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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Polyethylene MPs significantly altered 
soil CEC and DOM.

• Smaller polyethylene MPs caused more 
pronounced effects on soil CEC and 
DOM.

• Polyethylene MPs leached phthalate 
acid esters, raising concerns about soil 
health.

• Soil pH, EC, and enzyme activities 
showed no significant changes.

• No clear dose–response was observed 
for soil properties at field-relevant and 
elevated MP concentrations.
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A B S T R A C T

The continuous use of plastics is expected to increase microplastic (MP) contamination in soils, raising concerns 
about impacts on soil ecosystems and crop productivity. This work investigated the effects of different sizes and 
concentrations of polyethylene microplastics (PE-MPs) on soil properties in a controlled microcosm experiment. 
Microplastics of three sizes (300–600, 600–2000, and 2000–5000 µm) were tested at three concentrations 
(0.02 %, 0.1 %, and 1 % by weight). Significant changes were observed in soil cation exchange capacity (CEC) 
and dissolved organic matter (DOM), accompanied by the leaching of phthalate acid esters (PAEs) from PE-MPs, 
with concentrations reaching up to 0.2 mg kg⁻¹ . In contrast, soil pH, electrical conductivity (EC), water- 
extractable organic carbon (WEOC), and enzyme activity were not significantly affected. In particular, the 
smallest PE-MPs caused a 12.9 % reduction in soil CEC and a negative priming effect was observed in soil DOM. 
Although no clear dose–response relationship was observed, the findings suggest that MP-induced changes in soil 
chemistry are driven by both size-dependent surface interactions and complex soil matrix dynamics. These re
sults demonstrate that PE-MPs can disrupt essential soil functions related to nutrient retention, organic matter 
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dynamics, and pollutant transport, indicating broader impacts on soil health. As smaller MPs continue to 
accumulate, further research is needed to assess their long-term effects under varied environmental conditions 
and to inform effective mitigation strategies in agroecosystems.
Synopsis: Polyethylene microplastics altered key soil chemical properties, with smaller sizes and higher con
centrations leading to greater changes in cation exchange capacity, dissolved organic matter, and diethyl 
phthalate release, raising concerns for long-term soil health.

1. Introduction

The agricultural industry uses plastic products for irrigation, pro
tective housing, mulch film, seedling trays and containers. Over time, 
these plastics degrade and fragment into microplastics (MPs), leading to 
MP contamination in agricultural soils. Polyethylene (PE), including 
low-density polyethylene (LDPE), is the main plastic type used for drip 
irrigation pipes and plastic mulch films, which typically have only a one- 
year lifespan. Studies show that farmlands using plastic mulch film 
systems contained, on average, more than twice the concentration of 
MPs compared to non-mulched farmlands in the agricultural region 
surrounding Hangzhou Bay, China. [1] Long-term use compounds the 
problem: in Xinjiang, China, under mulched drip-irrigated cotton 
farming, residual plastic film levels reached 121.85–352.38 kg ha− 1, 
depending on years of mulching (5–19 years). [2] These residues also 
migrate within the soil under drip irrigation, with PE-MPs detected up to 
30 cm deep. Given the widespread use of PE in agriculture and its 
environmental persistence, understanding how PE-MPs influence soil 
health is critical for assessing risks to ecosystem functions and agricul
tural productivity.

The impacts of MPs on soil chemical properties have been compre
hensively evaluated in recent reviews. These includes three major cat
egories of soil chemical parameters affected by MPs: (i) pH, (ii) soil 
nutrient content, and (iii) soil enzyme activities. [3] Additionally, 
micro- and nanoplastics can act as vectors for potentially harmful sub
stances such as plastic additives, antibiotics, and heavy metals, which 
may further influence soil chemistry. Other key soil chemical parame
ters impacted by MPs include electrical conductivity (EC), soil organic 
carbon (SOC), nutrient availability, and heavy metal mobility. [4,5]

While these reviews consistently emphasize the multifaceted effects 
of MPs on soil chemistry, they differ in scope and methodological ap
proaches. Some focus on a broad biochemical spectrum including 
enzyme activities, while others provide more detailed evaluation of 
physicochemical parameters and contaminant dynamics. [3–5] How
ever, all reviews highlight methodological limitations such as hetero
geneity in MP characterization (size, polymer type, and concentration), 
experimental conditions, and soil types assessed, which complicate 
direct comparisons and synthesis of findings. This underscores the need 
for standardized methodologies and more comprehensive assessments 
encompassing multiple soil chemical properties simultaneously.

Individual experimental studies often examine the effect of MPs on 
single soil chemical properties or a limited subset of parameters. For 
example, some studies have focused solely on MP-driven alterations of 
specific soil parameters, such as pH, often examining how factors like 
polymer type, particle shape, or exposure time influence these changes. 
[6] Others have investigated effects on nutrient cycling under controlled 
conditions or in particular soil types. [7] However, these studies typi
cally do not assess comprehensive changes across multiple soil chemical 
properties simultaneously, limiting our understanding of the broader 
impacts of MPs on soil chemistry. Moreover, these studies vary widely in 
geographic context, polymer types, MP sizes, and concentrations used, 
limiting extrapolation to real-world field scenarios.

Mechanistically, the interactions between MPs and soil chemical 
properties are influenced by particle size, concentration, polymer type 
and the leaching behaviour of plastic additives and adsorbed contami
nants. Smaller MP particles have higher specific surface areas, which can 
facilitate greater release of additives and bound pollutants during 

rainfall or irrigation, potentially causing more pronounced soil chemical 
shifts than larger particles. [8–10] Similarly, higher MP concentrations 
exacerbate chemical perturbations. [11,12] Despite this understanding, 
empirical data explicitly linking MP size and concentration to a 
comprehensive suite of soil chemical properties, particularly for 
PE-MPs, remain limited. Laboratory and field studies have reported 
inconsistent or incomplete findings, and there is a notable scarcity of 
research conducted under realistic contamination scenarios that reflect 
agricultural field conditions.

In Australia, plastic mulching and irrigation practices are widespread 
in horticulture, with estimated annual PE usage ranging from 5000 to 
10,000 Mg, and LDPE use around 5500 Mg. [3,13] Despite this extensive 
application, few studies have systematically evaluated the effects of 
PE-MPs on the chemical properties of Australian agricultural soils. This 
knowledge gap is significant considering the economic importance of 
horticulture in Australia and its reliance on plasticulture for optimizing 
yield and product quality. The sector encompasses high-value crops such 
as strawberries, tomatoes, and leafy vegetables, where soil chemical 
status critically influences crop performance.

This study aims to address these research gaps by investigating the 
effects of PE-MPs on multiple soil chemical properties under controlled 
microcosm conditions. We selected three particle size categories and 
three concentrations of PE-MPs, reflecting both current field exposure 
levels and worst-case contamination scenarios, based on empirical data 
collected from a strawberry farm in Queensland, Australia. [14] By 
simultaneously assessing a suite of soil chemical parameters—including 
pH, EC, cation exchange capacity (CEC), SOC, and organic matter—this 
work offers a holistic evaluation of MP–soil chemical interactions 
(Fig. 1). The results contribute mechanistic insights into how PE-MPs of 
varying sizes and concentrations alter soil chemistry and may inform 
sustainable soil management and plastic use policies. While the study is 
grounded in the Australian horticultural context, the findings have 
broader relevance for global agroecosystems where plasticulture is 
employed.

2. Materials and methods

2.1. Soil collection and preparation

Soils in this study were collected from Haden, Queensland, Australia 
(27.22 ◦S, 151.89 ◦E). The average annual temperature at the site is 
approximately 17 ◦C, with summer maximums reaching 28–34 ◦C. The 
region receives an average annual precipitation of about 685 mm, 
mostly occurring between December and February. Soil samples were 
homogenized, air-dried and sieved by 2 mm pore size. The topsoil at a 
depth of 0–20 cm was collected from random locations using a shovel. 
The soil texture was classified as loamy sand, determined by the hy
drometer method, with 23 % clay, 13 % silt, and 64 % sand. It had a 
reddish colour and supported light grazing for cattle. The soil pH was 
6.24 and EC was 0.055 dS m− 1 determined using a 1:5 soil-to-water 
ratio. Microplastic contamination in soil samples was investigated by 
the total organic carbon-solid sample combustion unit (TOC-SSM) 
method. [15] The quantified MP concentrations in the collected soil 
samples were approximately 20.289–21.755 mg kg− 1 of soil (0.00203 – 
0.00205 %; w/w), with slight variations due to differences in estimated 
carbon content (83 – 89 %). These background levels are negligible 
compared to the target concentrations used in this study (0.02 %, 0.1 %, 
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and 1 %; w/w) and are therefore not expected to affect the experimental 
outcomes.

2.2. Microplastic treatment

Microplastics were prepared by milling black PE mulch film, which 
was purchased online (Heman Agriculture Weeding Black Mulch, 0.8 m 
width, thickness 0.01 mm). The film was ground into a powder using a 
coffee grinder and then sieved into three size categories: Large (2000 – 
5000 µm), Medium (600 – 2000 µm), and Small (300 – 600 µm). The size 
selection was informed by our previous finding that most MP residues in 
soil samples were larger than 300 µm, and by reported environmentally 
relevant size ranges for soil MPs (200–1000 µm). [15,16] The powdered 
PE-MPs were inspected using Attenuated Total Reflectance - Fourier 
Transform Infrared Spectroscopy (ATR-FTIR) to compare degradation 
and Scanning Electron Microscopy (SEM) to observe any critical alter
ations that occurred. The details of the MPs’ preparation and charac
terization can be found in our previous publication. [15] The 
concentrations of MPs added to the soil microcosm experiment were 
Low (0.02 %), Medium (0.1 %), and High (1 %) by weight. The 0.02 % 
concentration corresponds to the MP levels observed in agricultural 
fields using plastic mulch film in Queensland. [15] The Medium and 
High levels were selected to explore potential effects under increasing 
contamination. In particular, the High level (1 %) represents a 
worst-case scenario intended to accelerate impact detection and reveal 
possible system thresholds within a short experimental timeframe.

2.3. Incubation setup and conditions

The soil microcosm experiment was conducted in 70 mL glass bottles 
fitted with aluminium lids containing two perforations in a temperature- 
controlled chamber (29 ± 1 ◦C) with continuous air flow. Each bottle 
contained 70 g of air-dried soil. Soil moisture was maintained at 60 % of 
water holding capacity (WHC, w/w), monitored daily, and adjusted with 
distilled water as necessary. The treatment included three different MP 
sizes (Small, Medium, and Large) and three different MP concentrations 
(Low, Medium, and High). The total experimental group was ten and 
each group had five replicates: control (soil without MPs), SL (Small 
Low), SM (Small Medium), SH (Small High), ML (Medium Low), MM 
(Medium Medium), MH (Medium High), LL (Large Low), LM (Large 
Medium) and LH (Large High). The incubation experiment was 

conducted for 90 days.

2.4. pH and EC of soils

Soil pH and EC were measured at 0, 30, 60, and 90 days after incu
bation using a pH meter and EC meter. The measurement was taken from 
a 1:5 soil-to-water suspension, equilibrated for 24 h using a mechanical 
shaker set to 120 revolutions per minute (rpm). The initial soil pH was 
6.24, and EC was 0.055 dS m− 1.

2.5. Cation exchange capacity measurement

Soil CEC was measured at 0, 60 and 90 days after incubation using 
1 M NH4Cl extraction solution. Briefly, 100 mL of 1 M NH4Cl solution 
was added to 5 g of soil and adjusted to pH 7 with NH4OH. The mixture 
was equilibrated on a mechanical shaker at 120 rpm for 1 h, filtered, and 
analysed by atomic absorption spectroscopy (AAS). Data collected at the 
30-day sampling point were excluded due to instrument maintenance 
and sensitivity changes affecting data quality. The initial CEC was 11.72 
cmol(+) kg− 1

. The concentrations of exchangeable cations were: Ca2+ at 
8.04 ± 0.31 cmol(+) kg− 1, Mg2+ at 1.74 ± 0.05 cmol(+) kg− 1, Na+ at 
1.14 ± 0.03 cmol(+) kg− 1, and K+ at 0.80 ± 0.00 cmol(+) kg− 1.

2.6. Water-extractable organic carbon measurement

Soil water-extractable organic carbon (WEOC) was measured at 0, 
60, and 90 days after incubation (day 30 excluded as above) using a 1:5 
soil-to-water extraction, shaken for 24 h at 120 rpm, centrifuged and 
filtered by a 0.45 μm nylon filter. The filtrate was diluted four times 
before analysis using a total organic carbon analyser (Shimadzu, TOC-V 
CSH). The initial WEOC was 28.27 mg L− 1.

2.7. Enzyme activity

Enzyme activity of the soils was evaluated at 0, 30, 60, and 90 days 
after incubation by measuring the activity of fluorescein diacetate (FDA) 
hydrolysis. Enzyme activity was quantified using substrate-based assays, 
with absorbance readings taken at 490 nm. [17] A fluorescein 
(C20H12O5) standard stock solution (1 mg mL− 1 in acetone) was used for 
calibration. Initial enzyme activity was 111.96 µg g− 1 h− 1.

Fig. 1. Conceptual framework illustrating the hypothesized pathways by which microplastic inputs may alter soil chemical properties in agricultural systems. This 
schematic proposes that MPs could influence soil parameters via mechanisms such as altered surface charge and leaching of chemical additives, thereby changing soil 
chemical properties. These changes have the potential to affect soil function and, ultimately, crop performance.
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2.8. Soil dissolved organic matter and fluorescence spectroscopy

At the end of the 90-day incubation, soil dissolved organic matter 
(DOM) was extracted at a soil-water ratio of 1:5. The extraction was 
performed by continuously shaking at 150 r min− 1 for 24 h in the dark at 
room temperature. The extracts were centrifuged (3000 rpm, 10 min), 
and the supernatants were immediately filtered through a 0.45-μm 
nylon membrane.

Excitation–emission matrices (EEMs) of fluorescence were measured 
using a spectrofluorometer (RF-6000, Shimadzu) over excitation wave
lengths of 200–500 nm and emission wavelengths of 250–550 nm, both 
at 2-nm intervals, in a 1-cm quartz cell at room temperature. [18] To 
eliminate inner filter effects, samples were diluted to ensure absorbance 
at 254 nm was below 0.1 before EEM measurements. [19] Water Raman 
and Rayleigh scatters in sample spectra were eliminated by subtracting 
blank spectra recorded under identical conditions. [20] The EEM data 
were subsequently normalized to Raman units (R.U.) using the inte
grated intensities of the Raman signal of the blank at an excitation 
wavelength of 350 nm.

The fluorescence data were processed in MATLAB R2024b using the 
drEEM toolbox for Parallel Factor Analysis (PARAFAC). [20] Models 
with two to six components were tested with non-negativity constraints 
and residual analysis, followed by split-half analysis to determine the 
optimal number of fluorescent components. Based on the results of these 
analyses, a four-component model was selected for further investigation. 
The model was validated through core consistency analysis and 
split-half validation. The relative contribution of individual components 
was calculated by determining the maximum fluorescence intensities 
(Fmax) for each identified component and estimating their relative 
abundance in the samples. [21,22]

2.9. Phthalate acid ester analysis

Phthalate acid esters (PAEs) were extracted from soils following 
previously described methods with minor modifications. [23,24]
Air-dried soil (2 g) was placed in a glass bottle, and 20 mL of n-hexane 
was added. Only glassware was used to avoid contamination with PAEs 
or other impurities. All glassware was rinsed sequentially with 
distilled-deionized water, acetone and hexane. Potential sources of 
contamination and interferences were identified by performing proce
dural blanks throughout all steps of the analysis. Samples were shaken 
for 24 h at 150 rpm on an orbital shaker to ensure thorough extraction. 
After the extraction, the sample was filtered through glass fibre filters to 
remove soil particles and obtain a clear extract. The extract was evap
orated under a gentle flow of nitrogen to a final volume of 1 mL. An 
internal standard (benzyl benzoate) was then added to the sample to 
account for any variability in extraction and instrument response. The 
samples were analysed using a Gas Chromatography-Mass Spectrometry 
(GC-MS) system, Shimadzu GC-MS-QP2010 Ultra equipped with an 
AOC-20i autoinjector. Operating conditions were: 250 ◦C injection 
temperature, split-less injection mode, 1 μL injection volume and helium 
carrier gas. The temperature program began at 60 ◦C (1 min hold), 
ramped at 10 ◦C min− 1 to 280 ◦C and maintained for 6 min. [23] The 
Limit of Detection (LOD) and Limit of Quantification (LOQ) were set at a 
signal-to-noise ratio (S/N) of 3:1 and 10:1, respectively. Automated 
Mass Spectral Deconvolution and Identification System (AMDIS 2.73) 
software was used for deconvolution, and the National Institute of 
Standards and Technology mass spectra library (NIST 2.73) was utilized 
for compound identification. [25]

Targeted PAEs included five compounds from the EPA Phthalate 
Esters Mix (Sigma-Aldrich, Australia): dimethyl phthalate (DMP), 
diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate 
(BBP), and bis (2-ethylhexyl) phthalate (DEHP). These compounds were 
calibrated with three different concentrations for further quantification 
of PAE analysis (Supplementary Table S1). Quantification was based on 
the ratio between the internal standard concentration to the detected 

area, and the target compound concentration to the detected area for the 
detected PAEs.

3. Statistical analysis

Statistical analyses were performed using SPSS statistical software 
(version 28.0.1.0, IBM Corporation, Armonk, NY, USA). A multivariate 
analysis of variance (MANOVA) was conducted to assess the effects of 
different factors on multiple dependent variables. Post-hoc comparisons 
were conducted for significant factors to identify specific group differ
ences. All statistical tests were performed at a significant level of 
p < 0.05. Parallel Factor Analysis (PARAFAC) was performed using 
MATLAB R2024b, following the method outlined by Murphy, et al. [20]
All plots were generated using MATLAB R2024b to visualize the results.

4. Results

4.1. pH and EC of soils with MP treatment

The soil pH in the microcosms decreased steadily over the first 30 
days and then fluctuated within a lower range compared to the initial 
pH. The MP-treated groups exhibited a similar trend across all groups 
throughout the incubation period. However, after 90 days, all MP- 
treated groups exhibited a higher pH compared to the control group 
(Figs. 2a and 2b). Both MP concentration (p = 0.037) and MP size 
(p = 0.042) had significant effects on soil pH. Higher MP concentrations 
increased soil pH by approximately 0.3 units compared to the control. 
When comparing MP size groups, no significant difference was observed 
between the S, M, and L size groups (Fig. 2a). However, the Medium and 
High concentration groups showed higher pH than the Low concentra
tion group (Fig. 2b).

Soil EC slightly increased over the incubation period in all groups 
(Figs. 2c and 2d). At 90 days, statistically significant differences in EC 
were observed between the control and some MP-treated group
s—specifically for large-sized MPs (p = 0.031) and medium MP con
centrations (p = 0.006), as shown in Supplementary Table S1. The 
overall change in soil EC was approximately 0.2 dS m− 1. Soil EC 
generally remained more stable in MP-treated groups compared to the 
control, though fluctuations occurred, particularly at 60 days, when the 
high concentration group exhibited a higher EC than the control 
(Fig. 2d). However, no clear trend was observed regarding the impact of 
MP size and concentration on soil EC.

4.2. CEC of soils with MP treatment

The CEC of soils decreased more in MP-treated groups than in the 
control (Figs. 3a and 3b). After 60 days, the control group generally 
maintained its CEC level, whereas the MP-treated groups exhibited a 
continuous decline. Soil CEC was calculated as the sum of exchangeable 
cations: calcium (Ca²⁺), sodium (Na⁺), magnesium (Mg²⁺), and potassium 
(K⁺). Based on measured concentrations, Ca²⁺ contributed over 80 % of 
total CEC, followed by Na⁺ (11 %), Mg²⁺ (4 %), and K⁺ (< 1 %). Among 
these, Ca²⁺ showed the most distinct response to PE-MP treatments, 
exhibiting a more pronounced decline across all MP-treated groups 
compared to the control. Although relatively stable over time in the MP- 
treated soils, Na⁺ levels were consistently lower than those in the control 
group by day 90 (Fig. 3a). Magnesium and K⁺ displayed trends similar to 
the control. The influence of MP size was significant for soil CEC 
(p = 0.031). Importantly, the smallest MP size group showed the 
greatest decrease in CEC (over 3 cmol(+) kg− 1), which was largely 
attributed to the pronounced decline in Ca²⁺ concentration in this group 
(Fig. 3a). However, different MP concentrations did not significantly 
influence soil CEC or individual cations across all size categories; the 
medium and high concentration groups tended to show a more pro
nounced decline in both CEC and Ca²⁺ levels (Fig. 3b).
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4.3. Enzyme activity and WEOC of soils

All groups showed a similar trend in enzyme activity (measured by 
FDA) of soils over time, with an initial decrease followed by an increase 
(Figs. 4a and 4b). At the end of the 90-day incubation period, higher FDA 
were observed in the small and medium-sized MP groups compared to 
the control and large-sized MP groups.

The WEOC of soils showed a decreasing trend over the incubation 
period, with a steeper decline over time in all of the MP-treated groups 
compared to the control (Figs. 4c and 4d). A significant difference was 
observed between the MP concentration groups at 60 days, with the 
high-concentration MP group showing the fastest decline in soil WEOC. 
Between the 60- and 90-day incubation period, soil enzyme activity 
shifted to an increasing trend, while WEOC exhibited a steeper decline.

4.4. Dissolved organic matter

Fluorescence spectroscopy of EEM, analyzed using the PARAFAC 
model, revealed four fluorescent components in soil DOM after 90 days 
of microcosm incubation (Fig. 5a). Each component was classified based 
on findings from previous studies (Table 1). The C1 and C3 components 
were identified as fulvic-like substances while C2 and C4 were classified 
as humic-like substances. Although C2 and C4 are closely related, C2 is 
associated with lower molecular weight and less altered structures that 
could reflect more natural (unmodified) organic matter. [26] In 
contrast, C4 corresponds to humic-like substances but is characterized 
by a higher aromatic content, which may indicate microbial decompo
sition or another form of organic matter degradation. [27]

Most of the MP-treated groups showed a decrease in C1 and an in
crease in C4 (Fig. 5b). The reduction in C1 did not exhibit a clear 

relationship with different MP sizes and concentrations. However, a 
more pronounced reduction of C1 was observed at medium and high MP 
concentrations compared to low MP concentrations. The size of MPs has 
almost no impact on C1. The increase in C4 was most distinct in the 
Small MP size (p = 0.034), while no significant differences were 
observed across the different MP concentrations.

4.5. Leaching of PAEs

In the PAEs assay by GC-MS, four out of five control soil samples 
showed DEP concentrations below the LOD, indicating no detectable 
DEP. All MP-treated samples exhibited increased DEP concentrations 
and high variability (Fig. 6). Although no statistically significant dif
ferences in DEP concentrations were observed among MP-treated groups 
in different sizes, the Small size group showed slightly higher DEP 
concentrations in soils. Similarly, the High concentration group dis
played the highest DEP levels across the different concentration groups. 
Notably, there were outliers in the Small size and High concentration 
MP-treated groups.

5. Discussion

5.1. Microplastic impacts on soil pH and EC

Soil with MPs showed a slightly higher pH than the control group, 
which aligns with findings from other studies. [6,33–35] However, the 
difference was only around 0.20 units, which is not considered sub
stantial when compared to the pH fluctuations observed during incu
bation. This change is similar to a study that used a 1 % PE-MP 
concentration, where the pH change was 0.16 units after 3 months. [36]

 

Fig. 2. pH and electrical Conductivity (EC) changes of soils after mixing with MPs over soil microcosm incubation periods. a: pH of soils over times treated by MPs 
with various sizes across all categories of MP concentrations, b: pH of soils over times treated by MPs with the various concentrations across all categories of MP sizes, 
c: Soil EC over time treated with MPs of various sizes across all categories of MP concentrations, and d: Soil EC over time treated with MPs of different concentrations 
across all categories of MP sizes. Note: Error bars represent the standard error of the mean.
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Fig. 3. The changes of soil cation exchange capacity (CEC) and cations during soil microcosm incubation. a: The changes of soil CEC and cations by different sizes of 
MPs across all concentration categories, and b: The changes of soil CEC and cations by different concentrations of MPs across all size categories. Note. Error bars 
represent SE.
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Additionally, our results showed that the pH change pattern was similar 
in both control and MP-treated groups, suggesting that the influence of 
MPs is not strong enough to alter the overall pH trend in the studied soil.

The pH difference between the control and MP-treated groups 
became larger over time (Fig. 2), indicating that PE-MPs may contribute 
to a shift in soil pH dynamics. Soil organic matter and clay content play 
critical roles in soil buffering capacity, as they can neutralize excess H⁺ 
ions or absorb and release H⁺ ions depending on the soil pH. [37] The 
surface charge of PE-MPs varies with pH, where the isoelectric point 
(IEP) for PE-MPs is around 3.2. [38] At pH values above 3.2, PE-MPs 
tend to have a negative surface charge, allowing them to adsorb posi
tively charged ions, such as H⁺ ions. Therefore, similar to organic matter 
and clay content, PE-MPs may act to hold onto H⁺ ions, influencing soil 
pH dynamics (Fig. 7). Additionally, physical blocking of clay sites by 
PE-MPs could also contribute to pH alterations.

Other types of MPs, such as polypropylene (PP) and polylactic acid 
(PLA), have also been shown to influence soil pH. Polypropylene caused 
a slight decrease or increase in soil pH, but PLA showed a more pro
nounced impact. [33,36,39] These differences are likely due to varia
tions in degradation rates and products, where faster-degrading plastics 
like PLA may release acidic compounds that alter soil chemistry more 
significantly than stable polymers like PE. [33] While MPs influenced 
soil pH to some extent, the effect did not appear to override the natural 
dynamics typically driven by environmental factors such as temperature 
and water availability. [33,40] It appears that the presence of MPs did 
not significantly disrupt these natural processes. However, most data 
come from short-term lab incubations. [33,36] The long-term, cumula
tive effects of MPs on soil pH under realistic environmental conditions 
remain poorly understood.

The MP-treated groups exhibited more stable EC values throughout 
the incubation period. This trend may be attributed to the increased 
electrical resistance caused by the insulating properties of PE-MPs, 

which could limit ion mobility in the soil. [41] Additionally, PE-MPs 
may adsorb metal ions and salts, reducing the concentration of free 
ions in the soil solution, thereby stabilizing EC during incubation. [42, 
43]

Overall, the influence of MP contamination on soil pH and EC 
appeared to be limited in this study, likely offset by other factors such as 
irrigation water quality, temperature, rainfall, and land management 
practices. [44] While the MP-treated groups exhibited slightly higher pH 
values and more stable EC throughout incubation, the differences were 
minor and did not show significant changes against the natural trend. 
However, in real agricultural settings, the continuous introduction of 
MPs through plasticulture and irrigation practices could cumulatively 
affect soil pH and EC over longer periods. In subtropical and tropical 
environments, such as northeastern Australia, these effects may still be 
moderated by dominant regional climate conditions.

5.2. Microplastic impacts on soil CEC

Our results showed a decrease in CEC in MP-treated soils, consistent 
with findings from previous studies. [45–47] This decline in CEC may be 
linked to interactions between MPs and soil particles, reducing the soil’s 
ability to retain essential cations. Similar to soil pH, the surface charge of 
PE-MPs may also play a critical role in soil CEC. [48] Given their IEP 
being approximately 3.2, PE-MPs can exhibit surface charge behavior 
similar to clay particles. However, their low chemical reactivity and 
complex surface morphology suggest that PE-MPs primarily interact 
with soil through physical rather than chemical mechanisms. [41] Our 
previous Fourier-Transform Infrared Spectroscopy (FTIR) analysis 
confirmed that the milling process did not significantly alter the 
chemical structure of the PE particles, particularly in terms of hydroxyl 
(–OH) groups, indicating that the MPs retained their original com
pounds and chemically inert properties after milling. [15] This suggests 

Fig. 4. Changes in soil enzyme activity (by FDA) and water-extractable organic carbon (WEOC) across different MP treatments. a: Soil enzyme activity by MP size 
across all categories of MP concentrations, b: Soil enzyme activity by MP concentration across all categories of MP sizes, c: WEOC by MP size across all categories of 
MP concentrations, and d: WEOC by MP concentration across all categories of MP sizes. Note. Error bars represent SE.
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that PE-MPs affect soil CEC mainly through physical interactions. Our 
observations further indicate this, as the complex surface morphology of 
PE-MPs—characterized by roughness, crevices, and irregular shape
s—likely traps these cations. Specifically, the rough, irregular surfaces of 
PE-MPs—featuring crevices and variable topography—likely trap cat
ions and physically block access to soil exchange sites (Supplementary 
Figures S2–S4). [48] Their hydrophobic, film-like nature may further 
obstruct cation exchange between soil particles and the soil solution 

(Fig. 7). Although the incubation period was short, soil organic matter 
may have begun interacting with the MP surfaces, increasing their hy
drophilicity and potentially altering their interactions with soil cations. 
Such changes may contribute to a reduction in soil CEC through indirect 
mechanisms, such as the formation of organic coatings on MPs that 
retain cations and reduce their availability for exchange with soil par
ticles. [49]

While both physical and chemical interactions may contribute to 

Fig. 5. Identified fluorescent components by PARAFAC analysis. a: The EEMs of PARAFAC components extracted from soil microcosms, b: The Fmax for each 
identified component and estimating their relative abundance. Note. EEMs: Excitation-Emission Matrices, PARAFAC: parallel factor analysis, and Fmax: maximum 
fluorescence intensities.
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CEC changes, their relative importance remains unclear and may not 
vary linearly with MP size. Notably, the smallest MP size group 
exhibited the greatest reduction in soil CEC, particularly for Ca²⁺ and 
Mg²⁺ (Fig. 3). This could be attributed to the larger specific surface area 
of smaller MPs, which enhances physical trapping, as well as the larger 
hydrated radii of divalent cations that increase their likelihood of 
becoming trapped within the crevices on MP surfaces or in the spaces 
between MPs and soil particles.

Although MPs have the potential to attract cations in the soil solu
tion, other factors, such as soil pH, soil organic matter (SOM), and clay 
content, are also well-known factors that influence soil CEC. [50–52] In 
our study, CEC decreased over time in MP-treated soils, even though pH 
remained stable, suggesting that MPs might influence soil CEC inde
pendently of pH. Soil CEC can also fluctuate during incubation due to 
natural processes associated with these factors. In contrast, CEC in the 
control group slightly increased at 90 days, likely due to dynamic ion 
exchange processes during incubation, where initial desorption of Na⁺ 
from soil exchange sites caused temporary increases. [53] The observed 
reduction in soil WEOC could be linked to the decrease in soil CEC, as 
SOM plays a crucial role in maintaining soil CEC. However, despite the 
continuous decline in WEOC (Fig. 4), the soil CEC in the control group 
remained stable after 60 days (Fig. 3), suggesting that MPs might in
fluence soil CEC independently. Our results showed that medium and 
high MP concentrations caused greater reductions in exchangeable Ca²⁺, 
with the highest reduction observed at the high concentration level. 
However, the difference in CEC reduction between medium and high 
concentrations was not clearly defined by concentration alone. This 

pattern likely reflects the complex interactions of PE-MP morphology 
with soil components, where surface roughness, crevices, and irregular 
shapes play a significant role in cation adsorption and physical blocking 
of exchange sites, limiting further impacts despite increasing 
concentration.

Some studies reported an increase in CEC in soil contaminated with 
MPs. A slight increase in CEC was observed with PE (300 µm), but a 
decrease was found with larger PE particles (600 µm). [54] Another 
study observed that soil CEC increased with LDPE. [55] However, their 
soil was heavily metal polluted, where CEC is greater than 40 cmol(+) 
kg− 1 and they also included Al3+ in the CEC measurement. The increase 
in CEC may be attributed to differences in measurement methods, soil 
type, and experimental conditions, including greenhouse incubation, 
which could have influenced the results.

Overall, PE-MPs may directly impact soil CEC through complex in
teractions with soil particles and essential cations, particularly those 
with smaller particle sizes. This reduction in soil CEC is concerning, as it 
implies a weakened ability of the soil to retain vital nutrients such as 
Ca²⁺ and Mg²⁺, which are essential for plant growth. [56] Given that soil 
CEC supports nutrient retention and fertility, the impact of PE-MPs 
could weaken plant nutrient uptake and ultimately decrease crop pro
ductivity. [57,58] These findings highlight the importance of MP size in 
altering soil ion dynamics and emphasize the need for further investi
gation into the long-term impacts of MP contamination on soil health 
and agricultural sustainability.

5.3. Microplastic impacts on soil WEOC and enzyme activity

Previous studies have reported varying effects of PE-MPs on soil 
organic carbon (SOC) and dissolved organic carbon (DOC). Some studies 
found that PE-MPs decreased SOC and DOC, [59,60] while others re
ported insignificant effects [61,62] or even an increase in DOC. [46,63]
These inconsistencies may stem from differences in MP properties (e.g., 
polymer type, size, and concentration), soil type and experimental 
conditions. [64] Additionally, MPs can be detected by various quanti
fication methods and potentially inflate carbon measurements as 
carbonaceous organic materials. This methodological difference could 
explain the variability in reported results, as digestion or oxidation 
processes during the analysis may partially alter MPs, releasing addi
tional carbon or influencing DOC measurements. [65]

Soil WEOC is a crucial component of soil-carbon dynamics, repre
senting the most bioavailable fraction of organic carbon that directly 

Table 1 
Parallel Factor Analysis components based on previous studies.

ID Excitation/ 
Emission (nm)

Components References

C1 Ex 265 / Em 
300–550

Ultraviolet A (UVA) fulvic-like substances. 
(Ex 265 / Em 460)

[28,29]

C2 Ex 310 / Em 
340–550

Humic-like substances. 
(Ex 320 (250) / Em 400)

[26,27]

C3 Ex 270 / Em 
320–550

UV/vis terrestrial Fulvic-like substances 
that are associated with high aromatic 
molecules of terrestrial origin.

[30–32]

C4 Ex 300 / Em 
310–550

Humic-like substances, but higher aromatic 
content or microbial decomposition of 
organic matter.

[26,27]

Fig. 6. Diethyl phthalate (DEP) concentrations in soil microcosms. Note. Error bars represent SE. Raw data points are displayed to illustrate variability.
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influences microbial activity, nutrient cycling, and soil fertility. [66–68]
In our study, soil WEOC declined over the incubation period across all 
treatments, with MP-treated groups exhibiting a more rapid decrease 
compared to the control (Fig. 4). However, the trend of WEOC decline 
was the same across the groups, with no significant difference between 
the control and MP-treated groups. This suggests that environmental 
factors, particularly temperature and moisture, have a stronger influ
ence on soil WEOC dynamics than PE-MPs. [69,70] Nevertheless, the 
accelerated depletion of WEOC in MP-treated soils may indicate that 
higher MP concentrations contribute to faster carbon exhaustion, 
possibly by enhancing microbial activity and associated carbon con
sumption toward the end of incubation. These changes could potentially 
lead to shifts in microbial community structure and enzyme function.

Soil enzyme activities are among the fastest indicators of microbial 
responses to environmental stressors, including pollutants and other soil 
disturbances. [71,72] Soil enzyme activity is influenced by various 
factors, including temperature, moisture content, pH, SOM, and avail
able nutrients. [73–76] In this study, soil FDA enzyme activity was 
measured to assess changes in soil quality and fertility. Initially, FDA 
decreased, but it started to increase after 60 days (Fig. 4). This may 
suggest that microbial activity and associated carbon consumption were 
enhanced towards the end of the incubation, leading to a more rapid 
depletion of carbon in MP-treated soils. Despite this recovery, the 
overall trend was similar across all treatments, suggesting that natural 
soil processes may have a stronger influence on enzyme activities than 
the addition of MPs.

The concentration of MPs used in this study may not have been 
sufficient to significantly alter soil enzyme activity. Previous studies 
with higher concentrations of PE-MPs (28 %) have shown a continuous 
decrease in FDA. [60] Similar to our result, a comparable concentration 
(0.02 %) of PVC also led to a decrease in enzyme activity, followed by a 
subsequent increase. [77] These findings suggest that the impact of MPs 
on soil enzyme activities may depend on the concentration and exposure 
time of the MPs, as well as environmental factors. [64]

The rapid decline in soil WEOC with MPs indicates changes in carbon 
availability and microbial activity, which could affect soil fertility and 
nutrient cycling. Ultimately, MP-contaminated soils may be more prone 
to losing fertility and compromising soil health. While the impact of MPs 

on FDA aligned closely with natural soil processes influenced by tem
perature and moisture, soil WEOC and FDA tended to return to equi
librium with the control soil over time. However, high concentrations of 
MPs or different MP types may induce more profound and potentially 
lasting alterations to the soil ecosystem. [64]

5.4. Microplastic impacts on soil DOM

The shifts in soil DOM composition caused by MP contamination 
suggest significant alterations in SOM degradation processes (Fig. 5). 
Although 90 days is a relatively short period to observe drastic changes 
in soil DOM, the increased C4 (aromatic humic-like substances) and 
decreased C1 (fulvic-like substances) may indicate intensified processes 
of microbial decomposition or degradation of soil DOM by MP 
contamination. These findings align with previous studies, where the 
use of PE-MPs showed similar trends in soil DOM transitions, pointing to 
a negative priming effect in MP-contaminated soils. [78–80] However, 
our results did not show a clear linear relationship with MP size or 
concentration, although smaller-sized MPs and higher concentrations 
appeared to have a more pronounced effect on DOM transitions in soils. 
This suggests that smaller MPs, with their larger specific surface areas, 
may interact more significantly with microbial activity, potentially 
triggering stronger negative priming effects.

Contrasting priming effects were observed based on SOC content: 
soils with higher SOC showed a positive priming effect and increased 
labile DOM, while soils with lower SOC exhibited a negative priming 
effect that suppressed microbial activity and reduced labile DOM. [81]
Additionally, environmental factors such as climate conditions may 
further modulate the effects of MPs on soil DOM. [82,83] This highlights 
that the impact of MPs on soil properties is less significant compared to 
other factors, such as environmental conditions and soil type. [78]

Further, different types of MPs showed varying impacts on soil DOM. 
Especially biodegradable MPs such as PLA, Polybutylene Succinate 
(PBS), Poly (butylene adipate-co-terephthalate) (PBAT), Poly
hydroxyalkanoates (PHA) showed significantly higher soil DOC and a 
positive priming effect. [81,84,85] As PE-MPs did not show significant 
changes or increases in WEOC or DOC, [59,61,62] the mechanisms 
behind soil DOM alteration may differ between biodegradable and 

Fig. 7. Schematic representation of cation interactions with negatively charged soil particles and MP interference. Note. Conceptual illustration showing the 
interaction between cations and negatively charged soil particles within the soil solution. Adhered MPs are depicted on soil surfaces, emphasizing their potential to 
physically block cation exchange sites. This figure supports the discussion on how MP may alter ionic dynamics in soils.
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non-degradable MPs. Biodegradable MPs may directly contribute to the 
sources of soil DOC and DOM, leading to a positive priming effect. In 
contrast, non-biodegradable MPs may alter soil DOM indirectly by 
affecting soil aggregates, aeration, moisture retention, and microbial 
communities. [60,79,86] Their presence can influence soil aggregate 
formation, potentially increasing macroaggregate stability and altering 
pore connectivity and aeration. [86] However, effects of MPs on soil 
aggregation show considerable variability depending on factors such as 
polymer type, concentration, soil properties, and environmental condi
tions. [79]

While PE-MPs may not immediately alter DOC or DOM in soils like 
biodegradable MPs, they could still induce long-term changes in soil 
microbial dynamics. These changes may gradually lead to shifts in mi
crobial community composition and a potential decrease in soil fertility 
over time. Additionally, the persistence of non-degradable PE-MPs in the 
soil could lead to a build-up of MP contamination and an increased 
abundance of smaller-sized fractions, posing a long-term environmental 
risk to soil health. To address these challenges, developing effective 
management practices and promoting the use of biodegradable alter
natives could help mitigate the long-term impacts of MP contamination 
in soils.

5.5. Microplastics as PAE sources

Phthalates, the most common plasticizers, have raised concerns due 
to their potential endocrine-disrupting properties. The observed leach
ing of PAEs from PE-MPs suggests that MPs can release PAEs, although 
the relationship is not definitive. [87,88] All MP-treated groups 
exhibited high variability in DEP leaching except for the control, indi
cating that leaching can occur even with larger-sized MPs or at low 
concentrations. This high variability in PAE leaching in our results in
dicates that factors beyond MP size and concentration may influence the 
leaching mechanism (Fig. 6). While MP concentration and PAE con
centration have shown positive correlations, [89] this may be attributed 
to the surface characteristics of MPs rather than their concentrations in 
soil, as interactions with soil particles can reduce or hinder the leaching 
of PAEs from MPs. [90] The morphology of milled PE-MPs showed that, 
whether small or large, they all have adhered smaller particles on their 
surface, some of which may be at the nanoscale (Supplementary 
Figures S2–S4). These adhered smaller MPs or nanoparticles may also 
contribute to the leaching of PAEs. Additionally, smaller MPs generally 
have a larger specific surface area, which could further increase the 
leaching potential of PAEs from MPs.

During MP fragmentation by mechanical abrasion or degradation, 
PAEs may be released more readily. [91] This could explain the 
non-linear relationship between MP size and PAE leaching, as MPs may 
release PAEs differently depending on their physical condition and 
environmental interactions. Microplastics exposed to solar radiation at 
the soil surface, such as mulch films and irrigation hoses, could increase 
the concentration of PAEs in soils. The degradation of MPs due to solar 
radiation makes their surface more hydrophilic, facilitating the leaching 
of PAEs. [10] Furthermore, additional mechanical abrasion from agri
cultural practices like tillage or ploughing could further accelerate the 
release of PAEs into the soil, intensifying their potential environmental 
impact. [91]

More PAEs were accumulated in soils with PE-MPs than in soils with 
biodegradable MPs, even with short-term exposure (8 weeks). [24]
Considering that PE is the most common plastic used in mulch films and 
irrigation hoses, [3] the continuous use of plastics in agriculture may 
result in the high accumulation of PAEs in soils over time. The impacts of 
PAEs on soil health and fertility may not be distinct in the short term, but 
they can have significant long-term effects by reducing soil microbial 
activity and enzyme functions and disrupting nutrient cycling processes. 
[92,93] These disruptions can ultimately reduce soil productivity and 
crop yields. As PE-MPs are widely used in agricultural practices, their 
continued application raises concerns about the risks of PAEs on soil 

ecosystems, emphasizing the need for further investigation into miti
gation strategies.

5.6. Limitations and future directions

One limitation of this study is the absence of initial microbial com
munity profiling, such as 16S rRNA gene sequencing, which restricts our 
ability to directly correlate changes in DOM and CEC with microbial 
dynamics. While our study focused on the alterations of soil chemical 
properties induced by PE-MPs, soil chemical properties are often influ
enced by physical and biological factors, such as microbial activity, root 
interactions, and soil structural changes like aggregation and porosity. 
These interactions are not unidirectional, but form part of a complex and 
dynamic system where chemical, physical, and biological properties 
continuously interact.

This study was also limited by its focus on PE-MPs alone, which may 
restrict the universality of the findings since real field soils contain 
diverse mixtures of MP polymers with varying physicochemical char
acteristics. Additionally, the microcosm experiment for 90 days may not 
fully replicate field conditions, where larger soil volumes and environ
mental factors could lessen or dilute the effects of MPs in soils.

Future research should include investigations of mixed polymer 
types to better simulate actual MP contamination scenarios and consider 
larger-scale, long-term experiments. Incorporating realistic concentra
tions, particle sizes, and combined environmental stressors will help 
better understand the gradual and cumulative impacts of MPs. Such 
research offers more comprehensive assessments, aids in refining man
agement practices, and ultimately informs policies addressing MP 
contamination in agricultural and natural soils.

6. Conclusions

This study has evaluated the impact of MPs on various soil proper
ties, particularly soil pH, EC, CEC, WEOC, enzyme activity, DOM, and 
the presence of PAEs. The results indicated no definitive relationship 
between the size or concentration of PE-MPs and soil properties. How
ever, the negatively charged surface of MPs may contribute to cation 
retention, while their complex morphology can trap ions and organic 
matter, which potentially affects ion dynamics and limits nutrient 
availability in the soil. In addition, MPs may induce negative priming 
effects and promote chemical leaching, further influencing soil chemical 
processes. The impact of MPs on the soil ecosystem is expected to in
crease over time with continuous inputs, potentially altering key soil 
functions. Additionally, these altered soil properties may negatively 
affect soil health and fertility, potentially leading to unforeseen and si
lent degradation that ultimately reduces crop productivity.

There is currently no complete mitigation strategy for MP contami
nation in soils. However, optimizing plastic mulch replacement cycles to 
minimize residue buildup, promoting the use and development of 
nontoxic biodegradable mulch alternatives, and implementing regular 
soil monitoring to detect early signs of MP pollution represent potential 
management approaches. While safe threshold concentrations for MPs 
in soils remain to be established, these practices may help reduce long- 
term risks to soil health and productivity until more comprehensive 
guidelines and solutions are developed.

Environmental Implications

This study investigates the effects of microplastics originating from 
real consumer products, applied at both field-observed and projected 
future concentrations. Findings show that microplastics can modify 
essential soil chemical properties, including pH, nutrient availability, 
and cation exchange capacity. While these changes may not be imme
diately visible, they have the potential to quietly degrade soil health 
over time. Given the complexity and buffering capacity of soil systems, 
such subtle shifts could accumulate and impact long-term 
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agroecosystem stability. These results underscore the importance of 
addressing microplastic pollution in soil through targeted monitoring, 
management practices, and forward-looking environmental policies.
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