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A B S T R A C T

A novel method for prediction of the extreme wind speed events based on a Hierarchical Classifica-
tion/Regression (HCR) approach is proposed. The idea is to improve the prediction skills of different Machine
Learning approaches on extreme wind speed events, while preserving the prediction performance for steady
events. The proposed HCR architecture rests on three distinctive levels: first, a data preprocessing level, where
training data are divided into clusters and accordingly associated labels. At this point, balancing techniques
are applied to increase the significance of clusters with poorly represented wind gusts data. At a second level
of the architecture, the classification of each sample into the corresponding cluster is carried out. Finally, once
we have determined the cluster a sample belongs to, the third level carries out the prediction of the wind speed
value, by using the regression model associated with that particular cluster. The performance of the proposed
HCR approach has been tested in a real database of hourly wind speed values in Spain, considering Reanalysis
data as predictive variables. The results obtained have shown excellent prediction skill in the forecasting
of extreme events, achieving a 96% extremes detection, while maintaining a reasonable performance in the
non-extreme samples. The performance of the methods has also been assessed using forecast data (GFS) as
predictors.
1. Introduction

Renewables are clean, inexhaustible and increasingly competitive
energy resources. They are getting massive attention from the energy
production authorities, countries and energy companies in the last
decades, in order to reduce our dependence on fossil fuels. Among
renewable energy sources, wind energy is one of the most rapidly
growing and potentially useful energy worldwide [1], because of its
high efficiency and resource availability together with the low pollution
produced by wind farms [2]. It is also one of the most promising
renewable energies in terms of penetration in the electric power system,
economic impact and annual growth rate [3,4], due to its natural,
cheap and clean nature. In addition, it is possible to produce energy
from wind turbines at each hour of the day, and it is suitable for systems
that require energy continuously [5].

As other renewable sources, its inherent disadvantages are uncer-
tainty and intermittence [6], which induce grid instability and may
lead either to lack of supply in peak hours, or wasting energy in
consumption valleys. The electrical grid requires a steady, reliable
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and controllable electricity input source, and therefore an accurate
wind power forecasting plays a key role in the integration of a large
share of wind power in an electricity system [7]. Research in this
area has been focused on the development of robust and reliable tools.
In the literature, there are many studies on wind power forecasting
using several analysis methods and over very different prediction time-
horizons which have been summarized and reviewed in a number of
reviews articles over the last decade [2,8–12]. Broadly speaking, these
strategies can be divided into two different approaches: the first one,
weather-based, relies on the study of physical phenomena to build a
model (Numerical Weather Model, WNM). In the second approach, time
series based, statistical algorithms are used to analyze historical wind
speed data series [13,14]. A new group of methods within the time
series approach, namely data mining, emerged in last decade [15] and
has gained popularity among the scientific community since then [16,
17], due to the good results obtained in different prediction problems.

One specific and major aspect of wind speed forecasting concerns
the prediction of extreme wind speeds (EWS). These events are often
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responsible for the worst damages caused by wind, especially in wind
farms facilities. In fact, wind farms must be restrained from operating
during such events, in order to minimize the hazards involved with
them. Thus, it is of crucial importance for the wind power sector, to
have a proper knowledge as well as robust and reliable assessments
to estimate the frequency and intensity of extreme events, not only to
avoid wind turbines damage, but also to minimize cut-out events [18].
Although the majority of current approaches focus on the prediction of
mean wind speed [19], in order to forecast production, several works
aimed at the detection of EWS too.

A first review of classical techniques for EWS prediction was re-
ported in [20]. More recent reviews of modern techniques, including
NWM and also Machine Learning (ML) approaches have been presented
in [21–23]. In [24] several ML algorithms have been applied to a
problem of EWS prediction. Logistic regression, MLPs and C4.5 clas-
sification trees and CART algorithms were tested in a problem of EWS
prediction at Kumeu, New Zealand. In [25] a similar problem case study
was tackled for a New Zealand case, evaluating the classification trees,
MLPs and Self-Organizing Maps (SOMs). In-situ measurements and data
acquired between 2008 and 2012 at Kumeu site was used for this study.
In [26] a problem of extreme wind prediction at the surroundings of
storm cells in the USA is carried out. The problem consists in calculating
the probability of extreme winds over 50 kt (25.7 m/s) in zones close
to storm cells. The problem is formulated as a binary classification
problem. The predictive variables considered in this case are based
on radar measurements, storm motion and shape, and atmospheric
soundings at the near-storm environment. Several ML models have been
tested, including, logistic regression, RF, MLPs and Gradient boosting
trees ensembles. In [19] an ensemble model for EWS prediction is pre-
sented. The proposed ensemble includes RF, a long–short term memory
(LSTM) algorithm and Gaussian processes for regression. A comparison
against each model on their own, the persistence and a gradient boosted
decision tree showed the good performance of the ensemble method.
Also dealing with ensemble models, in [23] a comprehensive review
and comparison of eight ensemble methods based on ML for EWS
forecasting is carried out. The proposed algorithms are tested in six
years of data from a high-resolution ensemble prediction system of
the German weather service. In [27] a SOM is proposed to analyze
the meteorological origin of EWS in Australia. The SOM is used to
establish the origin of Application of Self-organizing Maps to classify
the meteorological origin of EWS into convective (from thunderstorms)
and non-convective origin (synoptic), with different subclasses in each
case. In [28], 33 year reanalysis data set is used to construct an hourly
time series of nationally-aggregated wind power generation in Great
Britain (GB), in order to quantify extreme wind power generation
statistics, assuming a fixed and modern distribution of wind farms.
In [29], the study scrutinizes future scenarios of extreme winds in
Brazil by applying trend analysis techniques on a 50-year historical
series of observational wind speed and meteorological parameters at
10 m height in Brazil. By applying techniques of cluster analysis it
was possible to characterize six main regions with macro climatic
similarities. In [30], geophysical predictors from the ERA5 reanalysis
are used in conjunction with an autoregressive term in regression and
ANN models with different predictors, and varying model complexity
for forecasting of EWS occurrence and magnitude. Finally, in [31] a
RF approach is applied to the identification of extreme wind field
characteristics and associated wind-induced load effects on structures,
via detection of thunderstorms. The idea is to use large databases
containing high-frequency sampled continuous wind speed data, and
use the shapelet transform to identify individual attributes distinctive
of extreme wind events. Experiments base on the real data from 14
Mediterranean ports in Italy, Spain and France.

One of the inherent issues in forecasting the atmospheric extreme
events (including EWS) resides in dealing with highly unbalanced
databases, since the number of instances with extreme wind speeds
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often represents a minimum percentage of the total data. This problem
has been mostly explored in the context of classification tasks [32].
However, the challenge we are tackling in this paper concerns a con-
tinuous predictive domain, where in addition to forecasting the pres-
ence or absence of EWS, it is also important to provide a reasonable
estimation of its magnitude. The main strategy to deal with such
challenge consists in the preprocessing of the datasets in order to
balance the training data [33], either by performing a random under-
sampling of the majority classes or generating new synthetic samples
for classification [34] or regression [35].

The methodology proposed in this paper for EWS prediction consists
of a Hierarchical Classification/Regression (HCR) approach, where the
time series training data is divided into separate subsets (or clusters)
depending on the wind speed value. Each cluster of training data
is employed to fit a specific regression model. Architectures with a
similar idea can be found in the literature [36], in the context of
ML approaches for prediction problems. In [37] it is shown that the
quality of a prediction improves when an HCR model is applied, with
respect to bare ML methods. Similar methods have been implemented
in different fields: in [38] a joint classification-regression method has
been applied to estimate remaining useful life of devices in industrial
manufacturing systems. Also, in [39] device age is estimated from
pictures using a hierarchical classification systems. In [40] a cluster
and regression model was used to predict school dropout in higher
education. In [41] HCR is implemented for predicting high performance
concrete compressive strength, and in [42] a similar architecture is
used to estimate the cost of manufacturing thin-film transistor liquid-
crystal displays. In spite of these previous approaches, the application
of HCR architectures to the detection of extremes weather events has
not yet been explored in the literature to the extent of our knowledge.

Differing from the previously discussed approaches, the HCR
methodology proposed in this paper consists on a three-level archi-
tecture. The first level consists of a data preprocessing step, where
training data are divided into clusters and labels are added accordingly.
Then, balancing techniques are applied to increase the significance
of clusters with EWS, which are represented poorly in the original
data. At the second level, the classification of each sample into the
corresponding cluster is carried out. A variety of classifiers are trained
with preprocessed labeled data after different balancing techniques
are applied. Finally, this pool of classifiers is integrated into a voting
classifier ensemble using a majority-voting rule. Once determined to
which cluster a sample belongs to, the third level of the architecture
forecasts the wind speed value, by applying the regression model that
corresponds to that particular cluster. The proposed HCR approach has
been implemented and tested for prediction of extreme EWS events at
a wind farm in Spain. Specifically, ten years of hourly wind speed data
are available at a wind farm in Western Spain, where the proposed
HCR has been applied, obtaining excellent results reported in the
experimental section of the paper.

The rest of the manuscript has been organized as follows: Section 2
describes some ML techniques that have been used to build the HCR ap-
proach for EWS prediction. Then, in Section 3 we describe the proposed
HCR methodology, along with a brief description of the computational
methods used and how to combine them to form the HCR. Section 4
presents the experimental work carried out and the results obtained in
a real wind farm in Spain. Finally, Section 5 closes the paper with some
final remarks and conclusions.

2. Computational methods

This section describes the details on ML balancing, classification and
regression methods used in this paper to construct the proposed HCR

approach. They have been summarized in Table 1.
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Table 1
Summary of the implemented ML methods in data preprocessing (noted as balancing),
classification and regression tasks.

Category Method

Balancing

SMOTE
Borderline-SMOTE
SVM-SMOTE
ADASYN
K-Means SMOTE
Random undersampling
SMOGN

Classification

Support vector machine
Random forest
Gaussian Naive Bayes
K-Nearest Neighbors
AdaBoost
Multi-layer perceptron

Regression

Linear regression
Regression trees
Random forest
Multi-layer perceptron
Extreme learning machine

2.1. SMOTE

Synthetic Minority Oversampling Technique (SMOTE) [34] is a sam-
pling method to address classification problems with imbalanced class
distribution. The key feature of this method is that it combines under-
sampling of the frequent classes with oversampling of the minorities.
It uses an oversampling strategy that supports generating ‘‘synthetic’’
cases with a rare target value. For each case from the set of instances
with rare values, the strategy is to randomly select one of its k-Nearest
Neighbors (k-NN) from this same set. With these two instances a new
example is created whose attribute values are an interpolation of the
values of the two original cases.

2.2. Borderline-SMOTE

Borderline-SMOTE is a special variant of SMOTE that addresses
the common drawback of most of the classification algorithms, which
attempt to learn the borderline of each class as exactly as possible in the
training process. The examples on the borderline and the ones nearby
are more apt to be misclassified than the ones far from the borderline,
and thus more important for classification. Following this rationale, the
Borderline-SMOTE [43] only addresses the borderline examples of the
minority class to be oversampled, as instances far from the borderline
may contribute little to classification. Hence, the borderline minority
examples are found out first, and then the synthetic examples are
generated from them and added to the original training set.

2.3. SVM-SMOTE

SVM-SMOTE [44] focuses on generating new minority class in-
stances near borderlines. A Support Vector Machine (SVM) classifier is
trained to predict synthetic instances. This method focuses only on the
minority class instances residing along the decision boundary, due to
the fact that this region is the most crucial for establishing the decision
boundary. Furthermore, the artificial minority instances are generated
in such a way that the regions of the minority class with fewer ma-
jority class instances would be expanded by extrapolation. Otherwise
the current boundary of the minority class would be consolidated by
interpolation.
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2.4. ADASYN

Adaptive synthetic sampling (ADASYN) [45] approach exploits a
different technique, by weighting the distribution of minority class
examples, according to their level of difficulty in learning. Thus, more
synthetic data are generated for the minority class examples (that are
harder to learn) compared to those minority examples that are easier to
learn. As a result, the ADASYN approach improves learning with respect
to the data distributions, reducing the bias introduced by the class
imbalance and adaptively shifting the classification decision boundary
toward the more difficult instances.

2.5. K-Means SMOTE

K-Means SMOTE [46,47] employs the simple and popular k-means
clustering algorithm, in conjunction with SMOTE oversampling, in
order to rebalance skewed datasets, avoiding the generation of noise by
oversampling only in safe areas. Its focus is placed on both between-
class imbalance and within-class imbalance, combating the small dis-
juncts problem by inflating sparse minority areas. Sample distribution
is based on cluster density, generating more samples in sparse minority
areas than in dense ones in order to combat within-class imbalance.

K-means SMOTE consists of three steps: clustering, filtering, and
oversampling. In the clustering step, the input space is clustered into
k groups using k-means clustering. The filtering step selects clusters
for oversampling, retaining those with a high proportion of minority
class samples. It then distributes the number of synthetic samples to
generate, assigning more samples to clusters where minority samples
are sparsely distributed. Finally, in the oversampling step, SMOTE is
applied in each selected cluster to achieve the target ratio of minority
and majority instances.

2.6. Random undersampling

Random undersampling is among the simplest strategies to correct
for data imbalance. The majority class is undersampled by randomly
removing instances until the data is balanced. Removing data will ob-
viously reduce the strain on storage and also improve time complexity.
However, it might lead to a loss of useful information as reported in
previous study [48].

2.7. SMOGN

SMOGN [35] aims to deal with imbalanced regression problems
where the most important cases to the user are poorly represented
in the available data. It combines random undersampling with two
oversampling techniques: SmoteR [49] and introduction of Gaussian
Noise. SMOGN generates new synthetic examples with SmoteR only
when the seed example and the k-NN selected are ‘‘close enough’’ and
uses the introduction of Gaussian Noise when the two examples are
‘‘more distant’’.

2.8. Support vector machine

The SVM [50] is a supervised learning algorithm used for many
classification problems. The objective of the SVM algorithm is to find
a hyperplane that, to the best degree possible, separates data points
of one class from those of another class. ‘‘Best’’ is defined as the
hyperplane with the largest margin between the two classes. Linearly
separable problems allow the algorithm to exploit a linear hyperplane,
but for most practical problems a more complex hyperplanes with soft
margins that allow a small number of misclassifications are exploited.

Support vectors refer to a subset of the training instances that iden-
tify the location of the separating hyperplane. The standard SVM al-
gorithm is formulated for binary classification problems and multiclass
problems are typically reduced to a series of binary ones.
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Fig. 1. Bagging technique for classification or regression problems.

Formally, given a labeled training data set (𝑥𝑖, 𝑦𝑖)𝑖=1∶𝑛, and given a
onlinear mapping 𝜙(⋅), the SVM method solves the following problem:

min
,𝜉𝑖 ,𝑏

{

1
2
‖𝑤‖

2 + 𝐶
𝑛
∑

𝑖=1
𝜉𝑖

}

(1)

constrained to:

𝑦𝑖(⟨𝜙(𝑋𝑖), 𝑤⟩ + 𝑏) ≥ 1 − 𝜉𝑖∀𝑖 = 1,… , 𝑛 (2)

𝜉𝑖 ≥ 0∀𝑖 = 1,… , 𝑛 (3)

here 𝑤 and 𝑏 define a linear classifier in the feature space, and
𝑖 are positive slack variables enabling to deal with permitted errors
see [51]). Appropriate choice of nonlinear mapping 𝜙 guarantees that
he transformed samples are more likely to be linearly separable in
he (higher dimension) feature space. The regularization parameter 𝐶
ontrols the generalization capability of the classifier, and it must be
elected by the user.

.9. Random forest

Random Forest (RF) [52] is among the most renowned bagging-like
echniques for classification and regression problems. Bagging are the
impler ensemble technique to train multiple learners and provide an
nified output. It considers an ensemble composed by learners with
qual architecture, that is, with same topology, number of input–output
ariables and parameters (Fig. 1).

RF employs decision or regression trees as predictors in a way
hat each tree depends on the values of a random vector sampled
ndependently and with the same distribution for all trees in the forest.
herefore RF differs from the pure bagging technique in the topology
f the trees changes among them. The generalization error for forests
onverges to a limit as the number of trees in the forest becomes large.
he generalization error of a forest of tree classifiers depends on the
trength of the individual trees in the forest and the correlation between
hem.

.10. Gaussian naive Bayes

Naive Bayes methods [53] are supervised learning algorithms based
n the Bayes theorem. These methods assume the ‘‘naive’’, i.e. simple,
ondition of independence among every pair of features given the
alue of the class variable. The Bayes theorem states the following
elationship, given class variable 𝑦 and dependent feature vector 𝑥1
hrough 𝑥𝑛:

(𝑦|𝑥1,… , 𝑥𝑛) =
𝑃 (𝑥1,… , 𝑥𝑛|𝑦)𝑃 (𝑦) (4)
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𝑃 (𝑥1,… , 𝑥𝑛) a
Assuming the independence of the random variables 𝑥𝑖, we can
xpress the previous equation as follows:

(𝑦|𝑥1,… , 𝑥𝑛) =
𝑃 (𝑦)

∏𝑛
𝑖=1 𝑃 (𝑥𝑖|𝑦)

𝑃 (𝑥1,… , 𝑥𝑛)
(5)

Naive Bayes classifier retrieves the maximum argument of the pre-
vious expression, so-called Maximum a Posteriori, or simply MAP,
considering that 𝑃 (𝑥1,… , 𝑥𝑛) is constant:

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

𝑃 (𝑦|𝑥1,… , 𝑥𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

𝑃 (𝑦)
𝑛
∏

𝑖=1
𝑃 (𝑥𝑖|𝑦) (6)

Gaussian Naive Bayes (GNB) simply assumes that each 𝑥𝑖|𝑦 is a
ormal random variable:

(𝑥𝑖|𝑦) =
1

√

2𝜋𝜎𝑦
𝑒
−

𝑥𝑖−𝜇𝑦
2𝜎2𝑦 (7)

2.11. K-Nearest Neighbors

The k-NN [54] method is among the top techniques for data mining
that uses the well-known principle of Cicero: birds of a feather flock
together or literally equals with equals easily associate. It tries to
classify an unknown sample based on the known classification of its
neighbors (Fig. 2).

K-NN is a non-parametric ML method which looks for a set of 𝐾
instances of the training set which are the closest to the new test
instance. The term ‘‘closest’’ to an instance 𝑥𝑖 is measured with respect
to a metric or distance 𝑑(⋅) which fulfills:

𝑑(𝑥𝑖, 𝑥𝑗 ) ≥ 0 ∀ 𝑖, 𝑗

nd

(𝑥𝑖, 𝑥𝑗 ) = 0 ⇒ 𝑥𝑖 = 𝑥𝑗 (8)

(𝑥𝑖, 𝑥𝑗 ) = 𝑑(𝑥𝑗 , 𝑥𝑖) (9)

(𝑥𝑖, 𝑥𝑗 ) ≤ 𝑑(𝑥𝑖, 𝑥𝑘) + 𝑑(𝑥𝑘, 𝑥𝑗 ) (10)

Most frequently, the Euclidean distance is used within the k-NN
omain.

.12. AdaBoost

Adaptive Boosting (AB) [55] is a kind of a boosting method that
roposes to train each of the ensembled learners (individual models)
teratively. Normally, each learner focuses on the data that was mis-
lassified by its predecessor, adapting its parameters to achieve better
esults. As in all boosting methods, AdaBoost establishes the same
tructure for all of the learners involved in the ensemble, that is, same
rchitecture, number of parameters, or input–output variables. After
reating the ensemble structure, the learners are trained sequentially, in
uch a way that each new learner requires that the previous learner had
een trained before. Fig. 3 shows an outline of the AdaBoost algorithm
or multi-class classification.

.13. Multi-Layer Perceptrons

Multi-Layer Perceptron (MLP) [56] is a class of Artificial Neural
etworks (ANN) [57] consisting of an input layer, several hidden

ayers, and an output layer, which all are built by a number of special
rocessing units called neurons. Layers are placed consecutively, and
ach neuron of a layer is connected to the other neurons of the con-
ecutive layer by means of weighted links (Fig. 4. The values of these
eights are related to the capacity of the MLP to learn the problem,
nd they are learnt from a sufficiently long number of examples. The
rocess of assigning values to these weights from labeled examples is
nown as the training process of the perceptron. MLP training processes
re based on stochastic methods, a backpropagation trial-and-error is

mong the more well-known learning algorithms applied to train ANNs.
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problems.

2.14. Linear regression

Linear regression (LR) [58] is a statistical method for modeling the
linear relationship between dependent variables (predictor variables)
and independent variables (target variables). The general formula for
multiple regression models is:

𝑌 = 𝛽0 +
𝑛
∑

𝑗=1
𝛽𝑗𝑋𝑗 + 𝜖 (11)

here 𝑌 denotes the target variable; 𝛽0 represents a constant; 𝛽𝑗
enotes the regression coefficient (𝑗 = 1, 2,… , 𝑛); and 𝜖 is an error term.

.15. Regression trees

Classification and Regression Trees (CART) [59] are ML methods
or constructing prediction models from data. The models are obtained
y recursively partitioning the data space and fitting a simple predic-
ion model within each partition. As a result, the partitioning can be
epresented graphically as a decision tree.

Regression trees (RT) take continuous or ordered discrete values for
ependent variables, and a regression model is fitted to each node to
ive the predicted values of the target variable.

.16. Extreme learning machines

Extreme Learning Machine (ELM) [60] is a type of training method
or MLPs characterized by being computationally faster than traditional
radient back-propagation. In the ELM algorithm the weights between
he inputs and the hidden nodes are set at random, usually by using a
161
niform probability distribution. Then, it establishes the output matrix
f the hidden layer and computes the Moore–Penrose pseudo-inverse of
his matrix. The optimal values of the weights belonging to the output
ayer are directly obtained by multiplying the computed pseudo-inverse
atrix with the target.

. Methodology: Hierarchical classification/regression approach

The HCR methodology proposed in this paper consists of a three-
evel architecture. Fig. 5 shows a schematic diagram of the training
rocess in which the three stages of the method can be distinguished.
he first level, corresponding to data preprocessing is depicted in green
olor. It consists of dividing the training data domain in different
lusters and assigning a label to each instance in accordance to the
luster where it belongs. Afterwards, a balancing data preprocessing
s performed to ensure equal representation of all classes. The different
pproaches for clustering the data, together with the different balanc-
ng techniques used, are discussed in detail in Section 3.1. The second
evel, represented in color red, corresponds to the classification step.
he classifiers used, detailed in Section 3.2, are fitted with the la-
eled training data once the balancing process has been accomplished.
inally, the third level is represented in color blue. It relates to the
egression step. In this training phase each cluster of training data is
sed to fit a different regression model. The specific ML regressors
mplemented are described in Section 3.3. Table 1 exhibits the different
L methods used at each level.

.1. Data balancing and preprocessing

This step aims to transform the continuous domain of the target
ariable into discrete labels in the training data. The original target
alues of the training data samples are divided into 𝑛 classes, in which
ach class represents a specific range of the continuous output values.

.1.1. Data clustering
The clustering process consists in the following process: Let us

onsider a training dataset 𝐷, and let 𝑋𝑖 be the 𝑖th data sample in 𝐷,
here 𝑋𝑖 = (𝑋1, 𝑋2,… , 𝑋𝑚, 𝑌𝑋𝑖

) contains 𝑚 different input variables
nd 𝑌𝑋𝑖

is the output variable. A 𝑛 − 1 number of thresholds 𝑇𝑗 are
efined to establish the boundaries of the 𝑛 corresponding subsets of
raining data. Then, the rules displayed in Eq. (12) are used to assign
abels to each data samples of 𝐷 in accordance to the belonging subset
epending of the target value 𝑌𝑋𝑖

.

𝑖 ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Cluster 1, if 𝑌𝑋𝑖
< 𝑇1

Cluster 2, if 𝑇1 < 𝑌𝑋𝑖
< 𝑇2

Cluster n-1, if 𝑇𝑛−2 < 𝑌𝑋𝑖
< 𝑇𝑛−1

Cluster n, otherwise (𝑌𝑋𝑖
> 𝑇𝑛−1)

(12)

Two values of 𝑛 have been tested in this paper (i.e. 𝑛 = 2, 4). Addi-
tionally, different approaches for determining the threshold values in
each case have been evaluated. For the 2-class scenario, where the data
is divided between extreme or non-extreme event, three alternative
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Fig. 4. Structure of a MLP, with two hidden layers.
Fig. 5. Proposed HCR training architecture.
hreshold values have been analyzed (i.e. 𝑇 = 𝜇, 𝑇 = 𝜇+ 𝜎, 𝑇 = 𝜇+2𝜎,
where 𝜇 corresponds to the mean of the training data target value and
𝜎 to its standard deviation). The threshold value is relevant because it
determines the degree of cluster imbalance.

For the 4-case scenario, two approaches have been used. First, in
order to obtain four subsets with equal number of samples, thresh-
olds have been established based on the training data quartiles, 𝑇 =
(𝑄1, 𝑄2, 𝑄3). The second approach has consisted of setting a fixed step
size, such that 𝑇 = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎). Results for all scenarios are
shown and discussed in Section 4.

3.1.2. Balancing techniques
Since clustering is not necessarily symmetrical (it depends on the

way the thresholds are selected), it may result in highly unbalanced
clusters. Therefore balancing techniques are required to compensate
162
the number of instances per cluster before proceeding to the classifiers
training phase.

Six different state-of-art data balancing methods have been used,
combining oversampling and undersampling strategies: SMOTE,
Borderline-SMOTE, SVM-SMOTE, ADASYN, K-Means SMOTE and Ran-
dom Undersampling. A brief overview of each approach is provided in
Section 2.

3.2. Classification

Once the training data has been clustered and balanced, a group of
classifiers is trained with the labeled data. Thus, as shown in Fig. 5,
each type of a classifier used is fitted with the balanced data generated
by the different techniques applied, resulting in a pool of 36 classifiers
(6 balancing techniques × 6 types of classifiers). A brief theoretical
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Fig. 6. HCR prediction architecture.

verview of the 6 classifiers implemented (SVM, RF, GNB, kNN, AB
nd MLP) is provided in Section 2.

.3. Regression

ML regression methods are trained with each subset of training data
nce it has been clustered, so that each training data sample is used
n the fitting of a single regression model. Five different state-of-art
egressors have been evaluated (LR, RT, RF, MLP and ELM), which are
lso described in Section 2.

.4. Prediction architecture

Once the different models (classifiers and regressors) involved in
he HCR are fitted with its corresponding training data, they are used
o perform the numeric estimation as shown in Fig. 6. The predic-
ion procedure withholds (1) feeding the classifiers with an unknown
ample, (2) ensembling the pool of classifiers using a majority voting
ethod [61], (3) using the specific regression model to produce the

inal prediction value (according to the predicted class obtained as the
nsemble output).

. Experiments and results

In this section we describe the experimental work carried out in
his paper to evaluate the proposed HCR approach in the prediction of
WS. We first describe the wind speed data available and the predictive
ariables, from ERA5 Reanalysis. The metrics considered to evaluate
he proposed HCR approach are described later. The description of
he experimental setup, results obtained and discussion closes this
xperimental section.

.1. Initial wind speed data

A medium-size wind farm located in Spain has been selected, whose
ocation can be consulted in Fig. 7. Time series with hourly wind speed
ata covering a period of 10 years (2003–2013) have been used for
raining and validation of the models.

Fig. 8 depicts the histograms for the wind farm studied, showing
distribution centered at 5 m/s. One may observe the long-tailed

istribution for high speeds. Although a wind turbine can operate
ith wind speeds up to and over 30 m/s during some minutes, the
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urbine can also be stopped with wind speeds under the cut-off value,
Table 2
Predictive variables considered at each node from the ERA-5 reanalysis.

Variable name ERA5 variable

d2m 2m dewpoint temperature
t2m 2m temperature
sp Surface pressure
msl Mean sea level pressure
u10 10m u-component of wind
u10n 10m u-component of neutral wind
u100 100m u-component of wind
v10 10m v-component of wind
v10n 10m v-component of neutral wind
v100 100m v-component of wind
hcc High cloud cover
mcc Medium cloud cover
lcc Low cloud cover
tcc Total cloud cover

in the case of a hysteresis loop. Therefore, it is precisely these poorly
represented extreme wind speeds that we are particularly interested
in accurately forecasting so as to anticipate early enough events that
may potentially lead to the stoppage of the installation or cause dam-
age to the infrastructures. Consequently, different prediction horizons
covering from the short term (1 h) to the long term (24 h) have been
used.

4.2. Predictive variables

The EWS prediction presented in this paper is carried out based
on meteorological data from ERA5 reanalysis [62]. ERA5 provides
hourly information on meteorological variables related to temperature,
pressure, precipitation and snowfall among others; with a resolution of
0.25 degrees of longitude and latitude between grids.

Aiming to tackle the EWS prediction problem, predictive variables
were determined to be those related to temperature, pressure, speed of
different wind components at different heights, and the proportion of
the grid box covered by clouds. Table 2 lists the 14 predictive variables
selected per node. For the wind speed forecasting in the wind farm, five
geographical nodes have been selected, located at the corresponding
farm coordinates and within 100 km to the north, south, east and west,
respectively. Therefore, a total of 𝑁 = 70 predictor variables (inputs)
have been considered for the case under study.

The preliminary step in the processing of these time series entailed
the elimination of the data corresponding to missing measurements of
the target variable. Then, the prediction time-horizon is set, and a shift
is performed accordingly on the wind speed data (target) with respect
to the input variables, i.e. if the prediction horizon is set in 1 h, we will
use 𝑥𝑡 to predict 𝑦𝑡+1, so the target value will be shifted one row (1 h)
in the timed dataset.

Five different prediction time-horizons have been considered in this
work: 1 h, 3 h, 6 h, 12 h and 24 h. They cover short-term forecasting
(30 min to 6 h ahead), medium-term forecasting (6-24 h ahead) and
long-term forecasting (1 day to 1 week ahead) [6].

4.3. Evaluation metrics

In order to assess the performance of the EWS prediction models
proposed, different evaluation metrics have been used. We have con-
sidered generic regression error metrics and also specific metrics that
reflect the models performance in the prediction of extreme events.

4.3.1. Mean Absolute Error (MAE)
First, a common indicator for regression problems, Mean Absolute

Error (MAE), has been considered:

MAE = 1
𝑛
∑

|

|

𝑦𝑖 − �̂�𝑖|| (13)

𝑁 𝑖=1
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w

Fig. 7. Geographical location of the wind farm considered in the experiments.
m

Fig. 8. Wind speed histogram.

here �̂� represents predicted values (provided by the model) and 𝑦 are
the actual values. The subscript 𝑖 is used to refer to a single sample
𝑦𝑖 = 𝑦[𝑖].

4.3.2. Extreme Events Mean Absolute Error (EEMAE)
Then, the prediction only of the extreme events is evaluated, since

the accurate prediction of these points is precisely the scope of this
work. For this purpose, it is first necessary to establish the threshold
beyond a point is considered as an extreme event. Fig. 9 depicts the
wind speed time series for the wind farm location, with the data
divided into train (80%) and test (20%), this figure also illustrates
the threshold defined to separate extreme data (outliers) from non-
extreme data (non-outliers), set at the mean + 3 times the standard
deviation of the wind speed values. The extreme values account for
0.38% of the total number of instances available. In order to measure
the performance of the regressors on these outlier data, a new indicator,
named Extreme Events Mean Absolute Error (EEMAE), has been used,
which corresponds to the MAE (Eq. (13)) calculation on these values.

4.3.3. Case-specific weighting
Standard error metrics (such as MAE or RMSE) are not the most

appropriate metrics for the subclass of regression problems related
with extremes we are dealing with, since they take all prediction
errors equally across the domain of the target variable. Case-specifics
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weighting associates each sample with a relevance value related to the
target value, hence the cost of a prediction is weighted by the relevance
value of that sample. Therefore, training cases with a target variable
value more ‘‘relevant’’ will have higher weights. The MAE weighted by
the relevance value has been referred as Case Weighted Mean Absolute
Error (CWMAE) (Eq. (14)).

CWMAE =
∑𝑁

𝑖=1 |𝑦𝑖 − �̂�𝑖| ⋅ 𝑅𝑖
∑𝑁

𝑖=1 𝑅𝑖
(14)

Four different ‘‘relevance functions’’ dependent on the target vari-
able have been used, depicted in Fig. 10. First, an step-wise function
has been defined, which associates to each sample a relevance value
bounded between 0.1 and 0.9, increasing this value 0.15 for every step
of difference, defining a step as one multiple of the standard deviation
(𝜎) (Eq. (15)).

𝑅𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑦) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0.1 if 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛
0.25 if 𝑌𝑡𝑟𝑎𝑖𝑛 ≤ 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛 + 𝜎

0.40 if 𝑌𝑡𝑟𝑎𝑖𝑛 + 𝜎 ≤ 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛 + 2𝜎

0.55 if 𝑌𝑡𝑟𝑎𝑖𝑛 + 2𝜎 ≤ 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛 + 3𝜎

0.6 if 𝑌𝑡𝑟𝑎𝑖𝑛 + 3𝜎 ≤ 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛 + 4𝜎

0.75 if 𝑌𝑡𝑟𝑎𝑖𝑛 + 4𝜎 ≤ 𝑦 < 𝑌𝑡𝑟𝑎𝑖𝑛 + 5𝜎

0.9 if 𝑌𝑡𝑟𝑎𝑖𝑛 + 5𝜎 ≤ 𝑦

(15)

The second relevance function implemented established a linear re-
lationship between 𝑅𝑖 and 𝑦𝑖, being the slope of the straight

1
(max(𝑌𝑡𝑟𝑎𝑖𝑛)−min(𝑌𝑡𝑟𝑎𝑖𝑛))

, in such a way that 𝑅 = 1 corresponds to the
aximum value of the target variable in the training data and 𝑅 = 0

to the minimum value (Eq. (16)).

𝑅𝑙𝑖𝑛𝑒𝑎𝑙(𝑦) =
𝑦

(max(𝑌𝑡𝑟𝑎𝑖𝑛) − min(𝑌𝑡𝑟𝑎𝑖𝑛))
(16)

The following establishes a cubic relationship between the value of
the target variable and 𝑅, 𝑅𝑖 = 𝑎+ 𝑏 ∗ 𝑦3𝑖 . Thereby samples close to the
minimum value of 𝑌𝑡𝑟𝑎𝑖𝑛 have a relevance value near 0 and as the target
value increases, so does the weight of these predictions (Eq. (17)).

𝑅𝑐𝑢𝑏𝑖𝑐 (𝑦) =
(

1
max(𝑌𝑡𝑟𝑎𝑖𝑛)3 − min(𝑌𝑡𝑟𝑎𝑖𝑛)3

)

× 𝑦3 −
min(𝑌𝑡𝑟𝑎𝑖𝑛)3

(17)
max(𝑌𝑡𝑟𝑎𝑖𝑛)3 − min(𝑌𝑡𝑟𝑎𝑖𝑛)3
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The last proposal consists of using a sigmoid-like relevance function.
his relevance function is based on the following sigmoid (Eq. (18)):

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦) =
1

1 + exp−𝑠∗(𝑦−𝑐)
(18)

here 𝑐 is the center of the sigmoid and 𝑠 denotes its shape. The
arameter 𝑐 represents the value where 𝑅(𝑦) = 0.5, therefore, it refers to
he threshold above which the target variable start to be more relevant.
n this study it has been settled to the mean of the training data target
alue plus two times the standard deviation (Eq. (19)), considering
alues above this threshold of considerable significance.

= 𝑌𝑡𝑟𝑎𝑖𝑛 + 2𝜎 (19)

With respect to the parameter 𝑠, it defines how fast the sigmoid
ecays to 0. It is determined by a decay factor 𝑘, defined as 𝑘 = 0.5
nd by a precision factor 𝛥, defined as 𝛥 = 1−4. Therefore 𝑠 is obtained
y solving Eq. (20).

=
ln(𝛥−1 − 1)

|𝑐 ⋅ 𝑘|
(20)

Once these four relevance functions have been defined, a different
CWMAE shall be calculated for each one and the average value will be
taken to assess the performance of the regression models.

4.3.4. True Positive Rate (TPR), False Positive Rate (FPR) and G-mean
(G-mean)

The main drawback in the metrics presented previously, EEMAE and
CWMAE, is that they are only focused on the prediction of extremes
values, but they do not penalize the situation where the model predicts
an extreme being the actual value normal (False Positive). These false
alarms may lead to severe economic damages, such as a disruption
in energy production due to a extreme wind prediction that does
not occur, or the deployment of emergency equipment to reinforce
installations when it is not necessary. Three popular classification error
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metrics are used to account for this concern, True Positive Rate (TPR),
False Positive Rate (FPR) and Geometric-mean (G-mean).

TPR, also referred to as Recall, determines the ability of a model to
find all the relevant cases within a dataset. It is computed by dividing
the number of relevant cases truly predicted, True Positives (TP), by
the total number of relevant cases present in the data, Positives (P). In
this context, since we are working with a regression model, we define a
threshold, Eq. (21), above which both actual and predicted values are
considered as extreme (or positive). And consequently each sample of
the test data set is assigned with a boolean value of TP (1 if both the
prediction and the actual value are above 𝑇 , Eq. (22)) and P (1 if the
actual value is above 𝑇 , Eq. (23)). Therefore TPR is computed following
Eq. (24), where a value of 1 indicates that all extremes are predicted
correctly and 0 denotes that none extremes have been anticipated.

𝑇 = 𝑌𝑡𝑟𝑎𝑖𝑛 + 3𝜎 (21)

TP𝑖 =

{

0 if �̂�𝑖 ≤ 𝑇 or 𝑦𝑖 ≤ 𝑇

1 if �̂�𝑖 > 𝑇 and 𝑦𝑖 > 𝑇
(22)

P𝑖 =

{

0 if �̂�𝑖 ≤ 𝑇

1 if �̂�𝑖 > 𝑇
(23)

𝑇𝑃𝑅 =
∑𝑁

𝑖=0 𝑇𝑃𝑖
∑𝑁

𝑖=0 𝑃𝑖
(24)

Similarly, the FPR is computed by dividing the number of False
ositives (FP), i.e. the number of false alarms or events falsely predicted
s extreme, by the number of Negatives (N), i.e. the sum of non-extreme
vents. According to Eqs. (22) and (23), a boolean value of FP and

is given to each data set sample (Eqs. (25) and (26), respectively).
hen FPR is calculated as indicated in Eq. (27), where a value of 0

ndicates that all non-extremes events have been predicted correctly,
nd 1 denotes that all of them were predicted as false extremes.

P𝑖 =

{

0 if �̂�𝑖 ≤ 𝑇 or 𝑦𝑖 > 𝑇
(25)
1 if �̂�𝑖 > 𝑇 and 𝑦𝑖 ≤ 𝑇
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Table 3
Experimental setup.

Balancing methods

SMOTE Borderline-SMOTE

k neighbors 5 k neighbors 5
SVM-SMOTE ADASYN

k neighbors 5 n neighbors 2
out step 0.5
K-Means SMOTE SMOGN

k neighbors 2 k neighbors 9
Cluster balance threshold 0.02 Samp method ‘balance’

Pert 0.02
rel thres 0.80
rel method ‘auto’
rel xtrm type ‘both’
rel coef 1.50

Classification methods

SVM RF

C 1.0 n estimators 100
kernel ‘rbf’ max depth 400
GNB kNN

var smoothing 1e−09 n neighbors 20
Algorithm ‘brute’

AB MLP

n estimators 50 Hidden layer sizes 500
Learning rate 1.0 Activation ‘relu’

Solver ‘adam’
max iter 300

Regression methods

RT RF

max depth 400 n estimators 400
MLP ELM

Hidden layers 2 Hidden size 500
Neurons per layer 64
Activation ‘relu’
Solver ‘adam’
d
w
w
t
c
f

𝑥

N𝑖 =

{

0 if �̂�𝑖 > 𝑇

1 if �̂�𝑖 ≤ 𝑇
(26)

𝐹𝑃𝑅 =
∑𝑁

𝑖=0 𝐹𝑃𝑖
∑𝑁

𝑖=0 𝑁𝑖
(27)

Finally, G-mean is the root of the product of class-wise sensitivity.
This measure tries to maximize the accuracy on each of the classes
while keeping these accuracies balanced. For binary classification G-
mean is the squared root of the product of the sensitivity and specificity.
G-mean is a good indicators in imbalanced domains because it is
independent of the distribution of examples between classes [63]. G-
mean is computed following the formula shown in Eq. (28), where TPR
and TNR (True Negative Rate) are calculated as indicated in Eqs. (24)
and (29), respectively, with TN (True Negative) calculated as shown
in Eq. (30).

G-mean =
√

𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅 (28)

𝑇𝑁𝑅 =
∑𝑁

𝑖=0 𝑇𝑁𝑖
∑𝑁

𝑖=0 𝑁𝑖
(29)

N𝑖 =

{

0 if �̂�𝑖 > 𝑇 or 𝑦𝑖 > 𝑇

1 if �̂�𝑖 ≤ 𝑇 and 𝑦𝑖 ≤ 𝑇
(30)

.4. Experimental setup

The experimental setup, along with the parameters set for the
ifferent ML methods, are detailed in this section. First, a preliminary
ataset preparation is performed. The steps of this preprocessing are:
1) shifting of the predictor variables 𝑛 instances from the target
ariable and removal of the last 𝑛 rows, where 𝑛 is the prediction
ime horizon expressed as the number of hours in advance at which
he forecast is made; (2) Splitting the dataset into training and test
80%–20%) subsets, assuring that no test instance was seen by the
166

L/DL methods during the training. Since dealing with timed-series
ata, instead of randomly splitting the datasets, last 20% of the data
ere separated as test data; (3) Feature scaling, scaling the features,
hich is important to ensure the upper and lower limits of data in

he given predefined range. Feature standardization was performed,
ausing data to have zero-mean and a unit-variance (Eq. (31)), as
ollows:
′ = 𝑥 − �̄�

𝜎
(31)

where 𝑥 is the original feature vector, �̄� denotes the feature mean and
𝜎 its standard deviation.

Table 3 shows the parameters used for the balancing, classification
and regression methods employed and detailed in Section 2. Their im-
plementation has been performed on a Intel(R) Core(TM) i7-10700 CPU
with 2.90 GHz and 16 GB RAM using the Python libraries, imblearn,
sklearn and tensorflow.

4.5. Experimental results

In this section, results for the different experiments performed are
presented. First, the performance of regression models using ML meth-
ods is shown (Section 4.5.1). Then, in order to evaluate the proposed
methodology in comparison with a similar one, the results of applying
SMOGN before training the ML models are presented (Section 4.5.2).
Finally, results using the HCR methodology with different parameters
are reported (Section 4.5.3). A brief discussion on the obtained results
is presented in Section 4.5.4. All these experiments are performed on
the basis of 1-hour ahead forecasting. A comparison of the results with
different prediction horizons is presented in Appendix A.

4.5.1. ML methods
In first place, the five regression methods discussed in Section 2

are applied to the raw training data, i.e. without using any balancing
technique. Table 4 shows the error metrics for the five regression mod-
els. It may be observed that MLP is overall the best model, achieving
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Fig. 11. Comparison of actual wind speed (blue) with forecasted wind speed (red) using MLP regression model.
Fig. 12. Performance of the regression model in actual wind extremes using MLP regression model.
Table 4
Error metrics for ML methods applied on imbalanced training data.

MAE EEMAE CWMAE TPT FPR G-Mean

ML methods

RL 2.98 10.36 4.60 0.00 0.00 0.00
RT 2.73 5.35 3.47 0.23 0.01 0.48
RF 1.96 5.26 2.63 0.16 0.00 0.39
MLP 2.03 3.82 2.54 0.31 0.00 0.56
ELM 2.13 4.77 2.81 0.29 0.00 0.54

quite low MAEs and being able to correctly detect 37% of the extremes
without causing any false alarms.

Fig. 11 shows the wind speed time series forecast using the MLP re-
gression model for the first 3000 h of the test data, where a reasonably
accurate prediction may be appreciated. However, when analyzing the
model’s performance in the prediction of extreme events (Fig. 12), it
can be clearly noticed that the forecast at these points is far from being
optimal, with a MAE at those instances of 3.82 m/s and being only able
to detect 37% of the extremes.

4.5.2. SMOGN+ML
Then SMOGN method, explained in Section 2.7, has been applied

or balancing training data before fitting the regressors. Results are
hown in Table 5. Comparing these results with those displayed in
able 4 for the ML methods applied on the raw training data, it can
e observed how the tendency for the five regressors is practically
he same. The EEMAE significantly improves, however, both the MAE
nd CWMAE worsen substantially, indicating that performance in the
xtremes is improved by compromising efficiency in the non-extreme
alues. Similarly, the TPR improves substantially for the five regressors,
eaching 88% with ELM, but at the cost of increasing the number of
alse alarms.

Figs. 13 and 14 shows the wind speed time series prediction using
MOGN+MLP for the first 3000 test hours and for the test extremes,
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Table 5
Error metrics for ML methods applied after training data was balanced with SMOGN
method.

MAE EEMAE CWMAE TPT FPR G-Mean

SMOGN + ML

RL 6.75 3.75 5.66 0.80 0.11 0.85
RT 4.82 3.31 4.42 0.54 0.05 0.73
RF 4.29 3.11 3.73 0.47 0.03 0.69
MLP 4.67 2.57 4.46 0.85 0.06 0.89
ELM 4.85 4.70 5.28 0.88 0.09 0.89

respectively. It can be seen how the prediction in the extremes instances
has improved significantly.

4.5.3. HCR
Next, the proposed HCR methodology proposed in Section 3 is

considered. Different combinations of parameters in the HCR structure
are evaluated, modifying both the number of clusters into which the
training dataset is divided, as well as the thresholds that determine the
separation between clusters.

Case 1: 𝑛 = 2
First, the HCR method is evaluated with a number of clusters (𝑛 =

2). Three different thresholds have been established (𝑇 = 𝜇, 𝑇 = 𝜇 + 𝜎,
𝑇 = 𝜇 + 2𝜎). The selection of these thresholds determines the degree
of imbalance among the training subsets formed after the clustering
process (Fig. 15). In this figure it can be seen how the first case does not
require the application of data balancing techniques, since the minority
class represents 40% of the total training data, while in the other cases
it is necessary, since the degree of imbalance is severe (16.2% and
4.7%, respectively).

The next step in the proposed HCR methodology consists of applying
the balancing techniques in the required cases and training the pool of
classifiers. Table B.12 displays the G-mean score of each of the trained
classifiers, as well as the voting classifier resulting from the ensemble
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Fig. 13. Comparison of actual wind speed (blue) with forecasted wind speed (red) using SMOGN + MLP regression model.

Fig. 14. Performance of the regression model in actual wind extremes using SMOGN + MLP regression model.

Fig. 15. Imbalance degree of the training subsets according to the threshold selected. 0 represents the no-extremes training subset and 1 denotes the extremes training subsets.
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Table 6
Error metrics for HCR methodology with 𝑛 = 2 and different threshold values.

MAE EEMAE CWMAE TPR FPR G-Mean

T = 𝜇

RL 2.75 6.24 3.09 0.04 0.00 0.20
RT 3.27 5.47 4.04 0.52 0.04 0.70
RF 2.72 3.83 3.01 0.43 0.04 0.65
MLP 2.85 3.20 3.31 0.64 0.02 0.79
ELM 2.77 3.07 3.08 0.73 0.02 0.85

T = 𝜇 + 𝜎

RL 3.05 3.73 3.38 0.26 0.01 0.51
RT 3.37 4.96 4.31 0.41 0.07 0.62
RF 2.87 3.37 3.75 0.50 0.05 0.69
MLP 3.16 5.32 4.88 0.87 0.08 0.89
ELM 3.18 4.00 4.51 0.88 0.07 0.91

T = 𝜇 + 2𝜎

RL 3.12 2.77 4.33 0.81 0.07 0.87
RT 3.09 4.70 4.38 0.55 0.05 0.72
RF 2.46 3.02 3.88 0.79 0.07 0.86
MLP 2.86 6.73 5.29 0.91 0.08 0.91
ELM 2.92 5.85 5.21 0.92 0.08 0.92

of all of them. First, it can be appreciated how for the non-balanced
classifiers, the G-mean score deteriorates as the threshold value and,
consequently, the degree of cluster imbalance increases. This reveals
the necessity of employing data balancing techniques, with which the
classifiers achieve good results for all 3 cases.

Finally, each test data is classified by using the ensemble voting
classifier and, based on this output, the regressor corresponding to
that training subgroup is then employed to predict the wind speed
value. Table 6 displays the results of the wind speed forecasting for
the 3 threshold values evaluated. Some points may be inferred from
this: first, MAE remains fairly constant for the 3 thresholds studied,
with an average variation of 12% between maximum and minimum for
each regressor. Regarding the EEMAE, two tendencies may be observed,
neural networks (MLP and ELM) tend to increase the value of EEMAE
as the threshold value increases, while linear and CART regressors
(LR, RT and RF) experience the opposite tendency. For the CWMAE it
is clearly observed how the prediction degrades while increasing the
threshold, yet obtaining better results than SMOGN + ML methods.
Finally TPR significantly improves when increasing T, achieving a
remarkable 92% of extreme events detection, although false alarm rate
increases accordingly up to a 8% value.

Figs. 16 and 17 shows the temporal predicted series compared to
the actual wind speed values. The aforementioned tendency observed
when increasing the value of the threshold may be noticed. Showing the
existing trade-off between obtaining a high percentage of extremes de-
tected (TPR) and increasing the number of false alarms (TNR) (Fig. 16)
and worsening the prediction of the extremes by overestimating them
(Fig. 17). Consequently, the choice of the threshold value will de-
pend on the needs of each specific problem, in terms of priority and
preferability of the scenario (high TPR, low TNR or a compromise
between the two values). Even so, it can be appreciated how this
results improve those obtained previously with the ML or SMOGN+ML

ethods: comparing the case of SMOGN + ELM, which gets the higher
PR (0.88) with HCR with ELM as regressor and 𝑇 = 𝜇 + 𝜎, which gets
he same TPR, it may be noticed how the others five error metrics are
etter with the HCR methodology.

ase 2: 𝑛 = 4
The second configuration tested for the proposed HCR methodology

onsists of increasing the number of clusters to 4 (𝑛 = 4). In addition,
two different approaches are examined for the determination of the
thresholds for each cluster. The first one entails the formation of 4
training subsets with a similar number of samples, so that no data
balancing techniques were necessary. For this purpose, threshold values
were established based on the quartiles values (𝑇 = (𝑄1, 𝑄2, 𝑄3)) of
the training data in relation to the target variable, meaning that each
cluster is composed with 25% of the training data. The second approach
169
Table 7
Error metrics for HCR methodology with 𝑛 = 4 and different threshold values.

MAE EEMAE CWMAE TPR FPR G-Mean

T = (𝑄1 , 𝑄2 , 𝑄3)

RL 2.74 4.69 2.99 0.13 0.00 0.36
RT 3.15 4.22 4.26 0.46 0.06 0.66
RF 2.87 3.47 3.40 0.52 0.03 0.71
MLP 3.00 3.92 3.95 0.81 0.05 0.88
ELM 3.01 3.45 3.82 0.82 0.05 0.89

T = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎)

RL 2.63 2.82 3.32 0.55 0.03 0.73
RT 2.92 3.74 3.92 0.59 0.06 0.75
RF 2.69 2.90 3.77 0.72 0.05 0.82
MLP 3.08 5.99 5.11 0.96 0.08 0.94
ELM 2.87 4.53 4.50 0.89 0.07 0.91

consists in setting a equal step size between thresholds (𝑇 = (𝜇, 𝜇 +
0.75𝜎, 𝜇+1.5𝜎)), thus the size of the training subsets is variable and data
balancing techniques are necessary. Fig. 18 shows the histograms of the
four training subsets for the threshold values selected. As expected, it
can be seen how for the first approach the four groups presents the
same number of instances while for the second approach the higher
the target value the lower the instances present.

Table B.13 reports the performance of the pool of classifiers trained
with the labeled training data after applying the different data bal-
ancing techniques when necessary. Here it is observed how, firstly,
the results are worse than those shown in Table B.12 for a number of
clusters 𝑛 = 2. This is explained by the fact that increasing the number
of subsets consequently increases the complexity of the classification
task. In addition, it can also be appreciated how the results for the
fixed-step threshold values improve notably when balancing techniques
are applied.

The forecasting results are shown in Table 7 for the two threshold
values approaches. The LR, RT and RF regressors clearly perform better
with the second approach, obtaining better results on all 6 metrics.
Regarding the neural networks (MLP and ELM), more balanced pre-
dictions are obtained with the first approach (better MAE, EEMAE,
CWMAE and FPR), but a higher percentage of extremes is detected
with the second approach (reaching a TPR of 96%). Again, the trade-
off between both performances is revealed. Comparing with the other
tested methodologies, it seems that the HCR architecture with 𝑛 = 4
is the best performing in both areas, achieving excellent TPR results
without worsening excessively in the remaining metrics.

Finally, Figs. 19 and 20 depict the comparison between the actual
and predicted values. The strengths of this architecture may be ob-
served, achieving excellent results in extreme event detection without
overestimating or degrading the forecasting in the rest of the values.

4.5.4. Discussion on the obtained results
Once the results of all evaluated methods have been obtained

and presented, a comparison of the performance of each one can be
carried out. For the sake of clarity in terms of this comparison, the
average error metrics for each of the methods are shown in Figs. 21
and 22. Therefore, for each of the seven methodologies assessed (ML,
SMOGN+ML, HCR: 𝑛 = 2, 𝑇 = 𝜇, HCR: 𝑛 = 2, 𝑇 = 𝜇 + 𝜎, HCR:

= 2, 𝑇 = 𝜇 + 2𝜎, HCR: 𝑛 = 4, 𝑇 = (𝑄1, 𝑄2, 𝑄3), HCR: 𝑛 = 4,
𝑇 = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎)), the error metrics average is calculated
using the five different regressors.

In Fig. 21 the MAE, EEMAE and CWMAE are depicted, and it
can be seen how, despite obtaining the best MAE in extreme events
(EEMAE) with SMOGN+ML, this implies a notable worsening of the
other two metrics. Meanwhile, with the different HCR architectures,
the MAE only slightly worsens with respect to the initial case, and
depending on the selected architecture, different EEMAE and CWMAE
indicators are obtained, but always within similar values. It can be
seen that the most balanced method is the HCR with 4 clusters and
𝑇 = (𝑄1, 𝑄2, 𝑄3). Similarly, Fig. 22 shows the TPR, FPR and G-mean
average values, where a great improvement in the detection of extremes
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Fig. 16. Comparison of actual wind speed (blue) with forecasted wind speed (red) using HCR with 𝑛 = 2, ELM as regressor and different values of threshold.
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vents (TPR) may be observed for all the methods compared with the
nitial ML scenario. Nevertheless, this enhancement also translates into
n increase in the number of false alarms (FPR). In this case HCR
rchitecture with 𝑛 = 4 and 𝑇 = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎) remains the
est method, achieving a remarkable FPR without increasing the FPR
ubstantially.

Analyzing both figures as a whole, it is possible to conclude that
he proposed HCR methodology is a better alternative to both bare-ML
ethods and to other methods aimed at solving regression problems

n unbalanced databases as SMOGN. The HCR architecture choice
ill depend on the particular problem being tackled, given that some
rchitectures will prioritize the detection of extreme events regardless
f a small deterioration in the prediction of non-extreme values, while
or others the scenario is the opposite. The architecture with the best
erformance on both sides is the HCR with 𝑛 = 4 and 𝑇 = (𝜇, 𝜇 +
.75𝜎, 𝜇 + 1.5𝜎), which achieves a very high TPR (0.96 with MLP as
170

egressor), while maintaining very competitive MAEs metrics. o
.6. Validation using forecast data

The meteorological data used in the training of the models has been
btained from ERA5 reanalysis, though any other Reanalysis data is
ossible. Note that these data offer high accuracy for the ML algorithms
raining, and have the advantage of avoiding the intrinsic error of

prediction model. However, the implementation of the proposed
ethodology in a real operational environment requires the use of

orecast data.
In order to evaluate the performance of the proposed approach in

eal operation after training the ML algorithms, forecast data from
lobal Forecast System (GFS) [64] is considered. The GFS is a well-
nown weather forecast numerical model, developed and managed by
he National Center for Environmental Prediction (NCEP). It generates
ata for dozens of atmospheric and land–soil variables, which can be
sed to validate the application of the methodology presented in a real

peration environment. GFS is a global model with a base horizontal
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Fig. 17. Performance of the regression model in actual wind extremes using HCR with 𝑛 = 2, ELM as regressor and different values of threshold.
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resolution of 28 km between grid points. Temporal resolution covers
analysis and forecasts out to 16 days.

Forecast data of the same predictive variables shown in Table 2 and
from the same geographical nodes used in Section 4.5 were used to
perform the validation of the methodology. A temporal horizon of 3 h
for the forecast data is chosen, meaning that, after training over ERA5
Reanalysis data, we will use as predictive variables the meteorological
GFS forecast data of +3 h to predict the EWS in the following hour.

First, Fig. 23 shows that the direct GFS forecast (+3 h) data cannot
be used to estimate the EWS in an accurate way. The trend of the actual
value is followed, of course, but the GFS seems to underestimate in
general the wind speed value, and thus the prediction of EWS cannot
be carried out with the direct output of the GFS forecast.

Results for the validation data by applying ML bare approaches,
SMOGN and the different HCR algorithms tested in this work, i.e. HCR
with 𝑛 = 2 and HCR with 𝑛 = 4, are shown in Tables 8, 9, 10 and 11,
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t

respectively. These results improve the performance of the direct GFS
output, in all cases. In addition, as in the results shown in previous
section, the proposed methodology increases the detection of EWS
without worsening the prediction in the rest of the samples, but adding
the intrinsic error of the forecast data used as predictor variables. In this
case, it may be observed how the neural networks regressors prefer the
HCR method with 𝑛 = 2 and T = 𝜇, while the CART regressors (RT and
RF) achieve excellent results with 𝑛 = 4 and T = (𝜇, 𝜇+0.75𝜎, 𝜇+1.5𝜎),
mproving by a great margin the EWS prediction made by bare ML
ethods. LR remains a bit lost with no remarkable results in any case.
ote that the validation data used in this section its not exactly the

ame as the one used in Section 4.5, since the sample rate of the GFS
ata employed is only of 4 samples per day. Therefore, metrics shown in
his section are not directly comparable to those displayed previously.
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Fig. 18. Imbalance degree of the training subsets according to the threshold selected.
Fig. 19. Comparison of actual wind speed (blue) with forecasted wind speed (red) using HCR with 𝑛 = 4, ELM as regressor and different values of threshold.
A

Table 8
Error metrics for ML methods applied on imbalanced training data.

MAE EEMAE CWMAE TPT FPR G-Mean

ML methods

RL 5.04 18.55 9.24 0.00 0.00 0.00
RT 3.56 8.59 4.92 0.33 0.00 0.58
RF 2.58 8.59 4.07 0.00 0.00 0.00
MLP 8.47 17.92 10.56 0.00 0.25 0.00
ELM 7.47 11.53 6.54 0.33 0.08 0.55

Finally, Fig. 24 shows the time series wind speed prediction using
FS forecast data as predictive variables and applying the proposed
CR methodology, for the best performing case.

It is important to remark that the time horizon of the forecast GFS
ata used as predictors is independent of the prediction horizon of the
172
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Table 9
Error metrics for ML methods applied after training data was balanced with SMOGN
method.

MAE EEMAE CWMAE TPT FPR G-Mean

SMOGN + ML

RL 7.91 15.97 9.84 0.25 0.20 0.45
RT 4.43 5.00 4.49 0.26 0.05 0.56
RF 3.12 5.66 3.04 0.00 0.01 0.00
MLP 9.55 9.20 11.72 0.67 0.32 0.67
ELM 5.50 5.52 6.62 0.33 0.01 0.57

model. In this paper, models to predict wind speed with 5 different
time horizons are presented (+1 h, +3 h, +6 h, +12 h and +24 h)

ppendix A. If the user selects the model to predict the next hour’s
ind speed and enters as predictive variables GFS data for +3 h, the
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Fig. 20. Performance of the regression model in actual wind extremes using HCR with 𝑛 = 4, ELM as regressor and different values of threshold.
Fig. 21. MAE, EEMAE and CWMAE for different methodologies tested averaging the
performance of the five regressors.

Fig. 22. TPR, FPR and G-mean for different methodologies tested averaging the
performance of the five regressors.
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Table 10
Error metrics for HCR methodology with 𝑛 = 2 and different threshold values.

MAE EEMAE CWMAE TPR FPR G-Mean

T = 𝜇

RL 5.92 8.31 7.82 0.55 0.21 0.63
RT 3.98 9.97 5.12 0.00 0.04 0.00
RF 3.08 9.97 5.12 0.00 0.01 0.00
MLP 6.17 1.73 6.74 0.67 0.21 0.73
ELM 5.73 3.20 5.21 0.90 0.13 0.93

T = 𝜇 + 𝜎

RL 5.88 8.31 7.77 0.51 0.21 0.63
RT 3.99 9.13 4.82 0.00 0.03 0.00
RF 3.26 6.21 3.93 0.00 0.03 0.00
MLP 6.43 4.70 7.75 0.82 0.21 0.89
ELM 7.10 11.08 8.74 0.67 0.20 0.73

T = 𝜇 + 2𝜎

RL 6.97 11.66 10.97 0.58 0.16 0.65
RT 3.91 6.35 4.80 0.40 0.07 0.56
RF 3.15 5.54 4.39 0.37 0.05 0.56
MLP 6.59 11.85 10.14 0.67 0.15 0.75
ELM 7.62 11.30 12.32 0.72 0.15 0.75

Table 11
Error metrics for HCR methodology with 𝑛 = 4 and different threshold values.

MAE EEMAE CWMAE TPR FPR G-Mean

T = (𝑄1 , 𝑄2 , 𝑄3)

RL 8.18 11.02 9.86 0.28 0.25 0.43
RT 3.80 7.11 4.39 0.33 0.05 0.33
RF 3.15 6.37 3.37 0.43 0.01 0.30
MLP 6.07 6.76 7.45 0.45 0.26 0.50
ELM 7.12 2.06 8.72 0.93 0.31 0.83

T = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎)

RL 6.65 9.89 9.12 0.25 0.14 0.46
RT 3.18 2.53 3.22 0.95 0.03 0.99
RF 3.49 2.88 3.87 0.73 0.05 0.80
MLP 7.66 10.87 12.26 0.90 0.26 0.86
ELM 6.16 11.07 8.08 0.34 0.19 0.52
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Fig. 23. Wind speed prediction with the direct output of the GFS forecast (+3 h).
Fig. 24. Comparison of actual wind speed (blue) with forecasted wind speed (red) using GFS forecast data (+3 h) as predictors to forecast wind speed in the following hour. HCR
is applied with 𝑛 = 4, RT as regressor and T = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎).
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model will return the wind speed prediction in +4 h. Therefore, the
selection of a specific time horizon in the forecast data is not relevant
in the analysis of the algorithms comparison, the only difference would
be that the intrinsic error of the prediction would be larger, as the
prediction time horizon increases.

5. Conclusions

The prediction of occurrence and severity of EWS represents one of
the most significant challenges in wind speed forecasting nowadays. A
proper foresight of these extreme events may lead to a great economic
benefit, as it prevents damages in wind farms facilities or wind turbines.
Besides, an accurate estimation of the intensity of these phenomena
prevents cut-outs events, thus maximizing the energy power produced
in the wind farm.

One of the main problems of extreme value forecasting is the use of
highly unbalanced databases, as the values that are most interesting to
estimate accurately are those that are poorly represented on the dataset.
This leads to the need of applying specific data processing techniques,
since applying ML methods directly results in a fairly good prediction
of wind speed at non-extreme values, but a very weak prediction at
extreme events.

Numerous data balancing techniques exist, most of them focused
on classification problems. One of the most well-known techniques of
data balancing in regression, SMOGN, has been applied in this paper,
achieving quite favorable results in the prediction of extreme events,
but excessively worsening the quality of the prediction in the rest of the
values, as well as increasing considerably the number of false alarms,
which is unacceptable since it would cause large economic losses.

The methodology proposed in this paper is an HCR architecture
composed of 3 levels, where the first one consists of dividing the
training data into n groups according to the target variable value,
labeling each group and then applying data balancing techniques to
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equilibrate the groups in terms of number of samples. The second level
involves the training of a pool of classifiers, which will subsequently
have to determine the group to which an unknown incoming test sam-
ple belongs. Finally, each training data subset is used to fit a separate
regression model, each focused on a range of values within the domain
of the target variable, so that some will be focused on extreme events
only while others will deal with non-extreme or intermediate values.
In the prediction phase, once the pool of classifiers has determined to
which group the incoming test sample belongs, the regressor associated
to that training group is responsible for determining the estimation
value.

The implementation of this methodology has yielded very satisfac-
tory results, achieving higher EWS prediction ratios than those obtained
with SMOGN, while maintaining a lower false alarm ratio and a better
prediction of non-extreme events.

Different architectures of the HCR methodology have been assessed,
applying various numbers of clusters and different thresholds for their
division. The conclusion of these tests is the existing trade-off between
the correct prediction of extreme values without excessively worsening
the prediction of non-extremes. When setting a number of cluster equal
to 2, 𝑛 = 2, depending on the threshold value selected, there arise more
onservative architectures (𝑇 = 𝜇), that do not degrade the prediction

of non-extreme values without reaching high EWS detection rates, and
more aggressive architectures (𝑇 = 𝜇 + 2𝜎) which obtain excellent
prediction rates of extreme values (92%), with a false alarm rate of
8%, or an intermediate architectures between the two (𝑇 = 𝜇 + 𝜎).

herefore the selection of one model or another will depend on the
pecific problem tackled and what it is considered as most crucial in
hat case.

Increasing the number of clusters to 4 results in a significant overall
mprovement of the wind speed forecasting, providing a very strong
etection of extreme events (TPR = 95%) while maintaining accurate
rediction levels of non-extreme events. It can be concluded that this

s the most advantageous option presented in this paper.
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Fig. A.25. Average MAE, EEMAE and CWMAE for the five regressors using different
prediction horizons.

In addition, predictions have also been evaluated with five different
time horizons, ranging from short-term to long-term (1, 3, 6, 12 and
24 h). Two main conclusions can be drawn from this study: first, and as
expected, all error metrics worsen as the prediction horizon increases,
since the complexity of the problem consequently increases. Second,
the conclusions extracted for the HCR approach on EWS presented
previously are constant for all time horizons studied, i.e., applying the
proposed methodology is the best option in all cases to significantly
improve the prediction of extremes while maintaining an acceptable
false alarm rate and admissible forecasting of non-extremes.

As a general conclusion, the proposed HCR methodology obtains
very satisfactory results in the prediction of extreme wind events, while
preserving a strong forecast in the remaining non-extremes values. This
approach can be beneficial to avoid damages in wind farms caused by
EWS and to maximize the energy produced by wind turbines.
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Table B.12
G-mean of the classifiers’ pool, for 𝑛 = 2 and different values of the threshold.

Balancing method Classifier 𝑇 = 𝜇 𝑇 = 𝜇 + 𝜎 𝑇 = 𝜇 + 2𝜎

No balancing

SVM 0.85 0.80 0.61
RF 0.85 0.80 0.62
GNB 0.71 0.72 0.71
kNN 0.81 0.72 0.52
AB 0.80 0.75 0.59
MLP 0.83 0.81 0.67

SMOTE

SVM – 0.86 0.86
RF – 0.84 0.78
GNB – 0.73 0.73
kNN – 0.83 0.84
AB – 0.83 0.85
MLP – 0.80 0.74

Borderline-SMOTE

SVM – 0.85 0.86
RF – 0.84 0.76
GNB – 0.75 0.75
kNN – 0.82 0.83
AB – 0.83 0.85
MLP – 0.80 0.74

SVM-SMOTE

SVM – 0.87 0.87
RF – 0.85 0.79
GNB – 0.72 0.72
kNN – 0.83 0.83
AB – 0.83 0.83
MLP – 0.83 0.73

ADASYN

SVM – 0.85 0.86
RF – 0.84 0.78
GNB – 0.74 0.75
kNN – 0.82 0.84
AB – 0.83 0.85
MLP – 0.82 0.72

K-Means SMOTE

SVM – 0.83 0.80
RF – 0.81 0.64
GNB – 0.68 0.50
kNN – 0.79 0.74
AB – 0.79 0.72
MLP – 0.82 0.74

Random undersampling

SVM – 0.87 0.89
RF – 0.87 0.89
GNB – 0.72 0.73
kNN – 0.84 0.86
AB – 0.84 0.86
MLP – 0.85 0.87

Voting Clas. 0.85 0.86 0.84

Appendix A. Analysis of different prediction time horizons

In this Appendix we show an analysis of the effect of the prediction
time-horizon in the performance of the proposed approach, in order to
complete the description of the algorithm’s performance. Five different
prediction time-horizons have been considered, covering from short-
term forecasting to long-term forecasting: 1 h, 3 h, 5 h, 12 h and
24 h. Average metrics for the five regressors implemented are shown
in Figs. A.25 and A.26 comparing the six error metrics for the different
prediction time horizons.

The trend is clearly visible in all the graphs, where it can be
observed how the predictions degrade as the value of the time-horizon
increases. In addition, the conclusions drawn previously for the one-
hour-ahead prediction can be extrapolated to the other time horizons.

For all cases, the best MAE are obtained with ML methods
(Fig. A.25(a)). The implementation of SMOGN causes these values to
deteriorate drastically, while with the HCR architecture they remain in
an acceptable range.

Regarding the EEMAE (Fig. A.25(b)), the values obtained with
SMOGN
+ML are the lowest as in the 1h-ahead-prediction, but the HCR ap-
proaches reduce this metric with respect to the initial ML methods in
all cases.
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Table B.13
G-mean of the classifiers’ pool, for 𝑛 = 4 and for different values of the threshold.

Balancing method Classifier 𝑇 = (𝑄1 , 𝑄2 , 𝑄3) 𝑇 = (𝜇, 𝜇 + 0.75𝜎, 𝜇 + 1.5𝜎)

No balancing

SVM 0.55 0.52
RF 0.56 0.55
GNB 0.37 0.32
kNN 0.50 0.44
AB 0.49 0.41
MLP 0.51 0.54

SMOTE

SVM – 0.58
RF – 0.58
GNB – 0.34
kNN – 0.51
AB – 0.51
MLP – 0.51

Borderline-SMOTE

SVM – 0.58
RF – 0.58
GNB – 0.33
kNN – 0.49
AB – 0.50
MLP – 0.54

SVM-SMOTE

SVM – 0.57
RF – 0.57
GNB – 0.33
kNN – 0.50
AB – 0.50
MLP – 0.54

ADASYN

SVM – 0.57
RF – 0.58
GNB – 0.32
kNN – 0.50
AB – 0.50
MLP – 0.52

K-Means SMOTE

SVM – 0.54
RF – 0.54
GNB – 0.36
kNN – 0.46
AB – 0.42
MLP – 0.51

Random undersampling

SVM – 0.51
RF – 0.53
GNB – 0.33
kNN – 0.43
AB – 0.39
MLP – 0.52

Voting Clas. 0.55 0.55

In the case of CWMAE (Fig. A.25(c)), slightly different results are
obtained, with some fluctuation in the results of some methodology,
obtaining better metrics for more distant horizons. Also, a different
tendency is appreciated when using SMOGN + ML methods, while
increasing the time horizon of the prediction, the CWMAE becomes
better compared to the CWMAE of the initial ML methods.

The same trend can be found in the TPR, FPR and G-mean plots
(Fig. A.26), forecasting with more hours in advance results in fewer
extremes being detected, achieving the best results in all cases with
HCR architectures.

Appendix B. Performance of the classifiers’ pool

In this Appendix the performance of the different classifiers used
is shown. These classifiers are trained with the labeled training data
after applying the different data balancing techniques when necessary.
Table B.12 reports the performance of the classifiers for a number
of clusters 𝑛 = 2. In this case, it can be observed how the most
accurate balancing method is the random undersampling for most of
the classifiers. Also, a threshold value of 𝑇 = 𝜇 + 𝜎 is the one that
rovide better results.

Table B.13 shows the results when 𝑛 = 4. Here, neither balancing
ethod is clearly superior, but rather, for each type of classifier, one
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or another method performs better. Also, it can be observed how the
results are worse for a higher number of clusters compared to the
previous case (Table B.12), this is explained by the fact that increasing
the number of subsets consequently increases the complexity of the
classification task.
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