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ABSTRACT

This paper proposes a new instrumental variable to estimate the parameters of a
simple linear regression model where the explanatory variable is subject to mea-
surement error. The new instrumental variable is defined using reflection of the
observed values of the explanatory variable. Like other instrumental variable es-
timators it is unbiased and consistent, but over performs estimators proposed by
Wald (1940),Bartlett (1949), and Durbin (1954) if the ratio of the error variances
is equal or less than one A < 1. The method is straightforward, easy to imple-
ment, and performs much better than the existing instrumental wvariable based
estimators. The theoretical superiority of the proposed estimator over the exist-
ing instrumental variable based estimators is established by analytical results of
simulation. Two illustrative examples for numerical comparisons of the results
are also included.
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1 Introduction

The linear regression model is arguably the most frequently used statistical tool in various
fields of scientific investigations, including bioassays and econometric studies. Commonly
used bioassays where regression model can be used may include prediction of the body
weight based on body fat, or the yield of a crop based on soil moisture level. However,
measuring the explanatory variable, namely, the body fat or soil moisture level is likely to
involve measurement errors. The ordinary least squares (OLS) estimator of the regression
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parameters is inappropriate (biased and inconsistent) in the presence of measurement error
or error in variable. As a result, in real life, measurement error pauses a serious problem,
as it directly impacts on estimators of the parameters and their standard error. It is well
known that the measurement error in the response variable is not as serious as it is in the
explanatory variable. The errors in the response variable can be absorbed in the error term
of the model. The error in the explanatory variable causes various problems, and requires
to be handled appropriately.

The measurement error is a real problem and it has been considered by a host of authors
gince the third quarter of the nineteenth century. Adcock (1877, 1878) discussed the problem
in the context of least squares method. Pearson (1901) suggested some estimators based on
Adeock’s work. The problem has been seriously considered by researchers from the later
part of the first half of the last century. Wald (1940). Bartlet (1949). Durbin (1954). and
Riggs et al. (1978) considered fitting regression line when both variables are subject to
error. Berkson (1950) noted that if there is error in the explanatory variable the bias in the
estimated regression line will be there regardless of the data being a random sample or the
population. Burr {1988) considered error in explanatory variable for the binary responses
model. Freedman et al. {2004) suggested a reconstructed moment base method to deal with
error in the explanatory variable. The problem of error in both explanatory and response
variables was considered by Geary (1942), Madansky (1959) and Halperin (1961).

Instrumental variable (IV) technique is a well known method to obtain unbiased and
consistent estimators in the presence of measurement error in the explanatory variable.
The method requires to define an IV that is uncorrelated with the model error but highly
correlated with the explanatory variable. The grouping method was first suggested by Wald
(1940), followed by Bartlett (1949) and then Durbin (1954). Maddala (1988) showed that
Wald method is equivalent to using the instrumental variable Z equal -1 and +1 for values
less than or greater than the median of the manifest variable, Bartlett proposed to divide
the values in three equal groups and use the first and third groups, and Durbin used the
ranks of the values to define the IV. In each of the method there is loss of information
{for not using actual values and dropping some of the data points). and there are different
formulae to find the sum of squares error, and hence lead to different mean sum of square
error, making the analysis incomparable.

In this paper we propose a new way to define IV using the reflection of the explanatory
variable. The estimator based on this method is unbiased and consistent. Moreover. it allows
to define the sum of squares error uniquely, same way as in the case of no measurement
error. In addition there is no loss of information in this method. Both analytical results
and numerical illustrations confirms the superiority of the proposed (instrumental variable)
estimator over the existing estimators.

Degracie and Fuller (1972) considered estimation of the slope and covariance when the
concomitant variable is measured with error. Grubbs (1973) discussed errors of measure-
ment, precision, accuracy and the statistical inference. Aigner (1973) considered regression
with a binary variable subject to errors of observation. Florens et al. (1974) considered
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Bayesian inference in error-in-variables models. Schneeweiss (1976) proposed consistent es-
timation of the regression model with errors in the variables. Bhargava (1977) introduced
maximum likelihood estimation in a multivariate errors-in-variables regression model with
unknown error covariance matrix. Garber and Klepper (1980) extended the classical nor-
mal errors-in-variables model. Prentice (1982) dealt with covariate measurement errors and
parameter estimation in a failure time regression model. Amemiya et al. (1984) proposed
estimation of the multivariate errors-in-variables model with estimated error covariacne ma-
trix. Klepper and Leamer (1984) provided consistent sets of estimates for regression with
errors in all variables. Stefanski and Carroll (1985) discussed covariate measurement error in
logistic regression. Carroll et al {1985) proposed comparison of least squares and errors-in-
variable regression with special reference to randomized analysis of covariance. Armstrong
(1985) dealt with the measurement error in the generalized linear model. Bekker (1986)
proved comments on identification in the linear errors in variables model. Schafer (1986)
combined information on measurement error in errors-in-variables model. Recently Fuller
{2006) covered various aspects of the measurement error models and related inferences.

The estimation methods suggested by the above studies make assumption that the vari-
ances of the explanatory variable without and with measurement errors or the reliability
ratio of the two variances are known (cf Fuller 2006, p.5). An alternative assumption is that
the variance of the measurement error is known. All these assumptions are unrealistic and
the methods based on them are not free from the restrictions imposed by the assumptions.

In this paper we propose a new instrumental variable method to estimate the parameters
of the simple regression model without making any of the above assumptions on the variances
of the explanatory variable. The proposed method uses the reflection of the manifest values
of the explanatory variable. The reflection points about the regression line are defined by
using transformation formula involving sin and cos functions. The use of the reflections
of the observed values of the explanatory variable in defining IV provide a much better
estimator of the slope and intercept parameters. It also reduces the mean sum of squares
error. The analysis of variance and regression inferences based on the reflections have much
better statistical properties than that using the observed values of the explanatory variable,
or any other IV estimator.

In the next Section the measurement error regression model ig introduced. Section 3
covers the existing estimation methods for the measurement error model. The proposed
new estimator based on the reflections of the ohserved values of the explanatory variable is
provided in Section 4. The superior properties of the new estimators are discussed in Section
5. Two numerical illustrations are provided in Section 6, and some concluding remarks are
ineluded in Section 7.

2 Measurement error models

In the conventional notation. let X denote the true measurement on the explanatory vari-
able. This is also called the latent variable. In the presence of measurement error the actual
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observations are different from X. Let M be the observable. or manifest variable of the ex-
planatory variable. When the true value of the latent variable X is observed, the commonly
used classical simple linear regression model is represented by

}}=BGI+.31IX_]II+8_]|I: i=12....n (21}

where Y} is the jth realisation of the response variable. X; is the fixed jth value of the
explanatory variable, and e; is the error variable for j = 1,2,...,n. It is assumed that
the model errors are independently distributed according to normal law with constant but
unknown variance, that is, e; ~ N(0, o).

If there is error in the explanatory variable, the actual ohserved value, M. is not the
‘true’ value of the explanatory variable. When the observed value of the explanatory variable
contains measurement error, we define

Mj=X;+u;, j=1,2...n (2.2)

where u; is the measurement error, and is assumed to be distributed as N(0,0,,). Note
that, unlike X;, M; is a random variable which is assumed to be distributed as N (g, 0mm)-
The model with the fixed X is called the functional model, and that with the random or
stochastic M is called the structural model
The simple regression model with measurement error in the explanatory variable can be
expressed as
Y_‘-,' = Pogs +,311ﬂ'fj+1-‘j; =il v iy (2.3)

where v; = e; — 81zu;. Note in equation (2.1) X and e are independent but in equation
{(2.3) M and v are not independent. So the application of least squares method is not valid
for the models with measurement error. Thus, unlike for the model in (2.1), the validity
of the estimator of the slope and intercept of the model in (2.3) is not obvious. However,
Fuller (2006, p.3) assumes that u;, X; and e; are mutually independent for the estimation
of parameters. It also assumes that the reliagbility ratio, Kpm = ar;;narm, where g, 15 the
variance of the manifest variable M. and o, is the variance of the latent variable X, is
known.

3 Existing Estimators of parameters

The ordinary least squares (OLS) estimator of the regression parameters for the functional
model are

B = 5+, and Bou=¥=PBi:X, (3.1)
where
Sey=) (X; = X)Y; = ¥), Sea=) (X, -X)% (3.2)
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in which ¥ = n='3°7_,Y; and X = n~' ¥7_, X;. The estimators of slope and inter-
cept parameters are linear functions of the responses. and they are well known best linear
unbiased estimators.

The sampling distribution of the estimator of the regression parameters is given by

A L - .
.'?D:r wo IV .'80:1‘ o " S T (3 3}
.3}:1- <53 .33:1‘ vHee g ; . »

The unbiased estimator of the error variance o, is given by .. = (n — 2)7'8S5E, = s...
where SSE, = 7_, (¥; - ;)% in which ¥; = Boz + 5.2 X is the estimated value of Y;. Also,
o 'SSE, follows a ¥? distribution with (n — 2) degrees of freedom.

In the presence of measurement error, the M values are observed instead of X.

The least squares method yields the fitted model to he

where fim = gsf"- = Bizkem in which kem = f—':: It can be easily shown that Bim is

a biased estimat-o'; of 3:z. Also, the ahove estimator is not a consistent estimator of J;..
But there are other estimators in the literature that are unbiased and consistent. The
instrumental variable (IV) method provides such an unbiased and consistent estimator.

Note that the regression parameters are different for the model with the manifest variable
than that with the latent variable. Even though the aim is to estimate and test Sy, and
Biz, but in reality one may end up estimating and testing S, and 5., if we fully rely on
M, and over look the presence of the measurement error. In the literature, the regression
parameters are estimated, for observed X values, under certain assumptions. One of the
assumptions is that the reliability ratio, &, is known. Fuller (2006) used this assumption
for the estimation of the regression parameters for the functional model

3.1 Instrumental variable estimator

In the presence of measurement error in the explanatory variable the IV estimator for the
regression parameters is defined as

B=(ZM)"'Z'y (3.5)

where 8 = (_5’0;,5’1}’ is the vector of estimator of the intercept and slope parameters of

t.hemode1M=(1 3 e~ 2 a.ndZ:(l L 1) in which z;'s are the
ml m2 e mn . zﬂ

7 %2
values of the second row of the instrumental variable Z. The selection of the values of z;'s

require that it is highly correlated with the explanatory variable but uncorrelated with the
model errors. The above IV estimator is unbiased and consistent. The variance of the above
estimator is given by

Var(8) = o2(Z'M)~Y(Z'Z)(Z'M) 1. (3.6)



44 Instrumental variable estimator of the slope parameter...

Obviously the value of the estimator and the variance depend on the choice of Z. For
instance, Wald method. as suggested by Maddala (1988), defines Z by assigning z; to be
-1 or +1 depending on m; being smaller or larger than the median value of the manifest
variable. The estimator of slope under this choice of IV is Gy = {¥; = Y1 }/{M; - 311},
where Y: is the mean of Y-values associated with the values of M less than its median,
and Y3 is that for the lager than median values of M. Bartlett followed the same selection
criterion of z;'s but suggested exclusion of middle 1/3 of the values. and his estimator is
based on the lower and upper 1/3 of the values of M and associated ¥'s. The estimator is
expressed as 815 = {¥a — ¥1}/{Ms — M1}, where ¥: is the mean of Y-values associated with
the smallest 1/3 of the values of M, and ¥3 is that for the largest 1/3. Durbin proposed to
use the rank of M as z;'s. His method yields the following estimator of the slope parameter
3ip= [Z;;; ij] / [Z;;} jmj], hut does not define the estimator of the intercept.

The IV method of estimation of the regression parameters does not require any unrealistic
assumption on the relinbility ratio. But the actual estimator depends on how the IV is
defined, as definition of Z affects both the estimator and its variance. This paper proposes a
new method of defining IV based on the reflection of the explanatory or manifest variable. In
general, the available methods of defining IV causes a significant loss of sample information
(data) either by replacing the observed values of the explanatory variable by -1 or +1, or
exclusion of some data, or due to ranking of data. But the proposed definition of the IV
does not loss any information. Furthermore, the method produces more precise estimator
than those proposed by Wald, Bartlett, and Durbin. Moreover, the new estimator based on
the reflection of manifest variable is unbiased and consistent.

4 Proposed new IV and estimator

To avoid the unwanted and troublesome influence of the measurement error in the explana-
tory variable. the idea of reflection of the manifest variable is used for all the values of
explanatory variable. The reflection of the points is taken about the fitted regression line.
This is essentially done by a transformation of the observed values of the explanatory vari-
able to their reflection on the Euclidean plane. In the conventional notation, the reflection
of the explanatory variable M; = X; + u; (with measurement error u;) for j =1,2,....n,
can be defined as

X* =Meos 20 + (Y = Bom) sin 29, (4.1)

where _égm is the least square estimate of the intercept parameter, ¥ is the angle measure
defined as ¢ = arctan _-ff;m in which _S’m is the least square estimate of the slope parameter
in the manifest model, and cos and sin are the usual trigonometric cosine and sine functions
respectively. For the definition of reflection points on the Cartesian plane readers may see
Vaisman (1997, p. 164-169).

The proposed method requires to compute the reflection of all the data points, and use
the transformed values of M, say, X~ in defining the IV to fit the regression line of Y. The
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estimator of the slope parameter under the proposed method is

2 S:r&

Br=(Z| M) Z1y = S—y: (4.2)
dereZe={ 5 L 7 1) anid Suem = Somm in which Spem = 3, (23 ~2)(;~ )
where L, = 27 #§ - 2 an *m = dmm wWhic Tr = Q=1 I;—xjimy 1

It can be shown that Cov(Z,,u) = Cov(Z.,v) = 0, that is. the proposed IV is indepen-
dent of u and v, but very strongly correlated with M.Also it cab be easily shown that
E[M;] = E[X;] = E[X]] = pa-

Theorem 4.1 The estimator of the slope parameter of the simple regression model using
IV hased on the reflection of M is the same as that produced by X, that is, Bix = Bin.

Proof: From the definition we get

and .§1R= Sz v (4.3)

T

i By Sy
hx=g5_ =3,

L

195

From (2.2}, it is easy to show that 5., = §;, and S, = 555 4+ Suu. But the main body
of the proof is hased on

Szey = Spmy = SSE, sin 205, (4.4)

where ¢ is as defined in equation (4.1), and SSE,, is the sum of squares error for the
manifest model. The above result follows from the fact that

z;-m; = mycos2y +(y; - Borm) sin 29 — m;

= m;(cos 2y — 1) + y; 5in2¢ — o, sin 29

—m;(2sin® §) + y; sin 2y — Fsin2y + M2sin?
= (y; — §)sin2¢ — (my; — M)2sin’y, (4.5)

where z7 is the reflection of m;. Multiplying both sides of the above equation by y; and
taking sum over j, we get

STlar-myy; = 3 (- Byysin2e =3 (my — m)y;2sin ¢

Spey =Smy = Syysin2y — S, 2sin? e
M = SST - SSRm = SSEm. (4.6)
sin 2¢)

where S, = SST is the sum of squares total, SSR,, is the sum of squares regression, and
-
SSE,, is the sum of squares error for the regression of ¥ on M. Note that 222 % — tany =

sin 2
.Blm-
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Figure 1: Graph representing the Sum of Squares and Products in the presence of measure-
ment error in the explanatory variable.

Then using equation (4.6), we can write

5 _ Sy _ Smy _ Sery— SSEnsin2y

311‘ - S:l‘:l‘ S:l‘:l‘ - Smm - Suu
5 _ Sey _ Swy+SSEnsin2y _ Sey+ SSEnsin2y
BT Sem T Sewe+Sw SeztSw

From Figure 2 /FAD = ZFBE then
5 Szry Sy — Szy

Bir = S ~5. . 5. (4.7)
which leads to
Sz*yszz = Szysmm: (48)
and finally simplification yields
S S 2 2
Smri = Sz: or, fir = fix. (4.9)

Hence the proof

4.1 Geometric Explanation

The presence of measurement error in the explanatory variable and its impact on the esti-
mator of the slope as well as how the proposed method ‘treats’ the measurement error can
be explained by graphs. The graphical representation also explains how the actual estimator
of the slope is recovered by the new method.

Figure 1 represents the sum of squares and sum of products associated with the definition
of the estimators of slope both for the latent and manifest variables. This graph represents
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Figure 2: Graph representing the Sum of Squares and Products when the measurement
error in the explanatory variable is “treated’ by reflection.

the presence of measurement error in the explanatory variable as well as the two estimators
of the slope parameter. On the other hand Figure 2 displays the same along with that of
the reflection of the manifest variable and three estimators of the slope parameter.

From Figure 1, the true estimator of the slope when the latent variable is available, that
is, Bix is represented by the tan of ZBAC of AABC. In the absence of the values of the
latent variable this is unavailable. But for the manifest variable one can find the estimator
of the slope to be G which is represented by the tan of ZDAE of AADE. Note that
here DC (or equivalently BE) represents the sum of squares of measurement error (S, ).
Furthermore, under the assumptions of E[Y'u] = 0 and E[Xu] = 0, we have BC = DE or
Szy = Smy. Finally, Six = 222 = BS and Bim = g2 = £

The introduction of the reflection of the manifest variable changes AADE of Figure 1
to AADF in Figure 2. In fact the main difference between the two Figures is that Figure 2
has the small ABEF added to Figure 1. This triangle represents the effect of the reflection
of the manifest variable. From Figure 2 the estimates of the slope are

8., DE
B = ;- (— B A) (4.10)
4 Sy  BC
Gix = 5. (— _AC) (4.11)
g Sey [ FD
Gin = e (— _AD) : (4.12)

Since the tan of ZBAC represents the estimator 5’; x and tan of ZDAF represents 5’1 B, We
conclude that 3, x = S15. Note that ZBAC = ZDAF.
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5 Some properties and relationships

The estimated regression lines based on the OLS, and IV methods are summarised in the
following way:

Yx = Gox+08ixX (5.1)
Ve = Bor+5irM (5.2)
w = Bow + GiwM (5.3)
Y = Bop+8isM. (5.4)

Obviously. in the absence of X, the fitted model in (5.1) is unavailable. The other fitted lines
are obtainable since the manifest variable M is always observed along with the response 17,
Furthermore. even though the regression parameters are the same, the estimated models
are different since observed M is different from the true value of the explanatory variable
X. Thus

Boz + BiaX # Bo + B M.

Another useful fact is that the sum of squares total is the same for regression of ¥ on X
and that on M. That is,

SS,, = SSR. + SSE, = SSR,, + SSE,,.

Similarly, the following relationship of the regression sum of squares for models using X,
M, and X* are observed:

SSRT = Jé].zssyz = BLRSSmy = SSRR ‘_/'é B%RSSmm = BLRSST*y-
Finally, the coefficient of determination is noted to be

2 __ S8R, _ S8R
Rz = 557 = ST

6 Examples for Illustration

In this section, two illustrative examples based on two real life data sets are provided. Bot
cases reveal the superiority of the proposed new IV estimator. The first data set has me:
surement error in the explanatory variable only, but the second data set has measuremer
error in both the response. For the second example assume that the ratio of error varianc
A= 2= < 1, where g, Is the error variance of the response variable and oy, is the errc
mrxance of the explanatory variable..

6.1 Yield of Corn Data

The data set of the first example deals with the yield of corn (V) for different levels
soil nitrogen (M), and is taken from Fuller (2006, p.18). Here the explanatory variabl
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goil nitrogen level, has been determined with measurement error. Fuller has analysed the
data with the existing method with usual assumptions including known reliability ratio. We
provide the regression analyses of the data for both with (a) the measurement error in the
explanatory variable M, and (b) the instrumental variables including one defined by X*, the
reflection of the observed explanatory variable M. Comparison of the regression estimates
and related results from different methods are provided below. The Table 1 below shows
the fitted regression lines, mean sum of squares error, and the coefficient of determination
based on the OLS and various IV methods including the reflection method.

Tahle 1: Fitted regression models for the corn yield data

Method Fitted regression equation | MS Errorr [ R®
Least Squares Yy = 73,153 4+ 0.3440 57.321 0412
Wald }A'V, = 75.91 4+ 0.305M 60.98 0.364
Bartlett Y5 = 72.38 +0.355M 56.05 0.425
Reflection i}R = 65.8164 + 0.4479M 45.224 0.536
Ouw Known Vi = 67.561 + 0.423M 48.125 0.506

The straightforward regression of ¥ on M produces the estimated (OLS) regression line,
V.. = 73.153 + 0.344M with mean sum of squares error, MSE,, = 57.321 (see the first
regression line in Table 1) and R2 = 0.421. This analysis does not take into account the
presence, and hence the effect, of the measurement errors in the explanatory variable, As
such these results are not based on any sound statistical method and hence unacceptable.

Fuller (2006, p.18-19) assumes that o, = 57. and that the reliability ratio, K;., is known.
Under the above assumptions the estimated regression line reported to be ¥;- = 67.561 +
0.423M with modified MSE, MSEv = 6.. = 48.125, and R% = 0.506. Clearly, there has
been an improvement in the proportion of variability in Y that is explained by M under
the method used by Fuller (2006). The MSE has also decreased (from MSE,, = 57.321 to
MSEy = 48.125) under the Fuller method. Thus the Fuller method is not only a better
method than the OLS, but also provides a much better fit.

The use of the reflection of M in the specification of the instrumental variable leads
to the fitted regression line, ¥ = 65.8164 + 0.4479M with mean sum of squares error,
MSERg = 45.224 (see second last row of Table 1} and R% = 0.536. Unlike Fuller’s method,
these results are obtained without additional assumptions on any of the parameters of the
model or the reliability ratio. However, the regression parameters obtained by using the
reflection of M are fairly close to those ohtained by Fuller under the previously stated
assumptions. The regression line produced by the proposed method provides a much better
fit than that obtained by Fuller. Obviously, the MSEg under the IV is much smaller than
Tee Obtained by Fuller's method. Moreover, under the proposed method the value of the
coefficient of determination is 53.6%, compared to only 50.60% under the Fuller's method.

The estimates of the regression parameters of the manifest model are Bim = 0.344 and
ng = 73.153, and that of the proposed instrumental variable model are Bm = 0.4479 and
Bop = 65.8164. These figures support the results in Theorem (4.1), that is, Gip=0.4479 >
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31m = 0.344, and _:?fgﬂ = 65.8164 < 3gm = 73.153. Note here the correlation is positive.

It is important to compare the results of the new IV estimator with other IV estimators
such as the Wald and Bartlett methods specified earlier. The results of Wald method yields,
Vi = 7591 4+ 0.3050M with MSEy = 60.98 and RZ, = 0.364. Moreover, using Bartlett’s
definition of the IV, we get ¥5 = 72.38 + 0.355M with MSEp = 56.05 and R} =D.A%5.
Practically both methods are inefficient, although the Bartlett method produces better fit
(larger RZ) than that of Wald R%,.

Clearly. the Wald's method produces the worst of the five fitted models in terms of
the MSE (or R?). The Bartlett’s method is better than the Wald's method in terms of
the value of R2. The Fuller's method provides a much better fit than the OLS, Wald and
Bartlett methods. However, the reflection based IV fitted model has the largest R2. At the
same time the regression estimates of the slope and intercept for the Fuller method is much
close to that of the reflection based estimator. Thus the IV based on the reflection of M
provibes the best model without making any additional assumptions on the error variance
or reliability ratio.

6.2 Hen Pheasants Data

The data set for the second example is also taken from Fuller (2006, p.34). The data deal
with the number of hen pheasants in Iowa at two different season/time of the vear.and
were collected by the Iowa Conservation Commission. These data are based on the average
number of birds sighted by trained observers traveling a number of specific routes in late
April and early May . and again in August. Both measures are subject to error for two
reagons. First, the routes are a sample of all possible routes in Iowa. Second, observers
cannot be expected to sight all pheasants along the route. The response variable Y is the
average number of hens in August, and the explanatory variable M is the average number of
hens in Spring, where the ratio of error variances A < 1. On the basis of previous analyses,
it has been estimated that the error variance for the Spring count is about six times larger
than that in August. The fitted regression models and associated statistics are provided in
the Table 2 below.

Table 2: Fitted regression models for the hen peasants data

Method Fitted regression equation | MS Error | R*
Least Squares Yo = 2142 4+ 0.6490M 0.347 0.826
Wald ?’W = 2498 + 0.614 M 0.44 0.78
Bartlett A’B =2.036 4 0.660M 0.32 0.84
Reflection Ve =1.323+0.731M 0.14 0.93
Moments }A’Mg =1.11640.751 M 0.09 0.95

The first regression equation and the associated statistics in Table 2, Vi = 2.142 +
0.649M, MSE,, = 0.347 and RZ = 0.826, are obtained by the OLS method using M which
is subject to the measurement error.
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The method of moments (MOM) estimator, under the assumption that the ratio § =
O e Oee 1s known can be found. Following Fuller (2006, p.35), for § = %._ the fitted regression
equation becomes Yo = 1.1158 + 0.7516M with MSEy;0 = 0.09 and R2,, = 0.95. This
is a much better fitted model, with an increased value of R?, than that obtained by the OLS
method.

The second last row of Table 2 represents the regression line and other statistics produced
hy the proposed new instrumental variable method based on the refiection of M: Y =
1.323 4+ 0.731M, MSEg =0.139 and R% = 0.93.

The IV estimator based on Wald’s method yields Vi =2.498 + 0.614M with MSE,
0.44 and Ri = (.78, Similarly, Bartlett’s IV method gives 1}5 =2.0364+0.66M , MSEg
0.32 and RZB = 0.84.

In terms of the R? value the Wald's method is the worst, followed by the OLS method.
Thus Wald's IV method may produce worst fit than the OLS method. The Bartlett’s method
gives a similar R? as the OLS method. However, the MOM estimation produces the largest
R?, although it is not too far from that produced by the proposed reflection based method.
It is important to note that the MOM is based on the assumption that the value of § is
known. whereas no assumption is required for the reflection method. Furthermore. due
to the nature of the definition of the IV, we have only 'treated’ the measurement error in
the explanatory variable. It seems that similar treatment of the response variable would
produce results better than the method of moments.

Among the IV estimators the proposed reflection based IV performs much better than
the others in terms of providing the best fitted model with largest B?. This is not surprising
due to the fact that IVs proposed by Wald, Bartlett, and Durbin fails to use part of the
information of the sample data to define the IV. Although the MOM estimation method
provides slightly better fit than the proposed reflection based IV method, the former is
dependent on the unrealistic assumption that § is know. When no information is available
on &, which is normally the case, the new method ensures the best fitted model.

7 Concluding Remarks

The paper considers the simple regression model with measurement error in the explanatory
variable. It proposes a new estimation procedure based on the idea of a new instrumental
variable which is defined from reflection of the manifest variable. Also, it provides the theory
of the available literature and compares the existing methods with proposed new method.
Unlike. some of the existing methods it does not loss of information. Moreover, the statistical
properties of the proposed estimator are much superior to those of the available methods in
the literature.

The analytical results and the illustrative examples demonstrate the fact that the pro-
posed method significantly reduces the mean sum of squares error than the currently used
methods. As such, the coefficient of determination of the proposed method is higher than
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that of the existing methods.

The proposed method in the paper is new, easy to implement, and performs much
better than the existing method. We have demonstrated the superiority of our method both
analytically and via numerical illustration.

Surprisingly, the proposed IV method recovers the true estimator of the slope, 31 x., from
the manifest variable and stochastic model even if the true values of the latent variable is
unobservable. The Theorem 4.1 and the Figure 2 demonstrate this remarkable fact. The
same comment would apply for the estimator of the intercept.
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