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Mapping of vegetation species and communities in sensitive ecosystems is essential for identification and management of anthropogenic impacts. 

Unmanned aerial vehicle (UAV)-hyperspectral systems are among the latest technologies in remote sensing that hold a potential for obtaining 

unprecedented quality of remote sensing data for vegetation mapping and health status monitoring applications. In this study, high-resolution 

(1–1.5 cm) spectral imaging data (15 bands) from a tunable spectrometer is used to map five species of vegetation in a complex upland swamp 

environment. The overall accuracy of classification was found to be 88.9% with a kappa coefficient of 0.83. Three classes (bare earth, sedgeland 

grass and black sheoak) have achieved higher accuracy (above 78%) and one class (bracken fern) has lower accuracy (58%). UAV-hyperspectral 

technology is, therefore, an effective tool to identify and map sensitive swamp vegetation. The technology can be potentially applied to determine 

the health status of the species.
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Introduction
Upland swamps are extensive areas of treeless heaths 
and sedgelands and are listed as highly sensitive ecosys-
tems in New South Wales, Australia.1 The ecosystem is 
diverse and threatened. Precise and frequent mapping 
of the vegetation communities is essential for the 
sustainability of the environment. However, traditional 
aerial and  satellite-based methods are limited to the 
delineation of the swamp boundaries.2 Identification 
of individual species and vegetation group is critical 
to characterise the vegetation communities in the 

swamps and is the first step towards monitoring of 
the changing health of the characteristic species under 
natural or anthropogenic stress. Previous studies, using 
ground-based spectroscopy for differentiation of vege-
tation species on wetland environment, revealed the 
spectral complexities of the process.3 Unmanned aerial 
vehicles (UAV) with optical and infrared cameras have 
been recently used, but were limited to mapping of 
the community boundaries4 and detection of a single 
species (Gleichenia dicarpa) only.5 It was, therefore, 
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deemed necessary to investigate the potential of a 
UAV-hyperspectral system to map the area at indi-
vidual species level. In this study, we present prelimi-
nary results of the species differentiation and vege-
tation complexes over this spectrally diverse swamp 
environment. The high overall classification accuracy 
obtained in this study indicates benefits of high-reso-
lution near-surface spectroscopy through UAVs for a 
heterogeneous ecosystem.

Materials and methods
Test area and ground truth
The study area is located near Wollongong, southwest 
to the city of Sydney, Australia (34° 21¢ 24.0² S, 150° 
51¢ 51² E). The area is comprised of shrub type vege-
tation thickets (Banksia and tea tree), and sedgeland–
heath complexes (Cyperoid, Restioid and sedgelands).1 
To simplify the complexity in classification, we narrowed 
down to a set of five swamp species (Pteridium aqulinum, 
Allocasuarina littoralis, Empodisma minus, Lepidosperma 
limicola and Lepidosperma neesii) based on their abun-
dance over the area and significance in terms of sensi-
tivity (Figure 1).

A transect-based sampling design was adopted to collect 
ground truth points for the defined species using a hand-
held global positioning system (GPS). A transect is an imag-
inary line that spans the area of interest to select sample 
plots along this line to minimise sampling bias. In this case, 
the individual sampling transects were made to conform 
with the transects in which the UAV was operated.

Remote sensing acquisition
To scope the potential of spectroscopy in classification and 
to avoid loss of pixel purity due to low resolution, the UAV 
data were acquired at a low flying altitude of around 25 m in 
transects. Due to the high heterogeneity of the ecosystem 
together with the small and fragile canopy of a few target 
species, it was deemed necessary to acquire data at high 
spatial resolution. A high spatial resolution of 1–1.5 cm 
ground sampling distance (GSD) was achieved throughout 
the planned mission. Weather conditions were clear and 
illumination was sunny during the mission. Furthermore, 
the effect of shadow was minimal during the acquisition 
due to the sun angle at the time. For this mission, we used 
an octocopter-UAV assembled from off-the-self available 
parts (Walkera QR-X900). The flight control system (FCS-
RX705) is based on Ardupilot Mega (APM).

A programmable hyperspectral camera based on Fabry–
Pérot interferometer (FPI)6 technology was used with the 
UAV (Rikola, Senop Optronics, Finland). The integrated 
UAV-hyperspectral system is shown in Figure 2. The 
sensor provides spectral data cubes using a snapshot-
based scanning mechanism; this enables high spatial 
registration between the pixels and bundle-block adjust-
ment for photogrammetric applications. The sensor was 
used in un-binned mode (1024 × 1024) with a pixel size 
of 5.5 µm, focal length of 9 mm and field of view (FOV) of 
36.5°. Furthermore, an onboard GPS receiver was used 
to acquire the start position of the hypercube acquisi-
tions. A total of 15 wavelength bands were acquired over 
the operational wavelength range of 500–900 nm. The 
exposure time was set at 10 ms to provide good image 
quality for the existing illumination condition. We used 

Figure 1(a). Sedgeland grass (Empodisma minus, Lepidosperma limicola, Lepidosperma neesii), (b) black sheoak (Allocasuarina 
littoralis) and (c) bracken fern (Pteridium aqulinum).
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an indices-based methodology to tune the bands of the 
FPI sensor, i.e. the selected wavelengths are the primary 
input wavelengths for a set of 12 existing narrowband 
vegetation indices, listed in Table 1. The selected wave-
lengths were 515.14, 531.50, 550.14, 570.18, 610.10, 
670.31, 700.08, 710.12, 720.27, 740.40, 750.19, 
762.02, 780.33, 800.35 and 850.35 nm with respective 
full width at half maximum (FWHM) of 10.93, 10.29, 

9.58, 9.63, 11.88, 11.76, 9.87, 9.78, 9.61, 9.58, 9.58, 
9.37, 9.58, 10.62 and 12.94 nm.

Processing workflow
As a part of the data preprocessing routine, system-
atic corrections (spectral smile and dark signal) were 
first performed using laboratory calibration parameters. 
Ground-based reflectance signatures were used for 

Figure 2. The integrated UAV-hyperspectral sensor system (a) on-ground, (b) during the survey and (c) enlarged view of 
system.
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empirical line correction,17 to generate a reflectance 
equivalent for the acquired hypercubes. The snapshot-
based scanning mechanism employed by the FPI produces 
spatial shifts between the band wise acquisitions due to 
the motion of the UAV.18 An “affine” geometric trans-
formation was used by employing a spatial-feature-
based keypoint matching technique to stabilise the 
shift between the band frames. The employed keypoint 
matching technique automatically identifies unique 
spatial features between a band-pair (two bands at a 
time in the sequence of all bands) and then geometrically 
transforms one of the bands to spatially overlap with 
the other. The coding was done through MATLAB and 

the method was evaluated through root mean square 
error (RMSE) and Pearson correlation coefficient (PCC). 
The individually stabilised reflectance images, along 
each transect, were then mosaicked together. In this 
mosaicking process, common spatial features between 
the adjacent bands in a transect were identified and 
used. All the pixels were adjusted to 1 cm GSD as an 
inherent resampling routine in the mosaicking process. 
Absolute geometric registration of the mosaicked data-
sets was performed using ground control points (GCP) 
collected from the survey and high-resolution optical 
airborne datasets (NearMapTM) at 7.5 cm GSD. The 
resulting mosaicked dataset was classified using a super-

No. Narrowband vegetation indices

1 Vogelmann index (VOG)7 = 740 720/VOG R R

2 Red edge (RE)8 = 750 710/RE R R
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Table 1. List of narrowband vegetation indices.
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vised n-dimensional parallel-piped classifier19 into three 
vegetation classes (Figure 1).

The training and the test sets were selected from 
the same image apart from the ground truth samples 
collected during the survey. The training polygons were 

collected using photo-interpretation of colour infrared 
composite (850.35, 670.31 and 550.14) of the mosaicked 
hyperspectral product for the classification. A total of 20 
polygons (222,382 pixels) were selected for “bare earth”, 
22 polygons (498,031 pixels) were selected for “sedge-

Figure 3(a). An overlay map of the acquired UAV-hyperspectral data over the swamp communities, (b) and (c) enlarged 
colour infrared composite (850.35, 670.31 and 550.14 nm) of two transects, and (d) and (e) classification outputs.



6 High-Resolution Mapping of Upland Swamp Vegetation Using an Unmanned Aerial Vehicle-Hyperspectral System

land grass”, 16 polygons (561,638 pixels) were selected 
for “black sheoak” and 18 polygons (6129 pixels) were 
selected for “bracken fern”. The selection of the test poly-
gons was based on the size and distribution of the target 
class. Furthermore, the set of training and test polygons 
were kept mutually separate in a 1 : 1 ratio for classifica-
tion.

Results and discussion
Figure 3(a) shows the overlay of the data acquired 
through the UAV flight transects, Figure 3(b) and (c) 
show enlarged views of two transects, and Figure 3(d) 
and (e) show the classified outputs for the respec-
tive transects. The accuracy of the classification was 
evaluated with randomly selected test samples using 
a confusion matrix (Table 2). The overall classification 
accuracy was 88.9% with a kappa coefficient of 0.83. 
The evaluation of the performance of other super-
vised and un-supervised classification techniques 
could be useful for future research over this chal-
lenging space.

Individual class accuracy was high for bare earth, 
sedgeland grass and black sheoak. However, the 
accuracy of the shrub type vegetation class (bracken 
fern) was significantly lower with higher commission 
and omission errors. This is likely to be due to the 
shrub type vegetation being largely present within 
the sedgeland grass community and the fractional 
canopy of the species introduced spectral mixing. It 
will be interesting to see the performance of object-
based classifiers on the acquired UAV-hyperspectral 
data for classification of given shrub-type vegetation 
species. In addition, to the classified pixels, several 
pixels were found to remain unclassified. This cate-
gory largely belongs to the list of shrub-type species 

that were not classified in this exercise. Detection 
and classification of these unclassified species in the 
spectrally complex environment also is an identified 
future aspect of this research and could be useful for 
ecological management.

Overall high accuracy in detection of bare earth and 
swamp vegetation classes can be directly applied to 
estimate the percentage coverage of the vegetation in 
upland swamps.

Conclusion
The result of this preliminary study indicates that it is 
possible to detect and differentiate threatened swamp 
species using UAV-based spectroscopy at the required 
high spatial and spectral resolution. The results are useful 
to estimate the abundance and distribution of the species 
over the upland swamp. Furthermore, this can later be 
employed to identify health status at the species level. 
This in turn is crucial for understanding the condition 
of the swamp and identification of stress induced from 
anthropogenic sources.
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Class

Producer 
 accuracy (%)

Omission error 
(%) 

User accuracy 
(%)

Commission  error 
(%)

Bare earth (red) 99.07 0.93 95.95 4.05
Sedgeland grass (green) 78.83 21.17 97.83 2.17
Black sheoak (blue) 85.29 14.71 99.98 0.02
Bracken fern (yellow) 58.55 41.45 48.36 51.64

Table 2. Accuracy assessment for the classification.
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