deep’ Hall regime |ηH| > ηP > v2

A/� characteristic of protoplanetary discs where
Hall diffusion is expected to overcome resistive damping.

Finally, we illustrate the critical effect of Hall diffusion on the extent of dead zones in
protoplanetary discs by applying a local stability criterion to a simple model of the minimum-
mass solar nebula at 1 au, including X-ray and cosmic ray ionization and a population of 1-μm
grains. Hall diffusion increases or decreases the MRI-active column density by an order of
magnitude or more, depending on whether B is parallel or antiparallel to the rotation axis,
respectively. We conclude that existing estimates of the depth of magnetically active layers in
protoplanetary discs based on damping by Ohm diffusion are likely to be wildly inaccurate.

Key words: accretion, accretion discs – instabilities – MHD – protoplanetary discs – stars:
formation.
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1 IN T RO D U C T I O N

The mechanism by which angular momentum is lost by the material
in accretion discs is a classic problem in astrophysics. While grav-
itational torques associated with a binary companion (e.g. Sawada
et al. 1987) or gravitational instabilities in massive discs (Adams,
Ruden & Shu 1989) may play an occasional role, magnetic tension
appears likely to be the most common source of the torque required
to remove angular momentum from the material in the disc and
permit it to spiral towards the central object.

Magnetically mediated accretion disc models fall into two broad
paradigms. In disc–jet models, a large-scale poloidal field threads
the disc, and the magnetic tension of the field lines anchored to
the disc accelerates material outwards and upwards along the field
lines away from the disc surfaces to form a collimated bipolar jet
(Blandford & Payne 1982). The net effect is to transfer angular
momentum from the disc material to the accelerated outflow. In the
absence of an outflow, the disc may still be braked through torsional
magnetic coupling to an extended envelope or surrounding cloud
(e.g. Krasnopolsky & Königl 2002).

In models invoking magnetically driven turbulence, on the other
hand, tension in a weak magnetic field virulently destabilizes the
orbital shear flow in the disc via the magnetorotational instabil-
ity (MRI; Velikhov 1959; Chandrasekhar 1960; Balbus & Hawley
1991), driving magnetohydrodynamic (MHD) turbulence that trans-
ports angular momentum radially outwards (e.g. Balbus & Hawley
1992; Stone et al. 1996). Generally, one expects that the jet models
apply when the magnetic and thermal pressures are comparable at
the disc mid-plane, while substantially subthermal magnetic fields
are subject to the MRI and are incapable of driving strong jets. It is
conceivable that these two transport mechanisms may operate at the
same radius for intermediate strength fields, with the MRI operating
for a range of z adjacent to the mid-plane of the disc and vertical
transport dominating at greater heights (e.g. Salmeron, Königl &
Wardle 2007). Similarly, as the field strength is expected to decrease
with radius, there could also be an inner region where jets dominate,
with the MRI operating at larger radii (Combet & Ferreira 2008).

In this paper, we focus on the efficacy of the MRI-driven tur-
bulence in protostellar/protoplanetary discs. In this context, apart
from transporting angular momentum, MRI-driven turbulence se-
lectively heats the disc, effectively mixes chemical species (e.g.
Semenov, Wiebe & Henning 2006) and affects the transport, aggre-
gation and sedimentation of dust grains (Johansen & Klahr 2005;
Fromang & Papaloizou 2006; Turner et al. 2006), the assembly
blocks of planetesimals in the ‘core accretion’ scenario of planet
formation. Furthermore, the effective viscosity of the disc associ-
ated with MHD turbulence determines the ability of protoplanets
to open gaps in the disc and also contributes to the delicate imbal-
ance of gravitational torques that determines the rate and direction
of planetary migration (e.g. Matsumura & Pudritz 2003; Nelson &
Papaloizou 2004; Johnson, Goodman & Menou 2006).

It is of great importance, therefore, to determine the location, ex-
tent and behaviour of the magnetically active regions of protoplane-
tary discs, which are restricted by the very low fractional ionization
beyond ∼0.1 au from the central star, where thermal ionization is
ineffective (Gammie 1996). The dominant sources of ionization –
X-rays or ultraviolet radiation from the forming star and possibly
interstellar cosmic rays – are unable to penetrate to the disc mid-
plane except perhaps at larger radii where the column density is low.
At intermediate radii, a very low level of ionization is maintained by
cosmic rays or, if these are absent, the decay of radioactive elements
mixed with the gas (Semenov, Wiebe & Henning 2004; Glassgold

et al. 2005). MRI-driven MHD turbulence is therefore thought to
be restricted to the surface layers (Gammie 1996) over the range
∼0.3–20 au where shielding of external ionization sources results
in very low levels of ionization.

Assessments of the location and extent of magnetically active
zones (or equivalently, their complementary magnetic ‘dead zones’)
typically invoke only damping of the linear MRI by Ohm diffusion
(e.g. Hayashi 1981; Jin 1996; Fromang, Terquem & Balbus 2002;
Matsumura & Pudritz 2003; Ilgner & Nelson 2006; Turner & Sano
2008). However, Ohm diffusion is the dominant magnetic diffusivity
only at the very high densities achieved close to the disc mid-plane
within 1 au of the central star. Instead, Hall diffusion1 dominates at
the intermediate mid-plane densities between 1 and 30 au (Wardle
& Ng 1999; Sano & Stone 2002a), and ambipolar diffusion beyond
about 30 au. Note, however, that as the density decreases towards
the disc surfaces, different diffusivities may dominate in different
layers. The neglect of ambipolar diffusion in assessing magnetic
activity is less drastic, as it dominates near the disc surface where the
fractional ionization is relatively high and magnetic diffusivity may
be insufficient to stabilize the MRI (e.g. Perez-Becker & Chiang
2011).

Hall diffusion provides a dissipation-free pathway for the mag-
netic field that either enables the MRI to grow despite the damp-
ing effect of Ohm or ambipolar diffusion or suppresses it entirely
(Wardle 1999; Balbus & Terquem 2001), depending on the orien-
tation of the magnetic field. Based on the linear growth rates, Hall
diffusion may drastically extend or restrict the reach of magnetic
activity in protoplanetary discs (Wardle 2007) and likely modifies
the transport and dissipative properties of the resulting turbulence.
However, pioneering shearing-box calculations including both Ohm
and Hall diffusion did not appear to confirm this expectation, sug-
gesting instead that Hall diffusion was unable to counter the damp-
ing effect of Ohm diffusion (Sano & Stone 2002a,b). As a result,
subsequent evaluations of the extent of dead zones in protoplane-
tary discs are based either on the damping effects of Ohm diffusion
(e.g. Turner & Sano 2008; Turner & Drake 2009; Kretke & Lin
2010) or on Ohm and ambipolar diffusion (Bai 2011; Perez-Becker
& Chiang 2011).

The apparent failure of fully developed turbulence to respect the
underlying linear instability in the Hall-diffusion-dominated limit is
surprising, as it does so in the Ohm (e.g. Turner & Sano 2008) and
ambipolar diffusion regimes (Bai & Stone 2011). However, closer
inspection of the parametrization of the diffusive effects adopted by
Sano & Stone (2002a,b) reveals that their simulations did not probe
the important regime in which (a) Hall diffusion dominates Ohm
diffusion and (b) both dominate inductive effects. Indeed, none of
the results of Sano & Stone (2002a,b) conflicts with expectations
based on the linear analysis. The confusion that has arisen can
largely be attributed to the adoption of a magnetic Reynolds number
ReM and a Hall parameter X to characterize the magnitudes of Ohm
and Hall diffusion, respectively. Then the criteria for Ohm and Hall
diffusion to dominate the inductive term are ReM < 1 and X > 2,
respectively. Crucially, the ratio of Hall to Ohm diffusion is then
(1/2)XReM. This is never �1 when ReM < 1 in the simulations,
apart from the zero-net-flux simulations S14–S16 of Sano & Stone
(2002b) in which Hall diffusion suppresses the MRI in the Bz < 0
regions, as one might expect based on the linear analysis.

1 Despite the lack of dissipation associated with Hall drift, we adopt the
term ‘Hall diffusion’ to maintain consistency with the notion of a tensor
diffusivity appearing in the induction equation.
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The purpose of this paper is to emphasize the importance of Hall
diffusion for MRI-driven turbulence in protoplanetary discs. We do
this by considering the simplest example of the MRI – perturbations
with wave vectors parallel to an initially vertical magnetic field –
and demonstrating that the column density of the MRI-unstable re-
gion at 1 au in the minimum-mass solar nebula (MMSN) increases
or decreases (depending on the sign of Bz) by an order of magni-
tude when Hall diffusion is included (see Fig. 14). We begin by
describing the field-line drifts induced by ambipolar, Hall and Ohm
diffusion in Section 2 and give a qualitative discussion of their effect
on the MRI. In Section 3, we present an overview of the results of a
linear analysis of the MRI in the presence of diffusion and give a co-
herent survey of its dependence on Pedersen (i.e. Ohm+ambipolar)
and Hall diffusion by considering contours of the growth rate and
wavenumber of the fastest growing mode and the range of MRI-
unstable wavenumbers in Section 4. We then compare previous
notation with the diffusivity notation we now favour and discuss
the numerical simulations of Sano & Stone (2002a,b). In Section 5,
we estimate the column density of the MRI-unstable layer at 1 au
in the MMSN using the criterion that there should exist a local un-
stable MRI mode with wavenumber satisfying kh > 1. The results
are dramatic, indicating that Hall diffusion increases the column
density of the MRI-unstable surface layers by an order of magni-
tude depending on whether Bz is positive or negative, respectively.
Finally, we summarize our results and conclusions in Section 6.

2 M AG N E T I C D I F F U S I O N A N D T H E
M AG N E TO ROTAT I O NA L IN S TA B I L I T Y

2.1 Magnetic diffusion

The magnetic field evolves according to the induction equation,

∂B
∂t

= ∇×(v×B) − c∇×E′, (1)

where E′ is the electric field in the local instantaneous rest frame
of the fluid, which satisfies the generalized Ohm’s law

cE′ = ηA(∇×B)⊥ + ηH(∇×B)×B̂ + η(∇×B) , (2)

where we use subscripts ‖ and ⊥ to refer to the orientation with
respect to the local magnetic field and ηA, ηH and η are the ambipo-
lar, Hall and Ohm diffusivities, respectively. It will prove useful to
recast the induction equation in a form that makes explicit the drift
of the magnetic field through the fluid, i.e.

∂B
∂t

= ∇× [
(v + vB)×B − η(∇×B)‖

]
, (3)

where

vB = c
E′×B
B2

= ηP
(∇×B)⊥×B̂

B
− ηH

(∇×B)⊥
B

(4)

and the Pedersen diffusivity ηP is given by

ηP = ηA + η. (5)

This form makes explicit the role of the diffusivities in transporting
flux and emphasizes that only Ohm diffusion is capable of destroy-
ing magnetic flux [i.e. via the η(∇×B)‖ term].

The diffusivities are determined by the abundances of charged
particles and their collision cross-sections with the neutrals (e.g.
Cowling 1957; Wardle & Ng 1999), and – when the fractional
ionization is not too small – with each other. In general, η, ηA and

ηP are all positive, whereas ηH is positive or negative depending on
whether positively or negatively charged species, respectively, are
on average more decoupled from the magnetic field by collisions.
For example, for a weakly ionized ion–electron–neutral plasma, we
obtain

η = c2meγeρ

4πe2ne
, (6)

ηA = B2

4π γi ρρi
(7)

and

ηH = c B

4π e ne
(8)

(e.g. Königl 1989; Balbus & Terquem 2001). The diffusivities ex-
hibit more complex dependencies on density, field strength and
electron abundance when charged grains are present. In this case,
the Hall diffusivity is negative at relatively low densities when neu-
tral collisions decouple grains from the magnetic field, but not the
electrons and ions, and is positive at higher densities when ions are
also decoupled from the magnetic field (e.g. Wardle & Ng 1999).
The diffusivities exhibit significant spatial gradients if the ionization
rate and gas density do so, as in protoplanetary discs (e.g. Wardle
2007). Fortunately, for a linear analysis, the response of the diffu-
sivities to perturbations is not needed as ∇×B vanishes in the initial
equilibrium state. Thus in our local analysis, we can regard the dif-
fusivities as specified constants, but we shall return to them when
considering the application to protoplanetary discs in Section 5.

2.2 Effect on the MRI

Before deriving the dispersion relation for the MRI in diffusive
media, we first give an intuitive, physical description of the effect
of magnetic diffusion on its growth and properties.

We first examine the growth of the instability in a Keplerian ac-
cretion disc under ideal-MHD conditions and assuming an initially
vertical magnetic field (see Fig. 1, top-left panel). We consider, in
particular, the situation where alternate layers of fluid are displaced
from their equilibrium position, such that point 1 moves radially
inwards (and forwards in azimuth), while point 2 is shifted radially
outwards (and backwards in azimuth). In this case, the magnetic
field is buckled because the field lines are frozen into the fluid (top-
right panel). The deformation of the lines creates magnetic tension
forces which are directed outwards and backwards in azimuth (at
point 1) or inwards and forwards in azimuth (at point 2), as depicted
in the lower panel of Fig. 1. At point 1 then the magnetic tension
provides some radial support against gravity and supplies a negative
torque. This means that the fluid element at point 1 will lose angular
momentum and spiral inwards. The opposite takes place at point 2,
with the fluid element there spiralling outwards. As a result, the
magnetic field buckling and associated tension increases, leading to
runaway growth. The fastest growing mode has growth rate (3/4)�
on scales with wavenumbers k ∼ �/vA, where � = vK/r is the
Keplerian frequency and vA is the Alfvén speed (Balbus & Hawley
1991).

Magnetic diffusion modifies the above picture by allowing slip-
page between the field lines and the fluid, so that there is no longer
a direct connection between the relative displacement of the fluid
layers and the buckling of the magnetic field lines. One might ex-
pect that this effect should always reduce the instability because
the displacement of the field would lag that of the fluid. However,
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Figure 1. A sketch of the development of the MRI in an initially vertical
magnetic field B0 embedded in an unstratified, Keplerian disc for a vertical
wave vector. Top panel shows a poloidal view of (left) the initial field
configuration and (right) the perturbed field and associated current density
( J), Lorentz force ( J×B) and deviation from local Keplerian velocity. The
lower panel shows in plan view the perturbed fluid elements at points 1 and 2.
At point 1, the magnetic tension provides some radial support against gravity
and supplies a negative torque. As a result, the material here is sub-Keplerian
and moving inwards, as indicated by the green vector which indicates the
departure from Keplerian rotation. The field transfers the angular momentum
to the fluid at locations such as 2 where the field is buckled outwards, and
the fluid there spirals out. The differential radial motion of the fluid that is
losing and gaining angular momentum at 1 and 2, respectively, enhances the
buckling, leading to runaway growth.

this intuition is based on the limit of Ohm or ambipolar diffusion,
in which the drift is in the direction of the magnetic stresses and
tends to straighten up field lines. Hall diffusion, by contrast, creates
a drift orthogonal to the tension forces and may, therefore, enhance
or suppress the radial buckling depending on the situation. It is this
feature that gives Hall diffusion its unique properties and that we
aim to explain here.

In the ambipolar diffusion limit, the magnetic field is frozen into
the ions and electrons, which drift together through the neutral
component of the fluid. Collisions with the neutrals then transmit
magnetic stresses to the bulk of the gas. As the fractional ioniza-
tion is low, the ion and electron inertia and thermal pressure are
negligible, and the drift velocity of the ions, electrons and field is
determined by the balance between the Lorentz force on the ions

J x B
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v

v + v
B

2
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Figure 2. Plan view of the effect of ambipolar or Ohm diffusion on the
development of the MRI. The current density and associated magnetic stress
on the fluid at points 1 and 2 of Fig. 1 are indicated in blue. Because of finite
diffusivity, the field lines drift through the fluid at velocity vB (red vectors)
in the direction parallel to J×B (see equation 9). The net drift of the field
line with respect to Keplerian rotation, v + vB is indicated by the black
vector. In this case, the net drift is marginally inwards at point 1. At point 2,
the current density and magnetic stresses are reversed, so the field drifts in
the opposite direction. As a result, the field lines drift inwards and outwards
at reduced rates at points 1 and 2, respectively, and the instability proceeds
more slowly than in ideal MHD.

and the collisional drag with the neutrals,

vP = vi − v = J×B
cγiρiρ

, (9)

and so is parallel to J×B. In equation (9), ρ and ρ i are the neutral
and ion density, respectively, and

γi = 〈σv〉i

mi + m
, (10)

where 〈σv〉i measures the rate coefficient of momentum exchange
via collisions with the neutrals, taken to have mean mass m and mi is
the ion mass. When J · B = 0, such as envisaged here, Ohm diffu-
sion also produces a drift in the same direction, so we have adopted
the subscript P to denote the Pedersen drift (see equation A10).

Fig. 2 shows the field line drift (red vectors) for the fluid con-
figuration depicted in Fig. 1, but now incorporating the effect of
ambipolar or Ohm diffusion. The black vectors indicate the total
drift of the magnetic field in the local Keplerian frame, and corre-
spond to the vector sum v + vB (see equation A10). In this case, the
net effect of the drift is to reduce the radial and azimuthal stretching
of the field, and therefore – as one might guess – reduce the degree
of instability.

In the Hall limit, collisions with the neutral gas are frequent and
strong enough to decouple the ions from the field, but the electrons
– which have a smaller collision cross-section with the neutrals and
a higher charge-to-mass ratio – remain well coupled. The magnetic
field is then frozen into the electrons, and these drift together through
the neutrals and ions, which remain tightly coupled by collisions.
In this limit, the field drift speed through the neutrals is given by the
ion–electron drift and hence is antiparallel to the current density,

vH = ve − vi = − J
ene

. (11)

In equation (11), ne (=ni) is the electron number density and e is
the elementary electric charge.
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Figure 3. Plan view of the effect of magnetic diffusion [incorporating the
ambipolar, Ohm and Hall (>0) terms] on the development of the MRI. The
current density and associated magnetic stress on the fluid at points 1 and
2 of Fig. 1 are indicated in blue. At point 1, the magnetic tension provides
some radial support against gravity and supplies a negative torque. As a
result, the material here is sub-Keplerian and moving inwards, as indicated
by the green vector (which denotes departure from Keplerian rotation).
Because of the finite diffusivity, the field lines drift through the fluid (red
vectors) with a velocity determined by the magnitudes of the ambipolar,
Ohm and Hall diffusivities (see equation A10). Ambipolar and/or Ohm
diffusion contributes a drift vP parallel to J×B, while the Hall drift vH

is antiparallel to the current density J . The net drift of the field line with
respect to the Keplerian rotation, v + vB, is indicated by the black vector.
In this case, the net drift is inwards. At point 2, the current density and
magnetic stresses are reversed, so the field drifts in the opposite direction.
As a result, the field lines drift inwards at point 1 and outwards at point 2
and the instability proceeds.

More generally, when all diffusion mechanisms are taken into
account, the drift velocity vB of the field lines through the fluid is
the sum of these two orthogonal contributions (see equation A10
below). The implications for the MRI are sketched in Fig. 3, which
now includes a Hall drift antiparallel to J . The generic geometry
of the MRI means that the Hall drift at point 1 is directed inwards
and retrograde in azimuth, and it is outwards and prograde at point
2. The net effect is to exacerbate the radial buckling of the field, but
to reduce the buckling in the azimuthal direction. We show in the
next section that it is the radial effect that is critical, as azimuthal
field is always created out of the underlying Keplerian shear of the
disc. Therefore, Hall diffusion in this case (e.g. when the magnetic
field is aligned with the angular velocity vector of the disc) tends to
be destabilizing.

This is not always the case, however, because the direction of the
current density, and therefore of the Hall diffusion, reverses upon
global reversal of the magnetic field. This situation is illustrated in
Fig. 4. The magnetic stresses, the fluid velocity and the field-line
drift associated with Ohm and ambipolar diffusion are not affected
by this reversal. Note, however, that Hall diffusion now acts to
stabilize the disc by acting against the radial buckling of the field
that would otherwise be driving the fluid motions.

To summarize, Ohm and ambipolar diffusion are stabilizing ef-
fects, whereas Hall diffusion may be destabilizing or stabilizing
depending on whether the initial vertical magnetic field is parallel
or antiparallel to the rotation axis, respectively. This asymmetry
reflects the fundamental asymmetry in the microscopic properties
of the positive and negative charged species in the fluid in this
limit.

J J x B

vPvH

v v + v
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vB1

J
J x B
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vH

v
v + v

B

vB 2
X
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rz

Figure 4. As for Fig. 3, but after a global reversal of the magnetic field, as
would be expected if the initial magnetic field was antiparallel to the disc’s
angular velocity vector. In this case, the magnetic stresses are unaffected
– and so, therefore, are the fluid velocity and Ohm/ambipolar drift current
density. However, the current density is reversed, and therefore so is the
Hall drift. The magnetic field now drifts outwards at 1 and inwards at 2,
reducing the radial buckling. The MRI is partly or entirely suppressed in
these circumstances (see text).

3 L I N E A R A NA LY S I S O F T H E M R I

We consider a small region of an axisymmetric, geometrically thin
and nearly Keplerian disc, threaded by a vertical magnetic field, with
sound and Alfvén speeds (cs and vA) at the mid-plane that are both
small compared to the local Keplerian speed vK. We assume that ra-
dial gradients are on the scale of r and neglect vertical stratification
of the initial equilibrium state, so that our analysis only holds near
the mid-plane at heights z � cs/�. The initial state is in Keplerian
rotation with a uniform density, pressure and vertical magnetic field
B = sB ẑ (where s = ±1). We linearize the equations around this
state and seek solutions for axisymmetric perturbations of the form
exp(νt − ikz). The equations for perturbations in density, pressure
and vz form a separate system that describes vertically propagating
sound waves. The system of linear equations in the remaining per-
turbations involve fluctuations in the r and φ components of B, v

and vB.
A derivation of the dispersion relation is outlined in Appendices

A and B. This dispersion relation was first derived by Wardle (1999),
and later extended to more general geometries in the Hall–Ohm limit
(Balbus & Terquem 2001), and then including ambipolar diffusion
(Desch 2004); the ambipolar diffusion limit was also considered by
Kunz & Balbus (2004). Our emphasis here is on the dependence
of the instability on the Pedersen and Hall diffusivities ηP and ηH;
a detailed analysis is presented in the appendices. An overview is
provided by Fig. 5, which illustrates the qualitative changes in the
growth rate versus wavenumber curves for different choices of the
diffusivities.

First, note that the ideal-MHD limit holds at the origin (i.e. ηH =
ηP = 0), the Hall MHD limit holds along the horizontal axis (ηP =
0) and the Ohm or ambipolar diffusion limits hold along the vertical
line (ηH = 0). Recall also that only the half-plane ηP ≥ 0 is physically
relevant. It turns out that there are three distinct forms of the resulting
ν(k) curve, corresponding to regions labelled I, II and III in the
plane, as illustrated in Fig. 5. In region I, wavenumbers less than
a cut-off kc are unstable with the maximum growth rate attained
at an intermediate wavenumber k0 (see equations B12, B13 and
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Figure 5. Schematic dependence of the behaviour of the MRI on the Hall and Pedersen (Ohm+ambipolar) diffusivities, ηH and ηP, for an initial magnetic
field sB ẑ in a Keplerian disc, where s = ±1 is the sign of Bz. The field is assumed to be weak so that stratification can be neglected. Physical values of the
Pedersen conductivity ηP are non-negative, and there are no unstable modes for Hall diffusivities sηH�/v2

A ≤ −2. The unstable region sηH�/v2
A > −2 is

subdivided according to the dependence of the growth rate on wavenumber k, which is sketched in the insets labelled I–III. In region I (outside the red locus
given by equation B11), wavenumbers less than a cut-off kc are unstable, with the maximum growth rate ν0 attained at k0 (see equations B12, B13 and B14).
Between the red and blue loci (region II), all wavenumbers are unstable, with the maximum growth rate still occurring at finite wavenumber. Within the blue
locus given by equation (B15) (region III), all wavenumbers are unstable and the maximum growth rate is approached asymptotically as k → ∞.

B14). In region II, all wavenumbers are unstable with the maximum
growth rate still occurring at finite wavenumber. Finally, in region
III all wavenumbers are unstable and the maximum growth rate is
approached asymptotically as k → ∞.

Having delineated these three regions, we now consider how the
critical wavenumber kc, fastest growth rate ν0 and corresponding
wavenumber k0 vary across the entire ηP–ηH plane. Contours of the
growth rate and wavenumber of the most unstable mode are plotted
in this plane in Fig. 6. The growth rate increases clockwise, from
0� along the vertical line sηH = −2 up to 0.75� for the horizontal
line ηP = 0 for sηH > −4/5. In the absence of Hall diffusion,
the maximum growth rate ν0 declines with increasing (Ohm and/or
ambipolar) diffusivity (e.g. moving vertically upwards through the
sηH = 0 point in the horizontal axis), with ν0 ≈ (3/4)η−1

P for ηP � 1.
The most important effect of Hall diffusion, apparent from Fig. 6, is
that the growth rate of the MRI exceeds 0.3� for sηH � ηP, even for
arbitrarily large ηP. More generally, the addition of Hall diffusion
at fixed ηP increases the growth rate if sηH > 0 and decreases it
when sηH < 0. For large values of ηP, equation (B13) shows that
sηH/ηP ≈ 24ν0/(9 − 16ν2

0 ). It is this fact that has the potential
to modify the extent of dead zones in protoplanetary discs, as we
explore in Section 5.

The wavenumber of the fastest growing mode (blue contours in
Fig. 6) decreases as the diffusivity is increased. Again, the contours
are not arranged so that the highest wavenumbers occur in the ideal-
MHD limit, but to the sηH < 0 side, within the boundary between
regions II and III (traced by the k0 = ∞ contour).

Contours of constant kc are semicircles, as plotted in Fig. 7. While
the range of unstable wavenumbers is reduced for large values of
sηH and ηP, as one might expect, the range is not maximized in the
ideal limit (i.e. at the origin) but in regions II and III, bounded by
the kc = ∞ contour.

In general, we note that increasing ηP decreases the maximum
growth rate and the characteristic wavenumbers, whereas increasing
sηH above −2 increases the maximum growth rate and may either
increase (when sηH + 1 � ηP) or decrease (when sηH + 1 � ηP)
the corresponding wavenumber.

Overall, these patterns place the ideal, Ohm (or ambipolar) and
Hall regimes in context, and for the first time we see an overview
of the effect of magnetic diffusivity on the linear MRI. In partic-
ular, there is nothing special about the Ohm/ambipolar limit, e.g.
the behaviour of the instability in the presence of diffusion is not
qualitatively different for sηH = 2 versus ηH = 0. Even the ideal-
MHD limit does not stand apart as remarkable, although it still holds
a special place conceptually because flux freezing holds and it is
easier to visualize.

What does stand out is the part of the plane in the lower left,
regions II and III, characterized by high wavenumbers and the
spraying out of the growth contours. In this part of the plane, the
instability operates in the ‘cyclotron limit’ η⊥ ∼ 1 and k2 � 1
(see Appendix C), in which the instability arises in the competition
between magnetic diffusion and advection of the field by the fluid;
generation of Bφ from Br by the Keplerian shear flow is negligi-
ble. The lack of any k dependence in this regime occurs because
both the magnetic diffusion and the magnetic stresses on the fluid
(which are responsible for the fluid displacement) scale as k2. This
short-wavelength, low-frequency limit corresponds to the cyclotron
mode of the magnetized fluid, which has frequency ωH = v2

A/|ηH|
(Wardle & Ng 1999; Pandey & Wardle 2008). This mode couples
effectively to the Keplerian rotation as long as the sense of circular
polarization matches that of epicyclic motion, i.e. as long as BzηH

< 0. The other short-wavelength mode, the high-frequency whistler
(ω ≈ k2v2

A/ωH), is unable to couple effectively to the rotation
(Wardle 1999).
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Figure 6. Contours of the maximum growth rate of the MRI (solid black lines, units �) and the corresponding wavenumber (dashed blue lines, units �/vA) as
a function of Hall and Pedersen (Ohm+ambipolar) diffusivities. The innermost blue contour shows where k0 becomes infinite, corresponding to the boundary
between regions II and III in Fig. 5. Within this region, the fastest growth rate is approached asymptotically as k → ∞; this transition is responsible for the
curvature of the black contours within this region (see equations B13 and B16).
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Figure 7. Contours of the critical wavenumber kc below which instability
sets in (units �/vA). The red innermost contour shows where kc becomes
infinite and all wavenumbers are unstable, corresponding to the boundary
between regions I and II in Fig. 5.

The maximum growth rate contours emerging from regions II
and III continue on to attain another limit when η2

P + η2
H � 1, in

which the field evolves in response to shear and diffusion, without
significant feedback from the perturbations that it induces in the
fluid flow. Instability in this case relies on the Keplerian shear
flow generating Bφ from Br and the tendency of Hall diffusion
to convert Bφ back into Br. This brings the potential destabilizing
effect of Hall diffusion in shear flows (Kunz 2008) to the fore
and shows that it is quite independent of rotational effects – i.e.
the Coriolis and centripetal acceleration – that drive the MRI. In
Appendix C, we obtain simple analytic expressions for growth rate
in plane-parallel shear flows as a function of k for high diffusivity;
the results are plotted in Fig. 8. For more general field and wave
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Figure 8. Growth rate versus wavenumber for the Hall-driven diffusive
instability for a mutually orthogonal magnetic field, shear velocity and
velocity gradient v′ in the highly diffusive limit. For Keplerian rotation and
cylindrical geometry, the effective velocity gradient is v′ = (3/2)�. The
curves correspond to different values of the ratio of the Pedersen and Hall
diffusivities.

vector configurations, ambipolar diffusion plays a similar role, albeit
hindered by dissipation (Desch 2004; Kunz & Balbus 2004; Kunz
2008; Pandey & Wardle 2012).

4 C O M PA R I S O N W I T H N U M E R I C A L
SI MULATI ONS

In this section, we explore the relationship of our linear calculations
to the non-linear, unstratified shearing box simulations of MRI-
driven turbulence by Sano & Stone (2002a,b), which explicitly
included both Ohm and Hall diffusion. These authors’ results could
be interpreted as implying that the presence of Hall currents has
little effect on the critical (minimum) degree of magnetic coupling
(the coupling between the neutral gas and the magnetic field) for the
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Table 1. Typical dimensionless numbers used to characterize the degree of coupling between the magnetic field
and the neutral gas: magnetic Reynolds number, Lundquist number and Elsasser number. For comparison, we
also show the Reynolds number (although this parameter combination does not involve the magnetic diffusivity
and, therefore, does not measure the field–matter coupling). The fluid variables used to characterize the required
scalings are the flow velocity (v), the Alfvén velocity (vA), the kinematic viscosity (ν) and the magnetic diffusivity
η. As usual, � is the Keplerian angular frequency and l is a typical, unspecified, length-scale of the flow.

Symbol Dimensionless Ratio of Scaling Definition
number physical quantities V L D vl / D

Re Reynolds Inertial to viscous forces v l ν vl / ν

ReM Magnetic Reynolds Inertial to resistive time-scales v l η vl / η

S Lundquist Resistive diffusion to Alfvén time-scales vA l η vAl / η

� Elsasser Lorentz to Coriolis forces vA vA /� η⊥ v2
A / η⊥�

instability to operate.2 We show, however, that their calculations do
not yet probe deeply enough into the Hall regime for Hall diffusion
to be able to impact on the development and properties of the
instability. In fact, their solutions are in agreement with expectations
from local and stratified linear analyses for the same values of the
parameters describing the initial fluid conditions. Finally, we use
the ratios of the different terms in the induction equation in order
to delineate the region of parameter space where Hall diffusion is
expected to substantially modify the growth rate, and spatial scale,
of the MRI-unstable modes. First, however, and for the sake of
clarity, we discuss the notation used in the literature to characterize
the fluid, and its magnetic activity, in diffusive environments.

4.1 Fluid parameters

The growth and structure of the MRI are strongly dependent on the
magnetic field strength, geometry and the nature – and magnitude
– of the magnetic diffusivity. Different parametrizations have been
used in the literature to characterize these properties, depending
on the formulation of the problem and the adopted form of the
induction equation. Some authors use a tensor diffusivity, and the
induction equation then takes the form

∂B
∂t

= ∇× (v×B) − ∇×[η∇×B

+ ηH(∇×B)×B̂ + ηA(∇×B)⊥]
(12)

(e.g. Wardle 2007). Others prefer to use separate equations for the
charge carriers and the neutrals. In the latter ‘multifluid’ approach,
when the ionized species are ions and electrons only (denoted by the
subscripts ‘i’ and ‘e’, respectively), the induction equation becomes
(e.g. Königl 1989; Balbus & Terquem 2001; Sano & Stone 2002a)

∂B
∂t

= ∇× (v×B) − ∇×
[

cmeνen J
nee2

+ J×B
ene

− ( J×B)×B
cγiρρi

]
. (13)

Comparison of equations (12) and (13) yields the expressions given
in (6)–(8) for the diffusivities. On the right-hand side (RHS) of
equation (12), as well as in the second line of equation (13), the
terms (from left to right) denote the inductive (I), Ohm (O), Hall

2 This field–matter coupling parameter is often referred to as the magnetic
Reynolds number ReM. As we expound below, however, it really corresponds
to the Elsasser number � (see discussion below and Table 1).

(H) and ambipolar diffusion (A) contributions to the evolution of
the magnetic field, respectively.

The following parameters have typically been used to character-
ize the magnetic properties of the fluid.

(i) Field strength. This property is commonly measured either by
the ratio of the Alfvén speed to the isothermal sound speed (vA/cs)
or by the plasma β parameter β = (2/γ )c2

s /v
2
A, where γ is the

adiabatic index of the fluid.
(ii) Field–matter coupling. The degree of coupling between the

neutral matter and the magnetic field is, most generally, measured
by a ratio of the type vl/D, where V , L and D represent characteristic
speed, length and diffusion scales of the flow, respectively. In MRI
studies, it is appropriate to take V = vA, L = vA/� (the characteristic
wavelength of MRI-unstable modes in ideal-MHD conditions) and
D = η⊥, the total perpendicular diffusivity [e.g. equation (C8)]. The
resulting ratio is the Elsasser number

� ≡ v2
A

�η⊥
. (14)

This dimensionless number is formally defined as the ratio of the
Lorentz force ( J × B)/c to the Coriolis force ∝ ρ(v × �), which
results in an expression of the form v2

A/(LV )�. Adopting the mag-
netic diffusivity η⊥ as the typical magnitude of the LV factor in the
denominator yields expression (14).

The Elsasser number is widely used in geophysics, as in a geo-
dynamo process the magnetic field is thought to amplify until �

becomes of the order of unity (see e.g. Christensen 2010, and ref-
erences therein). This ratio was denoted χ in the work of Wardle
(1999), who expressed it as

χ ≡ B2σ⊥
ρc2�

≡ ωc

�
, (15)

where σ⊥ = c2/(4πη⊥) and ωc is the critical frequency above which
flux-freezing conditions break down, so that the generic non-ideal-
MHD term in the induction equation dominates over the inductive
term. When the field–matter coupling is characterized by the El-
sasser number, values �1 (�1) correspond to strong (weak) cou-
pling. Similarly, from equation (15) it is clear that when � � 1,
the magnetic field is strongly coupled to the fluid at frequencies of
order �, the frequencies of interest for the study of the MRI.

Note that, in general, the Elsasser number is different from the
combination vAl/η, which compares the resistive diffusion time
τR ∝ l2/η to the Alfvén time τA ∝ l/vA (e.g. the Lundquist number)
and from the ratio vl/η (the magnetic Reynolds number ReM, where
v is the fluid velocity). However, both terms have been used in
the literature to refer to �. Table 1 summarizes the definitions
and typical scalings associated with the dimensionless numbers
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discussed above, namely the magnetic Reynolds, Lundquist and
Elsasser numbers. For clarity, we also list the Reynolds number,
although this does not measure magnetic coupling, as it deals with
the viscosity of the fluid instead of its magnetic diffusivity.

Finally, sometimes cs is adopted as the characteristic velocity
scale of the flow instead of vA, resulting in the ratio c2

s /η� (e.g.
Fleming, Stone & Hawley 2000).

(iii) Diffusivity regime. This property characterizes the impor-
tance of the different non-ideal-MHD terms in the induction equa-
tion. The ratios of each of the diffusive terms to the inductive term
are typically used, which in a multifluid formulation are expressed
as (e.g. Balbus & Terquem 2001; Sano & Stone 2002a)

O

I
= η�

v2
A

≡ η̃ , (16)

H

I
= X

2
(17)

and

A

I
= �

γiρi
. (18)

Note that the inverse of the normalized Ohm resistivity η̃−1 in
equation (16) has been referred to as the magnetic Reynolds number.
However, as discussed above, this parameter combination is akin
to the Elsasser number, with the difference that in the definition of
equation (14) we used the total perpendicular diffusivity η⊥, instead
of η. In equation (17),

X ≡ cB�

2πenev
2
A

(19)

is the so-called ‘Hall parameter’, not to be confused with its name-
sake, the ratio of the gyrofrequency to the collision frequency of
ionized species j (here either ions or electrons) with the neutrals,
given by

βj ≡ eB

mjc

1

γjρ
. (20)

Similarly, the relative importance of the non-ideal-MHD terms can
be measured by the following ratios (e.g. Balbus & Terquem 2001;
Sano & Stone 2002a):

H

O
= eB

mec

1

γeρ
≡ βe = X

2η̃
(21)

and

A

H
= eB

mic

1

γiρ
≡ βi . (22)

Using the tensor diffusivity notation, we can write

O + A

I
= ηP�

v2
A

, (23)

H

I
= ηH�

v2
A

, (24)

and the relative magnitudes of the non-ideal-MHD terms are, sim-
ply,

H

O
= ηH

η
(25)

and

A

H
= ηA

ηH
. (26)

From expressions (23) and (24), it is clear that the Elsasser number
is a measure of the ratio of the inductive term to the total non-ideal-
MHD terms in the induction equation. Furthermore, for the vertical
field geometry adopted here, the ambipolar diffusivity acts as a field-
dependent resistivity3 (see Balbus & Terquem 2001). This property
will be used in the next section to treat the Ohm and ambipolar
diffusivities as an ‘Ohm-like’ term when comparing the impact of
the ‘Ohm-like’ and Hall resistivities on the MRI.

4.2 Criterion for Hall diffusion to affect the MRI

We now use the ratios given in the previous subsection to constrain
the region of parameter space where the MRI is expected to grow,
as well as to determine a criterion for Hall diffusion to substan-
tially modify its properties. First, however, we discuss the results
of the work of Sano & Stone (2002b) on this topic. These authors
characterized the Ohm and Hall terms by their magnitudes relative
to the inductive term in the induction equation (e.g. via equations
16 and 17). Furthermore, they considered that Hall diffusion was
dominant when the ratio of the Hall to inductive terms was larger
than unity (H/I > 1). Fig. 9 of Sano & Stone (2002b) shows the
saturation level of the Maxwell stress (normalized by the initial gas
pressure) as a function of the initial (subscript ‘0’) of the inverse
Ohm resistivity (η̃0

−1) – called the magnetic Reynolds number –
for different values of the initial plasma β and Hall parameters (β0

and X0, respectively).
Their results indicate that when η̃0

−1 ≥ 1, the normalized satu-
rated value of the Maxwell stress is of the order of 0.1 (with some
scatter depending on the adopted β0 and X0), and it is fairly inde-
pendent of the actual value of the resistivity. The actual saturated
magnitude of the stress is larger in the models with X0 = 4 with
respect to the ones with X0 = 0 (e.g. no Hall diffusivity) or X0 = −2
(negative Hall diffusivity, when the magnetic field is counteraligned
with the disc angular velocity vector). On the contrary, when the
initial inverse resistivity η̃0

−1 is less than unity, the saturation level
of the Maxwell stress decreases by 1–2 orders of magnitude with
respect to the η̃0

−1 > 1 case. This trend of the Maxwell stress at
saturation with η̃0

−1 seems to be unaffected by the presence (or
magnitude) of the Hall diffusivity. These results have been inter-
preted to show that the Hall diffusivity does not change the critical
(maximum) η̃ required for the instability to grow (η̃crit ∼ 1), but it
enhances the saturated level of the Maxwell stress by a factor of a
few.

Note that the calculations of Sano & Stone (2002b) probe the
region of parameter space where Ohm and Hall diffusivity terms
dominate over the inductive term (I/O = η̃−1

0 < 1 and H/I =
X0/2 > 1). However, |X0| ≤ 4 in all the presented calculations.
As a result, for η̃0 > 2, the ratio H/O = X0/(2η̃0) is <1 and the
dominant diffusion mechanism is Ohm type. For the calculations
with X0 = 4 and η̃−1

0 = 0.1, in particular, the ratio H/O = 0.2, which
implies that the Hall term is too weak to overcome the damping
effect introduced by Ohm diffusion. It is not surprising, therefore,
that the large drop in the saturated value of the Maxwell stress,
with respect to that associated with the solutions satisfying η̃−1

0 >

1, is not significantly modified by the presence of Hall diffusion.
Naively, and as confirmed by the linear analysis, the Hall effect
should substantially modify the growth rate of the MRI provided
that Hall diffusion dominates over the inductive term (i.e. |X0| � 2)

3 In other words, for this field geometry the current density J is perpendicular
to B and the term ( J×B)×B ≡ ( J ·B)B−B2 J = −B2 J (see equation 13).
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Figure 9. Regions of parameter space where the MRI is expected to grow,
and dominant diffusion mechanism, in a (O + A) / I versus H / I (or, equiv-
alently, the normalized Pedersen versus Hall diffusivities) plane. Note that
for the vertical field geometry considered here, the ambipolar and Ohm dif-
fusivities can be combined into a generalized ‘Ohm-type’ diffusivity (see
text). In the lower-left (ochre) panel, magnetic diffusion is weak and the
instability grows at a rate comparable to the ideal-MHD rate (∼�). Con-
versely, in the upper-left (grey) and lower-right (purple) panels, only one
diffusivity term (Ohm-type and Hall, respectively) dominates over the in-
ductive term in the induction equation. Ohm-type diffusivity suppresses the
instability in the top-left quadrant (see footnote 4, however), but since Hall
diffusion can also be destabilizing (Section 2), the instability can still grow
in the lower-right panel. Finally, both diffusivity components are important
in the upper-right quadrant of the figure. In the top (grey) portion of this
panel, Ohm-type diffusion overcomes Hall diffusion [H / (O + A) < 1] and
the MRI is expected to be suppressed. Hall diffusivity, however, is dominant
[H / (O + A) >1] in the bottom (purple) portion of the panel. In this region
of parameter space, H / (O + A) and H / I are both >1 and the instability
may proceed despite � being less than unity.

and also dominates Ohm diffusion (i.e. X0 � 2η̃0). According to
these criteria, the Hall term would be strong enough to modify the
presented results if X0 ≥ 20 (for the η̃−1

0 = 0.1 case), a value likely
to be well beyond what has been computationally feasible so far.

The above considerations are summarized in Fig. 9, which shows
the regions of parameter space where the instability is expected to
grow – and, if so, the dominant diffusion mechanism – in a [(O
+ A) / I–H / I] or, equivalently, the normalized Pedersen and Hall
diffusivities, plane. As discussed at the end of Section 4.1, we use
a generalized ‘Ohm’ term, which should be understood to mean
‘Ohm + ambipolar’.

Diffusivity effects are weak in the lower-left (ochre) quadrant of
the figure, as the inductive term dominates over both the Ohm and
Hall diffusion terms in this region of parameter space. The MRI is
then expected to grow at a rate not significantly reduced from the
ideal-MHD rate.4 Conversely, in the upper-left (grey) and lower-
right (purple) panels, only one diffusivity term is dominant over

4 Note, of course, that the boundaries between these regions are not sharp
as this simplified diagram might suggest, and the MRI is expected to grow
at reduced rate when ηPv2

A/� ∼ 1 (e.g. near the border between the lower
and upper-left panels of the figure). This also applies along the diagonal line
separating the Hall- and Ohm-dominated regions in the upper-right panel.

the inductive term (the Ohm and Hall term, respectively). When
Ohm diffusion dominates, the instability’s growth is damped, as
this diffusion mechanism is always stabilizing (see the discussion
in Section 2 and Fig. 2). However, the Hall term can be either
stabilizing or destabilizing (see Figs 3 and 4), so when it dominates,
the instability can still potentially grow. Finally, the upper-right
quadrant of the figure contains the region of parameter space where
both the Ohm and Hall diffusivity terms dominate over the inductive
term. Although both diffusivity terms are important with respect
to the ideal-MHD term in this region, only in the lower (purple)
portion of the panel, Hall diffusion is strong enough to potentially
overcome the damping effect introduced by Ohm diffusivity, as
only here the ratios H / (O + A) and H / I are both >1. Note that
this region of parameter space was not probed by Sano & Stone
(2002b), as their solutions incorporating Hall diffusion lie in the
upper (grey) portion of the panel, where Hall diffusion is weak in
comparison to Ohm diffusion. The potentially destabilizing effect
of a sufficiently strong Hall diffusivity (the purple region of the
upper-right quadrant in Fig. 9), therefore, remains to be explored
by numerical simulations.

In order to test these assertions, we computed the growth rate
of the most unstable MRI mode in a stratified, geometrically thin
and axisymmetric accretion disc, using the method described in
Salmeron & Wardle (2003), to which we refer the reader for addi-
tional details. Our results are depicted in Fig. 10 for β = 3200 (or
vA/cs = 0.02), as a function of the ratio H/O (= X/2η̃). Each curve
corresponds to a different value of the ratio I/O (= η̃−1) as follows:
η̃−1 = 0.1 (blue), 1.0 (red) and 10 (green). The range of solutions

Figure 10. Growth rate of the fastest growing MRI-unstable mode as a
function of the ratio of the Hall to Ohm diffusion terms in the induction
equation [H/O = X/(2η̃)]. Calculations correspond to a stratified disc
with β ≡ (2/γ )c2

s /v
2
A = 3200 (or vA / cs = 0.02). Each curve corresponds

to a different value of η̃−1 (= I / O): 0.1 (blue), 1.0 (red) and 10 (green).
A solid (dotted) line is used to plot solutions for which the ratio H / I >

1 (<1). Note that solutions for which Hall diffusion is dominant lie in the
solid-line portion of the curves (H / I > 1) and to the right of the vertical
dashed line (H / O > 1). Superimposed (filled circles) are the linear growth
rates corresponding to the solutions presented in fig. 9 of Sano & Stone
(2002b) for X = 4. Note that the calculation for η̃−1 = 0.1 and X = 4
satisfies H / O = 0.2 and is not in the Hall-dominated region of parameter
space. As a result, the MRI is significantly damped by Ohm diffusion. On
the contrary, the instability can grow at about the ideal-MHD rate when
H / O > 1 even when η̃−1 = 0.1.
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shown with solid lines satisfy X > 2, so that the Hall term dominates
over the inductive term (H / I > 1). The solutions depicted with a
dotted line correspond to X < 2 (H / I < 1). Note also that to the
left of the vertical dashed line, the ratio H/O = X/2η̃ < 1 and
Ohm diffusion is the dominant non-ideal-MHD term.

From the considerations in the previous paragraphs, it is clear that
the solutions that probe the Hall-dominated region of parameter
space should lie in the solid segment of each curve and to the
right of the vertical dashed line. Note, in particular, that even for
η̃−1 = 0.1, the instability grows at essentially the ideal-MHD rate
(νmax/� ≈ 0.75) if the Hall term is strong enough (H/O > 1, or
to the right of the vertical line). For comparison, we superimpose
filled circles on the curves showing the linear growth rate of the
most unstable mode corresponding to X = 4 and η̃−1 = 0.1, 1 and
10 (the set of parameters tested by Sano & Stone 2002b). Note that
the solution with X = 4 and η̃−1 = 0.1 lies to the left of the H/O =
1 line, and Ohm diffusion suppresses the growth of the instability.
We conclude, therefore, that the relative saturation levels of the
MRI simulations presented in Sano & Stone (2002b) are entirely
consistent with expectations based on a linear analysis, and did not
probe the regime H > {I, O, A} in which the hall term strongly
modifies the linear MRI.

5 A PPLICATION TO PROTO PLANETA RY
DISCS

We now illustrate the implications of Hall diffusion for the extent of
MRI-driven activity in protoplanetary discs by applying the linear
analysis from Appendix B to the MMSN at 1 au.

While a linear analysis cannot hope to give a good sense of the
properties of the non-linear turbulence the MRI drives, numerical
simulations in the Ohm limit have shown that it does predict when
such turbulence exists, and appears to be an excellent predictor
of the vertical extent of dead zones in stratified simulations of
protoplanetary discs (Turner & Sano 2008). As noted in the previous
section, the Hall–Ohm simulations of Sano & Stone (2002a,b) are
also consistent with the expectations based on the linear dispersion
relation. Thus, we use the local dispersion relation to examine the
role of the magnetic diffusivity in determining the extent of MRI-
active regions in protoplanetary discs.

The tendency of the MRI to manifest on successively larger scales
in the presence of increasing diffusivity is limited by the finite
thickness of the disc: the wavenumbers of interest are bounded from
below by requiring kh > 1, where h = cs/� is the disc scaleheight.
Thus we adopt as a local criterion for growth of the MRI that the
dispersion relation (B6) yields modes with ν > 0 and kh > 1. From
this, we infer that the diffusivities must lie within the semicircular
locus obtained from equation (B10) with ν = 0 and k = h−1, i.e.(

sηH�

v2
A

+ 5

4
− 3

4

c2
s

v2
A

)2

+
(

ηP�

v2
A

)2

<
9

16

(
1 + c2

s

v2
A

)2

, (27)

where s = sign(Bz). This criterion applies to any near-Keplerian
disc threaded by a vertical magnetic field. Its apparent simplicity
belies the fact that the diffusivities are complicated (but calculable)
functions of magnetic field strength, gas density, temperature and
the abundances of charged species. Note also that the ratio c2

s /v
2
A

plausibly ranges between 0 and the equipartition value 2 at the disc
mid-plane but may be significantly higher away from the mid-plane
if the field is anchored at lower heights within the disc.

We specialize to protoplanetary discs by adopting the ionization
models of Wardle (2007) for a standard MMSN disc ionized by
cosmic rays and stellar X-rays at 1 au from the central star. These

models assume a column density of 1700 g cm−2 and temperature
T = 280 K independent of height, with X-ray ionization rate com-
puted by Igea & Glassgold (1999) and a standard interstellar cosmic
ray ionization rate of 10−17 s−1 H−1 that is exponentially attenuated
with depth as exp (−�/96 g cm−2). We characterize the grain popu-
lation by assuming a single 1-μm radius and varying the dust-to-gas
mass ratio, crudely mimicking the effect of the settling of grains to
the disc mid-plane.

The abundances of charged species for dust-to-gas mass ratios
of 10−2, 10−4 and 0 are presented in Fig. 11. The ionization rate
as a function of depth is plotted in the lower panel – interstellar
cosmic rays are the dominant source below two scaleheights; above
this, ionization by stellar X-rays dominates. In the no-grain case,
electrons and metal ions are the dominant charged species because
the metal ions have the smallest recombination rate coefficient.
The top panel shows the effect of adding a population of 1-μm-
radius grains with total mass 1 per cent of the gas mass: grains
acquire a charge via sticking of electrons and ions from the gas
phase. Above z/h ≈ 2.5, the grain charge is determined by the
competitive rates of sticking of ions and electrons, with the Coulomb
repulsion of electrons by negatively charged grains offsetting their
greater thermal velocity compared to ions (Spitzer 1941; Draine &
Sutin 1987). This leads to a Gaussian grain charge distribution with
mean charge (in units of e) 〈Zg〉 ≈ −4akT/e2 ≈ −67 and standard
deviation ≈〈Zg〉1/2 ≈ 8. Most recombinations still occur in the gas
phase. The abundance of metal ions and electrons is reduced over
the grain-free case for z/h � 5, where the charge stored on grains
becomes comparable to the electron abundance. For z/h ≈ 2–2.5,
the abundances of ions and electrons have declined to the point
that the majority of electrons stick to grain surfaces before they can
recombine in the gas phase, and most neutralizations occur when
ions stick to negatively charged grains (Nakano & Umebayashi
1980). Closer to the mid-plane, the ionization fraction is so low
that most grains are lightly charged, so that Coulomb attraction or
repulsion of ions and electrons by grains is negligible. Then ions and
electrons stick to any grain that they encounter, with recombinations
occurring on grain surfaces. The middle panel of Fig. 11 shows what
happens if 99 per cent of the grains are removed (e.g. by settling
to the mid-plane). The capacity of the grain population to soak up
electrons from the gas phase is reduced a hundredfold, and the height
below which grains substantially reduce the free electron density
below the ion density moves downwards to the lowest scaleheight.

Unlike Ohm resistivity, the Hall and ambipolar diffusivities de-
pend on the magnetic field strength as well as the charged particle
abundances, so we consider field strengths ranging between 10−3

and 102 G, encompassing the plausible range of values in the so-
lar nebula (see Wardle 2007). For each choice of magnetic field,
we use the ionization calculations to compute the diffusivities as a
function of height. Typically, ambipolar diffusion dominates at the
surface and, for weak magnetic fields, Ohm diffusion dominates
near the mid-plane. Between these regimes, Hall diffusion domi-
nates (Wardle 2007). With the diffusivity profiles in hand, we apply
equation (27) to identify the fastest growing MRI mode that has
kh > 1 at a given height; the results for dust-to-gas mass ratios 0
and 10−2 are displayed in Figs 12 and 13, respectively.

First consider the case in which grains are absent (Fig. 12). The
bottom panel shows the fastest growth rate (subject to kh > 1) as a
function of magnetic field strength and height if Hall and ambipolar
diffusion are neglected and only Ohm diffusion is included. In this
case, the departure from ideal MHD is measured by η�/v2

A (the
inverse of the Elsasser number; see Section 4.1), which strongly
decreases with height as the fractional ionization and Alfvén speed
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Figure 11. Fractional abundances of charged particles in the MMSN at 1 au
from the Sun as a function of height above the mid-plane, assuming that
grains have radius 1 µm. The upper, centre and lower panels correspond to
dust-to-gas ratios 10−2, 10−4 and 0 by mass, respectively. The black curve
in the lower panel shows the height dependence of the ionization rate per
hydrogen nucleus due to stellar X-rays and interstellar cosmic rays (see text)
assumed for all three models. The other curves give the fractional abundances
of electrons (red), light ions (H+, H+

3 , He+ and C+) representative molecular
(m+) and metal (M+) ions (blue), and grains (green, labelled by charge
state).

both increase sharply away from the mid-plane. For the ionization
profile plotted in Fig. 11, it turns out that η�/v2

A is small near the
surface (so that ideal MHD holds) and large near the mid-plane
(so that Ohm damping is severe). As a result, near the surface the
largest achievable growth rate is close to the ideal value 0.75�, but
declines rapidly below the height where η�/v2

A ∼ 1. The height of
the transition between these regimes declines with increasing field
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Figure 12. Colour shading shows the growth rate of the fastest growing
local MRI mode at height z above the mid-plane in the MMSN at 1 au as a
function of the strength of an initially vertical magnetic field B. Dust grains
are assumed to have settled to the mid-plane (see lower panel of Fig. 11). The
vertical wavenumber k of the modes are required to satisfy kh > 1, where h
is the disc scaleheight. The unshaded regions show stable combinations of
height and field strength. The top and middle panels correspond to the cases
where the initial field and rotation axis are parallel (Bz > 0) or antiparal-
lel (Bz < 0), respectively. The lower panel shows the effect of artificially
suppressing ambipolar and Hall diffusion, so including only Ohm diffusion.
In this case, there is no dependence on the sign of Bz. The dashed line in
each panel indicates the value of the local equipartition magnetic field as a
function of height above the mid-plane.

strength, simply because η�/v2
A ∝ B−2. A second consideration is

that the range of MRI-unstable wavenumbers is bounded above by kc

(see equation B12), and this must be larger than 1/h if any unstable
modes are to exist with kh > 1. It is this criterion that provides
the upper and lower envelopes to the unstable region in Figs 12
and 13. Near the surface where η�/v2

A � 1, kc is approximately√
3�/vA, and as vA rapidly increases with height, the unstable range
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Figure 13. As for Fig. 12, but now including a population of 1-µm-radius
grains with total mass 1 per cent of the gas mass (see upper panel of Fig. 11).

shifts to wavenumbers with kh < 1, and it is no longer possible
to find unstable modes that fit within a scaleheight. This occurs
when the magnetic pressure roughly exceeds the gas pressure. By
contrast, close to the mid-plane where η�/v2

A � 1, kc ≈ √
3vA/η

and the wavenumbers are pushed out of the relevant range by the
increasing diffusivity and the declining Alfvén speed as the mid-
plane is approached.

Next, we add the remaining magnetic diffusion terms, i.e. am-
bipolar and Hall diffusion. The latter depends on the sign of Bz,
which we take to be positive or negative in the upper and middle
panels of Fig. 12, respectively. Ambipolar diffusion dominates in
the surface layers (see fig. 5 of Wardle 2007), and it acts just like
Ohm diffusion when, as assumed here, the initial magnetic field is
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Figure 14. Column density of the MRI-active region at 1 au in the MMSN
as a function of magnetic field strength for different assumptions about
magnetic diffusion (see text). Grains are assumed to have radius 1µm with
99 per cent having settled to the disc mid-plane (i.e. total mass only 10−4

relative to gas). Solid black and dashed blue curves are for the magnetic
field oriented parallel or antiparallel to the disc’s rotation axis, respectively.
Red long-dashed curves indicate the effect of accounting only for Ohm or
Ohm+ambipolar (i.e. Pedersen) diffusion.

vertical,5 tending to damp the growth of the MRI and pushing the
unstable modes to longer wavelengths. Hall diffusion tends to dom-
inate the lower layers, except for weak fields when Ohm diffusion
dominates closer to the mid-plane.

For Bz > 0, Hall diffusion is destabilizing and pushes the region
where the fastest growth rate is close to 0.75� to greater depths.
The rapid decline to low growth rates (i.e. from green to blue shad-
ing in Fig. 12) traces the transition from Hall-dominated to Ohm-
dominated diffusion. Below this, Hall diffusion acts to significantly
extend the region of slow growth by modifying kc, and this extends
all the way to the mid-plane for fields in excess of 10 mG.

On the other hand, when Bz < 0 (i.e. B is antiparallel to the rota-
tion axis), Hall diffusion tends to stabilize the MRI while extending
the unstable wavelengths to shorter wavelengths (see Fig. 6). As a
result, superequipartition fields are unstable near the mid-plane. We
emphasize that irrespective of the magnitudes of the other diffusiv-
ities, Hall diffusion is completely stabilizing when ηH > 2v2

A/�.
This is responsible for the sharp cut-off at the lower boundary in
the middle panel of Fig. 12.

When a full complement of 1-μm dust grains are present (i.e.
dust-to-gas mass ratio 10−2; charged species as in lower panel of
Fig. 11), the diffusivities are greatly increased near the mid-plane
because electrons are locked up by grains and rendered immobile.
Fig. 13 displays the same trends as in the zero-grain case, but the
MRI-unstable region is now restricted to the upper layers of the
disc, and in all cases the bulk of the disc is stable to the MRI. While
the differences between the three panels might appear less severe in
this case, the strong density stratification means that there are orders
of magnitude differences in the column density of the MRI-unstable
region.

Fig. 14 shows the magnetically active column density as a
function of field strength for different assumptions regarding the
diffusivity when 99 per cent of grains are assumed to have settled

5 This is not the case in more general geometries, e.g. ambipolar diffusion
may be destabilizing when the field has vertical and toroidal components
and the wavenumber has radial and vertical components (see Desch 2004;
Kunz & Balbus 2004).
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Figure 15. As for Fig. 14 but for dust-to-gas mass ratio varying from 0 to
10−2. Note that active column density is capped at the total column of the
MMSN at 1 au, i.e. 1700 g cm−2.

(i.e. dust-to-gas ratio 10−4). The active column density varies by 1–
2 orders of magnitude depending on the accuracy of the treatment of
magnetic diffusion. First, neglect Hall diffusion and consider either
Ohm diffusion alone or Ohm and ambipolar diffusion (i.e. Peder-
sen diffusion) operating in concert (red long-dashed curves). Ohm
diffusion dominates ambipolar diffusion except for strong mag-
netic fields and low densities, so there is little difference between
these two cases except for magnetic fields in excess of 1 G where
the additional damping due to ambipolar diffusivity suppresses the
MRI. Hall diffusion either increases or decreases the active column
density by an order of magnitude depending on whether the initial
magnetic field is pointing up or down; the maximum unstable field
strength also varies considerably.

Fig. 15 shows how the active column depends on grain abun-
dance and magnetic field orientation. In the absence of grains, the
entire disc cross-section is magnetically active for an upwardly di-
rected field in the range 0.01–5 G. On the other hand, when the
field is pointing downwards, a minuscule fraction of the disc is
active for weak fields, but the active column increases rapidly and
encompasses the entire cross-section of the disc for field strengths
in the range 20–80 G. As one would expect, grains sharply re-
duce the active column density because of the reduction in mobile
charge carriers. The continued extreme sensitivity to field align-
ment demonstrates that Hall diffusion still plays a critical role in
determining the extent of magnetic activity regardless of the grain
abundance.

The reduction in the active column when Bz < 0 occurs because
Hall diffusion stabilizes the disc against the MRI when sηH <

−2v2
A/�. When the grains and ions are strongly coupled to the

neutrals and the electrons are coupled to the magnetic field, the Hall
diffusivity is given by equation (8), and we obtain a field-dependent
criterion for stability on the fractional ionization,

ne

nH
� 1

2

1.4mHc �

eB
≈ 1.5 × 10−11

B(G)

(M/M�)1/2

(r/au)3/2
. (28)

This critical fractional ionization is typically larger than the corre-
sponding criterion for Ohm damping, so sets the lower boundary
of the magnetically active region when Bz < 0. Note that once the
grain abundance is low enough not to affect the ionization fraction,
the lower boundary reaches the mid-plane and the active column
density saturates.

These results suggest that Ohm estimates of the column density
of the magnetically active layers in protoplanetary discs are in error
by about an order of magnitude, systematically underestimating or
overestimating the active column if the magnetic field is directed
upwards or downwards, respectively.

This conclusion rests on several assumptions. Our neglect of
stratification in the linear analysis is unlikely to be serious given
that in the Ohm limit this approach yields excellent predictions of
the extent of the depth of the turbulent layers (Turner & Sano 2008).
The restriction to a simple and somewhat degenerate geometry –
i.e. to vertical fields and wave vectors – is perhaps more suspect.
However, when ambipolar diffusion is unimportant, a toroidal com-
ponent of the magnetic field and a radial component of the wave
vector can easily be accommodated: a rescaling of the full dis-
persion relation yields the identical dispersion relation (Pandey &
Wardle, in preparation). The situation is less clear when ambipolar
diffusion is involved, as in this case it stabilizes or destabilizes the
MRI (Desch 2004; Kunz & Balbus 2004) in an analogous man-
ner to the Hall contribution for the vertical field considered here
(Pandey & Wardle, in preparation). However, at ∼1 au, ambipolar
diffusion only dominates near the disc surface where the ioniza-
tion fraction is so high that diffusion is small in any case. Finally,
although the grain model is crude, the key property of the grain pop-
ulation is its capacity to soak up electrons, which is proportional
to

∫
a n(a) da (Wardle 2007). This can be used to scale our results

to any grain size distribution. The real uncertainty is the small-
radius tail of the grain size distribution which may still be sufficient
to reduce the electron and ion fractions at a few scaleheights de-
spite the tendency of grains to aggregate and settle towards the
mid-plane.

The robust point is that the relative magnitudes of the diffusivi-
ties are independent of the ionization fraction, being controlled by
the ratio B/nH, and that Hall diffusion dominates the other mech-
anisms over much of protoplanetary discs (Wardle & Ng 1999;
Balbus & Terquem 2001; Sano & Stone 2002a). As X-rays and
cosmic rays both penetrate to the Hall-dominated region just be-
low the disc surface, it is absolutely essential that Hall diffusion
be included in modelling the extent of MRI-driven turbulence in
protoplanetary discs. The real uncertainty is that, notwithstanding
the pioneering effort of Sano & Stone (2002a,b), the saturation of
MRI-driven turbulence in the Hall-dominated regime as yet remains
unexplored.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we re-examined the role of Hall diffusion in suppress-
ing or enhancing MRI-driven magnetic turbulence in Keplerian
discs.

We first undertook a local, linear analysis of the MRI, for simplic-
ity restricting our attention to a vertical, weak magnetic field subject
to axisymmetric perturbations with a purely vertical wave vector.
While this is not new, our approach and presentation differed from
previous analyses (Wardle 1999; Balbus & Terquem 2001) in two
critical ways. First, we characterized the departure from ideal MHD
using magnetic diffusivities rather than conductivities or character-
istic frequencies, allowing us to make a clearer connection with
the E×B field-line drift implicit in the diffusive MHD induction
equation. Secondly, we presented a clear perspective of the depen-
dence on the Hall and Pedersen (Ohm+ambipolar) diffusivities by
examining how the properties of the instability vary over a Hall–
Pedersen diffusivity plane (see Fig. 5). This clearly delineates when
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the range of unstable wavenumbers is finite or infinite, and whether
the fastest growth occurs for finite wavenumber or asymptotically
as k → ∞. We also discussed the limiting forms of the dispersion
relation, making a connection with the diffusive plane-parallel shear
instabilities of Kunz (2008).

Next, we reviewed the alternative parametrizations of non-ideal
MHD that have appeared in the literature, and emphasized that
existing simulations of the non-linear development and saturation
of the instability in the Hall–Ohm case (Sano & Stone 2002a,b)
are consistent with expectations based on the simple linear analysis
and have not yet probed the Hall-dominated regime characteristic
of protoplanetary discs.

Finally, we illustrated the critical effect of Hall diffusion on the
size of dead zones in protoplanetary discs by applying a local cri-
terion for growth of the MRI to a simple model of MMSN at 1 au,
including X-ray and cosmic ray ionization and a population of 1-μm
grains.

Our key results can be summarized as follows.

(i) The radial diffusion of perturbed field lines through the fluid
is directly related to the criterion for marginal stability. The MRI
is suppressed if the radial drift of field lines against the infall of
the fluid is sufficient to restore the field to its equilibrium radial
position.

(ii) The behaviour of the MRI for our adopted geometry is deter-
mined by the dimensionless Pedersen and Hall diffusivities ηP�/v2

A

and sηH�/v2
A, where s = sign(Bz). For sηH < −2v2

A/�, Hall
diffusion suppresses the MRI irrespective of the value of ηP. For
sηH > −2v2

A/�, the ηP–sηH half-plane is divided into three regions
in which there is either (I) a finite range of unstable wavenumbers
with a fastest growing mode, (II) instability for all wavenumbers,
with a unique fastest growing mode and a slower asymptotic growth
rate as k → ∞ or (III) instability at all wavenumbers with fastest
growth asymptotically achieved as k → ∞ (see Fig. 5).

(iii) For fixed ηP, the maximum growth rate increases with in-
creasing sηH, from 0 at sηH�/v2

A = −2 to the maximum 0.75 � as
sηH → +∞. For fixed ηH with sηH > −2v2

A�, the growth rate is a
maximum for ηP = 0 and declines as ηP → ∞ (see Fig. 6).

(iv) In the highly diffusive limit, the instability reduces to the
Hall-diffusion-driven instability in plane-parallel shear flow dis-
cussed by Kunz (2008). Diffusion is so severe in this limit that the
perturbations in the fluid velocity do not affect the field evolution,
which is driven purely by diffusion and Keplerian shear. Our restric-
tion to vertical initial fields and perturbation wavenumbers enabled
us to extend the results of Kunz (2008) to include the damping by
Pedersen diffusion and to derive pleasant analytic expressions for
the growth rate and wavenumber of the most unstable mode (see
equations C7, C9 and C10, respectively, and also Fig. 8).

(v) We argued that simulations of MRI-driven MHD turbulence
in the presence of Hall and Ohm diffusion (Sano & Stone 2002a,b)
have not yet probed the ‘deep’ Hall regime sηH � ηP � v2

A/�,
where the linear analysis suggests that Hall diffusion allows the
instability to proceed when it otherwise would not.

(vi) We found that at 1 au in the MMSN, Hall diffusion changes
the magnetically active column density by an order of magnitude.
This change is either an increase or decrease depending on whether
B is parallel or antiparallel to the rotation axis, respectively. Hall
diffusion likely plays a critical role in determining the radial ex-
tent of dead zones and the thickness of magnetically active layers
in protoplanetary discs, and estimates based on damping by Ohm
diffusion are probably wildly inaccurate.

The simplifications adopted in our analysis engender three signif-
icant uncertainties in our conclusions that are worth some final
discussion.

First, the restriction to the stability of vertical magnetic fields to
perturbations with vertical wave vectors does not capture the desta-
bilization by ambipolar diffusion that arises when toroidal field
and radial wave vector components are also present (Desch 2004;
Kunz & Balbus 2004). However, we have captured the analogous
Hall-diffusion-driven destabilization of the MRI, and as Hall diffu-
sion typically dominates this restriction is unlikely to have a great
impact.

Secondly, while the use of the linear analysis to predict the bound-
ary of the manifestly non-linear active region appears to be justified
for the Ohm case (Turner & Sano 2008), it is not known whether
this applies in the Hall-dominated regime that we tout here.

Finally, we caution that the MRI may simply be irrelevant in pro-
toplanetary discs. A minor population of small dust grains would
remove so many electrons from the gas phase that the MRI-active
column density becomes so small as to be irrelevant. Instead, mag-
netic activity – if any – may be due to fields lying within the disc
and varying on length-scales of order r (Turner & Sano 2008) or a
strong poloidal magnetic field brought in during the formation of
the disc.
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A P P E N D I X A : FO R M U L AT I O N

Here we give the MHD equations describing a non-self-gravitating
disc orbiting a point mass M. We adopt cylindrical coordinates (r,
φ, z) centred on M with the disc mid-plane corresponding to z = 0
and the disc angular velocity vector parallel to the z-axis. We write
the fluid equations in the inertial ‘laboratory frame’ with the fluid
velocity written as v + vK, so that v denotes the departure of the
flow from the Keplerian velocity field

vK =
√

GM

r
φ̂ , (A1)

which we eliminate in favour of the Keplerian angular velocity

� = vK

r
ẑ (A2)

using the identities ∇ ·vK = 0 and ∇×vK = (1/2)�. This approach
avoids the complexity that would be introduced by transforming to a
local non-inertial frame or adopting a shearing-sheet approximation,
neither of which are needed in our simple linear analysis in the next
section.

The continuity equation becomes

∂ρ

∂t
+ �

∂ρ

∂φ
+ ∇ · (ρv) = 0 . (A3)

The advective term containing � corresponds to (vK · ∇)ρ and
represents the azimuthal advection associated with Keplerian rota-
tion – analogous terms will arise in the momentum and induction
equations. The momentum equation,

∂v

∂t
+ �

∂v

∂φ
+ (v · ∇)v − 2�vφ r̂ + 1

2
�vr φ̂

= r�2 r̂ − ∇� − 1

ρ
∇P + J×B

cρ
, (A4)

also picks up � -bearing terms that account for centripetal acceler-
ation and the angular momentum loss implicit in radial motion if

the azimuthal speed is Keplerian. The gravitational potential is

� = − GM√
r2 + z2

, (A5)

and we adopt an isothermal equation of state:

P = ρc2
s , (A6)

where cs is the isothermal sound speed.6 The current density satisfies
Ampères law,

J = c

4π
∇×B , (A7)

and the magnetic field is, of course, solenoidal,

∇ · B = 0 , (A8)

and evolves according to the induction equation (A9). The qual-
itative discussion of the effect of field diffusion and the MRI in
Section 2 suggests that it will be useful to recast the induction equa-
tion in a form that makes explicit the drift of the magnetic field
through the fluid, i.e.

∂B
∂t

+ �
∂B
∂φ

+ 3

2
�Br φ̂ = ∇× [

(v + vB)×B − η(∇×B)‖
]

,

(A9)

where

vB = ηP
(∇×B)⊥×B̂

B
− ηH

(∇×B)⊥
B

. (A10)

Note that when J‖ vanishes, ambipolar and Ohm diffusion behave
identically, appearing only together in sum as ηP. This is the case
in the linear analysis of the MRI presented here.

Note that the local dissipation rate associated with magnetic dif-
fusion is

J · E′ = 4π

c2

[
η J2

‖ + ηP J2
⊥
]
, (A11)

and so, as is well known, Hall diffusion has no associated dissi-
pation. When J‖ vanishes, ambipolar and Ohm diffusion behave
identically, appearing only together in sum as ηP; in particular, this
is the case in the linear analysis of the MRI presented here.

Despite the appearance of �-bearing terms, the equations we
have derived apply to an arbitrary fluid flow – we have not yet
assumed that the flow is close to Keplerian, or even disc-like, but
have simply written the fluid velocity in the MHD equations as
v + vK. Of course, this form of the equations is only really useful
for nearly Keplerian flows with |v| � vK. In the next section, we
shall specialize to a near-Keplerian disc equilibrium state with a
vertical magnetic field, and consider perturbations with a vertical
wave vector.

APPENDI X B: LI NEAR A NA LY SI S

We consider a small region of an axisymmetric, geometrically thin
and nearly Keplerian disc, threaded by a vertical magnetic field, with
sound and Alfvén speeds (cs and vA) at the mid-plane that are both
small compared to the local Keplerian speed vK. We assume that
radial gradients are on the scale of r and neglect vertical stratification
of the initial equilibrium state, so that our analysis only holds near
the mid-plane, at heights z � cs/�. Then, we may neglect the term
r�2 r̂−∇� in equation (A4), and the remaining radial and azimuthal

6 This will not really be needed as the mode of interest does not involve
pressure fluctuations.
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derivatives appearing in equations (A3)–(A9), leaving only partial
derivatives in t and z.

The initial state has v = 0 (i.e. in Keplerian rotation) with a
uniform density, pressure and vertical magnetic field B = sB ẑ
(where s = ±1). We linearize the equations around this state and
seek solutions for axisymmetric perturbations of the form exp(νt −
ikz). The equations for perturbations in density, pressure and vz

form a separate system that describes vertically propagating sound
waves. The system of linear equations in the remaining perturbations
involve fluctuations in the r and φ components of B, v and vB. We
treat these as two-component vectors in the equations below.

In the following equations, we recast physical quantities in di-
mensionless form by adopting � and vA as the units of frequency
and velocity, respectively. For the remainder of this section, ηP,
sηH, ν and k denote ηP�/v2

A, ηH�/v2
A, ν/� and kvA/�, respec-

tively. Then the linearized momentum, field-line drift and induction
equations are

δv

vA
= −ik

(1 + ν2)

(
ν 2

− 1
2 ν

)
δB
B

, (B1)

δvB

vA
= −ik

(
ηP sηH

−sηH ηP

)
δB
B

(B2)

and(
ν 0
3
2 ν

)
δB
B

+ ik

(
δv

vA
+ δvB

vA

)
= 0. (B3)

Using equations (B1) and (B2) to substitute for δv and δvB in
equation (B3) yields the relationship between the components of
δB,

δBr = − sηH + 2/(1 + ν2)

ηP + νA
δBφ, (B4)

where

A = 1

1 + ν2
+ 1

k2
(B5)

and the dispersion relation

ak4 + bk2 + c = 0, (B6)

where

a = (1 + ν2)
(
η2

P + η2
H

) + 5
2 sηH + 2νηP + 1 , (B7)

b = (1 + ν2)
(
2νηP − 3

2 sηH

) + 2ν2 − 3 , (B8)

c = ν2(1 + ν2) (B9)

(Wardle 1999).7 While this form of the dispersion relation is con-
venient for determining the run of ν with k for a given choice of
the diffusivity components, it does not provide an overview of the
dependence of the characteristic properties of the instability – the
range of unstable wavenumbers, maximum growth rate and cor-
responding wavenumber – on magnetic diffusion. To this end, we
recast the dispersion relation into a form that emphasizes its depen-
dence on the diffusivities ηH and ηP:(

sηH + 2

1 + ν2
− 3A

4

)2

+ (ηP + νA)2 =
(

3A

4

)2

. (B10)

Conveniently, a given growth rate and wavenumber corresponds to
a circular locus in the sηH–ηP plane, centred at (3A/4 − 2/(1 + ν2),

7 There is a typographical error in equation (14) of Wardle (1999) – the RHS
should be preceded by a minus sign.

−νA) with radius 3A/4, making this form amenable to graphical
analysis.

Using this expression, it is straightforward to show that the max-
imum possible growth rate is ν = 3/4 (in units of �) and that this
occurs only when ηP = 0. To see this, first note that ηP ≥ 0 and A >

0. Then, for ν ≥ 0, the left-hand side of equation (B10) is ≥ν2A2,
with equality attained only if ηP = 0 and sηH = 3A/4 − 2/(1 + ν2).
This statement must also hold for the RHS of (B10), so we conclude
that ν2 ≤ 9/16 with equality only holding when ηP = 0 and sηH =
3/4k2 − 5/4.

Consider now the dependence of the instability on the Pedersen
and Hall diffusivities ηP and ηH (see Fig. 5). First, note that the
ideal-MHD limit holds at the origin (i.e. ηH = ηP = 0), the Hall
MHD limit holds along the horizontal axis (ηP = 0) and the Ohm
or ambipolar diffusion limits hold along the vertical line (ηH = 0).
Recall also that only the half-plane ηP ≥ 0 is physically relevant.
Inspection of the dispersion relation, equation (B10), shows that all
modes are stable for sηH ≤ −2, and in the unstable region (sηH >

−2) there is, at most, a single unstable mode for a given choice
of wavenumber k. The run of growth rate with wavenumber, i.e.
ν(k), for a particular choice of ηH and ηP, can be found by directly
solving (B6) for ν. In practice, it is easier to choose ν and solve
the quadratic equation (B6) for k2. It turns out that there are three
distinct forms of the resulting ν(k) curve, corresponding to regions
I, II and III in the sηH–ηP plane, as illustrated in Fig. 5.

In region I, which lies outside the semicircular locus

η2
P + (sηH + 5/4)2 = 9/16 , (B11)

the range of unstable wavenumbers extends from k = 0 up to a
maximum value

kc =
[

3

2

sηH + 2

η2
P + (sηH + 5/4)2 − 9/16

]1/2

(B12)

found by setting ν = 0 and k = kc in the dispersion relation (B10).
The form of ν(k) in this region is illustrated in inset I of Fig. 5. The
maximum growth rate ν0 corresponds to a repeated root for k2 in
the quadratic (B6), so it can be found by setting the discriminant to
zero. This yields

sηH = 24 ν0

9 − 16ν2
0

ηP − 2

1 + ν2
0

, (B13)

so contours of constant ν0 in region I are straight lines. The cor-
responding wavenumber, k0, is then given by the ratio −2c/b, or
alternatively −b/2a, obtained from equations (B7)–(B9) with ν set
to ν0, i.e.

k0 =
[

−2ν2
0

(
1 + ν2

0

)
(
1 + ν2

0

) (
2ν0ηP − 3

2 sηH

) + 2ν2
0 − 3

]1/2

. (B14)

Region I encompasses the limits of ideal MHD, the Ohm and/or
ambipolar diffusion limit, as well as the Hall limit (i.e. ηP = 0)
for sηH > −0.5. Elsewhere, i.e. within the semicircle bounded by
(B11) and the sηH-axis (ηP = 0), all wavenumbers are unstable. The
interior of the semicircle is further subdivided into regions II and
III, depending on whether the maximum growth rate is attained at
a finite wavenumber or asymptotically as k → ∞, as illustrated in
insets II and III in Fig. 5, respectively.

In region II, ν0 and k0 still satisfy equations (B13) and (B14) just
as in region I. The inner boundary of region II occurs where k0 just
becomes infinite, i.e. ν0 satisfies equation (B13) and simultaneously
the denominator of equation (B14) is zero. These two conditions
yield a parametric solution for the locus separating regions II and
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III,

sηH = − 2
(
9 + 4ν2

0

)(
1 + ν2

0

) (
9 + 16ν2

0

)
ηP = ν0

(
9 − 16ν2

0

)(
1 + ν2

0

) (
9 + 16ν2

0

) , (B15)

which trace out an arc from (ηP, sηH) = (0, −2) to (0, −4/5) as ν0

runs from 0 to 3/4 (the blue locus in Fig. 5).
In region III, all wavenumbers are unstable, with the fastest

growth occurring in the limit k → ∞, yielding from (B10)(
sηH + 5/4

1 + ν2
0

)2

+
(

ηP + ν0

1 + ν2
0

)2

=
(

3/4

1 + ν2
0

)2

. (B16)

Thus in region III, contours of constant ν0 trace out segments of non-
concentric circles running between the sηH-axis and the boundary
with region II.

Having delineated these three regions, we now consider how the
critical wavenumber kc, fastest growth rate ν0 and corresponding
wavenumber k0 vary across the entire ηP–sηH plane. Contours of
constant kc are semicircles, as plotted in Fig. 7. While the range of
unstable wavenumbers is reduced for large values of sηH and ηP,
as one might expect, the range is not maximized in the ideal limit
(i.e. at the origin) but in regions II and III, bounded by the kc = ∞
contour.

Turning now to the fastest growing modes, the maximum growth
rate is given either by (B13) in regions I and II or by (B16) in region
III, and the corresponding contours are plotted in Fig. 6. The growth
rate increases clockwise, from 0� along the vertical line sηH = −2
up to 0.75� for the horizontal line ηP = 0 for sηH > −4/5. In the
absence of Hall diffusion, the maximum growth rate ν0 declines
with increasing (Ohm and/or ambipolar) diffusivity (e.g. moving
vertically upwards through the sηH = 0 point in the horizontal
axis), with ν0 ≈ (3/4)η−1

P for ηP � 1. The most important effect
of Hall diffusion, apparent from Fig. 6, is that the growth rate of
the MRI exceeds 0.3� for sηH � ηP, even for arbitrarily large ηP.
More generally, the addition of Hall diffusion at fixed ηP increases
the growth rate if sηH > 0 and decreases it when sηH < 0. For large
values of ηP, equation (B13) shows that sηH/ηP ≈ 24ν0/(9−16ν2

0 ).
It is this fact that has the potential to modify the extent of dead zones
in protoplanetary discs, as we explore later in Section 5.

The wavenumber of the fastest growing mode (blue contours in
Fig. 6) decreases as the diffusivity is increased. Again, the contours
are not arranged so that the highest wavenumbers occur in the ideal-
MHD limit, but to the sηH < 0 side, within the boundary between
regions II and III (traced by the k0 = ∞ contour).

These patterns place the ideal, Ohm (or ambipolar) and Hall
regimes in context, and for the first time we see an overview of the
effect of magnetic diffusivity on the linear MRI. In particular, there
is nothing special about the Ohm/ambipolar limit, e.g. the behaviour
of the instability in the presence of diffusion is not qualitatively
different for sηH = 2 versus ηH = 0. Even the ideal-MHD limit
does not stand apart as remarkable, although it still holds a special
place conceptually because flux freezing holds and it is easier to
think about. What does stand out is the part of the plane in the lower
left, regions II and III, characterized by high wavenumbers and the
spraying out of the growth contours.

Overall, we note that increasing ηP decreases the maximum
growth rate and the characteristic wavenumbers, whereas increasing
sηH above −2 increases the maximum growth rate and may either
increase (when sηH + 1 � ηP) or decrease (when sηH + 1 � ηP)
the corresponding wavenumber.

APPENDI X C : LI MI TI NG CASES
AND DI FFUSI VE I NSTABI LI TI ES

In this section, we consider the interesting limiting cases of our
analysis. As a preliminary, we substitute equations (B1) and (B2)
into (B3) to express the linearized induction equation in the form[ (

ν 0
3
2 ν

)
+ k2

1 + ν2

(
ν 2

− 1
2 ν

)

+ k2

(
ηP sηH

−sηH ηP

) ]
δB = 0 . (C1)

The three terms in this expression represent the effects of Keplerian
shear, fluid displacement and magnetic diffusion on the magnetic
field perturbations. Each of the three limiting cases can be obtained
by neglecting one of these terms. To obtain the criteria for each
limit, we note that ν ≤ 3/4, and so the three terms have orders of
magnitude of 1, k2 and k2η⊥, respectively. The three cases of interest
are as follows.

Ideal MHD. When k2η⊥ � k2 ∼ 1, i.e. η⊥ � 1, k2 ∼ 1, the third
term is negligible and field evolution is determined by shearing of
the field and the response of the fluid to magnetic stresses. This
limit applies in the neighbourhood of the origin in Fig. 6, and (of
course) recovers the results of Balbus & Hawley (1991) limited to
a vertical field and wave vector and neglecting buoyancy.

Cyclotron limit. The first term is negligible when k2η⊥ ∼ k2 �
1 (i.e. η⊥ ∼ 1 and k2 � 1). In this limit, the important effects
are advection by the fluid displacement and magnetic diffusion.
Generation of Bφ from Br by the Keplerian shear flow is negligible
in this limit, but Coriolis and centripetal acceleration still play a
crucial role through the dynamics of the fluid which enters via the
appearance of the off-diagonal matrix elements in the second term
in equation (C1).

This short-wavelength, low-frequency limit corresponds to the
cyclotron mode of the magnetized fluid, which has frequency

ωH = v2
A

|ηH| = eB

mic

ρi

ρ
, (C2)

where the second form applies for a simple ion–electron–neutral
plasma (Wardle & Ng 1999; Pandey & Wardle 2008). This mode
is able to couple effectively to the Keplerian rotation as long as
the sense of circular polarization of the mode matches the epicyclic
motion, i.e. as long as BzηH < 0. The other short-wavelength mode,
the high-frequency whistler (ω = k2v2

A/ωH),8 is unable to couple
effectively to the rotation (Wardle 1999).

This limit applies for k → ∞ in regions II and III of Fig. 5, where
arbitrarily large wavenumbers are unstable. The dispersion relation
in this case is obtained by letting k → ∞ in (B6), and reduces to

(1 + ν2)
(
η2

P + η2
H

) + 5
2 sηH + 2νηP + 1 = 0 , (C3)

i.e. a(ν) = 0, with a given by equation (B7). The lack of any k de-
pendence in this regime occurs because both the magnetic diffusion
and the magnetic stresses on the fluid (which are responsible for the
fluid displacement) scale as k2.

Diffusive limit. Finally, the second term in (B2) may be neglected
when k2ηH ∼ 1 � k2 (i.e. η⊥ � 1, k2 ∼ 1/η⊥). In this case, instability
relies on the Keplerian shear flow generating Bφ from Br, and the
tendency of Hall diffusion to convert Bφ back into Br. This brings

8 In dimensionless form, ωH = 1/|ηH| and the whistler mode has frequency
ω = k2/|ηH|.
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the potential destabilizing effect of Hall diffusion in shear flows to
the fore and shows that it is quite independent of rotational effects
– i.e. the Coriolis and centripetal acceleration – that drive the MRI
(Kunz 2008). Here our simplified geometry and large diffusion limit
allow us to find simple analytic expressions for the growth rate as a
function of k for arbitrary diffusivity.

Equations (B1) and (B2) show that |δv| � |δvB|, so that the δv

term can be neglected in the linearized induction equation (B3),
yielding(

ν 0
3
2 ν

)
δB
B

+ k2

(
ηP sηH

−sηH ηP

)
δB
B

= 0 , (C4)

with δv still given by equation (B1). In this limit, the field evolves
in response to shear and diffusion, without significant feedback
from the perturbations that it induces in the fluid flow. The (3/2)-
bearing term (≡ −d ln �/d ln r) is the only manifestation of the
Keplerian rotation law and cylindrical geometry in this equation.9

To generalize this expression, we replace (3/2)� by a characteristic
shear frequency v′ that can be thought of either as accommodating
different rotation laws in cylindrical geometry or as representing
plane-parallel shear in a Cartesian geometry. In the latter case, r and
φ are mapped to −x and −y, with a local velocity field v = v′x ŷ;
the z-axis is unchanged. Without loss of generality, we may assume
that v′ > 0, and as before, we write B = sB ẑ, with s = ±1.

Upon replacing the 3/2 term in (C4) by v′, we obtain the disper-
sion relation in dimensional form:(
k2ηP + ν

)2 + (
k2sηH − v′/2

)2 = (v′/2)2 . (C5)

This immediately shows that instability requires both v′ and sηH to
be non-zero and have the same sign, otherwise the second term ex-
ceeds the RHS and there are no acceptable solutions. The dispersion
relation is easily solved for the growth rate

ν =
√

k2sηH(v′ − k2sηH) − k2ηP, (C6)

and in the rotating case thet equilibrium is unstable to wavenumbers
running from 0 up to a cut-off

kc =
√

sηH v′

η 2
⊥

, (C7)

where, as usual, the perpendicular diffusivity is

η⊥ =
√

η2
H + η2

P . (C8)

9 The velocity perturbations, however, are still affected by rotation (see
equation B1) but do not themselves feed back on the field evolution.

In the plane-parallel case, equation (C4) breaks down for k � kc

because the feedback of the velocity perturbations can no longer be
neglected. In this case, instead of cutting off, the growth rate reaches
a floor value (

√
ηH / η⊥)v′. To find the fastest growing mode, we

play the usual trick: write equation (C5) as a quadratic in k2 and find
ν0, the value of ν that gives zero discriminant. This means that there
is only one corresponding wavenumber k2

0 and therefore the point
(k0, ν0) lies on the peak of the curve ν(k). The wavenumber is found
from the quadratic, which is easily solved when the discriminant
vanishes. Fortuitously, this procedure yields simple expressions for
the maximal growth rate

ν0 = sηHv′

2(η⊥ + ηP)
, (C9)

and the corresponding wavenumber

k0 =
√

sηHv′

2η⊥(η⊥ + ηP)
, (C10)

where we have made use of the identity

η⊥ − ηP

ηH
= ηH

η⊥ + ηP
(C11)

to neatly avoid delicate subtractions when |ηH| � ηP. Note that

ν0 = k2
0η⊥ , (C12)

which we can then use in equation (B4) along with |ηH|, ηP � 1 to
show that the relationship between the perturbed field components
in the fastest growing mode is

δBx = − sηH

ηP + η⊥
δBy . (C13)

The MRI proceeds in the ideal-MHD limit because shear creates
Bφ from Br, BrBφ stresses on the fluid cause it to move radially
inwards and outwards, creating more Br available to be converted
to Bφ by the shear. In the diffusive limit, the radial component of B
is not generated by the response of the fluid to magnetic stresses,
but because Hall diffusion converts Bφ to Br. For more general field
and wave vector configurations, ambipolar diffusion may play a
similar role in assisting or suppressing the MRI, albeit hindered by
dissipation (Desch 2004; Kunz & Balbus 2004; Kunz 2008, Pandey
& Wardle 2012).
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