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Abstract: Sleep stage classification plays a pivotal role in effective diagnosis and treatment of sleep
related disorders. Traditionally, sleep scoring is done manually by trained sleep scorers. The analysis
of electroencephalogram (EEG) signals recorded during sleep by clinicians is tedious, time-consuming
and prone to human errors. Therefore, it is clinically important to score sleep stages using machine
learning techniques to get accurate diagnosis. Several studies have been proposed for automated
detection of sleep stages. However, these studies have employed only healthy normal subjects (good
sleepers). The proposed study focuses on the automated sleep-stage scoring of subjects suffering from
seven different kind of sleep disorders such as insomnia, bruxism, narcolepsy, nocturnal frontal lobe
epilepsy (NFLE), periodic leg movement (PLM), rapid eye movement (REM) behavioural disorder
and sleep-disordered breathing as well as normal subjects. The open source physionet’s cyclic
alternating pattern (CAP) sleep database is used for this study. The EEG epochs are decomposed
into sub-bands using a new class of optimized wavelet filters. Two EEG channels, namely F4-C4 and
C4-A1, combined are used for this work as they can provide more insights into the changes in EEG
signals during sleep. The norm features are computed from six sub-bands coefficients of optimal
wavelet filter bank and fed to various supervised machine learning classifiers. We have obtained the
highest classification performance using an ensemble of bagged tree (EBT) classifier with 10-fold cross
validation. The CAP database comprising of 80 subjects is divided into ten different subsets and then
ten different sleep-stage scoring tasks are performed. Since, the CAP database is unbalanced with
different duration of sleep stages, the balanced dataset also has been created using over-sampling and
under-sampling techniques. The highest average accuracy of 85.3% and Cohen’s Kappa coefficient of
0.786 and accuracy of 92.8% and Cohen’s Kappa coefficient of 0.915 are obtained for unbalanced and
balanced databases, respectively. The proposed method can reliably classify the sleep stages using
single or dual channel EEG epochs of 30 s duration instead of using multimodal polysomnography
(PSG) which are generally used for sleep-stage scoring. Our developed automated system is ready to
be tested with more sleep EEG data and can be employed in various sleep laboratories to evaluate
the quality of sleep in various sleep disorder patients and normal subjects.

Keywords: sleep stage; classification; electroencephalogram (EEG); polysomnogram (PSG); wavelet
filters; sleep disorders

1. Introduction

Sleep is indispensable for maintaining optimal health and well-being. Getting ade-
quate sleep is equally crucial like daily exercise and balanced diet. According to health
professionals, few of many benefits of getting good sleep include elevated productivity,
improved calorie regulation, better concentration, reduced heart disease risks, superior
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athletic performance, increased social and emotional intellect and averting depression [1].
Considering an average human taking a sleep of 7–8 h per day, almost one-third of our
life is spent sleeping. Our health is largely impacted by the quality of sleep we get. Any
sleep related disorder directly affects our mental, physical and social as well as emotional
well-being. According to International Classification of Sleep Disorders, Second Revision
(ICSD-2) [2], sleep disorders are widely categorized into major categories like insomnia,
parasomnia, hypersomnia of central origin, sleep-related disorder, circadian rhythm sleep
disorder, sleep-related movement disorders and other disorders which also includes those
caused due to some medical or psychological conditions [3]. Among them, insomnia is
found to be the most prevailing sleep disorder [4]. Insomnia is described as a condition
where one finds it extremely difficult to fall asleep and/or stay asleep. Symptoms of insom-
nia include fatigue, daytime sleepiness, cognitive impairment, irritability, impulsiveness
or aggression. The person lasting in this condition for more than 4 weeks is diagnosed as
suffering from insomnia. Based on several studies conducted in countries like the USA
(3161 patients), Canada (5622 patients) and the UK (2363 patients), the reported prevalence
of insomnia is around 35–37% [5]. In general, around 25–30% of the total population expe-
rience symptoms of insomnia. If patients with co-morbid conditions are also considered,
this number may reach above 50% based on the type and severity of disease [5]. Bruxism is
a movement disorder that is characterized by involuntary grinding, gnashing or clenching
of teeth. Bruxism is listed in the ICSD and is the third most common form of sleep disorder
after sleep talking and snoring [6]. There are mainly two classes of bruxism namely awake
bruxism and sleep bruxism which refer to bruxism during awake stage and sleep stage,
respectively. Pervasiveness of awake bruxism and sleep bruxism in the adult population
is about 20% and 80%, respectively [7]. Studies have shown that awake bruxism is more
dominantly observed in females as compared to males, whereas there is no such bifurca-
tion in case of sleep bruxism [8]. Narcolepsy is a long-term rapid eye movement (REM)
sleep disorder listed in ICSD and is characterized by irresistible deep sleep attacks during
daytime which often occurs with or without cataplexy and hypnagogic hallucinations [9].
The cataplexy refers to the sudden loss of muscle power. The cyclic alternating pattern
(CAP) sleep database also contains forty patients suffering from nocturnal frontal lobe
epilepsy (NFLE) which accounts for 37% of the complete database. The NFLE is a sleep
disorder of heterogeneous etiology [10] and is mainly characterized by epileptic seizures
occurring due to the frontal lobe mainly during night (nocturnal) sleep. There are no
such epidemiological data available for prevalance of NFLE as many cases of NFLE are
misdiagnosed as parasomnias, especially when children are considered [11]. The database
contains 10 patients suffering from periodic leg movement (PLM). The PLM refers to sleep
disorder involving repetitive and rhythmic flexing or jerking of legs for about 20–40 s over
a certain interval of sleep duration. This disorder has more prevalence than epilepsy [12].
This database contains 22 patients suffering from REM behaviour disorder (RBD). It is a
parasomnia which is characterized by lack of normal muscular tension and other abnormal
behaviour like enactment of dream during REM sleep. A study conducted by Ohayon
et al. [13] showed the estimated prevalence of RBD to be 0.5%. Majority of RBD patients
happen to be elderly males with age between 40 and 70 years [14]. Traditional diagnostic
procedure for the above mentioned sleep disorders include night-long polysomnographic
(PSG) analysis. It is a time-consuming, labour-intensive process and prone to human errors
as long hours of continuous evaluation are required. Thus, an automated classification of
sleep stages will help to overcome these drawbacks. Sleep scoring is an effective indicator
and can help in the detection of various sleep related disorders.

The sleep-stage scoring is mostly done as per the rules presented by Rechtschaffen
and Kales in 1968 [15]. According to R & K rules, sleep is mainly categorized into two
stages namely rapid eye movement (REM) sleep and non-rapid eye movement (NREM)
sleep. NREM sleep stage accounts for 75–80% and REM sleep stage usually lasts for around
20–25% of total sleep duration. NREM stage is further categorized into four sleep stages
namely stage-1, 2, 3 and 4. Thus, a total of five sleep stages are known (1, 2, 3, 4 and REM).
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Several studies have been proposed for the automated sleep stages classification.
Recently, Loh et al. [16] have presented an excellent review on the classification of sleep
stages using deep learning (DL) methods. This study indicated that the CAP database has
not yet been explored for sleep scoring using DL methods, despite the data containing
a diverse variety of subjects, signals, sleep disorders and sizes. Boostani et al. [17] have
published a review paper on sleep stage classification using various databases and different
modalities including PSG and EEG. Zhu et al. [18] presented an automated sleep scoring
system using the sleep-EDF database and visibility graphs with graph domain features.
They obtained an overall accuracy of 87.5% using support vector machine (SVM) classifier
in classifying six sleep stages. Kim et al. [19] used CAP database for sleep stage classification
using heart rate variability (HRV) obtained from ECG signals obtained from 13 healthy
subjects [20]. In addition, they did not consider a 6-class classification task, but used a
binary classification problem. They applied the empirical mode decomposition (EMD)
method for noise reduction in (HRV) detrended fluctuation analysis (DFA) and related the
noise-reduced fractal property of HRV to the sleep stages of the subjects. Cui et al. [21]
used the Institute of Systems and Robotics, University of Coimbra (ISRUC) sleep database
and performed 5-class sleep stage classification using EEG, EOG and EMG channels
and convolutional neural networks. Sharma et al. [22] performed six-class sleep stage
classification by employing a three-band time-frequency localized (TBTFL) wavelet filter
bank (FB) approach. They used an EEG channel of 100 Hz sampling rate from the sleep-EDF
database and obtained an overall accuracy of 89.5% using SVM classification. However,
they have not used a CAP database. Timplalexis et al. [23] carried out 5-class sleep stage
classification using a combination of time- and frequency-based features and obtained an
overall classification accuracy of 88.88% using an EBT classifier. Tripathi et al. [24] used
dispersion entropy and bubble entropy features and a hybrid classifier. They used only
25 subjects among which six were healthy (H), seven were insomniac (Ins), one brux
patient, one sleep-disordered breathing (SDB) patient and 10 REM-behaviour disorder
(RBD) patients from the CAP database. In addition, they obtained an overall accuracy of
71.68% for 6-class sleep stage classification, which is significantly lesser than the model
proposed by us in this study. Recently, Widasari et. al. [25] employed only 51 subjects from
the CAP database (16 were healthy, nine were insomniac, four were suffering from SDB
and 22 were suffering from RBD) in their study. In addition, they performed only 4-class
(W, S1 + S2, S3 + S4, REM) sleep stage classification using sleep quality features and EBT
classifier and achieved overall classification accuracy of 86.27%. It is to be noted that all
the previous studies have used only unbalanced data and we are the first group to use the
balanced dataset in this study. A summary of the state-of-the-art automated sleep stage
classification studies conducted is given in Table 1.

In this work we have proposed an automated sleep stage classification system us-
ing multi-level wavelet decomposition and norm-based feature extraction, followed by
classification using various supervised classifiers. The EEG signals of healthy and sleep
disorder patients are fed as input to the automated system to obtain the sleep stages scoring.
We have used only one or two EEG channels, hence practical installation is simple and
easier as compared to other state-of-the-art techniques, which used PSG [26,27] or several
EEG channels and other physiological signals for automated sleep-stage scoring. Subject’s
comfort level is also improved as compared to sleep scoring using multi-modal signals.
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Table 1. Summary of the state-of-the-art automated sleep stage classification studies conducted.

Work Description Performance (%)

Kim et al. [19]
(2017)

• Database: CAP
• Subjects: 13 Healthy
• Signals : ECG/HRV
• Classification: 2-class [(a)W vs. Sleep; and (b) (S1 + S2) vs. (S3 + S4)]
• Features: Detrended fluctuation analysis(DFA) alpha 1
• Classifier: k-fold cross validation (k = 13)

• Accuracy:
(a): 73.6%
(b): 72.3

Sharma et al. [22]
(2018)

• Database: Sleep EDF
• Subjects: 98 (Healthy)
• Signals : EEG
• Channel : Fpz-Cz, pz-Oz,C4-A1
• Classification: 6-class [W vs. S1 vs. S2 vs. S3 vs. S4 vs. REM]
• Features: Log energy, Signal fractal dimension, Signal sample entropy
• Classifier: SVM

• Accuracy: 91.5

Timplalexis
et al. [23]

(2019)

• Database: Sleep EDF
• Subjects: 197 Healthy
• Signals: EEG
• Channel: Fpz-Cz, Pz-Oz
• Classification: 5-class [W vs. N1 vs. N2 vs. N3 vs. REM]
• Features: Mixture of time and frequency domain features
• Classifier: EBT

• Accuracy: 88.88

Tripathi et al. [24]
(2020)

• Database: CAP
• Subjects: 25 (6-H,7-Ins,1-Brux,1-SDB,10-RBD)
• Signals: EEGs
• Channel: F4-C4, C4-P4, P4-O2, C4-A1
• Classification: 6-class (W vs. S1 vs. S2 vs. S3 vs. S4 vs. REM)
• Features: Dispersion entropy and Bubble entropy
• Classifier: Hybrid classifier

• Accuracy: 71.68

Widasari et al. [25]
(2020)

• Database: CAP
• Subjects: 51 [16-H, 9-ins, 4-SDB, 22-RBD]
• Signals: ECG
• Classification: 4-class [W vs. (S1 + S2) vs. (S3 + S4) vs. REM ]
• Features: Sleep quality
• Classifier: EBT

• Accuracy: 86.27

2. Material Used

The EEG dataset used in this study was taken from openly accessible physionet’s CAP
sleep database [28,29]. The sleep scoring was done by a team of sleep experts of the Sleep
Disorders Centre of the Ospedale Maggiore of Parma, Italy.

The CAP sleep database consists of 108 PSG (polysomnographic) recordings registered
at the Sleep Disorders Centre of the Ospedale Maggiore of Parma, Italy. It contains atleast
three EEG (Electroencephalogram) channels ( C3 or C4, F3 or F4 and O1 or O2, with refer-
ence to A1 or A2), electrooculogram (EOG) channels, submentalis muscle Electromyogram
(EMG), respiration signals, bilateral tibial EMG and one electrocardiogram (EKG). The
EEG channels additionally includes bipolar channels like F3-C3, Fp1-F3, P3-O1, C3-P3,
C4-P4, Fp2-F4, P4-O2 and F4-C4. Among all these channels, two EEG channels namely
F4-C4 (bipolar) and C4-A1 (unipolar) are considered for this study as they are present
in the maximum number of PSG recordings in this database. The CAP sleep database
includes healthy subjects and patients having seven different kinds of sleep disorders such
as insomnia, bruxism, narcolepsy, NFLE, PLM, RBD and SDB. The age of subjects varies
in the range of 14–82 years, and their average age is around 45 years. A total of 61% of

https://physionet.org/content/capslpdb/1.0.0/
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the subjects are men (66 people), and 38% are women (42 people). Most of the studies
conducted using the CAP sleep database are on cyclic phase detection [30–35]. There are
many studies on sleep stage detection using other datasets but there is no study available
in literature on sleep stage classification using the CAP sleep database.

Out of 108 subjects, 16 are completely healthy, 40 are diagnosed with nocturnal
frontal lobe epilepsy (NFLE), 22 are troubled by REM behaviour disorder, 10 by periodic
leg movement (PLM), nine are insomniac, five were narcoleptic, four are facing sleep-
disordered breathing and two are diagnosed with bruxism [36]. Sampling frequencies of
EEG signals varied between 100 Hz and 512 Hz. A total of 80 subjects with EEG recordings
sampled at 512 Hz, as mentioned in Table 2, are considered for this study (48 are male and
32 are female subjects). These subjects are taken on the basis of availability of F4-C4 and
C4-A1 EEG channels with sampling frequency of 512 Hz.

Table 2. Description of the cyclic alternating pattern (CAP) sleep database.

Subject Type Subjects
Available

Recordings Available
@512 Hz

Number-of
Epochs Male & Female Age (in yrs)

(Mean ± Std)

Healthy 16 6 6063 2 M & 4 F 32 ± 4.89
Insomnia 9 7 8551 3 M & 5 F 61.75 ± 10.20
Bruxism 2 1 427 1 M 34
Narcolepsy 5 5 5614 2 M & 3 F 31.6 ± 10.32
NFLE 40 27 26,883 13 M & 14 F 30.03 ± 10.53
PLM 10 9 7574 6 M & 3 F 54.44 ± 6.37
RBD 22 22 22,676 19 M & 3 F 70.72 ± 6.23
SBD 4 3 2879 3 M 69.33 ± 6.12

Total 108 80 80667 48M & 32F 48.25 ± 19.69

The sleep scoring was provided by trained experts, in accordance with the Rechtschaf-
fen and Kales rules [15]. Different stages were annotated as W for wake, S1–S4 for NREM
sleep stages and R for REM (Rapid Eye Movement) stage. The details of the total number
of epochs of individual stages for all types of patients are shown in Table 3.

Table 3. Sleep stage-wise and subject-wise details of epoch distribution in the original unbalanced database.

Sleep
Healthy

Seven Different Disorders Total

Stage Insomnia Bruxism Narcolepsy NFLE PLM RBD SBD Epochs (in %)

Wake 445 3801 44 1303 3155 1332 5266 495 15,841 19.64%
S1 280 223 34 301 1098 266 1048 269 3519 4.36%
S2 2172 2456 144 1708 10,630 2748 7446 1324 28,628 35.50%
S3 573 670 39 476 2987 955 2880 224 8804 10.92%
S4 1184 415 99 568 4108 956 2506 352 10,188 12.63%
REM 1409 986 67 1258 4905 1317 3530 215 13,687 16.97%

Total 6063 8551 427 5614 26,883 7574 22,676 2879 80,667

2.1. Balancing the Dataset

Intervals corresponding to various sleep stages vary from one person to another person.
An average adult’s one-night sleep consists around 2–5% of total time in S1 stage, 45–50%
of total time in S2 stage, 5–10% in S3 and S4 stage, and remaining 20–25% time in the
REM stage [22,37]. As a result, sleep stage recordings inherently contain unbalanced data
and require data balancing in order to yield better models which provide unbiased and
robust classification results. In this work, we have also balanced all the data subsets using
over-sampling and under-sampling techniques. It can be clearly observed from Table 3
that the number of epochs corresponding to S1 sleep stage constitute only 4.36% of total
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number of epochs whereas S2 sleep stage constitute around 35.50% of complete dataset.
Thus, in order to carry out an unbiased classification, number of epochs corresponding to
S1 are increased to 16.67% of total epochs using over-sampling by replacement method. At
the same time, epochs corresponding to S2 stage are decreased to 16.67% of total epochs
using under-sampling technique. Similarly, all other sleep stages are also brought to 16.67%
of total epochs by either over-sampling or under-sampling as per the requirement. Thus,
the number of epochs in all six classes are made equal in proportion to perform better
classification. The number of epochs used in various classes for different data subsets is
shown in Table 4.

Table 4. Sleep stage-wise and subject-wise details of epoch distribution in the created balanced data.

Sleep Stage Healthy
Seven Different Disorders Total

Insomnia Bruxism Narcolepsy NFLE PLM RBD SBD Epochs (in %)

Wake 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%
S1 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%
S2 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%
S3 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%
S4 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%
REM 1000 1400 71 935 4480 1262 3779 480 13,407 16.67%

Total 6000 8400 426 5610 26,880 7572 22,674 2880 80,442

3. Methodology

The flow diagram of the proposed method is given in Figure 1. We have explained the
data acquired and method used in the following subsections.

3.1. Data Acquisition: Acquiring PSG Recordings

As already mentioned in the previous section, data of 80 subjects including six
healthy and 74 subjects with sleep disorders were downloaded from physionet’s CAP
sleep database. We created a total of 10 data subsets namely ‘healthy’, ‘insomnia’, ‘brux-
ism’, ‘narcolepsy’, ‘NFLE’, ‘PLM’, ‘RBD’, ‘SDB’, ‘all disordered’ and ‘all subjects combined’.
We performed sleep stage classification on each of these data subsets. For each of these
data subsets, a matrix containing epochs corresponding to all six sleep stage was formed.
The description of these data subset is given below:

• Healthy: This data subset contains sleep stage epochs of only healthy subjects with
no significant pathology reported. Six healthy subjects are taken in this data subset
with a total of 6063 epochs of 30 s duration each.

• Insomnia: In this data subset, sleep stage epochs of seven patients suffering from
insomnia disorder are taken with a total of 8551 epochs.

• Bruxism: This data subset represents 427 epochs obtained from one patient suffering
from bruxism sleep disorder.

• Narcolepsy: It contains a total of five patients with 5614 epochs of 30 s duration each.
• NFLE: This data subset contains 26,883 epochs corresponding to 27 patients suffering

from nocturnal frontal lobe epilepsy (NFLE) sleep disorder.
• PLM: (Periodic leg movement disorder) This data subset contains 7574 epochs of 30 s

duration obtained from 9 PLM patients.
• RBD: (Rapid eye movement (REM) behaviour disorder) In this data subset, 22,676

epochs are obtained from 22 RBD patients.
• SDB: (Sleep disordered breathing) A total of 2879 epochs of 30 s duration are obtained

from three patients with SDB sleep disorder.
• All Disordered: This data subset is comprised of 74,574 epochs obtained by combining

all 74 disordered subjects.
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• All subjects combined: This data subset contains 80,667 epochs obtained by combin-
ing all types of 80 subjects considered in this study. It includes healthy subjects as
well as all disordered subjects.

Each PSG recording contained several types of signals including EEG, EOG, EMG and
ECG. We have used two channels F4-C4 and C4-A1 EEG signals individually and jointly.

Acquiring polysomnographic (PSG) recordings

Extracting EEG signals from PSG of healthy and disordered subjects

Segmentation of EEG signals into epochs of 30 s cor-
responding to sleep stages as per R&K [15] criterion

5-level Wavelet decomposition

Extraction of l1, l2 and l∞ norm and its statistical analysis

Classification of sleep stage using several machine learning classifiers

Wake S1 S2 S3 S4 REM

Figure 1. Flowchart of the proposed methodology.

3.2. Segmentation of Sleep Stages into 30 s Epochs

With the help of hypnogram, segregation of different sleep stages present in the EEG
recordings was done as per the R & K criteria [15]. Thus, each epoch has been labelled as
wake, S1, S2, S3, S4 and REM.

3.3. Wavelet Filtering

There are multiple applications of two-channel filter banks (FB) in various fields like
analysis of biomedical signals, image processing and communication [22,38–44]. The FB
used in this work is designed in using an Eigenfilter-based approach. The FB is designed by
optimizing an objective function and a multiple objective function. The objective function
is a convex quadratic function of errors in the pass-band and stop-bands, joint bandwidth
duration localization. We used a linear phase optimal biorthogonal wavelet filter bank
(OBWFB) in which the analysis filter is a halfband filter. While designing the filter bank,
the first step was to design a halfband analysis lowpass filter (HALF) formulating a linearly
constrained convex quadratic optimization problem that employed an objective function
having a convex combination of passband and stopband errors and bandwidth-duration
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concentrations of the filter. After designing the half-band analysis filter (HALF), the next
step is to design the synthesis lowpass filter (SLPF) in a manner similar to designing
HALF but with some variations like (i) avoiding SLPF to be constrained as halfband filters,
and (ii) along with the regularity conditions, so that the perfect reconstruction conditions
is satisfied.

3.4. Wavelet Decomposition

Five level one-dimensional wavelet decomposition of each epoch is done using an
optimal biorthogonal wavelet filter as explained above. The five level of decomposition
produced six different sub-bands of EEG epochs.

These sub-bands are later used to compute discriminating features.

3.5. Extraction of l1, l2 and l∞ Norm

The discriminating features used for classifying six different classes (W, S1, S2, S3, S4
and REM) are l1−norm, l2 − norm and l∞ − norm. The lm − norm [45] of any discrete-time
signal u[n] is defined as

‖u‖m =

Ç
∞

∑
n=1
|u[n]|m

å 1
m

, m ∈ Z+

In this study, we used m = 1 and m = 2.

l∞ − norm or Peak Absolute Value

The l∞ − norm of a signal gives the maximum absolute value among all the samples
of a discrete-time signal. Thus, it is also known as peak absolute value.

‖u‖∞ = |u|max

Thus, we get a total of 18 features after combining all three norms.

3.6. Classification and Validation

Classification of all six stages is performed using all extracted norm-based features.
These norm-based features are fed to all the available supervised machine learning clas-
sifiers namely decision trees [46,47], logistic regression [48], naive bayes [49], support
vector machines (SVM) [46,50], K-nearest neighbours (KNN) [51], ensemble bagged trees
(EBT) [52], classifiers and discriminant analysis [53] to select the optimum performing
classifier. All the classifiers are developed using a 10-fold cross-validation strategy.

Among all classifiers mentioned above, EBT classifier has yielded optimum perfor-
mance. EBT classifier is a combination of bagging algorithm and decision tree classifier [52].
In the bagging algorithm, several subsets of data from the training sample are chosen
randomly with replacement. Now, each collection of subset data is used to train their
decision trees. As a result, we end up with an ensemble of different models and improve
classification performance and reduce over-fitting [54]. Averages of all the predictions from
different trees are used which is more robust than a single decision tree. Bagging algorithm
is used to reduce variance of decision tree.

In order to optimize hyper parameters for each of ten classification tasks, we observed
the mis-classification error rate by varying the number of splits and maximum number
of trees. The maximum number of trees is varied in the range of 10 to 250, number of
splits is varied in the range of 1 to n− 1, in the steps of 100 from 1 to n− 1, (where n is the
total number of epochs) and then we drew a graph between mis-classification rate versus
number of trees (Figure 2). We obtained the converging performance for the split equal
to (n− 1). The parameters corresponding to minimum error are chosen as the optimal
parameters. Figure 2 shows sample EEG plot of tuning of hyper parameters of EBT classifier.
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The figures also shows the optimal values for number of learners = 65, number of splits =
8550 and learning rate = 1.

Figure 2. Tuning of hyper parameters of the ensemble of bagged trees (EBT) classifier: Mis-
classification error vs. number of trees.

4. Results

In this work, we have proposed an automated classification of sleep stages using
EEG channels. Six stages of sleep, namely: wakefulness (W) stage and five sleep stages
namely S1, S2, S3, S4 and REM are classified for normal and abnormal sleep patients. This
work was performed on a machine having 8 GB RAM and AMD Ryzen-5 3550 H processor
with MATLAB R2020a (version 9.8.0.1323502) installed in it. For classification, we used
EEG recordings of six healthy subjects with a total of 6063 epochs (30 s each) and 74 sleep
disorder patients which yielded a total of 74,604 epochs (of 30 s each). Thus, a total of
80,667 epochs (of 30 s each) are used for this study. A detailed summary related to number
of epochs of different sleep stages and wake (W) of all subjects can be found in Table 3.

We have analysed the features extracted using analysis of variance (ANOVA) tech-
nique with Fisher’s least significant difference post-hoc test [55]. The p-values obtained
from ANOVA test indicate the clinical significance of features. The ranking (of features),
p-values, mean and standard deviation of all six channels obtained using bipolar (F4-C4)
and unipolar channels (C4-A1) are shown in Tables 5 and 6, respectively. It can be noted
from these features that p-values corresponding to each feature are almost zero, which
indicates that all the features considered in the classification task are statistically significant.
As the number of features are only 18 and p-values are almost zero, we have not included
any features selection algorithm.

One-way ANOVA [56] shows whether one or more group on which it is performed
have any statistical differences based on their means. One-way ANOVA tests the null
hypothesis which says that the statistical mean of all groups in consideration is equal. If the
one-way ANOVA returns a statistically significant result, then we reject the null hypothesis
and accept the alternate hypothesis which says that the statistical mean of all groups in
consideration are not equal and hence it provides the evidence of difference. Here, we
have used one-way ANOVA with confidence level of 95% and we observe that the null
hypothesis is rejected and alternate hypothesis is accepted. However, one-way ANOVA
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does not signify which particular group is different from the other. Therefore, we used a
post-hoc Fisher’s lease significant difference (LSD) [57] test to see which group differs from
other and by what margin. We used l1 − norm feature of sub-band 1 present in ‘all subjects
combined’ dataset and observed the difference in the statistical mean of all six classes as
shown in Figure 3.

0.5 1 1.5 2 2.5 3

Mean 104
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4

3

2

1

0
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ss

Post-hoc FIsher's LSD test

Figure 3. Results of ANOVA post-hoc test obtained using the whole database.

Sleep recordings inherently contained unbalanced data due to the varying duration of
different sleep stages during night sleep. This may result in unequal number of epochs in
different sleep stages. As a result, we may get biased and improper sleep stage classification
results in favour of the sleep stage having the maximum number of epochs. To avoid this,
we have also balanced each data subset using over-sampling (by replacement) and under-
sampling techniques. In the over-sampling (by replacement) method, we randomly selected
a few epochs from already available epochs and replicated them to increase the epoch
count and make it comparable to the epoch count of other classes. Thus, each classification
task mentioned above is carried out in two phases as mentioned below:

(i) Classification without balancing the number of epochs among sleep stages.
(ii) Classification after balancing the number of epochs among sleep stages.

We collected sleep data corresponding to both unipolar (C4-A1) and bipolar (F4-C4)
EEG channels and performed classification individually as well as after combining both
channels. Unipolar EEG channel yielded better classification accuracies as compared to
the bipolar channel. However, a combination of both channels (F4-C4 + C4-A1) performed
better than individual channels. The classification results are obtained using EBT with
10-fold CV. In 10-fold CV, a complete database is segmented into 10 equal folds and the
training is done using nine folds and the remaining one fold is used for testing. Thus, the
classification is done in 10 iterations, and then average of 10 folds is considered as the
average accuracy. To ensure the robustness of the model, the classification using 10-fold
CV is repeated five times for each of 10 datasets and the average of accuracies obtained
in each run is then taken as the final measure of classification performance. The details of
classification measures corresponding to each of five trials of 10-fold CV and their average
are presented in Table 7. Table 8 summarizes the results obtained for all individual data
subsets and both EEG channels individually and with the combination of the two channels.
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Table 5. Statistical analysis using ANOVA for F4-C4 channel.

Feature Sub-Band Rank p-Value W (Mean ± Std) S1 (Mean ± std) S2 (Mean ± Std) S3 (Mean ± Std) S4 (Mean ± Std) REM (Mean ± Std)

l1 −
norm

Sb-1 2 0 20,656.14 ± 54,855.48 9281.65 ± 9331.55 13,761.47 ± 9066.79 18,321.05 ± 11,585.59 28,405.90 ± 16,908.07 9989.34 ± 6288.26
Sb-2 1 0 749.99 ± 1307.83 296.04 ± 692.05 197.74 ± 328.99 162.27 ± 216.34 154.04 ± 354.95 167.73 ± 114.87
Sb-3 16 0 2740.34 ± 4746.11 877.57 ± 1053.98 644.24 ± 718.22 528.03 ± 452.74 486.95 ± 602.20 560.29 ± 450.23
Sb-4 13 0 5857.94 ± 9138.12 2190.28 ± 1620.46 1749.38 ± 1380.68 1449.88 ±928.23 1277.17 ± 800.73 1796.56 ±1233.18
Sb-5 14 0 7843.60 ± 10,155.93 3975.20 ± 2416.01 3764.24 ± 2709.47 3173.00 ± 1925.92 2813.16 ± 1394.38 3579.89 ± 2530.63
Sb-6 4 0 6880.60 ± 9721.22 4182.79 ± 2983.74 4832.37 ± 3530.33 5016.90 ± 3619.34 5092.04 ± 3125.72 3765.75 ± 2241.55

l2 −
norm

Sb-1 3 0 1368.82 ± 3627.26 624.28 ± 896.76 884.61 ± 663.45 1110.23 ± 718.85 1658.00 ± 980.41 610.15 ± 488.75
Sb-2 7 1.13 × 10−121 16.32 ± 62.57 15.08 ± 130.57 5.61 ± 61.93 4.02 ± 47.44 4.37 ± 57.16 2.85 ± 4.35
Sb-3 15 0 74.06 ± 136.78 28.04 ± 80.17 17.09 ± 48.82 12.85 ± 35.01 12.22 ± 48.50 14.02 ± 28.81
Sb-4 11 0 204.88 ± 351.47 76.59 ± 97.83 56.15 ± 65.52 45.08 ± 64.96 39.13 ± 51.53 55.86 ± 48.13
Sb-5 8 0 363.07 ± 571.78 181.13 ± 167.77 165.59 ± 132.54 138.25 ± 116.83 122.02 ± 81.54 152.98 ± 114.36
Sb-6 10 0 440.48 ± 803.03 267.51 ± 282.30 298.63 ± 234.43 302.81 ± 239.25 301.61 ± 193.20 225.46 ± 137.81

l∞ −
norm

Sb-1 9 0 279.62 ± 609.45 139.41 ± 295.40 198.69 ± 189.74 218.39 ± 172.16 287.81 ± 192.23 117.48 ± 135.51
Sb-2 6 3.39 × 10−34 3.01 ± 31.62 6.05 ± 69.16 1.64 ± 34.01 1.16 ± 28.38 1.33 ± 30.19 0.30 ± 0.92
Sb-3 17 0 11.51 ± 28.84 5.93 ± 37.01 2.69 ± 20.83 1.78 ± 13.42 1.85 ± 20.98 1.89 ± 5.85
Sb-4 5 0 35.35 ± 76.92 13.10 ± 39.59 7.90 ± 23.04 5.76 ± 20.35 4.83 ± 21.26 7.46 ± 13.76
Sb-5 12 0 71.53 ± 157.27 33.31 ± 74.26 27.44 ± 42.13 22.45 ± 39.66 19.76 ± 29.94 24.59 ± 33.29
Sb-6 18 0 97.71 ± 247.88 58.77 ± 126.53 62.01 ± 68.44 58.84 ± 75.50 54.32 ± 47.08 43.76 ± 37.97
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Table 6. Statistical analysis using ANOVA for C4-A1 channel.

Feature Sub-Band Rank p-Value W (Mean ± Std) S1 (Mean ± std) S2 (Mean ± Std) S3 (Mean ± Std) S4 (Mean ± Std) REM (Mean ± Std)

l1 −
norm

Sb-1 1 0 36,981.35 ± 58,883.51 23,963.81 ± 20,242.16 32,003.79 ± 18,531.48 41,632.86 ± 16,256.33 63,699.18 ± 27,718.67 25,232.93 ± 13,663.27
Sb-2 14 0 1563.97 ± 1513.03 852.80 ± 980.33 534.78 ± 650.33 437.19 ± 466.81 345.76 ± 449.87 358.28 ± 371.59
Sb-3 5 0 5904.82 ± 5616.39 2981.21 ± 2803.20 1990.35 ± 2449.27 1665.68 ± 1614.53 1349.09 ± 1264.19 1361.41 ± 1437.16
Sb-4 13 0 12,578.84 ± 11,387.83 6533.51 ± 4718.18 4690.19 ± 3691.48 4069.94 ± 2870.76 3403.56 ± 2202.58 4172.80 ± 2942.39
Sb-5 3 0 15,775.64 ± 12,303.67 10,209.32 ± 4514.26 8824.32 ± 4143.84 7721.53 ± 2683.56 6881.04 ± 2166.72 7998.54 ± 3353.39
Sb-6 6 0 14,728.59 ± 11,745.06 11,078.86 ± 5189.41 11,424.13 ± 4806.48 11,800.24 ± 3853.04 11,895.95 ± 4454.35 9165.82 ± 3029.86

l2 −
norm

Sb-1 4 0 2425.35 ± 3989.36 1578.19 ± 1751.27 2019.55 ± 1399.18 2501.36 ± 1138.42 3702.32 ± 1584.33 1554.12 ± 1183.25
Sb-2 7 0 30.16 ± 64.44 24.86 ± 126.99 11.47 ± 62.72 8.30 ± 46.92 7.33 ± 57.06 6.42 ± 8.19
Sb-3 16 0 150.45 ± 159.77 81.05 ± 106.23 49.31 ± 73.79 37.86 ± 50.84 30.66 ± 53.66 34.96 ± 47.16
Sb-4 2 0 431.08 ± 428.95 228.16 ± 210.81 153.65 ± 150.42 125.85 ± 119.98 103.22 ± 83.31 138.40 ± 126.72
Sb-5 17 0 719.14 ± 662.50 463.36 ± 263.17 391.92 ± 214.74 337.04 ± 164.01 299.96 ± 111.59 349.51 ± 177.53
Sb-6 15 0 904.04 ± 887.55 681.53 ± 364.61 695.50 ± 313.77 702.02 ± 251.02 697.05 ± 262.48 544.97 ± 195.84

l∞ −
norm

Sb-1 18 0 491.43 ± 757.98 336.28 ± 510.28 431.10 ± 370.31 477.72 ± 303.09 630.99 ± 313.80 302.60 ± 355.54
Sb-2 10 3.27 × 10−39 4.30 ± 31.83 7.18 ± 71.13 2.19 ± 33.77 1.39 ± 25.34 1.59 ± 29.97 0.78 ± 1.43
Sb-3 8 0 20.73 ± 32.27 12.47 ± 38.15 6.43 ± 20.30 4.29 ± 15.56 3.73 ± 23.68 5.22 ± 9.53
Sb-4 11 0 69.69 ± 91.72 37.35 ± 59.70 22.08 ± 39.13 15.64 ± 30.68 11.96 ± 24.28 21.98 ± 34.33
Sb-5 9 0 136.69 ± 180.07 84.12 ± 97.30 66.58 ± 67.29 54.39 ± 55.85 47.25 ± 37.82 61.45 ± 68.00
Sb-6 12 0 183.10 ± 263.80 137.42 ± 131.19 138.07 ± 96.04 129.94 ± 79.24 120.41 ± 61.44 105.42 ± 74.07



Int. J. Environ. Res. Public Health 2021, 18, 3087 13 of 29

Table 7. Summary of classification average accuracy obtained during each trial using the EBT classifier with 10-fold cross
validation (CV).

Type of Subject Channel Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Mean ± Std

Healthy
F4-C4 74.96 71.86 72.46 71.56 73.66 72.9 ± 1.26
C4-A1 73.1 72.2 74.8 73.4 72.5 73.2 ± 0.91

F4-C4 + C4-A1 76.26 77.66 79.06 79.66 78.86 78.3 ± 1.21

Insomnia
F4-C4 86.74 86.14 86.14 85.64 85.84 86.1 ± 0.37
C4-A1 86.76 85.46 85.46 86.56 85.26 85.9 ± 0.63

F4-C4 + C4-A1 85.14 86.24 84.44 84.54 86.64 85.4 ± 0.89

Bruxism
F4-C4 62.34 64.84 63.74 63.94 62.64 63.5 ± 0.91
C4-A1 66.34 64.04 63.94 66.24 65.94 65.3 ± 1.08

F4-C4 + C4-A1 67.78 65.78 65.48 68.58 65.88 66.7 ± 1.24

Narcolepsy
F4-C4 77.06 78.46 76.16 77.16 76.16 77 ± 0.85
C4-A1 76.52 78.02 74.32 76.22 75.42 76.1 ± 1.23

F4-C4 + C4-A1 80.2 77.9 77.9 79.8 80.7 79.3 ± 1.18

NFLE
F4-C4 71.8 72.8 72.6 71.1 70.7 71.8 ± 0.82
C4-A1 72.18 71.98 71.78 72.58 73.98 72.5 ± 0.79

F4-C4 + C4-A1 76.5 78.5 77.7 78.8 76 77.5 ± 1.09

PLM
F4-C4 73.88 71.58 74.28 72.08 74.68 73.3 ± 1.24
C4-A1 74.7 74.6 74.9 76.5 73.8 74.9 ± 0.88

F4-C4 + C4-A1 77.24 78.34 78.14 79.34 76.94 78 ± 0.85

RBD
F4-C4 66.06 67.66 65.76 64.56 64.96 65.8 ± 1.07
C4-A1 68.56 66.86 66.06 67.76 66.76 67.2 ± 0.87

F4-C4 + C4-A1 71.38 72.88 70.38 72.78 72.08 71.9 ± 0.93

SDB
F4-C4 70.52 68.12 68.12 69.72 68.02 68.9 ± 1.03
C4-A1 70.94 72.34 74.24 71.54 73.44 72.5 ± 1.21

F4-C4 + C4-A1 74.06 74.96 73.96 75.36 73.16 74.3 ± 0.78

Healthy + F4-C4 70.1 68.6 68.4 71 69.9 69.6 ± 0.97
Unhealthy C4-A1 68.58 71.78 70.18 70.28 70.68 70.3 ± 1.03

subjects F4-C4 + C4-A1 73.38 75.78 76.08 76.28 75.98 75.5 ± 1.07

Detailed descriptions corresponding to each classification are given below. In classi-
fication task 1, we started with sleep stage classification of only healthy subjects with an
unbalanced epoch distribution containing 6063 epochs. It yielded an average classification
accuracy of 78.3% using the EBT classifier. The confusion matrix obtained for the classi-
fication of healthy subjects is shown in Table 9. The individual classification accuracies
obtained for various sleep stages namely: W, S1, S2, S3, S4 and REM are 95.84%, 94.94%,
85.87%, 92.4%, 96.59% and 91.95%, respectively. Generally, in classification problems, the
accuracy rate (ACC) is used to compare the performance of studies in this domain, but this
metric is accurate if the number of observations is equal to classes. It can be clearly seen
in Table 3 that the number of observation among different classes are not equal. Therefoe,
ACC is not the best metric to evaluate such a system. Hence, in recent years, Cohen’s
Kappa coefficient (κ) is used to evaluate such systems. As a rule of thumb, the value of κ
in the range of 0.75 to 1 is considered an excellent classification, κ in between 0.4 and 0.7
is interpreted as fair to good agreement and κ below 0.4 is said to be poor classification
agreement [58]. The value of κ = 0.7212 ± 0.0069 is obtained for healthy subjects. The
unbalanced healthy data subset had 6063 epochs for S1 and S2 sleep stages with 280 and
2172 epochs, respectively. In order to make the epoch count in all six classes equal, we
increased the number of epochs in S1 stage from 280 to 1000 by randomly shuffling and
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replicating random epochs from the already available 280 epochs of S1 stage. For the same
reason, we randomly removed 1172 epochs from the already available 2172 S2 stage epochs
to make the epoch count equal to 1000. Similarly, all other stages are also balanced in
the same manner. After balancing, the overall classification accuracy is improved from
78.3% to 87.9%. The confusion matrix obtained for the balanced healthy data using the EBT
classifier with 10-fold CV can be seen in Table 10. The confusion matrices also included a
column corresponding to F1 score for all six classes.

Table 8. Performance of sleep stage classification obtained using the unbalanced dataset and EBT classifier with 10-fold CV.

Type of
Subject

Total Subjects
Available

Recordings
Available
@512 Hz

Channel Accuracy
(%)

No. of
Epochs

Prediction
Speed (obs/s)

Training
Time (s)

Healthy 16 6
F4-C4 72.9

6063
15,000 25.23

C4-A1 73.2 17,000 20.25
F4-C4 + C4-A1 78.3 17,000 22.26

Insomnia 9 7
F4-C4 86.1

8551
23,000 22.73

C4-A1 85.9 23,000 22.46
F4-C4 + C4-A1 85.4 13,000 28.69

Bruxism 2 1
F4-C4 63.5

427
1500 4.84

C4-A1 65.3 1400 4.88
F4-C4 + C4-A1 66.7 1600 5.02

Narcolepsy 5 5
F4-C4 77.0

5614
11,000 14.00

C4-A1 76.1 11,000 14.45
F4-C4 + C4-A1 79.3 13000 15.77

NFLE 40 27
F4-C4 71.8

26,883
21,000 62.38

C4-A1 72.5 19,000 63.17
F4-C4 + C4-A1 77.5 20,000 78.32

PLM 10 9
F4-C4 73.3

7574
14,000 18.74

C4-A1 74.9 9700 27.70
F4-C4 + C4-A1 78.0 16,000 20.94

RBD 22 22
F4-C4 65.8

22,676
15,000 63.79

C4-A1 67.2 18,000 54.45
F4-C4 + C4-A1 71.9 12,000 119.48

SDB 4 3
F4-C4 68.9

2879
5900 10.72

C4-A1 72.5 5300 12.45
F4-C4 + C4-A1 74.3 6100 13.53

Healthy +
108 80

F4-C4 69.6
80,667

18,000 239.74
Unhealthy C4-A1 70.3 18,000 239.80

subjects F4-C4 + C4-A1 75.5 19,000 286.92

Table 9. Confusion matrix corresponding to sleep stage classification of healthy subjects with
unbalanced data using the EBT classifier with 10-fold CV.

CT-1: Healthy (Unbalanced Data)

True Class
Predicted Class

F1 Score
Wake S1 S2 S3 S4 R

Wake 68.8% 15.7% 5.4% 0.9% 0.4% 8.8% 0.71
S1 21.4% 42.5% 23.2% 0.0% 0.7% 12.1% 0.44
S2 1.3% 2.3% 80.9% 6.0% 1.2% 8.4% 0.80
S3 0.9% 0.2% 28.6% 56.9% 12.6% 0.9% 0.59
S4 0.3% 0.1% 1.9% 5.7% 91.7% 0.2% 0.91

REM 1.1% 1.8% 11.8% 0.9% 0.5% 84.0% 0.83
Cohen’s kappa (±kappa error) = 0.7212 ± 0.0069

Overall Accuracy = 78.3%
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Table 10. Confusion matrix corresponding to sleep stage classification of healthy subjects with
balanced data using the EBT classifier with 10-fold CV.

CT-1: Healthy (Balanced Data)

True Class
Predicted Class

F1 Score
Wake S1 S2 S3 S4 R

Wake 97.7% 1.4% 0.5% 0.1% 0.1% 0.2% 0.96
S1 0.5% 99.3% 0.0% 0.0% 0.0% 0.2% 0.95
S2 2.3% 5.0% 64.1% 12.5% 2.3% 13.8% 0.73
S3 0.3% 0.1% 3.3% 94.0% 2.3% 0.0% 0.86
S4 0.2% 0.1% 1.4% 9.8% 88.5% 0.0% 0.92

REM 2.1% 5.0% 8.0% 1.5% 0.9% 82.5% 0.83
Cohen’s kappa (±kappa error) = 0.8554 ± 0.0050

Overall Accuracy = 87.9%

We also have data subsets belonging to seven types of sleep disorders, namely in-
somnia, bruxism, narcolepsy, NFLE, PLM, RBD and SDB. In CT-2, we started with sleep
stage classification of insomniac subjects containing 8551 epochs (30 s) in total. It yielded
an average classification accuracy of 85.4% using the EBT classifier. The confusion matrix
obtained after classification of insomniac subjects is shown in Table 11. Stages like W,
S1, S2, S3, S4 and REM yielded an accuracy of 93.94%, 97.1%, 89.5%, 95.92%, 98.27% and
95.97%, respectively. The value of Cohen’s Kappa coefficient is found to be 0.7867 ± 0.0056,
which is in good agreement. After balancing, 8400 epochs out of 8551 are taken from
insomnia data subset leading to 1400 epochs in each class. This led to the improvement in
the classification accuracy from 85.4% to 92.8%. The confusion matrix corresponding to the
balanced insomnia data is shown in Table 12.

Table 11. Confusion matrix corresponding to sleep stage classification of insomnia patients with
balanced data using the EBT classifier with 10-fold CV.

CT-2: Insomnia (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 96.2% 0.7% 2.6% 0.1% 0.1% 0.4% 0.93

S1 44.8% 7.2% 37.7% 0.4% 0.0% 9.9% 0.11
S2 8.9% 0.6% 81.6% 3.6% 0.4% 4.9% 0.82
S3 1.3% 0.0% 17.9% 56.9% 9.7% 0.1% 0.73
S4 0.0% 0.0% 2.2% 14.5% 83.4% 0.0% 0.82

REM 4.7% 0.1% 13.8% 0.1% 0.1% 81.2% 0.82
Cohen’s kappa (±kappa error) = 0.7867 ± 0.0056

Overall Accuracy = 85.4%
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Table 12. Confusion Matrix corresponding to sleep stage classification of insomnia patients with
unbalanced data using the EBT classifier with 10-fold CV.

CT-2: Insomnia (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 92.1% 4.0% 2.7% 0.2% 0.3% 0.6% 0.93

S1 0.0% 100% 0.0% 0.0% 0.0% 0.0% 0.95
S2 5.6% 4.5% 74.1% 7.1% 0.7% 7.9% 0.82
S3 0.3% 0.0% 1.1% 97.1% 1.4% 0.0% 0.95
S4 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.99

REM 1.1% 1.1% 3.9% 0.1% 0.1% 93.6% 0.93
Cohen’s kappa (±kappa error) = 0.9145 ± 0.0034

Overall Accuracy = 92.8%

In CT-3, we have analysed bruxism sleep disorder subjects. The CAP has only two
subjects with bruxism and only one out of two has a sampling frequency of 512 Hz for
EEG channel. Hence, we considered only one bruxism subject with 427 sleep stage epochs
(30 s) corresponding to bruxism. We obtained an average classification accuracy of 66.7%
using the EBT classifier with κ of 0.5578 ± 0.0297. The confusion matrix obtained after
classification of bruxism subject is shown in Table 13. The sleep stages of W, S1, S2, S3,
S4 and REM yielded an accuracy of 88.06%, 88.99%, 79.86%, 87.82%, 90.4% and 96.49%,
respectively. The lower values of overall classification accuracy and κ are due to less
number of sleep stage epochs. In bruxism data subset, 426 epochs are considered for
balancing which led to the increase in classification accuracy from 66.7% to 82.4%. The
confusion matrix for the same can be seen in Table 14.

Table 13. Confusion matrix corresponding to sleep stage classification of bruxism patients with
unbalanced data using the EBT classifier with 10-fold CV.

CT-3: Bruxism (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 54.5% 15.9% 18.2% 6.8% 2.3% 2.3% 0.48

S1 41.2% 17.6% 29.4% 0.0% 8.8% 2.9% 0.20
S2 6.9% 5.6% 75.0% 6.3% 2.8% 3.5% 0.72
S3 7.7% 0.0% 46.2% 10.3% 35.9% 0.0% 0.13
S4 4.0% 4.0% 6.1% 5.1% 80.8% 0.0% 0.80

REM 0.0% 0.0% 11.9% 0.0% 0.0% 88.1% 0.89
Cohen’s kappa (±kappa error) = 0.5578 ± 0.0297

Overall Accuracy = 66.7%
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Table 14. Confusion matrix corresponding to sleep stage classification of bruxism patients with
balanced data using the EBT classifier with 10-fold CV.

CT-3: Bruxism (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 90.1% 8.5% 0.0% 0.0% 0.0% 1.4% 0.89

S1 0.0% 97.2% 0.0% 0.0% 2.8% 0.0% 0.82
S2 8.5% 19.7% 45.1% 14.1% 5.6% 7.0% 0.59
S3 2.8% 0.0% 2.8% 94.4% 0.0% 0.0% 0.85
S4 1.4% 9.9% 4.2% 12.7% 71.8% 0.0% 0.79

REM 0.0% 1.4% 1.4% 0.0% 1.4% 95.8% 0.94
Cohen’s kappa (±kappa error) = 0.7887 ± 0.0221

Overall Accuracy = 82.4%

In CT-4, we analysed five subjects belonging to narcolepsy sleep disorder which
yielded a total of 5614 sleep stage epochs with unbalanced epoch distribution among six
classes. We obtained an overall classification accuracy of 79.3% using the EBT classifier
and κ = 0.7301 ± 0.0070. The confusion matrix obtained after the classification is shown in
Table 15. The six sleep stages, namely W, S1, S2, S3, S4, REM yielded an accuracy of 93.73%,
94.58%, 87.41%, 93.82%, 97.27% and 91.5%, respectively. After balancing the epochs, a
total number of 5610 sleep epochs are used for classification leading to 935 epochs in each
sleep stage. After balancing, its classification accuracy increased from 79.3% to 88.2%. The
confusion matrix corresponding to the balanced narcolepsy data is shown in Table 16.

Table 15. Confusion matrix corresponding to sleep stage classification of narcolepsy patients with
unbalanced data using the EBT classifier with 10-fold CV.

CT-4: Narcolepsy (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 91.0% 1.7% 4.3% 0.1% 0.2% 2.8% 0.87

S1 29.6% 21.3% 17.9% 0.0% 0.3% 30.9% 0.30
S2 3.9% 1.2% 84.0% 3.4% 0.6% 7.0% 0.80
S3 1.5% 0.0% 35.1% 50.6% 11.6% 1.3% 0.58
S4 0.7% 0.0% 5.1% 9.2% 85.0% 0.0% 0.86

REM 5.5% 2.0% 10.1% 0.1% 0.0% 82.4% 0.81
Cohen’s kappa (±kappa error) = 0.7301 ± 0.0070

Overall Accuracy = 79.3%

Table 16. Confusion matrix corresponding to sleep stage classification of narcolepsy patients with
balanced data using the EBT classifier with 10-fold CV.

CT-4: Narcolepsy (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 87.0% 5.1% 3.0% 0.1% 0.2% 4.6% 0.89

S1 0.3% 99.7% 0.0% 0.0% 0.0% 0.0% 0.91
S2 3.5% 5.7% 71.7% 10.9% 1.0% 7.3% 0.78
S3 0.2% 0.0% 2.0% 95.8% 1.9% 0.0% 0.91
S4 0.1% 0.1% 0.4% 3.1% 96.3% 0.0% 0.97

REM 5.0% 8.6% 7.0% 0.3% 0.1% 79.0% 0.83
Cohen’s kappa (±kappa error) = 0.8588 ± 0.0052

Overall Accuracy = 88.2%
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In CT-5, we processed 27 NFLE subjects yielding a total of 26,883 epochs which forms
one-third of the complete dataset. We observed an average classification accuracy of 77.5%
using the EBT classifier and κ = 0.6914 ± 0.0035 for the unbalanced NFLE data subset. The
confusion matrix for the same can be seen in Table 17. Individual stages, namely W, S1,
S2, S3, S4, REM yielded an accuracy of 95.16%, 96.29%, 84.05 89.81%, 95.69% and 93.3%,
respectively. After balancing, from a total of 26,880 epochs 4480 epochs are considered for
each of the six classes. Then the classification accuracy is increased from 77.5% to 86.6%.
The confusion matrix for the balanced NFLE data is shown in Table 18.

Table 17. Confusion matrix corresponding to sleep stage classification of nocturnal frontal lobe
epilepsy patients with unbalanced data using the EBT classifier with 10-fold CV.

CT-5: NFLE (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 86.0% 2.5% 8.0% 0.1% 0.3% 3.1% 0.81

S1 42.3% 23.5% 18.6% 0.3% 0.0% 15.3% 0.34
S2 2.2% 0.4% 87.7% 3.9% 1.2% 4.7% 0.81
S3 0.2% 0.0% 50.3% 34.1% 15.1% 0.2% 0.43
S4 0.1% 0.0% 5.3% 8.1% 86.5% 0.0% 0.86

REM 3.1% 0.7% 16.3% 0.5% 0.3% 79.1% 0.81
Cohen’s kappa (±kappa error) = 0.6914 ± 0.0035

Overall Accuracy = 77.5%

Table 18. Confusion matrix corresponding to sleep stage classification of Nocturnal frontal lobe
epilepsy patients with balanced data using the EBT classifier with 10-fold CV.

CT-5: NFLE (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 93.5% 3.3% 1.4% 0.1% 0.1% 1.6% 0.93

S1 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.96
S2 3.2% 2.2% 68.8% 15.1% 1.9% 8.9% 0.73
S3 0.2% 0.1% 9.1% 84.2% 6.1% 0.3% 0.80
S4 0.1% 0.0% 1.6% 9.% 89.1% 0.0% 0.90

REM 3.2% 2.2% 8.6% 1.3% 0.4% 84.3% 0.86
Cohen’s kappa (±kappa error) = 0.8395 ± 0.0025

Overall Accuracy = 86.6%

The CT-6 which includes PLM subjects has obtained an overall classification accuracy
of 78.0% using the EBT classifier and κ coefficient = 0.7296 ± 0.0061. The confusion matrix
for the same is shown found in Table 19. Sleep stage namely W, S1, S2, S3, S4, REM yielded
individual classification accuracy of 94.35%, 95.84%, 86.55%, 90.22%, 95.97% and 95.48%,
respectively. For the PLM data subset, the number of epochs in each class is made equal to
1262 and for this balanced dataset, we observed the classification accuracy reaching 85.8%
from 78.0%. The confusion matrix for the balanced PLM data classification is shown in
Table 20.
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Table 19. Confusion matrix corresponding to sleep stage classification of periodic leg movement
patients with unbalanced data using the EBT classifier with 10-fold CV.

CT-6: PLM (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 83.4% 4.6% 9.7% 0.3% 0.3% 1.7% 0.84

S1 32.3% 22.6% 25.2% 0.4% 0.0% 19.5% 0.28
S2 3.5% 1.3% 83.8% 7.2% 0.4% 3.7% 0.82
S3 0.5% 0.0% 26.0% 59.8% 13.2% 0.5% 0.61
S4 0.2% 0.0% 1.4% 15.1% 83.2% 0.2% 0.84

REM 1.4% 0.9% 8.8% 0.7% 0.2% 88.1% 0.87
Cohen’s kappa (±kappa error) = 0.7296 ± 0.0061

Overall Accuracy = 78.0%

Table 20. Confusion matrix corresponding to sleep stage classification of periodic leg movement
patients with balanced data using the EBT classifier with 10-fold CV.

CT-6: PLM (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 89.5% 4.3% 4.3% 0.3% 0.1% 1.5% 0.90

S1 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.96
S2 5.9% 2.9% 69.5% 15.1% 1.0% 5.6% 0.72
S3 0.6% 0.1% 11.4% 80.0% 7.6% 0.3% 0.78
S4 0.0% 0.0% 1.0% 8.7% 90.3% 0.0% 0.91

REM 3.2% 1.7% 7.6% 1.3% 0.3% 85.8% 0.89
Cohen’s kappa (±kappa error) = 0.8301 ± 0.0048

Overall Accuracy = 85.8%

In CT-7, all 22 RBD subjects present in the CAPSLPDB are taken for this study yielding
a total of 22,676 sleep stage epochs. Overall classification accuracy of 71.9% is obtained
using the EBT classifier and κ is found to be 0.6372 ± 0.0039. The confusion matrix for the
same is shown in Table 21. Sleep stage namely W, S1, S2, S3, S4, REM yielded individual
classification accuracy of 92.26%, 96.3%, 80.89%, 89.88%, 95.65% and 89.23%, respectively.
During balancing of epochs in the RBD data subset, the number of epochs in each sleep
stage is made equal to 3779. It increased the classification accuracy form 71.9% to 81.0%
and the confusion matrix for the same is shown in Table 22.

Table 21. Confusion matrix corresponding to sleep stage classification of REM behavioural disorder
patients with unbalanced data using the EBT classifier with 10-fold CV.

CT-7: RBD (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 87.9% 1.1% 8.3% 0.2% 0.2% 2.2% 0.84

S1 29.0% 36.2% 24.2% 0.4% 0.0% 10.2% 0.47
S2 6.0% 1.0% 79.6% 5.5% 1.4% 6.5% 0.73
S3 1.4% 0.0% 31.6% 51.6% 12.3% 3.2% 0.56
S4 0.3% 0.0% 4.1% 14.3% 80.5% 0.9% 0.80

REM 9.1% 1.0% 31.6% 3.3% 0.8% 54.1% 0.61
Cohen’s kappa (± kappa error) = 0.6372 ± 0.0039

Overall Accuracy = 71.9%
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Table 22. Confusion Matrix corresponding to sleep stage classification of REM behavioural disorder
patients with balanced data using the EBT classifier with 10-fold CV.

CT-7: RBD (Balanced Data)

True Class Predicted Class F1 ScoreWake S1 S2 S3 S4 R
Wake 84.1% 4.9% 5.5% 0.7% 0.2% 4.7% 0.84

S1 0.1% 99.8% 0.1% 0.0% 0.0% 0.1% 0.94
S2 6.9% 4.7% 59.7% 13.0% 2.3% 13.5% 0.64
S3 0.8% 0.1% 8.8% 79.9% 7.9% 2.5% 0.78
S4 0.1% 0.0% 0.4% 6.3% 92.7% 0.6% 0.91

REM 7.3% 3.3% 13.2% 5.5% 1.1% 69.6% 0.73
Cohen’s kappa (±kappa error) = 0.7715 ± 0.0031

Overall Accuracy = 81.0%

CT-8, which analysed SDB subjects, obtained an overall classification accuracy of
74.3% using the EBT classifier with κ of 0.6276 ± 0.0117. The confusion matrix for the
same is presented in Table 23. Sleep stages W, S1, S2, S3, S4, REM yielded individual
classification accuracy of 91.28%, 89.89%, 82.81%, 92.01%, 95.97% and 96.28%, respectively.
The balancing of data resulted in 480 epochs in each sleep stage. As a result, we obtained
an overall classification accuracy of 86.9% for the balanced data and the confusion matrix
is shown in Table 24.

Table 23. Confusion matrix corresponding to sleep stage classification of sleep-breathing disorder
patients with unbalanced data using the EBT classifier with 10-fold CV.

CT-8: SBD (Unbalanced Data)

True Class Predicted Class F1 ScoreWake S1 S2 S3 S4 R
Wake 81.4% 9.1% 8.5% 0.2% 0.0% 0.8% 0.76

S1 34.9% 29.4% 34.2% 0.0% 0.4% 1.1% 0.35
S2 3.8% 3.4% 89.0% 2.0% 1.1% 0.8% 0.83
S3 0.0% 0.0% 60.3% 22.8% 17.0% 0.0% 0.31
S4 0.3% 0.0% 7.1% 8.0% 84.7% 0.0% 0.84

REM 6.5% 5.1% 25.6% 0.9% 3.7% 58.1% 0.70
Cohen’s kappa (± kappa error) = 0.6276 ± 0.0117

Overall Accuracy = 74.3%

Table 24. Confusion matrix corresponding to sleep stage classification of sleep-breathing disorder
patients with balanced data using the EBT classifier with 10-fold CV.

CT-8: SBD (Balanced Data)

True Class Predicted Class F1 ScoreWake S1 S2 S3 S4 R
Wake 78.1% 14.2% 4.6% 1.0% 0.2% 1.9% 0.83

S1 5.2% 91.0% 2.3% 0.0% 0.8% 0.0% 0.85
S2 4.8% 8.8% 67.3% 12.7% 2.3% 4.2% 0.75
S3 0.0% 0.0% 2.9% 95.4% 1.7% 0.0% 0.88
S4 0.4% 0.2% 0.8% 5.8% 92.5% 0.2% 0.94

REM 0.4% 0.4% 1.3% 0.4% 0.4% 97.1% 0.95
Cohen’s kappa (±kappa error) = 0.8429 ± 0.0075

Overall Accuracy = 86.9%

After processing all seven types of disorders individually in previous CTs, we com-
bined them in a single data subset named all disordered which is a combination of 74 patients
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with sleep disorders with 74,604 epochs of 30 s duration each with unbalanced epoch dis-
tribution among sleep stages. After classification of this data subset, we observed an
overall accuracy of 75.6% using the EBT classifier and κ = 0.6780 ± 0.0021. The confusion
matrix for the same classification is shown in Table 25. Individual sleep stages namely W,
S1, S2, S3, S4, REM yielded an accuracy of 93.22%, 95.92%, 83.13%, 90.87%, 96.19% and
91.94%, respectively. We have also performed similar balancing on the ’all disordered’ data
subset which contained epochs of all seven types of disordered subjects and considered the
number of epochs in each of six sleep stages equal to 12,500 with total of 75,000 epochs for
all six classes. Balancing operation on this data subset improved the overall classification
accuracy to 84.8% from 75.5% for the same classifier. The confusion matrix for the balanced
data is shown in Table 26.

Table 25. Confusion matrix corresponding to sleep stage classification of all disorders combined with
unbalanced data using the EBT classifier with 10-fold CV.

CT-9: All Disordered (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 88.9% 1.3% 7.5% 0.1% 0.1% 2.1% 0.84

S1 39.7% 21.4% 24.2% 0.1% 0.1% 14.5% 0.31
S2 4.6% 0.6% 85.4% 3.6% 1.0% 4.9% 0.78
S3 1.1% 0.0% 42.5% 42.1% 12.9% 1.3% 0.50
S4 0.1% 0.0% 6.0% 10.2% 83.4% 0.2% 0.84

REM 6.0% 0.9% 22.3% 1.4% 0.3% 69.1% 0.74
Cohen’s kappa (± kappa error) = 0.6780 ± 0.0021

Overall Accuracy = 75.6%

Table 26. Confusion matrix corresponding to sleep stage classification of all disordered patients with
balanced data using the EBT classifier with 10-fold CV.

CT-9: All disordered (Balanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 87.7% 4.9% 3.8% 0.6% 0.2% 2.9% 0.87

S1 0.1% 99.8% 0.1% 0.0% 0.0% 0.1% 0.94
S2 6.7% 3.3% 65.6% 12.8% 1.4% 10.2% 0.71
S3 0.6% 0.0% 8.0% 85.4% 5.1% 0.9% 0.82
S4 0.1% 0.1% 0.9% 6.9% 91.9% 0.1% 0.92

REM 5.7% 3.5% 10.0% 2.9% 0.4% 77.5% 0.81
Cohen’s kappa (± kappa error) = 0.8482 ± 0.0.1667

Overall Accuracy = 84.8%

Lastly, epochs corresponding to six healthy subjects are also added in the disordered
data subset and a new data subset namely all combined is formed for CT-10, which contained
a total of 80,667 sleep stage epochs corresponding to all types of subjects. For unbalanced
data, classification yielded an overall accuracy of 75.5% using the EBT classifier and κ =
0.6697 ± 0.0020. The confusion matrix corresponding to this classification is shown in
Table 27. Individual sleep stages, namely W, S1, S2, S3, S4 and REM yielded an accuracy
of 93.07%, 95.89%, 82.56%, 90.81%, 96.11% and 91.48%, respectively. While balancing,
the number of epochs in each sleep stage is made equal to 14,000 with total of 84,000
epochs for all six stages. The classification of balanced data yielded an accuracy of 85.1%
and the confusion matrix for the same is shown in Table 28. Table 29 represents the
epoch distribution and obtained accuracies for ‘healthy’, ‘all disordered’ and ‘all combined’
data subsets.
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Table 27. Confusion matrix corresponding to sleep stage classification of all subjects combined
(healthy + seven disordered) with unbalanced data using the EBT classifier with 10-fold CV.

CT-10: All Subjects Combined (Unbalanced Data)

True Class
Predicted Class

F1 ScoreWake S1 S2 S3 S4 R
Wake 87.8% 1.5% 7.9% 0.2% 0.1% 2.4% 0.83

S1 39.2% 21.4% 24.2% 0.1% 0.1% 15.0% 0.31
S2 4.7% 0.6% 84.4% 3.7% 1.1% 5.5% 0.78
S3 1.2% 0.0% 43.4% 41.1% 13.1% 1.2% 0.49
S4 0.2% 0.0% 5.9% 9.6% 84.0% 0.2% 0.84

REM 5.9% 0.8% 22.5% 1.3% 0.4% 69.1% 0.73
Cohen’s kappa (± kappa error) = 0.6697 ± 0.0020

Overall Accuracy = 75.5%

Table 28. Confusion matrix corresponding to sleep stage classification of all patients combined with
balanced data using the EBT classifier with 10-fold CV.

CT-10: All Subjects Combined (Balanced Data)

True Class
Predicted Class

F1 scoreWake S1 S2 S3 S4 R
Wake 88.1% 5.0% 3.5% 0.4% 0.1% 2.9% 0.88

S1 0.0% 100% 0.0% 0.0% 0.0% 0.0% 0.94
S2 6.2% 3.0% 66.5% 12.5% 1.4% 10.4% 0.70
S3 0.6% 0.1% 6.9% 87.5% 4.4% 0.6% 0.84
S4 0.1% 0.0% 0.8% 6.6% 92.3% 0.1% 0.93

REM 5.5% 3.2% 10% 2.8% 0.5% 78% 0.81
Cohen’s kappa (± kappa error) = 0.8214 ± 0.0015

Overall Accuracy = 85.1%

Tables 29 and 30 quickly summarize the epoch distribution and obtained accuracies for
‘all subjects combined’, ‘healthy’ and ‘all disordered’ datasets. All the accuracies mentioned
below are obtained from the EBT classifier.

Table 29. Sleep stage-wise epochs and accuracy (before balancing) using the EBT classifier with 10-fold CV.

Sleep Stage
All Subjects Combined Healthy Group Sleep-Disordered Group

Epochs Epochs (in %) Epoch Epochs (in %) Epoch Epochs (in %)

Wake 15,841 19.64 445 7.34 15,396 20.65
S1 3519 4.36 280 4.62 3239 4.34
S2 28,628 35.50 2172 35.82 26,456 35.48
S3 8804 10.92 573 9.45 8231 11.04
S4 10,188 12.63 1184 19.53 9004 12.07

REM 13,687 16.97 1409 23.24 12,278 16.45

Total 80,667 100.00 6063 100.00 74,604 100.00

Accuracy 75% 78.8% 75.6%
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Table 30. Sleep stage-wise epochs and accuracy (after balancing) using the EBT classifier with 10-fold CV.

Sleep Stage
All Subjects Combined Healthy Group Disordered-Group

Epochs Epochs (in %) Epoch Epochs (in %) Epoch Epochs (in %)

Wake 14,000 16.66 1000 16.66 12,500 16.66
S1 14,000 16.66 1000 16.66 12,500 16.66
S2 14,000 16.66 1000 16.66 12,500 16.66
S3 14,000 16.66 1000 16.66 12,500 16.66
S4 14,000 16.66 1000 16.66 12,500 16.66

REM 14,000 16.66 1000 16.66 12,500 16.66

Total 84,000 100 6000 100 75,000 100

Accuracy 85.1% 87.9% 84.8%

The receiver operating characteristic (ROC) curves are generally plotted for the binary
classification problem. Since, the classification in this work involves six-class classification
tasks, we have drawn ROC taking one class at a time as positive class and the remaining
five classes as negative class. In Figure 4, we have shown the ROC plot corresponding to
the whole database. From the figure it is clear that the area under the curve varies between
0.80 to 0.94 which indicates the effectiveness of the proposed model in discriminating the
sleep stages.
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Figure 4. ROC curves obtained for the classifier whole database using the EBT with 10-fold CV.

5. Discussion

The results obtained by our study indicate that the proposed model achieved high
classification performance using EEG signals with unbalanced and balanced sleep datasets.
This study is the first to attempt 6-class sleep stage classification using single/dual channel
EEG signals with high sampling frequency of 512 Hz. In addition, this is the first study to
consider the sleep stages of different sleep disorders such as insomnia, bruxism, narcolepsy,
NFLE, PLM, RBD and SDB. In this work, we presented the results of unipolar and bipolar
EEG channels individually as well as combined. The EEG epochs are decomposed into
sub-bands using a new class of optimized wavelet filters. Different optimal wavelet filters
of varying lengths and vanishing moments with different levels of decomposition have
been used to obtain optimum performance. Two different EEG channels, namely F4-C4 and
C4-A1, along with their combination have been used to obtain deeper insights. Wavelet-
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based norm features of six sub-bands have been computed and fed to various classifiers
including EBT to choose the optimum performing classifier.

The PSG is considered the gold standard to score sleep stages and diagnose sleep
disorders. The PSG-based techniques require multiple wired sensors to record the activities
of multiple physiological signals (such as EEG, EMG, ECG, EOG, respiratory signals) and
time-consuming analysis procedures. Moreover, the sleep recordings need to be conducted
overnight in a specialized sleep laboratory or hospital. Further, sometimes PSG recording
process may cause inconvenience to older people who often suffer from sleep disorders.
Hence, it is desirable to explore some new techniques and methods that can produce
accurate results similar to manual sleep staging PSG-based methods, which are simple,
less time-consuming, inexpensive and convenient to the patients. Our proposed study
is a humble attempt in that direction which needs to be tested independently with more
diverse and bigger databases or cohorts.

We perform the wavelet processing and feature extraction using single channel or
dual channel EEG epochs of duration 30 s only (instead of 1 min or higher duration). Due
to this simplification, the proposed method has low computational cost and therefore it
that can be implemented in an embedded hardware device.

We have considered the classification of six classes, whereas other studies [19,25] consid-
ered two class or three-class classification tasks. The most challenging task is classification
of subclasses of NREM (i.e., S1–S4). The classification of S1–S4 is missing in the existing
literature but we got very good accuracy for the classification of subclasses of NREM also.
The most challenging task in sleep stage classification is to score S1 stages accurately and we
have attained reasonable accuracy in identifying the S1 stage along with S2–S3.

Novelty of the work is that the model developed can be used for sleep-scoring of
not only good sleeper but can also be used for the subjects suffering from various sleep
disorders in automated speedy fashion without much complexities. There are seldom
any study which focus on sleep-scoring of sleep disorder subjects. Since in the CAP data
mostly subjects are elderly, the model can be further used and tested for identifying sleep
disorders in the elderly. An accurate sleep-stage scoring of sleep disordered patients will
help in diagnosis and prognosis of disorders, which is much needed and highly desirable
for elderly persons.

We have used a novel optimal filter bank. We have used linear phase optimal biorthog-
onal wavelet filter banks (OBWFB) in which the analysis filter is a halfband filter [59]. The
halfband pair filter bank (HPFB) design technique introduced by Phoong et al. [60] and
its other variants [61] are all indirect approaches for filter design. These technique have
restrictions like lack of control on frequency responses, joint bandwidth-duration localization
and control between frequency selectivity and smoothness of filters [62–64]. In order to
overcome these limitations, we used a filter which is designed using a direct, time-domain
approach that avoids the need for the design of intermediate kernels. Unlike the Phoong et
al. and Tay et al. [60,61] HPFB technique, the design technique of our linear phase optimal
biorthogonal wavelet filter bank is simple and efficient to control the smoothness, frequency
selectivity and joint bandwidth-duration localization of filters [65–67]. It is to be noted that
the analysis filter of the wavelet filter bank used is a half band filter in which half of the filter
coefficients are zero; hence, the computational cost of finding sub-bands using the proposed
wavelet filter is exactly half of the standard Daubechies wavelet used in the literature [42,68,68].
Moreover, in designing the (HALF), we need not design intermediate kernels unlike other
methods [60,61]. Thus, our design method has lower design complexity also.

The notable aspect of this work is that the publicly available CAP sleep database
containing normal and seven different types of sleep disorders are used for the first time to
develop an automated sleep scoring system. In this work, we have also balanced all the
data subsets using over-sampling and under-sampling techniques. In this work, epochs
corresponding to minority classes (example: S1) are increased by oversampling to make
them proportion to other classes. At the same time, epochs corresponding to classes having
large portion of total distribution are brought down by under-sampling. Thus, epochs in
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all six classes are made equal in proportion to make efficient classification. To develop a
robust model and avoid possible over fitting, we have also balanced the data as original
data are unbalanced and we obtained the results using both balanced and unbalanced data.
To the best of our knowledge, this is the first study to use the balanced CAP database.

It is observed that the unipolar channel C4-A1 performed better for the classification
of healthy as well as all seven disordered classes. Thus, we can conclude that single channel
(unipolar channel) performed better than bipolar channel. When both the channels are com-
bined then the performance of classification has improved. Since we used only single/dual
channel EEG signals instead of complex multichannel multimodal PSG recording, the
system complexity is low. Further, we employed EEG epochs of duration 30s only (instead
of 1 min or higher duration). Hence, the proposed method has a low computational cost
and therefore it can be implemented in an embedded hardware device.

The key features of this study are as follows:

1. To the best of our knowledge, this is the first study to use the whole CAP database
that includes 80 subjects with seven different sleep disorders (insomnia, bruxism,
narcolepsy, NFLE, PLM, REM, RDB and SBD as well as normal subjects). We have
used the highest number of epochs (80,667) in this study which is larger than most of
the existing studies. In the existing literature [19,21,25], studies have used only a few
healthy subjects.

2. A simple, fast and accurate automated sleep stage detection system is developed.
3. The proposed model has attained high classification performance for all 10 classifica-

tion tasks considered in this study.
4. To the best of our knowledge this is the first study to perform sleep stage classification

of all sleep disorders using the CAP sleep database.
5. As compared to previous studies on sleep stage classification, we have used more

data containing sleep stage recordings of 80 subjects with 80,667 sleep stage epochs of
30 s duration each.

6. This is the first study to employ machine learning coupled with optimal wavelet filter
bank for sleep scoring detection using EEG signals with a high sampling frequency of
512 Hz.

7. We have employed a new class of optimal wavelet filters to extract the norm-based
features of EEG channels.

8. We have used only two EEG channels and extracted norm-based features which
makes it simpler and computationally efficient.

The limitations of this are as follows:

• Placement of EEG electrodes on the human skull is a complex task and sometimes it
may even cause discomfort to the subjects. Hence, in this work, we have used only
two electrodes.

• We used the EEG signals of subjects sampled at 512 Hz sampling frequency, hence we
had to eliminate the use of the other 28 subjects (not sampled at 512 Hz). Therefore,
we finally used only 80 subjects for this study.

• We obtained the least classification accuracy for S1 sleep stage as the number of data
available are minimum using the unbalanced database. However, the performance
accuracy of S1 sleep stage is comparable with other sleep stages using balanced
database.

• Computation of wavelet-based features takes more time than the ordinary statistical
features. However, the same wavelet filter also helps to remove the noise.

• The CAP database has been sleep scored according to the R & K criterion, in which
sleep is classified into six stages. Therefore, in the proposed study, we have considered
the six-class classification task. However, as per the American Academy of Sleep
Medicine (AASM) guidelines for sleep scoring, stages S3 and S4 are combined into a
single stage called N3. Thus, as per AASM guidelines, whole-night sleep is divided
into five sleep stages: wakefulness (W), N1, N2, N3, and REM instead of six stages as
defined by the R & K criterion. This limitation can be overcome by combining stages
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S3 and S4 into the new stage N3 and presenting the results as per AASM guidelines
and not according to R & K rules.

The proposed model achieved high Cohen’s Kappa coefficient values (more than 0.65)
for both unbalanced and balanced sleep datasets. In the future, we intend to evaluate the
performance of our model with more sleep EEG data and install the developed model in
the cloud to get accurate diagnosis of the type of sleep disorder immediately.

6. Conclusions

In this work, we have proposed an automated sleep stage classification system using
two EEG channels: unipolar (C4-A1) and bipolar (F4-C4). We have used EEG signal
recordings of 80 subjects consisting of six healthy subjects and 74 patients suffering from
any one of seven sleep disorders, namely insomnia, bruxism, narcolepsy, NFLE, PLM, RBD
and SDB. After segmenting each EEG signal into multiple 30 s epochs corresponding to
six different classes (wake, S1, S2, S2, S4, REM), 5-level 1-D wavelet decomposition of
each epoch is done. Then the norm-based features are extracted from each EEG channel.
The duration of various sleep stages vary resulting in unbalanced data with unequal
EEG epochs in six classes. In order to avoid bias and obtain better classification results,
we performed data balancing using over-sampling and under-sampling techniques and
obtained balanced data with almost equal epoch distribution among all six classes.

Our proposed method attained the maximum accuracy of 75.6% and Cohen’s Kappa
coefficient of 0.6780 ± 0.0021 for unbalanced data while 85.1% accuracy with Cohen’s
Kappa coefficient of 0.8214 for balanced data using the EBT classifier with ten-fold cross-
validation strategy. The classification performance of the proposed model indicates that it
can reliably classify the sleep stages using 30-s duration with single or dual channel EEG
instead of using multichannel multimodal PSG.

As this method is based on only two EEG channels, practical setup is also easier to
implement. It helps the sleep experts to devote more time and effort on sleep scoring. In the
future, we intend the evaluate the performance of our developed model with more sleep
EEG data and use it as cloud-based AI system to detect the sleep disorders immediately. In
the future, we intend to extend our study on the CAP database to classify different sleep
disorders such as insomnia and narcolepsy using EEG and ECG signals. We also plan to
use our developed model for automated sleep stage classification using EOG and HRV
signals.
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