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Studying stellar spin-down with Zeeman–Doppler magnetograms
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ABSTRACT
Magnetic activity and rotation are known to be intimately linked for low-mass stars. Un-
derstanding rotation evolution over the stellar lifetime is therefore an important goal within
stellar astrophysics. In recent years, there has been increased focus on how the complexity
of the stellar magnetic field affects the rate of angular-momentum loss from a star. This is a
topic that Zeeman–Doppler imaging (ZDI), a technique that is capable of reconstructing the
large-scale magnetic field topology of a star, can uniquely address. Using a potential field
source surface model, we estimate the open flux, mass-loss rate and angular-momentum-loss
rates for a sample of 66 stars that have been mapped with ZDI. We show that the open flux of a
star is predominantly determined by the dipolar component of its magnetic field for our choice
of source surface radius. We also show that, on the main sequence, the open flux, mass-loss
and angular-momentum-loss rates increase with decreasing Rossby number. The exception to
this rule is stars less massive than 0.3 M�. Previous work suggests that low-mass M dwarfs
may possess either strong, ordered and dipolar fields or weak and complex fields. This range
of field strengths results in a large spread of angular-momentum-loss rates for these stars and
has important consequences for their spin-down behaviour. Additionally, our models do not
predict a transition in the mass-loss rates at the so-called wind-dividing line noted from Lyα

studies.

Key words: techniques: polarimetric – stars: activity – stars: evolution – stars: magnetic field –
stars: rotation.

1 IN T RO D U C T I O N

Studies of open clusters at different ages show that the rotation
periods of low-mass stars (0.1 M� � M� � 1.4 M�) evolve coher-
ently as a function of mass and age (Barnes 2003, 2010; Irwin &
Bouvier 2009; Meibom et al. 2011, 2015; Barnes et al. 2016;
Stauffer et al. 2016). While no complete theory currently exists
to explain how rotation periods evolve over the stellar lifetime, a
number of processes have been identified as being integral to any
such theory. On the pre-main sequence, angular-momentum conser-

� E-mail: w.see@exeter.ac.uk

vation causes stars to spin-up as they contract. However, star–disc
interactions appear to prevent stars reaching the break-up speeds
expected from contraction alone (Koenigl 1991; Rebull, Wolff &
Strom 2004; Matt et al. 2010, 2012a). Along the main sequence,
stars spin-down as a result of stellar winds that carry away an-
gular momentum (Weber & Davis 1967). Additionally, transport
processes redistribute angular momentum within the star and can
lead to core–envelope decoupling (MacGregor & Brenner 1991;
Allain 1998; Bouvier 2008; Spada et al. 2011), adding a further
layer of complexity to the problem.

Studying the mass-loss rates of low-mass stars and their as-
sociated spin-down torques is a non-trivial task because of the

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/466/2/1542/2617722
by University of Southern Queensland user
on 12 January 2018

mailto:w.see@exeter.ac.uk


Studying stellar spin-down with ZDI 1543

diffuse nature of stellar winds. For example, the Sun has a mass-
loss rate of ∼10−14 M� yr−1 resulting in a wind number density
of only ∼5 cm−3 in the vicinity of Earth (Balikhin, Gedalin &
Petrukovich 1993). With the key exception of indirect mass-loss
rate estimates from Lyα observations (see Wood et al. 2014 and
references therein), the majority of work has been theoretical by
necessity.

A number of complementary approaches exist in the literature
for tackling the rotation evolution problem. One approach involves
using multidimensional magnetohydrodynamic (MHD) simulations
to determine the mass-loss rates and spin-down torques of individual
stars. These can incorporate realistic magnetic field geometries at
the stellar surface to give improved estimates over simulations that
use idealized field geometries (Vidotto et al. 2012, 2014a; Alvarado-
Gómez et al. 2016; Nicholson et al. 2016). Another approach in-
volves deriving braking laws that predict the spin-down torque as a
function of fundamental stellar parameters (e.g. Matt et al. 2012b;
Cohen & Drake 2014; Réville et al. 2015a). These braking laws
can then be incorporated into rotation evolution models, with the
aim of reproducing the rotation-period distributions observed in
open clusters at different ages (Reiners & Mohanty 2012; Gallet &
Bouvier 2013, 2015; van Saders & Pinsonneault 2013; Brown 2014;
Johnstone et al. 2015; Matt et al. 2015; Amard et al. 2016; Blackman
& Owen 2016; van Saders et al. 2016).

Studies have shown that a key parameter for determining the stel-
lar spin-down torque is the open flux (Mestel & Spruit 1987; Vidotto
et al. 2014a; Réville et al. 2015a,b), i.e. the flux contained in wind
bearing field lines that extend away from the star. However, rotation
evolution models typically only incorporate the surface magnetic
field strength into their braking laws. This is partly driven by the
lack of systematic studies of how open flux varies with fundamental
stellar parameters. By doing so, these models neglect the topology
of the magnetic fields and their effects on the rate of mass-loss and
angular-momentum loss (Garraffo, Drake & Cohen 2015).

One way of estimating the open flux of the star is by using a field
extrapolation model (e.g. Jardine, Collier Cameron & Donati 2002)
in conjunction with a magnetogram obtained via Zeeman–Doppler
imaging (ZDI). ZDI is a tomographic imaging technique that can
reconstruct the large-scale component of stellar magnetic fields
at the stellar surface (Semel 1989; Brown et al. 1991; Donati
& Brown 1997; Donati et al. 2006). Previous work has already
shown that fundamental stellar parameters such as internal struc-
ture (Donati et al. 2008; Morin et al. 2008b, 2010; Donati &
Landstreet 2009; Gregory et al. 2012), rotation period (Petit
et al. 2008; See et al. 2015b, 2016) and age (Vidotto et al. 2014b;
Folsom et al. 2016; Rosén et al. 2016) can affect the surface mag-
netic field topologies of cool stars. We will build on these previous
works and investigate how parameters such as open flux, mass-
loss rates and angular-momentum-loss rates vary with fundamental
stellar parameters such as mass or rotation.

In Section 2, we outline the characteristics of the sample used in
this study and the wind model we employ. In Section 3, we discuss
how the open flux, mass-loss rate and angular-momentum-loss rate
vary across our sample. Additionally, we also compare our results
to those obtained from 3D MHD simulations. Concluding remarks
follow in Section 4.

2 SA M P L E A N D W I N D M O D E L

In this work, we use a sample of 66 stars that have each been
mapped with ZDI. Many of these stars have been mapped over
multiple epochs resulting in a total of 106 ZDI maps used in this

work. The sample of stars used in this study is mostly comprised
of the sample used by See et al. (2015b).1 However, the sample
has been expanded to include more stars presented by Folsom et al.
(2016), Hébrard et al. (2016) and Hébrard et al (in preparation).
To date, this is the largest sample of ZDI maps used in a single
study and represents well over a decade of effort observing and
reconstructing the surface magnetic fields of main-sequence cool
dwarfs. The stars within the sample were observed under numerous
programmes including a large fraction from the BCool (Marsden
et al. 2014) and Toupies (Folsom et al. 2016) collaborations. In
Table 1, we list the physical parameters of each star used in this
study. Stellar masses, radii and rotation periods are taken from
Vidotto et al. (2014b) or the paper in which each ZDI map was
originally published. The Rossby number is given by the rotation
period divided by the convective turnover time, Ro = Prot/τ c. In
this work, we will use the empirical prescription of Wright et al.
(2011, their equation 11) to estimate the convective turnover times
for our sample. The reference for the original publication of each
ZDI map is also listed in Table 1. The masses and rotation periods
of the sample are shown in Fig. 1 (this is an updated version of fig. 1
from See et al. 2015b).

2.1 Magnetic field extrapolation

Using a potential field source surface (PFSS) approach (Altschuler
& Newkirk 1969), the 3D magnetic field structure of a star can
be determined. This technique has been used in numerous pre-
vious works to investigate the structure of stellar coronae (e.g.
Jardine et al. 2002; Gregory et al. 2006; Lang et al. 2012; John-
stone et al. 2014). By assuming that the magnetic field is in a
potential state, — × B = 0, it can be defined in terms of a scalar
potential, B = −—ψ . Substituting into Gauss’ law for magnetism,
— · B = 0, we find that the scalar potential is the solution to
Laplace’s equation, — 2ψ = 0. The three components of the mag-
netic field can therefore be expressed as a sum over spherical har-
monics in terms of the associated Legendre polynomials, Plm, as
follows:

Br = −
N∑

l=1

l∑
m=1

[
lalmrl−1 − (l + 1) blmr−(l+2)

]
Plm (cos θ ) eimφ (1)

Bθ = −
N∑

l=1

l∑
m=1

[
almrl−1 + blmr−(l+2)

] d

dθ
Plm (cos θ ) eimφ (2)

Bφ = −
N∑

l=1

l∑
m=1

[
almrl−1 + blmr−(l+2)

]
Plm (cos θ )

im

sin θ
eimφ. (3)

Here, l indicates the spherical harmonic degree and m indicates the
order or ‘azimuthal number’. alm and blm are the amplitudes of each
spherical harmonic component. In order to determine the values of
alm and blm, two boundary conditions are imposed: one at the stellar
surface, r�, and one at the source surface, rss. The stellar surface
boundary is set using a ZDI map. At the source surface, the mag-
netic field is forced to be purely radial, i.e. Bθ = Bφ = 0. Physically,
the source surface is the location beyond which all field lines are
open and carrying a wind. It therefore represents the limit of coro-
nal confinement. In this work, we set the source surface radii to be

1 Our sample includes a number of stars initially presented by Folsom et al.
(2016). These stars were also included in the samples used by Vidotto et al.
(2014b) and See et al. (2015b). However, the masses and radii used in those
works were preliminary values. We have used the updated values for these
stars in this work.
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Table 1. Parameters for our sample: stellar mass, radius, rotation period, Rossby number, open flux, average unsigned dipolar field strength at the stellar
surface, mass-loss rate, angular-momentum-loss rates for the M12 and R15 formulations, instantaneous spin-down time-scale and the observation epoch.
References indicate the paper where the original magnetic map was published.

Star M� r� Prot Ro �open 〈|Bdip|〉 Ṁ J̇M12 J̇R15 τR15 Obs Ref.
ID (M�) (r�) (d) (1022 Mx) (G) (10−12 M� yr−1) (1032 erg) (1032 erg) (Gyr) epoch

Solar-like stars
HD 3651 0.88 0.88 43.4 2.491 5.57 3.65 0.15 0.03 0.02 14.8 – 1
HD 9986 1.02 1.04 23 1.639 1.45 0.69 0.04 0.01 0.01 125 – 1
HD 10476 0.82 0.82 16 0.831 2.41 1.83 0.08 0.02 0.02 52 – 1
κ Ceti 1.03 0.95 9.3 0.673 19.6 10.9 0.66 0.86 0.9 1.94 2012 Oct 2
ε Eri 0.86 0.77 10.3 0.572 17.1 14.9 0.44 0.45 0.5 2.76 2007 Jan 3
– – – – – 11.5 9.9 0.34 0.27 0.28 5 2008 Jan 3
– – – – – 7.4 6.15 0.32 0.17 0.16 8.81 2010 Jan 3
– – – – – 10.3 8.93 0.34 0.25 0.24 5.73 2011 Oct 3
– – – – – 12.5 10.7 0.4 0.32 0.33 4.21 2012 Oct 3
– – – – – 22.8 19.8 0.58 0.67 0.79 1.74 2013 Oct 3
HD 39587 1.03 1.05 4.8 0.349 12.2 5.57 0.77 1.36 1.09 3.08 – 1
HD 56124 1.03 1.01 18 1.302 4.81 2.42 0.13 0.06 0.05 18.9 – 1
HD 72905 1 1 5 0.346 8.98 4.26 0.6 0.78 0.63 5.02 – 1
HD 73350 1.04 0.98 12.3 0.902 7.8 3.93 0.45 0.24 0.19 6.83 – 1
HD 75332 1.21 1.24 4.8 0.445 20.5 6.84 0.61 2.28 2.12 1.73 – 1
HD 76151 1.24 0.98 20.5 1.975 6.51 3.48 0.2 0.08 0.06 13.5 2007 Jan 4
HD 78366 1.34 1.03 11.4 1.245 19.6 9.36 0.82 0.85 0.81 2.03 – 1
HD 101501 0.85 0.9 17.6 0.962 12.7 7.82 0.37 0.22 0.23 3.54 – 1
ξ Boo A 0.85 0.84 5.6 0.304 34.5 25.1 1.08 2.81 3.36 0.75 – 1
– – – – – 7.69 5.26 0.51 0.47 0.39 6.48 2008 Feb 5
– – – – – 15.4 10.5 0.81 1.12 1.11 2.29 2009 July 5
– – – – – 12.6 9.08 0.74 0.93 0.83 3.05 2010 Jan 5
– – – – – 22.9 16.6 0.99 1.86 1.96 1.3 2010 Jun 5
– – – – – 19.3 14 0.78 1.41 1.44 1.76 2010 Jul 5
– – – – – 24.9 18.1 0.69 1.63 1.88 1.35 2011 Feb 5
ξ Boo B 0.72 1.07 10.3 0.448 28.4 12.4 0.98 1.7 1.89 0.63 – 1
18 Sco 0.98 1.02 22.7 1.524 1.92 0.91 0.07 0.01 0.01 69.9 2007 Aug 4
HD 166435 1.04 0.99 3.4 0.252 9.28 4.29 0.64 1.12 0.93 5.12 – 1
HD 175726 1.06 1.06 3.9 0.296 10.7 4.78 0.55 1.22 0.99 4.27 – 1
HD 190771 0.96 0.98 8.8 0.573 12.7 6.61 0.39 0.49 0.48 3.65 – 1
61 Cyg A 0.66 0.62 34.2 1.327 2.42 3.2 0.06 0.01 0.01 59.8 – 1
HN Peg 1.085 1.04 4.6 0.364 34 15.9 1.19 4.37 4.7 0.79 – 1
– – – – – 26.6 12.5 0.82 2.86 3 1.21 2007 Jul 6
– – – – – 13 6.13 0.44 1.08 0.97 3.74 2008 Aug 6
– – – – – 19.1 9.09 0.6 1.81 1.77 2.05 2009 Jun 6
– – – – – 23.7 11.3 0.83 2.63 2.62 1.39 2010 Jul 6
– – – – – 20.3 9.43 0.8 2.2 2.12 1.72 2011 Jul 6
– – – – – 35.5 16.9 1.09 4.36 4.77 0.76 2013 Jul 6
Young Suns
AB Dor 1 1 0.5 0.035 150 77.5 9.03 269 256 0.12 2001 Dec 7
– – – – – 194 99.1 6.91 286 318 0.1 2002 Dec 7
BD-16351 0.9 0.88 3.2 0.19 63.7 42.2 2.21 12.7 16 0.29 2012 Sept 8
DX Leo 0.9 0.81 5.4 0.319 34.3 26.8 0.97 2.55 3.13 0.88 2014 May 8
HII 296 0.9 0.93 2.6 0.155 110 65.6 3.81 36.1 48.1 0.12 2009 Oct 8
HII 739 1.15 1.07 1.6 0.135 18.4 8.13 0.8 5.3 4.34 2.51 2009 Oct 8
HIP 12545 0.95 1.07 4.8 0.31 178 79.6 7.19 52.1 73.3 0.04 2012 Sept 8
HIP 76768 0.8 0.85 3.7 0.186 109 77.7 3.28 21.8 31.9 0.11 2013 May 8
LO Peg 0.75 0.66 0.4 0.019 81.9 97 4.22 84.5 90.2 0.33 2014 Aug 8
PELS 031 0.95 1.05 2.5 0.16 22 9.94 1.29 5.53 4.86 1.26 2013 Nov 8
PW And 0.85 0.78 1.8 0.096 89.6 75.3 3.14 31.2 41.9 0.19 2014 Sept 8
TYC 0486-4943-1.c 0.75 0.69 3.8 0.172 17.2 18.2 0.68 1.35 1.47 2.31 2013 Jun 8
TYC 5164-567-1.c 0.9 0.89 4.7 0.277 98.2 63.8 2.69 14.7 21.3 0.15 2013 Jun 8
TYC 6349-0200-1.c 0.85 0.96 3.4 0.186 69.1 38.5 2.15 14.3 18.2 0.23 2013 Jun 8
TYC 6878-0195-1.c 1.17 1.37 5.7 0.501 137 37.7 4.78 37.2 46.5 0.07 2013 jun 8
V439 And 0.95 0.92 6.2 0.4 18.7 11.4 0.62 1.19 1.21 2.03 2014 Sept 8
V447 Lac 0.9 0.81 4.4 0.262 11.6 8.51 0.66 0.92 0.85 3.94 – 8
Hot Jupiter hosts
τ Boo 1.34 1.42 3 0.328 2.99 0.72 0.22 0.4 0.21 29.6 2008 Jan 9
– – – – – 3.31 0.81 0.27 0.5 0.26 24.2 2008 Jun 9
– – – – – 2.13 0.49 0.16 0.24 0.12 51.2 2008 Jul 9
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Table 1 – continued

Star M� r� Prot Ro �open 〈|Bdip|〉 Ṁ J̇M12 J̇R15 τR15 Obs Ref.
ID (M�) (r�) (d) (1022 Mx) (G) (10−12 M� yr−1) (1032 erg) (1032 erg) (Gyr) epoch

– – – – – 4.45 1.11 0.24 0.61 0.35 17.6 2009 May 10
– – – – – 5 1.25 0.36 0.86 0.48 12.9 2010 Jan 10
– – – – – 5.72 1.45 0.25 0.8 0.5 12.5 2011 Jan 10
HD 46375 0.97 0.86 42 2.777 3.51 2.44 0.09 0.01 0.01 36.1 2008 Jan 10
HD 73256 1.05 0.89 14 1.042 5.59 3.42 0.22 0.09 0.08 15.1 2008 Jan 10
HD 102195 0.87 0.82 12.3 0.695 7.19 5.46 0.25 0.14 0.12 9.47 2008 Jan 10
HD 130322 0.79 0.83 26.1 1.288 2.87 2.12 0.08 0.02 0.01 40.6 2008 Jan 10
HD 179949 1.21 1.19 7.6 0.704 1.73 0.48 0.12 0.05 0.03 67.7 2007 Jun 11
– – – – – 5.53 1.97 0.24 0.26 0.19 12.4 2009 Sept 11
HD 189733 0.82 0.76 12.5 0.649 4.46 2.76 0.34 0.07 0.07 15.5 2007 Jun 12
– – – – – 6.01 5.03 0.32 0.12 0.1 10.9 2008 Jul 12
M dwarf stars
CE Boo 0.48 0.43 14.7 0.387 45.9 128 1.55 0.78 1.24 0.43 2008 Jan 13
DS Leo 0.58 0.52 14 0.461 17.3 32.7 0.62 0.26 0.32 2.22 2007 Jan 13
– – – – – 12.2 22.2 0.44 0.15 0.18 3.92 2007 Dec 13
GJ 182 0.75 0.82 4.3 0.2 104 78.9 3.59 18.1 26.6 0.11 2007 Jan 13
GJ 49 0.57 0.51 18.6 0.6 10.1 19.8 0.27 0.07 0.09 5.88 2007 Jul 13
AD Leo 0.42 0.38 2.2 0.051 57.1 204 3.36 8.23 12.7 0.23 2007 Jan 14
– – – – – 58.4 209 2.87 7.68 12.3 0.23 2008 Jan 14
DT Vir 0.59 0.53 2.9 0.096 33.8 61.3 1.18 3.25 4.48 0.79 2007 Jan 13
– – – – – 10.5 8.83 1.38 0.66 1.11 3.17 2007 Dec 13
EQ Peg A 0.39 0.35 1.1 0.022 87.8 369 2.52 18.9 36 0.15 2006 Aug 14
EQ Peg B 0.25 0.25 0.4 0.006 61.1 505 1.75 18.8 35.3 0.22 2006 Aug 14
EV Lac 0.32 0.3 4.4 0.075 103 588 3.45 5.56 11.8 0.08 2006 Aug 14
– – – – – 94.8 542 3.04 4.83 10.2 0.1 2007 July 14
DX Cnc 0.1 0.11 0.5 0.004 2.47 104 0.06 0.07 0.11 15.3 2007 15
– – – – – 1.23 49.8 0.04 0.03 0.04 43.9 2008 15
– – – – – 1.48 62.7 0.04 0.03 0.05 33.8 2009 15
GJ 1156 0.14 0.16 0.5 0.004 2.26 44.6 0.1 0.12 0.14 18.6 2007 15
– – – – – 4.67 92 0.16 0.28 0.41 6.44 2008 15
– – – – – 3.85 76.3 0.13 0.21 0.3 8.86 2009 15
GJ 1245B 0.12 0.14 0.7 0.006 6.34 164 0.16 0.23 0.41 3.52 2006 15
– – – – – 1.93 50 0.07 0.05 0.07 20.6 2008 15
OT Ser 0.55 0.49 3.4 0.105 38.7 82.1 1.67 3.43 4.82 0.56 2008 Feb 13
V 374 Peg 0.28 0.28 0.5 0.007 107 698 2.79 39.8 81.6 0.1 2005 Aug 16
– – – – – 94.4 616 2.46 33.3 66.9 0.12 2006 Aug 16
WX Uma 0.1 0.12 0.8 0.006 30.5 1090 1.07 2.06 4.91 0.2 2006 15
– – – – – 40.4 1449 1.39 3.07 7.7 0.13 2007 15
– – – – – 40.4 1446 1.3 2.95 7.52 0.13 2008 15
– – – – – 59.7 2137 1.61 4.69 13.2 0.08 2009 15
YZ Cmi 0.32 0.29 2.8 0.048 115 707 4.15 10.3 22 0.07 2007 Jan 14
– – – – – 110 675 4.09 9.79 20.6 0.08 2008 Jan 13
GJ 176 0.49 0.47 39.3 1.059 3.62 7.26 0.15 0.01 0.01 22.6 2013 Oct 17
GJ 205 0.63 0.55 33.6 1.229 11.3 19.1 0.29 0.05 0.06 5.31 2013 Oct 18
GJ 358 0.42 0.41 25.4 0.575 43.4 133 1.11 0.34 0.58 0.44 2014 Jan 18
GJ 479 0.43 0.42 24 0.559 11.5 33.3 0.29 0.05 0.07 3.82 2014 Apr 18
GJ 674 0.35 0.4 35.2 0.66 33.5 108 0.85 0.17 0.29 0.5 2014 May 17
GJ 846 0.6 0.54 10.7 0.369 5.31 9.39 0.14 0.05 0.06 17.1 2013 Sept 18
– – – – – 10.9 19.1 0.29 0.15 0.18 5.29 2014 June 18

1: Petit et al. (in preparation); 2: do Nascimento et al. (2014); 3: Jeffers et al. (2014); 4: Petit et al. (2008); 5: Morgenthaler et al. (2011); 6: Boro Saikia et al.
(2015); 7: Donati et al. (2003); 8: Folsom et al. (2016); 9: Fares et al. (2009); 10: Fares et al. (2013); 11: Fares et al. (2012); 12: Fares et al. (2010); 13: Donati
et al. (2008); 14: Morin et al. (2008b); 15: Morin et al. (2010); 16: Morin et al. (2008a); 17: Hébrard et al. (in preparation); 18: Hébrard et al. (2016).

rss = 3.41r� for the entire sample in line with previous studies (Fares
et al. 2010, 2012; See et al. 2015a). It is important to note that this is
a simplifying assumption and that one should expect the source sur-
face radii to vary with the fundamental parameters of a star (Réville
et al. 2015b). Indeed, to properly calculate the source surface radius,
one should account for the thermal coronal energy, the bulk kinetic
energy of the wind and the magnetic field energy. MHD simulations
are able to self-consistently model the interactions between these
components (see Section 3.4 for further comparison between our

models and multidimensional MHD models). It is therefore possible
to estimate effective source surface radii from MHD simulations.
Results indicate that the source surface varies by a factor of only
a few (e.g. Vidotto et al. 2014a). The choice of a constant source
surface radii is therefore a reasonable assumption, at least for this
initial work. We will discuss the qualitative effects of varying the
source surface radii in Section 3.3.2 leaving detailed exploration of
the effect of varying rss for future work. Equations (1)–(3) apply
only between r� and rss. Beyond rss, the field remains purely radial
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1546 V. See et al.

Figure 1. The sample used in this work plotted in rotation-period–mass
parameter space. Stars with multiple ZDI maps are plotted with open red
points. Dashed lines indicate a stellar mass of 0.5 M� and Rossby numbers
of 1.0, 0.1 and 0.01. This is an updated version of fig. 1 from See et al.
(2015b).

and decays as r−2 on any given field line. The open flux of the
star can then be determined by integrating the absolute radial field
strength over the source surface as follows:

�open =
∮

rss

|Br (rss)| dS. (4)

2.2 Wind speed, density and mass-loss rate

In this work, we will use a similar wind model to that of See et al.
(2015a). For the Sun, the wind speed is known to be correlated
with the amount of field line divergence of the magnetic field lines
(Levine, Altschuler & Harvey 1977; Wang & Sheeley 1990, 1991).
Arge & Pizzo (2000) quantified this relationship as

vwind (rEarth) = 267.5 + 410

f
2/5
s

[km s−1], (5)

where the magnetic expansion factor is

fs =
(

r�

rss

)2
B(r�)

B(rss)
. (6)

In equation (6), B(rss) is the magnetic field strength at a given
location on the source surface and B(r�) is the magnetic field strength
at the stellar surface along the same field line. These values are
determined from the field extrapolation using equations (1)–(3).
Since we are studying stellar systems, we will assume that equation
(5) gives the wind velocity at a distance of 215r� – the distance at
which Earth orbits the Sun.

Similar to See et al. (2015a) and Jardine & Collier Cameron
(2008), we use a scaled solar wind density in our model. The wind
density is set to be ρ(r = 215r�) = fmag × 1.7 × 10−23 g cm−3 at
a distance of 215r�, where fmag is the average foot point strength
of open field lines normalized to the average solar field strength
(1 G) and 1.7 × 10−23 g cm−3 is the solar wind density at Earth.
The scaling, fmag, accounts for the denser winds of more active stars
(Mestel & Spruit 1987). For the stars in our sample, fmag ranges
from ∼1 for the least-active solar-like stars to ∼3 × 103 for the
most-active M dwarfs.

With knowledge of the wind speed and density, the total mass-
loss rate of a star can be calculated by integrating the mass-loss

rate per unit surface area over a closed surface encompassing the
star beyond the source surface. Due to the way the wind speed and
density are calculated, it is convenient to integrate over a spherical
surface with a radius of 215r�, i.e.

Ṁ =
∮

215r�

ρvwind dS. (7)

For an arbitrary stellar wind configuration, the component of the
wind normal to the shell would be required to calculate the mass-
loss correctly. However, since the wind flows along field lines that
are radial past the source surface, the wind vector is, by definition,
normal to the integrating surface in our model.

2.3 Angular-momentum-loss rates

In this work, we will make use of the formulations of Matt et al.
(2012b, henceforth M12) and Réville et al. (2015a, henceforth R15)
in order to estimate angular-momentum-loss rates for our stellar
sample. These authors conducted a series of multidimensional MHD
simulations exploring the dependence of the angular-momentum-
loss rate on various parameters of the star. From these simulations,
M12 found the following expression for the angular-momentum-
loss rate:

J̇M12 = K2
1 B4m1

� Ṁ1−2m1r4m1+2
�


�(
K2

2 v2
esc + 
2

�r
2
�

)m1
. (8)

Building on the work of M12, R15 found the following expression
for the angular-momentum-loss rate:

J̇R15 = Ṁ
�r
2
� K2

3

(
ϒopen(

1 + f 2/K2
4

)1/2

)2m2

. (9)

In these formulations, B� is the equatorial dipolar field strength at
the stellar surface, Ṁ is the mass-loss rate, r� is the stellar radius,

� is the angular rotation speed, vesc = (2GM�/r�)1/2 is the stellar
escape velocity, f = 
�r

3/2
� (GM�)−1/2 is the angular rotation speed

normalized to the break-up speed, ϒopen = �2
open/(r2

� Ṁvesc) is a
measure of the magnetization of the open field lines and K1 =
1.3, K2 = 0.0506, K3 = 0.65, K4 = 0.06, m1 = 0.2177 and m2 =
0.31 are fit parameters determined from the results of simulations.2

A key assumption of the M12 formulation is a dipolar magnetic
field geometry while the R15 formulation encapsulates the effects
of more complex field geometries. We shall explore the difference
between these two formulations in Section 3.3.

3 R ESULTS

3.1 Coronal magnetic field

In Fig. 2, we plot the open flux against rotation period and Rossby
number, colour coded by stellar mass. The open flux values are
listed in Table 1. The open flux displays a similar behaviour in both
figures, increasing with decreasing rotation period/Rossby number
and showing a large spread at the lowest rotation periods/Rossby
numbers. However, the scatter is reduced when plotting against the
Rossby number. A similar reduction in the scatter of other magnetic
activity proxies is seen when they are plotted against Rossby number
rather than rotation period, most notably X-ray emission (Noyes
et al. 1984; Pizzolato et al. 2003; Wright et al. 2011). On the other

2 The value of K3 is given as 1.4 by R15. However, this is a typographical
error and the true value is K3 = 0.65 (Réville, private communication).
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Figure 2. Open flux as a function of (a) rotation period and (b) Rossby number are plotted with circle points. Stars mapped over multiple epochs are joined
by a line. Each point is colour coded by stellar mass. Open fluxes calculated from self-consistent 3D MHD simulations are also shown (red squares). The fit
to the Ro > 0.1 stars in panel (b) – dashed line – has the form �open[Mx] = (4.16 ± 0.26) × 1022 Ro−1.51 ± 0.13. Data points from 3D MHD simulations (red
squares) are not included in the fit.

hand, it should be noted that Reiners, Schüssler & Passegger (2014)
argue that the rotation period is a more fundamental parameter than
Rossby number in the context of dynamo action.

While Fig. 2(b) looks similar to the classical activity–rotation
relationship observed in X-ray studies, there are some noticeable
differences. Usually, there is a clear change in behaviour at Ro ∼ 0.1
as stars transition from the saturated to unsaturated regimes. The
unsaturated regime is still evident in Fig. 2(b) but the saturated
regime is less obvious compared to other activity proxies due to
the relative dearth of stars with 0.01 < Ro < 0.1 in our sample. At
Ro < 0.01, a sharp change in behaviour is observed. In this regime,
the open flux values show no dependence on Rossby number and
are spread over two orders of magnitude. These are the lowest mass
stars in our sample (<0.3 M�). As discussed previously in the
literature, low-mass M dwarfs show two distinct sets of properties:
either strong dominantly dipolar fields or weak multipolar fields
(Morin et al. 2010). This explains why there is such a large spread
of open flux values in such a narrow Rossby number range. Given
the uncertainty in the behaviour in the Ro < 0.1 regime, we perform
a fit to the stars with Ro > 0.1 only. This fit has the form

�open[Mx] = (4.16 ± 0.26) × 1022 Ro−1.51±0.13 (10)

and is shown as a dashed line in Fig 2(b). All the fits in this paper
used the bisector ordinary least-squares method (Isobe et al. 1990).
The errors in the fit are calculated only by considering the scatter in
the points without considering the intrinsic error in the individual
data points. It is important to note that the form of this fit, as
well as other fits presented in the rest of this work, will depend
on the adopted convective turnover times. We have chosen to use
the empirically determined prescription of Wright et al. (2011) but
different prescriptions may produce slightly different fits. Vidotto
et al. (2014b) determined fits for the surface flux and unsigned
average magnetic field strength as a function of Rossby number
for a sample of stars similar to the one used in this work. These
authors tested a number of different prescriptions for the convective
turnover time and found that, while the fit values changed, they did
agree to within 2σ (see their appendix A5).

A number of the stars in our sample have also been modelled
using self-consistent 3D MHD simulations that incorporate the same
ZDI maps that we use in this work (see Section 3.4 for further

discussion). We have plotted the open flux values of these stars,
from the MHD simulations, using red squares in Fig. 2. It is clear
that the MHD values all fall within the general trend shown by the
PFSS model values.

It is worth considering how the resolution of the ZDI maps may
affect the results of these extrapolations. The highest spherical har-
monic mode that can be reconstructed by ZDI depends on the v sin i
of the star in question (see Morin et al. 2010 and Fares et al. 2012
for further details). Within our sample, most maps have lmax val-
ues between 5 and 10. Jardine, Vidotto & See (2017) conducted a
systematic study of the dependence of a PFSS extrapolation on the
resolution of the magnetic map used. These authors took magne-
tograms of the Sun over two solar cycles and calculated the total
magnetic flux at the stellar surface and the open flux. They repeated
this process, truncating the lmax of the maps to lower values and
found that the surface flux increased with higher lmax but that the
open flux had very little dependence on lmax. Indeed, the amount
of open flux is determined predominantly by the dipole compo-
nent of the Sun’s magnetic field. This is not surprising given that
the dipole component decays most slowly with increasing height
from the stellar surface. In Fig. 3(a), we plot the average unsigned
magnetic field strength in the dipole component of the ZDI map,
〈|Bdip|〉, against the open flux for our sample of stars. The symbol
colours and meanings are the same as Fig. 2. Broadly, the trend is
of increasing open flux with increasing dipole field strength. How-
ever, there is a large amount of scatter in the plot. This can be
attributed to the different radii of the stars in our sample. Indeed,
the influence of the stellar mass, and hence radii, can be seen in
Fig. 3(a) where the colours of the points vary systematically across
the plot. In Fig. 3(b), we account for this effect by plotting the
dipole field strength against the open flux normalized by the stellar
surface area.3 All the points collapse on to a very narrow relation
given by 〈|Bdip|〉 = (2.97 ± 0.02)(�open/4πr2

� )(1.011±0.003). The fact

3 The units of �open/4πr2
� are Mx cm−2. Dimensionally, this is equivalent

to a magnetic field strength measured in Gauss. However, the quantity
�open/4πr2

� does not correspond to any physically meaningful field strength
and so we opt to express it in this form. Additionally, this form will be more
useful for future studies since the open flux of a star can be easily estimated
from the dipole field strength and stellar radii.
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Figure 3. Average unsigned magnetic field strength of the dipole component (l = 1) at the stellar surface against (a) the open flux and (b) the open flux
normalized by stellar surface area. Symbol colours and meanings are the same as Fig. 2. The dashed line in panel (b) is a power-law fit of the form
〈|Bdip|〉 = (2.97 ± 0.02)(�open/4πr2

� )(1.011±0.003).

Figure 4. Average unsigned magnetic field strength of the dipole compo-
nent (l = 1) at the stellar surface against Rossby number. Symbol colours
and meanings are the same as Fig. 2. The fit to the Ro > 0.1 stars has the
form 〈|Bdip|〉 = (2.52 ± 0.20) Ro−1.65 ± 0.14.

that all the points lay on such a tight sequence and the power index
of ∼1 demonstrates that it is predominantly the dipole components
of the magnetic field that determines the open flux of a star, at least
for this choice of source surface radii. It should be expected that for
sufficiently small choices of the source surface radii, higher order
field modes will affect the value of the open flux (see Section 3.3.2
for further discussion of the impact of the source surface radius).
For completeness, we plot 〈|Bdip|〉 against Rossby number in Fig. 4.
The fit to the Ro > 0.1 stars (dashed line) has the form 〈|Bdip|〉 =
(2.52 ± 0.20) Ro−1.65 ± 0.14. Together, Figs 2(b), 3(a) and 4 show the
three possible 2D projections of our sample in (〈|Bdip|〉, �open, Ro)
space.

3.2 Mass-loss rates

In Fig. 5, we plot the mass-loss rate, as estimated using the method
described in Section 2, against Rossby number for our sample of
stars. The mass-loss rates for each star are listed in Table 1. As with

Figure 5. Predicted mass-loss rate against Rossby number. Symbol colours
and meanings are the same as Fig. 2. The fit to the Ro > 0.1 stars (dashed
line) has the form Ṁ[M� yr−1] = (1.60 ± 0.09) × 10−13 Ro−1.49±0.13.
Data points from 3D MHD simulations (red squares) are not included in
the fit.

the open flux, the scatter in the plot is reduced when plotting against
Rossby number rather than rotation period (not shown). The fit to
the Ro > 0.1 stars (dashed line) has the form

Ṁ[M� yr−1] = (1.60 ± 0.09) × 10−13 Ro−1.49±0.13. (11)

The overall shape of this plot is very similar to that of Fig. 2(b) (�open

versus Ro). This is to be expected given the model we have used to
estimate the mass-loss rates. The presence of the scaling factor, fmag,
that accounts for the stronger winds of more active stars, means that
the wind density will scale with the surface magnetic field strength.
However, the mass-loss rate also has a dependence on the surface
area of the star, just as the open flux does, explaining why our
predicted mass-loss rates and open fluxes have the same qualitative
dependence on Rossby number. Our predicted mass-loss rates are
in good agreement with the estimates derived from self-consistent
MHD simulations (red squares) at larger Rossby numbers. However,
the MHD estimates appear to have a steeper dependence on Rossby
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Figure 6. Mass-loss rate per unit surface area against surface X-ray flux.
Symbol colours and meanings are the same as Fig. 2. The black dashed

line is a power-law fit to the whole sample of the form Ṁ/r2
�

Ṁ�/r2�
= (5.51 ±

4.89) × 10−7 F 1.32±0.15
X . Fitting to the M� > 0.5 M� stars only, we find

a fit of Ṁ/r2
�

Ṁ�/r2�
= (5.01 ± 2.53) × 10−4 F 0.79±0.08

X (fit line not shown).

Overplotted in magenta are the indirect mass-loss rate estimates of Wood
et al. (2014, square symbols), their wind dividing line (solid line) and their fit
to their stars below the wind dividing line given by, Ṁ/r2

� ∝ F 1.34
X (dashed

line).

number and differ by an order of magnitude or more at smaller
Rossby numbers. This is not necessarily surprising given that both
models are calibrated using solar values. One way to improve the
agreement of the Ṁ estimates would be to adjust the wind density in
the PFSS or MHD model (or both). The wind density is controlled
by the fmag parameter in our PFSS model and by the base density of
the wind, n0, in the MHD models. Fig. 5 suggests that the ratio of
these two model parameters, n0/fmag, is larger for stars with lower
Rossby numbers. Better agreement would likely be found if the
models were formulated such that n0/fmag remained constant as a
function of Rossby number.

Currently, the best observational constraints on the mass-loss
rates of low-mass stars come from indirect estimates based on Lyα

observations (Wood 2004). This author has estimated the mass-loss
rates of ∼10 stars and found that they have a power-law dependence
on the surface X-ray flux of Ṁ/r2

� ∝ F 1.34
X (Wood et al. 2005).

However, this trend appears to break down for the most active
stars. A number of stars with FX > 106 erg cm−2 s−1 seem to have
substantially lower mass-loss rates than expected from the stated
power law (Wood et al. 2014). These authors suggest that some
mechanism, such as a change in magnetic field geometry, inhibits the
mass-loss rates of the most active stars and call this divide the ‘wind
dividing line’. In Fig. 6, we reproduce the mass-loss rate versus FX

plot of Wood et al. (2014, their fig. 4) with magenta squares as well
as their wind dividing line. Additionally, we also plot our mass-loss

estimates. A power-law fit to our sample with the form Ṁ/r2
�

Ṁ�/r2�
=

(5.51 ± 4.89) × 10−7 F 1.32±0.15
X is shown by the black dashed line.

Overall, our mass-loss rates increase with activity, albeit with some
scatter. Below the wind dividing line, our mass-loss rates increase
with increasing activity, which is in qualitative agreement with the
results of Wood et al. (2014). While our mass-loss rates appear to
be larger than theirs at the lowest activities, the power-law index of
our fit, 1.32, is remarkably close to their value of 1.34. However,

this may be a coincidence. By eye, the mass-loss rates of the stars in
our sample below the wind dividing line clearly having a shallower
dependence on FX than the Lyα sample. Additionally, the fit is
influenced by the presence of stars with M� < 0.5 M�. These stars
are known to have different magnetic field properties, most likely as
a result of different internal structures to their higher mass counter
parts (Donati et al. 2008; Morin et al. 2008b). Removing these stars,

we obtain a fit of Ṁ/r2
�

Ṁ�/r2�
= (5.01 ± 2.53) × 10−4 F 0.79±0.08

X .

Unlike Wood et al. (2014), our estimated mass-loss rates continue
to increase with increasing activity beyond the wind dividing line.
Indeed, we see no substantial change in behaviour in our sample
across the FX = 106 erg cm−2 s−1 line. This result is in agreement
with previous mass-loss simulations that have also found no change
in behaviour over the wind dividing line (See et al. 2014; Johnstone
et al. 2015) as well as the study of Vidotto et al. (2016). This latter
study looked at the large-scale magnetic topologies of all the stars
studied by Wood et al. (2014) that had ZDI maps and found that
there was no abrupt change in their magnetic field properties over
the wind dividing line. Given the small number of stars in the study
of Wood et al. (2014), it remains to be seen whether the idea of a
wind dividing line will survive after more stars have had their mass-
loss rates estimated with the Lyα technique. On the other hand,
if it emerges that stars with FX > 106 erg cm−2 s−1 truly do suffer
from reduced mass-loss rates, it would be an indication that current
models of mass-loss are missing important physics.

3.3 Angular-momentum loss

3.3.1 Trends with Rossby number

In Fig. 7(a), we show the angular-momentum-loss rate, as calculated
with the R15 braking law (equation 9), against Rossby number. The
angular-momentum-loss rate shows a similar qualitative behaviour
to the open flux (Fig. 2b) and mass-loss rate (Fig. 5); increasing
J̇R15 with decreasing Rossby number and a large spread in J̇R15

below Ro ∼ 0.01. This is unsurprising given the dependence of the
angular-momentum-loss rate on the open flux and mass-loss rate.
The fit to the Ro > 0.1 stars (dashed line) has the form

J̇R15[erg] = (4.65 ± 0.47) × 1030 Ro−3.19±0.25. (12)

In Fig. 7(b), we show the instantaneous spin-down time-scale,
τR15 = J/J̇R15 for our sample of stars. Values for both J̇R15 and τR15

are listed in Table 1. In order to calculate the angular momentum,
J = I
�, we require the moments of inertia, I, for each star. These
were estimated using the evolutionary models of Baraffe et al.
(2015) at an age of 500 Myr. This should be representative of the
moments of inertia for these stars since they do not evolve signif-
icantly over their main-sequence lifetime. The fit to the Ro > 0.1
stars (dashed line) has the form τR15 = (20.0 ± 1.9) Ro2.34 ± 0.22.
The angular-momentum-loss rates and spin-down time-scales4 es-
timated from MHD simulations (red squares) agree well with our
results. This is in spite of the fact that the PFSS and MHD estimates
for the mass-loss rates used to calculate the angular-momentum-
loss rate show larger disagreements (Section 3.2). The reason for
this is that the angular-momentum-loss rate (equation 9) has a much

4 Our method of estimating the stellar angular momentum, J, differs from
the method used by the MHD simulations. Therefore, we have recalculated
the spin-down time-scales for the MHD simulations using our angular-
momentum values to provide a consistent comparison to our model results.
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Figure 7. (a) Angular-momentum-loss rates, J̇R15 and (b) spin-down time-scale, τR15, against Rossby number. Symbol colours and meanings are the same as
Fig. 2. The fits to the Ro > 0.1 stars have the form J̇R15[erg] = (4.65 ± 0.47) × 1030 Ro−3.19±0.25 in panel (a) and τR15[Gyr] = (20.0 ± 1.9) Ro2.34 ± 0.22 in
panel (b). Data points from 3D MHD simulations (red squares) are not included in the fit.

stronger dependence on the open flux, J̇R15 ∝ �4m2
open ∝ �1.24

open, com-
pared to the mass-loss rate, J̇R15 ∝ Ṁ1−2m2 ∝ Ṁ0.38.

The angular-momentum-loss rates of stars with Ro > 0.01 de-
crease as a function of Rossby number. Correspondingly, the spin-
down time-scale increases with Rossby number. This is a simple
consequence of stellar activity declining as stars spin-down over
their lifetimes. However, the spin-down behaviour of stars with
Ro < 0.01 is much more intriguing. This regime consists of all
the M� < 0.2 M� stars whose magnetic fields exist in one of two
distinct states (Morin et al. 2010), as well as a number of slightly
higher mass stars (all <0.28 M�). The two distinct set of mag-
netic characteristics has resulted in two groups of stars. Those with
strong dipolar fields (V374 Peg, EQ Peg B and WX UMa) have
large angular-momentum-loss rates and lie roughly at the tail end
of the sequence of Ro > 0.01 stars with spin-down time-scales of
τR15 ∼ 100–200 Myr. However, the stars with weak and more com-
plex field structures (DX Cnc, GJ 1156 and GJ 1245B) have angular-
momentum-loss rates that are two orders of magnitude weaker com-
pared to their strong-field counterparts, despite having comparable
Rossby numbers. These stars have much longer spin-down scales
of the order of τR15 ∼ 3–40 Gyr. It is perhaps odd that the stars in
both the strong- and weak-field states have similar rotation periods
despite the large difference in the spin-down time-scales. A coher-
ent theory of angular-momentum evolution of these types of stars
will need to explain how this is possible.

3.3.2 Comparing braking laws

At this stage, it will be instructive to compare the M12 and R15
braking laws and their ability to predict the angular-momentum-
loss rate of a star. The R15 braking law is formulated to account
for the effects of complex magnetic field geometries whereas the
M12 braking law was constructed by considering only dipolar ge-
ometries. However, the R15 braking law is expressed in terms of
the open flux while the M12 braking law is expressed in terms of
the surface field strength of the dipolar component. While better
capturing the effects of complex field geometries, this means that
the R15 law is also, in practice, more difficult to use since the open
flux of a star is a more difficult quantity to obtain or estimate. In

Figure 8. Comparison of angular-momentum-loss rates as estimated by the
braking laws of M12 and R15. The dashed line indicates J̇R15 = J̇M12. Each
point is colour coded by the average magnetic field strength at the stellar
surface.

particular, when using the PFSS model, accurately estimating the
open flux of a star will require an accurate estimate of the source
surface radius, which is a free parameter of the model.

In Section 3.1, we showed that the open flux is dominated by
the dipole component of the field, which suggests that the M12
braking law is sufficient to provide an accurate estimate of the
angular-momentum-loss rate of a star. In Fig. 8, we compare the
angular-momentum-loss rates as calculated by the formulations of
M12 and R15, the values of which are listed in Table 1. When
calculating J̇R15 and J̇M12, the open flux, as shown in Fig. 2, and the
average surface field strengths of the dipolar component, as shown
in Fig. 3, are used, respectively. The two formulations agree very
well with most stars agreeing to within a factor of ∼1.5. Even the
stars with the largest discrepancies still agree to within a factor
of ∼3.

When interpreting Fig. 8, there are a number of factors of which
we must be mindful. First, our result that the open flux is predom-
inantly determined by the dipolar component of the field is based
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on the assumed source surface radii of rss = 3.41r� for all our
stars. However, the source surface radius is a free parameter within
our model. If the source surface radius is actually smaller than our
chosen value, higher order multipoles may have a non-negligible
effect on the open flux making the M12 formulation less accurate.
Secondly, the R15 formulation is also dependent on our choice of
source surface radius. For a given input ZDI map, the open flux
decreases for larger choices of the source surface radius and vice
versa. In reality, one would expect the source surface radius to
vary as a function of the fundamental parameters of a star (Réville
et al. 2015b).

It is interesting to note that there is a systematic trend with
the average surface magnetic field strength, 〈BZDI〉, in Fig. 8. The
J̇R15 > J̇M12 stars have the strongest surface magnetic fields, and,
conversely, J̇R15 < J̇M12 stars have the weakest. It is not unreason-
able to suggest that stars with stronger magnetic fields may have
larger source surface radii. Increasing the source surface radii of
the J̇R15 > J̇M12 (strong field) stars would reduce their open flux
and bring their J̇R15 estimates closer to their J̇M12 estimates. Con-
versely, reducing the source surface radii of the J̇R15 < J̇M12 (weak
field) stars would increase their open flux and also bring their J̇R15

estimates closer to their J̇M12 estimates. Of course, we should re-
member that our aim is not necessarily to make the J̇R15 estimates
match the J̇M12 estimates since, as we have already discussed, the
J̇M12 formulation will become less accurate for stars where higher
order field mores are not negligible.

It is clear that the source surface radius is an important parameter
to set properly. Fig. 8 shows that the M12 and R15 formulations
are in reasonable agreement. It is likely that both of these for-
mulations, as implemented in this work, can provide a reasonably
reliable estimate of the angular-momentum-loss rate of a star. This
is especially true when considering that the discrepancies between
the M12 and R15 formulations are much smaller than the scatter in
the physical properties input into these formulations, e.g. open flux.
However, the issues of higher order field modes and our assumption
of a constant source surface radius means that neither formulation,
as implemented in this work, are perfect estimates. Further inves-
tigation will be required to determine when the M12 formulation
is valid to use (since it is the easier formulation to use) and what
source surface radius to use when the R15 formulation is used.

3.4 Comparison to 3D MHD simulations

MHD simulations have an advantage over the model used in this
work because they include more self-consistent physics at the cost
of being much more computationally expensive. A computationally
cheaper model, such as the one we have presented here, is therefore
required to model this many stars within a reasonable time frame.
Both types of model suffer from the fact that wind densities are
difficult to constrain observationally. With these points in mind,
it is important to study the differences in the models in order to
understand how the choice of model affects the end results.

The MHD simulations that we compare to, make use of the BATS-R-
US numerical code (Powell et al. 1999). This is a 3D code that solves
the ideal MHD equations on an adaptive mesh grid in Cartesian coor-
dinates. The simulations require an initial magnetic field and stellar
wind configuration. The wind is initialized using a thermally driven
Parker wind (Parker 1958) while the 3D magnetic field structure
is initialized using a ZDI map and the PFSS model. The wind and
field are then allowed to interact self-consistently until the simula-
tion relaxes to a steady-state solution. As discussed in Section 3.2,
the base wind density is a free parameter within these simulations.

We have demonstrated that our results broadly agree with those of
the MHD simulations. It is clear that the open flux (Fig. 2), angular-
momentum-loss rates (Fig. 7a) and instantaneous spin-down time-
scales (Fig. 7b) calculated from MHD simulations lie within the
scatter of the results from our own models. While the mass-loss
estimates agree reasonably well for low-activity stars, the agreement
becomes worse at lower Rossby numbers (Fig. 5). This is likely
due to the different choices of wind densities in the models (see
Section 3.2). On the whole, our model appears to produce reasonable
values and trends for these parameters.

As well as comparing overall trends, we can make a direct com-
parison of the models for each of the stars that have been mod-
elled with an MHD code. In Table 2, we list estimates for the open
flux, mass-loss rate, angular-momentum-loss rate and instantaneous
spin-down time-scale from both models, as well as the ratio of the
values obtained under both models. The open fluxes show a very
good agreement – within a factor of ∼2 for the large majority of
the stars. The mass-loss rates on the other hand match less well. In
some cases, the mass-loss rates obtained from our PFSS model and
the MHD models differ by an order of magnitude or more. In par-
ticular, the discrepancy is larger for M dwarf stars. As discussed in
Section 3.2, a better agreement between the models could be found
by adjusting the wind densities in each of the models. The angular-
momentum-loss rates, J̇ , and spin-down time-scales, τ , both show
a reasonable agreement. These values agree to within a factor of
∼4 for the majority of the stars. As with the mass-loss rates, the
angular-momentum-loss rates estimated from our PFSS model are
lower than the values obtained from the MHD models. Given the
dependence of J̇ on Ṁ (see equation 9), reducing the discrepancy
in Ṁ between the models would also decrease the discrepancy in
J̇ . Overall, our computationally efficient PFSS model provides a
reasonable match to the MHD models although there is still room
for improvement.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In recent years, large strides have been made in understanding the
factors that affect the rotational evolution of main-sequence stars.
In particular, the dependence of the angular-momentum-loss rate
on the open flux of a star has been quantified through the use of
MHD simulations (Vidotto et al. 2014a; R15). Formulating a brak-
ing law in terms of the open flux is an improvement over previous
implementations since it accounts for the complex magnetic field
geometries that stars are known to have. In principle, such a braking
law can be used to compute the rotation-period evolution of a star
over its main-sequence lifetime. However, there have been little to
no systematic studies investigating how the open flux varies as a
function of fundamental stellar parameters.

In this work, we use a sample of stars that have had their large-
scale surface magnetic fields mapped using the ZDI technique to
study various parameters related to stellar spin-down. This is the
largest sample of ZDI maps assembled in one study to date. Using
the PFSS method, we analyse how the open flux of these stars,
as well as their mass-loss rates, angular-momentum-loss rates and
instantaneous spin-down time-scales vary as a function of funda-
mental stellar parameters. The choice to use a PFSS model was
driven by the requirement of a computationally efficient method
with which to model our large sample. Indeed, attempting to model
all our stars with a multidimensional MHD model would have taken
a prohibitively long amount of time. Our results indicate that the
PFSS model provides results that are in reasonable agreement with
MHD models.
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We find that the open flux for the majority of our stars is predom-
inantly determined by the dipole component of the magnetic field
for our choice of the source surface radii (rss = 3.41r�). Similarly to
previous studies of other proxies of magnetic activity (e.g. Wright
et al. 2011), the open flux, mass-loss rates and angular-momentum-
loss rates all show less scatter when plotted against Rossby number
rather than rotation period. In the unsaturated regime (Ro � 0.1),
each of these parameters increase with decreasing Rossby num-
ber. At Ro � 0.1, magnetic proxies typically saturate. We also see
evidence of saturation in the open flux, mass-loss rates and angular-
momentum-loss rates although it is not as clear as it is for other
magnetic proxies because of a dearth of stars in our sample in this
regime. When comparing to mass-loss rates estimated from the Lyα

technique, we do not predict a drop in mass-loss rates above the wind
dividing line as Wood et al. (2014) suggest. Further work will be
required to determine the reason for this difference in mass-loss rate
behaviour at the highest activities. Clarifying how mass-loss rates
evolve over time, especially early on in the lifetime of a star, will be
crucial to understanding whether potentially habitable planets can
retain their atmospheres (e.g. Ribas et al. 2016).

At the smallest Rossby numbers (Ro � 0.01), the behaviour of
the open flux, mass-loss and angular-momentum-loss rates changes
abruptly. Due to the presence of both strong dipolar magnetic
fields and weak multipolar fields in the lowest mass stars (Morin
et al. 2010), the open flux, mass-loss rates, angular-momentum-loss
rates and spin-down time-scales of these stars are spread out over
many orders of magnitude over a very narrow range of Rossby
numbers. Models of angular-momentum evolution (e.g. Reiners &
Mohanty 2012; Matt et al. 2015) typically do not account for both
the strong- and weak-field states in the lowest mass M dwarfs. The
model of Reiners & Mohanty (2012) predicts long spin-down time-
scales for the lowest mass stars due to their small stellar radii. Our
model also predicts long spin-down time-scales for the low-mass M
dwarfs but only for the weak multipolar stars. Unlike the model of
Reiners & Mohanty (2012), we simultaneously predict a population
of low-mass M dwarfs with much shorter spin-down time-scales,
i.e. those with strong dipolar fields.

A number of suggestions have been proposed to explain the
two magnetic field states observed for the lowest mass M dwarfs.
The first is that a parameter other than rotation and mass, such
as age, may have an effect. Indeed, Morin et al. (2010) discuss the
possibility these stars switch from a weak multipolar state to a strong
dipolar state at some point in their lifetimes. This suggestion is
supported by the fact that the weak-field stars in their sample belong
to a young kinematic population while the strong-field stars belong
to older kinematic populations. Another suggestion is that these
stars switch repeatedly between the two states as part of some form
of magnetic cycle on the time-scale of decades (Morin et al. 2010;
Kitchatinov, Moss & Sokoloff 2014). Finally, it may be the case that
these stars occupy a bistable region of parameter space such that two
different stable field configurations are possible for a very similar
set of stellar parameters (Morin et al. 2011; Gastine et al. 2013).
Under this scenario, the dynamos of these stars would be capable of
generating either strong or weak surface magnetic fields but would
not be expected to switch between them.

The spread in field strengths, and hence angular-momentum-loss
rates, at Rossby numbers less than 0.01 has implications for the
rotation-period evolution of these stars. Such a large spread in spin-
down times may go some way to explaining the spread in rotation
periods observed in low-mass M dwarfs (e.g. Irwin et al. 2011;
Douglas et al. 2016; Newton et al. 2016). Additionally, each of
the scenarios discussed should produce different rotation-period

distributions at late ages. For instance, under the bistability scenario,
one might expect to observe a population of fast rotators and a
population of slow rotators. On the other hand, the effects of a star
switching between strong- and weak-field states should average
out over evolutionary time-scales, possibly resulting in these stars
converging to a narrow range of rotation periods at late ages. Finally,
as part of the MEarth project, Newton et al. (2016) measured the
rotation periods of several hundred mid M dwarfs and found the
distribution to be consistent with a scenario of rapid rotation for
several Gyr followed by rapid spin-down. Such a scenario would
be compatible with the idea that these stars switch from a weak-
field to strong-field state at some point within their lifetimes. It
is also curious that a significant fraction of the Ro < 0.01 stars
are in the strong dipole field state considering how much shorter
their spin-down time-scales are when compared to the weak-field
counterparts. The fact that the exact ages of the strong/weak-field
stars in our sample are unknown prevent us from conducting a
detailed study of them in the context of rotation-period data from
clusters of known ages.

While significant progress has been made in the field of rotational-
period evolution of main-sequence stars, there still remain open
questions. For instance, what is the long-term magnetic evolution
of Ro < 0.01 M dwarfs? Further rotation-period measurements of
fully convective M dwarfs and further ZDI reconstructions of M
dwarfs in this regime will be required to answer this question.
In this context, SPIRou, a near-infrared spectropolarimeter in con-
struction for the Canada–France–Hawaii Telescope (CFHT; Moutou
et al. 2015, first light expected in 2017), should greatly improve
our understanding, especially for fully convective M dwarfs with
long rotation periods. Additionally, under what circumstances is the
dipole component of the magnetic field enough to accurately deter-
mine the open flux of a star? Answering these and other questions
will be important in developing a truly holistic understanding of the
coherent rotational-period evolution seen in open clusters.
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Réville V., Brun A. S., Strugarek A., Matt S. P., Bouvier J., Folsom C. P.,

Petit P., 2015b, ApJ, 814, 99
Ribas I. et al., 2016, A&A, 596, A111
Rosén L., Kochukhov O., Hackman T., Lehtinen J., 2016, A&A, 593, A35
See V., Jardine M., Vidotto A. A., Petit P., Marsden S. C., Jeffers S. V., do

Nascimento J. D., 2014, A&A, 570, A99
See V., Jardine M., Fares R., Donati J.-F., Moutou C., 2015a, MNRAS, 450,

4323
See V. et al., 2015b, MNRAS, 453, 4301
See V. et al., 2016, MNRAS, 462, 4442
Semel M., 1989, A&A, 225, 456
Spada F., Lanzafame A. C., Lanza A. F., Messina S., Collier Cameron A.,

2011, MNRAS, 416, 447
Stauffer J. R. et al., 2016, AJ, 152, 115
van Saders J. L., Pinsonneault M. H., 2013, ApJ, 776, 67
van Saders J. L., Ceillier T., Metcalfe T. S., Silva Aguirre V., Pinsonneault

M. H., Garcı́a R. A., Mathur S., Davies G. R., 2016, Nature, 529, 181
Vidotto A. A., Fares R., Jardine M., Donati J.-F., Opher M., Moutou C.,

Catala C., Gombosi T. I., 2012, MNRAS, 423, 3285
Vidotto A. A., Jardine M., Morin J., Donati J. F., Opher M., Gombosi T. I.,

2014a, MNRAS, 438, 1162
Vidotto A. A. et al., 2014b, MNRAS, 441, 2361
Vidotto A. A., Fares R., Jardine M., Moutou C., Donati J.-F., 2015, MNRAS,

449, 4117
Vidotto A. A. et al., 2016, MNRAS, 455, L52
Wang Y.-M., Sheeley N. R., Jr1990, ApJ, 355, 726
Wang Y.-M., Sheeley N. R., Jr1991, ApJ, 372, L45
Weber E. J., Davis L., Jr1967, ApJ, 148, 217
Wood B. E., 2004, Living Rev. Sol. Phys., 1, 2
Wood B. E., Müller H.-R., Zank G. P., Linsky J. L., Redfield S., 2005, ApJ,

628, L143
Wood B. E., Müller H.-R., Redfield S., Edelman E., 2014, ApJ, 781, L33
Wright N. J., Drake J. J., Mamajek E. E., Henry G. W., 2011, ApJ, 743, 48

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 466, 1542–1554 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/466/2/1542/2617722
by University of Southern Queensland user
on 12 January 2018


