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Abstract

Hypersonic ground testing can make significant contributions to the design process for
hypersonic flight vehicles. However, experimentation in conventional hypersonic ground
testing facilities is complicated by the high levels of freestream fluctuations which are
typically one-to-two orders of magnitude greater than in flight. This noisy test environ-
ment can have a significant impact on flow phenomena, such as boundary layer transition,
and this leads directly to uncertainties in the prediction of essential hypersonic vehicle
design parameters. To assess the noise level in ‘“TUSQ’, the hypersonic wind tunnel at
the University of Southern Queensland, the Mach 6 nozzle exit flow was characterised
by measurements which provided: (1) the time-averaged and fluctuating components of
Pitot pressure; (2) the time-averaged and fluctuating components of stagnation temper-
ature; and (3) the fluctuating component of density. The Pitot pressure measurements
were made using Kulite XTL-190M B-screen pressure transducers which were exposed
directly to the flow. The stagnation temperature was determined from the experimental
measurement of heat flux using microsecond response time coaxial surface junction ther-
mocouples mounted in a stagnation point heat transfer gauge. A focused laser differential
interferometer was designed for TUSQ, and this instrument was used to measure the

freestream density fluctuations.

Using the Pitot pressure measurements and the measurements of the stagnation pressure
in the nozzle reservoir (the barrel), the Mach number was found to decrease over the

flow duration from 5.95 to 5.85. Through the measurement of stagnation temperature, the



ii

piston compression and the nozzle expansion of the test gas were found to be approximately
isentropic for the first 65 ms of hypersonic flow. Thereafter, the stagnation temperature
reduces due to the heat lost to the cold barrel. Thermodynamic modelling based on the
measured pressure history in the barrel combined with empirical heat transfer correlations
can be used to simulate the stagnation temperature in TUSQ to within 2 % of the actual
value for t = 0— 150 ms, increasing to within 5 % at t = 170 ms. The heat transfer process
in the barrel was found to significantly affect the fluctuations in the hypersonic freestream.
For t < 65 ms, the freestream fluctuations of Pitot pressure, stagnation temperature and
density were found to be broadband in nature, consistent with a disturbance environment
dominated by the radiation of acoustic noise from the turbulent boundary layer on the
nozzle walls. Att ~ 65 ms, a 3 -4 kHz narrowband disturbance was detected in the barrel
and in the freestream flow, and this disturbance remains superimposed on the broadband
disturbance environment for the remainder of the test flow. Because the characteristics
of the flow changed during the run, it is appropriate to specify two RMS Pitot pressure
fluctuation magnitudes in the 300 Hz to 25 kHz bandwidth: 2.52 % for ¢t = 5-65 ms;
and 2.86 % for t = 65—200 ms for Re, = 6.94 x 10°m~!. The RMS Pitot pressure
fluctuations in the TUSQ freestream are similar to comparable Ludwieg and blowdown
facilities. RMS stagnation temperature fluctuations were resolved for f =4 Hz — 5kHz
and were found to increase throughout the flow period from approximately 1.5 % at the
start of the run to 2.4 % at the termination of the nozzle flow. RMS freestream density
fluctuations were determined for f = 1-250 kHz, increasing from 0.4 % to 0.6 % over
the flow period. The bandwidth of the density fluctuation measurement was sufficient to

resolve the classic Kolmogorov —5/3 rolloff in the inertial subrange.

Preliminary measurements of the boundary layer on a conical nose cylinder were made
using the focused laser differential interferometer. These measurements identified the
second mode instabilities in the transitional boundary layer, and identified the ampli-
fication of the narrowband 3 —4 kHz freestream fluctuations within the boundary layer.
Further opportunities to explore boundary layer transition in the TUSQ facility are expec-
ted to arise in the near future, at which time the FLDI instrument can be deployed with

improved focusing ability.
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1.1 Background and Motivation

The University of Southern Queensland’s hypersonic Ludwieg tube facility with free
piston compression heating, known as TUSQ, produces quasi-steady cold flows of Mach 6
air for durations of approximately 200 ms. These relatively long flow durations facilitate
fundamental investigation of: hypersonic mixing, aerodynamics, boundary layer flows,
fluid-structure interactions, heat transfer, scramjet inlet starting, and the analysis of flight

vehicles and related geometries.

Conventional hypersonic ground testing facilities, such as TUSQ, suffer from high levels of
freestream fluctuations which are typically one-to-two orders of magnitude greater than in
flight. The elevated freestream fluctuations can have a significant impact on the results of
ground test experiments, such as moving the laminar-turbulent transition location forward
on a body, and exciting the natural frequencies of structures. Uncertainties in transition
prediction lead directly to uncertainties in the estimation of essential hypersonic vehicle

design parameters such as viscous drag and the surface heat flux, and these uncertainties
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have a significant impact on the weight of a flight vehicle (Wendt, 1997). Therefore,
the flow quality, including the freestream fluctuations, must be well understood so that
experiments in ground testing facilities can be correctly interpreted, as evidenced by the
considerable worldwide effort to characterise hypersonic tunnel noise (Wagner et al.,
2018).

By improving the understanding of the TUSQ freestream flow environment, the value
of the experimental data obtained in the TUSQ facility can be maximised. Accurate
measurement of the flow properties enhances the research quality and output of the
USQ hypersonics research group, facilitating more accurate and reliable contributions to

hypersonics research.

A previous effort was made to quantify the temperature variations in TUSQ (Widodo,
2012), who recommended that additional fast response heat flux data be obtained in
TUSQ, and that the relatively low bandwidth stagnation point heat flux probe used in that
work be further developed in order to resolve stagnation temperature fluctuations due to

turbulent mixing in the barrel.

The freestream acoustic disturbance environment in hypersonic wind tunnel testing has
the potential to have a significant impact on boundary layer stability and transition to
turbulence, and can influence the results of fluid-structure interaction studies. This
acoustic disturbance environment is commonly inferred from the measurement of Pitot
pressure fluctuations, and having this data allows the comparison of results obtained in
different facilities. However Pitot pressure measurements are an intrusive measurement

and the results are sensitive to probe forebody geometry.

An alternative to the intrusive diagnostic methods is focused laser differential interfero-
metry (FLDI), which has been used to measure the freestream density fluctuations in a
reflected shock tunnel (Parziale, Shepherd & Hornung, 2012) and intermittent blowdown
facilities (Fulghum, 2014). The FLDI technique is free from the complexity of inferring
freestream properties from measurements behind a normal shock, and is capable of a very

high frequency response (> 10 MHz).
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1.2 Objectives

The characterisation of the freestream flow in TUSQ will significantly improve the value
of the experimental data obtained in the facility. The primary objectives of this research

are to:

1. measure the time-averaged and fluctuating components of Pitot pressure and use
these results to compare the quality of the TUSQ flow to other hypersonic ground
testing facilities;

2. determine the time-averaged and fluctuating components of stagnation temperature;

3. measure the freestream density fluctuations using focused laser differential inter-
ferometry;

4. relate the results of objectives 1 to 3 to flow features which originate in the barrel
and the nozzle; and

5. provide experimental data that can be used for the validation of numerical simula-
tions of the facility, and for the inflow conditions for numerical studies of models
tested in TUSQ.

1.3 Thesis Overview

Including this introductory chapter, this thesis contains eleven chapters which are supple-

mented by seven appendices.

Chapter 2 is a review of the literature which establishes the need for, and challenges
of, hypersonic ground testing, and specifically Ludwieg tube facilities. The freestream
disturbance environment in conventional hypersonic ground testing facilities is different
from that of flight testing, and for complete and reliable experimentation in ground
testing facilities the mean and fluctuating components of the hypersonic flow must be well
understood. The characteristics of the freestream disturbance environment are reviewed,
and the effects of these disturbances on flow phenomena discussed. The flow diagnostics

used in this research to quantify the disturbance environment of TUSQ are also reviewed.

Chapter 3 is a description of the Mach 6 free piston compression Ludwieg tube facility
(TUSQ) at the University of Southern Queensland. The geometry of the facility and
Mach 6 nozzle, and the properties of the data acquisition system used in this research
are stated. Facility operation is discussed with reference to the most critical quantitative

facility diagnostic, the pressure in the barrel. A previous research effort to measure the
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stagnation temperature variations in TUSQ is reviewed.

Chapter 4 describes a steady state simulation of the Mach 6 nozzle and an analysis of the

piston compression process in TUSQ using a quasi one dimensional solver.

Chapter S is an analysis of the barrel pressure, Pitot pressure and Mach number. Mean
and fluctuating pressures are presented and analysed. The Pitot pressure fluctuations
are analysed using: (1) a traditional root-mean-square method; and (2) a power spectral
density (PSD) method to analyse the frequency content of the fluctuations. The identified
Pitot pressure fluctuations are compared to other facilities where similar measurements

have been published.

Chapter 6 details the design, manufacture and construction of the coaxial surface junction
thermocouples which are the measuring elements for the heat flux gauges used in Chapter 7
and Chapter 8. The microsecond response time coaxial surface junction thermocouples
are calibrated using a reflected shock technique. The calibration method and the results

of the calibration are presented.

In Chapter 7, the time-averaged and fluctuating components of total temperature are
calculated from heat flux measurements using the surface junction thermocouples. To
calculate the total temperature, the convective heat transfer coefficient is required. The
convective heat transfer coefficient was identified experimentally and compared to a

theoretical heat transfer coefficient value.

Chapter 8 takes a detour away from the cold flow of TUSQ, to the high enthalpy flow
of a plasma wind tunnel. Type K thermocouples of similar construction to the type E
thermocouples used in Chapters 6 and 7 were the sensing element for a heat flux gauge
embedded in a 50 mm diameter ESA (European Space Agency) standard flat faced probe,
demonstrating that the instrumentation developed for the measurement of fluctuations
in the TUSQ flow can be applied, albeit in a modified form, to the investigation of
flow quality in other types of high-speed facilities. This heat flux gauge was used to
measure the heat flux distribution for one condition of Plasmawindkanal 4 (PWK4) at
the Institut fiir Raumfahrtsysteme (IRS, Institute of Space Systems) within the University
of Stuttgart, Germany. Mean and fluctuating components of heat flux up to 1 kHz were

spatially resolved.
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Chapter 9 details the design of a focused laser differential interferometer built for the
purposes of this research. Custom, adjustable Wollaston-like prisms, hereafter referred to
as Sanderson prisms, were designed and manufactured for the interferometer. Using these
prisms introduces a phase delay which was compensated for using a Berek compensator.
The calibration of the Sanderson prisms and Berek compensator are included in this

chapter.

In Chapter 10, the focused laser differential interferometer is used to measure the density
fluctuations in the TUSQ freestream. A von Karman spectrum model is used to identify
turbulent length scales of the density fluctuations. The boundary layer on a conical-
nosed cylinder model is also investigated, with the interferometer resolving 2™ mode

instabilities in the transitional boundary layer.

Chapter 11 is the concluding chapter of the thesis, where the findings of the research are

summarised and recommendations for future work are made.

The Appendices contain important detail that is supplementary to the body of the thesis,

such as engineering drawings and calculations.
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Literature Review

Contents
2.1 Hypersonic Ground Testing . . . . . ... ... ... ........ 6
2.2 Freestream Disturbances in Hypersonic Ground Test Facilities . . . . 8
2.3 Measurement of Hypersonic Flows and Instabilities . . . . . . .. .. 12
24 Conclusions . . . . .. ... 22

2.1 Hypersonic Ground Testing

Ground testing of materials, structures, components and flight hardware is of critical im-
portance in the development of systems and technology for hypersonic vehicles (Leslie &
Marren, 2009). However, no single ground test facility can simultaneously fully simulate
the flow duration, flow velocity, gas chemistry effects, Mach number, Reynolds number,
surface temperature, ablation effects, nor the quality of the freestream (Leslie & Mar-
ren, 2009). Computational techniques, optimised for specific tasks, are used to develop
vehicles, however the 