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Abstract: Emotion recognition is one of the most important issues in human–computer interaction
(HCI), neuroscience, and psychology fields. It is generally accepted that emotion recognition with
neural data such as electroencephalography (EEG) signals, functional magnetic resonance imaging
(fMRI), and near-infrared spectroscopy (NIRS) is better than other emotion detection methods such as
speech, mimics, body language, facial expressions, etc., in terms of reliability and accuracy. In particu-
lar, EEG signals are bioelectrical signals that are frequently used because of the many advantages they
offer in the field of emotion recognition. This study proposes an improved approach for EEG-based
emotion recognition on a publicly available newly published dataset, VREED. Differential entropy
(DE) features were extracted from four wavebands (theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz,
and gamma 30–49 Hz) to classify two emotional states (positive/negative). Five classifiers, namely
Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Naïve Bayesian (NB), Decision Tree (DT),
and Logistic Regression (LR) were employed with DE features for the automated classification of two
emotional states. In this work, we obtained the best average accuracy of 76.22% ± 2.06 with the SVM
classifier in the classification of two states. Moreover, we observed from the results that the highest
average accuracy score was produced with the gamma band, as previously reported in studies in
EEG-based emotion recognition.

Keywords: EEG signal; virtual reality (VR)-based emotions; differential entropy; SVM

1. Introduction

Two kinds of phenomena, namely thought/cognition and emotion, comprise our
inner spiritual life. These two concepts are interrelated and are personal experiences
that cannot be directly observed by others [1], and these two phenomena also interact
with environmental events [2,3]. Therefore, disciplines such as neuroscience, cognitive
science, and psychology investigate the effects and consequences of these phenomena on
human life.

Two emotion models are widely used in emotion recognition [4]. These are the discrete
emotion models [5] and the bi-directional emotion models [6]. While there are emotions
such as fear, sadness, happiness, anger, and disgust in the discrete emotion model, in the
bi-dimensional emotion model, emotions are found in a multidimensional model on the
valence and arousal scales. A more general and simplified version of multidimensional
model, a four-category structure, is frequently used in the literature. Within this structure,
the emotion categories are low arousal-low valence (LALV), low arousal-high valence
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(LAHV), high arousal-low valence (HALV), and high arousal-high valence. In this study,
we used a discrete emotion model.

Human emotions can be detected using speech signals [7], facial expressions [8], body
language [9], electroencephalography (EEG) [10], posture, gesture, etc. [11]. Among these
emotion detection approaches, the detection with EEG signals is the approach that obtained
the safest results. Because EEG signals are autonomic nervous system (ANS) signals
obtained directly from the brain and due to which emotion occurs [12]. In other methods,
people may reflect their instant feelings differently. For example, people can adjust their
facial expressions to positive in a negative emotional status. This situation cannot be
changed by physiological signals (EEG, electromyography (EMG), electrocardiography
(ECG), temperature, etc.).

To date, many researchers have performed emotion recognition on various EEG
datasets [13–16]. These datasets are mostly created by recording the EEG signals that
occur on the subjects by applying stimuli such as sound or images (picture/video) to the
subjects in a certain procedure. The images used in these created datasets mostly have
2-dimensional stimuli, such as in the most popular DEAP [17], SEED [18], and MAHNOB-
HCI [19] datasets. For example, Ari et al. [10] used the GAMEEMO [20] dataset in their
work, where a novel data augmentation approach (the Extreme Learning Machine Wavelet
Auto Encoder) was proposed for efficient human emotion recognition. Authors initially
converted the EEG signals to the EEG images using continuous wavelet transform (CWT).
Moreover, the obtained images were augmented by using the proposed data augmentation
method. Lastly, the fine-tuning of the ResNet-18 was used for classification and reported a
classification accuracy of 99.6%. Demir et al. [21] used pre-trained deep convolutional neu-
ral network (DCNN) models for feature extraction from the EEG signals. Five pre-trained
DCNN models were considered, and a manual channel and rhythm selection method was
used to find the most convenient channel and rhythm for accurate emotion recognition.
The authors used the DEAP dataset in their work and obtained a 98.93% accuracy score.
Tuncer et al. [22] used tetromino features and an SVM classifier for EEG-based emotion
classification. The authors decomposed the input EEG signal into sub-bands using the
discrete wavelet transform (DWT), and the tetromino features were extracted for each sub-
band. They reported 100%, 100%, and 99% classification accuracies for Dreamer, Gameemo,
and DEAP datasets, respectively. Ismael et al. [23] used a two-stepped approach for EEG-
based emotion classification. Low pass filtering was employed for noise elimination, and
bandpass filtering was employed for rhythm extraction. The best-performing EEG chan-
nels for each rhythm were determined using the KNN classifier, wavelet-based entropy
characteristics, and fractal dimension-based features. Then, the best five EEG channels
were considered for majority voting to obtain the final prediction of each EEG rhythm.
The DEAP dataset was considered in the proposed work and obtained the classification
accuracy of 86.3% for HV vs. LV and 85.0% for HA vs. LA. Joshi et al. [24] proposed
an EEG-based emotion recognition framework where Linear Formulation of Differential
Entropy (LF − D f E) was developed for feature extraction, and the Bidirectional Long
Short-Term Memory (BiLSTM) approach was used for the classification of the LF− D f E
features. Moreover, the LF− D f E features were used to characterize the nonlinearity and
non-Gaussianity of the input EEG signal. They obtained 80.64% and 76.75% accuracy scores
using SEED and DEAP datasets, respectively. Krishna et al. [25] used Tunable-Q Wavelet
Transform (TQWT) and graph-regularized extreme learning machine to classify different
emotion EEG signals. The authors decomposed the input EEG signals into sub-bands with
TQWT. They extracted various statistical features such as root mean square, log detector,
clearance, crest, shape, activity, and mobility. The authors obtained a classification accuracy
of 87.1%. Yin et al. [26] proposed a model based on deep learning for EEG-based emotion
classification. The authors used a window to extract a feature cube calculated using the
DE from the EEG signals. Then, a deep learning model was employed to classify the
obtained features into emotion labels. The experimental results for the subject-dependent
experimental works revealed 90.45% and 90.60% accuracy scores, and subject-independent
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experiments obtained 84.81% and 85.27% classification accuracy scores for valence and
arousal classification, respectively. Chen et al. [27] used an EEG-based emotion recogni-
tion system using the Library for Support Vector Machines (LIBSVMs) [28] classifier that
is an integrated software for support vector classification (C-SVC, nu-SVC), regression
(epsilon-SVR, nu-SVR), and distribution prediction (single class SVM). It also supports
multi-class classification. The authors initially used the Lempel–Ziv complexity, wavelet
coefficients, empirical mode decomposition, and intrinsic mode functions for feature ex-
traction, and LIBSVM was used to classify the extracted features. The authors achieved
a 74.88% accuracy score for arousal, and 82.63% accuracy score was obtained for valence.
Gao et al. [29] proposed a new multi-featured fusion network consisting of spatial and
temporal neural network structures for emotion recognition with EEG signals. Both time
domain and frequency domain features were extracted. Moreover, the authors developed a
GoogleNet-inspired convolutional neural network (CNN) model to capture the intrinsic
spatial relationship between EEG electrodes and contextual information. The DEAP dataset
was used in the experimental works, and 80.52% and 75.22% classification accuracies were
reported for valence and arousal classes, respectively. Xing et al. [30] used an emotion
recognition model consisting of a linear EEG mixing and an emotion timing models. They
used the Stack AutoEncoder to generate and solve the linear EEG mixing model and the
Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for the emotion timing
model. The authors used the DEAP dataset and achieved an 81.10% accuracy score for the
valence class and 74.38% accuracy score for the arousal class.

Few researchers have recently constructed new datasets with high-tech 3D virtual
reality images. For example, Morales et al. [31] implemented an emotion recognition system
that can be applied in three dimensions or real environments to evoke emotional states.
They constructed a dataset where both EEG and electrocardiogram (ECG) signals were
recorded from 60 participants using four virtual rooms. Two of the four rooms emphasized
positive emotions, and the other two rooms emphasized negative emotions. Power spectral
density (PSD), phase coupling, and heart rate variability were extracted features from
the input signals, and an SVM classifier was used for classification. Experimental works
revealed that the proposed scheme produced a 71.21% accuracy score for the valence class
and a 75% accuracy score for the arousal class. Suhami et al. [32] used virtual reality glasses
as stimuli to classify human emotions (happy, scared, calm, and bored) with an EEG device.
As a result of the experiments they carried out with SVM, they reached a classification
accuracy of 85.01% for the four-class emotion recognition, including the more difficult
classification process, such as inter-subject classification.

Linear interpolation and spline interpolation were used for feature extraction, and the
SVM classifier was used for classification. Experimental works produced an 85.01% accu-
racy score for the classification of the four emotions. The Differential Entropy (DE) method
is frequently preferred in EEG emotion recognition [33–36]. In their study [37], Zheng
et al. applied six different feature extraction methods (PSD, DE, Differential Asymmetry
(DASM), Rational Asymmetry, Asymmetry (RASM), Differential Caudality) for emotion
recognition. The authors used DEAP and SEED datasets with four different classification
methods: KNN, Logistic Regression (LR), SVM, and graph-regularized extreme learning
machine (GELM). In their work, DE features obtained higher accuracy and lower standard
deviation values than the other five features. The best average accuracies of 69.67% and
91.07% were obtained using discriminative GELM with DE features for DEAP and SEED
datasets, respectively.

This paper proposes an EEG-based emotion classification approach for a 3D VR-based
dataset [38]. In the proposed approach, the input EEG signals were initially preprocessed
with MATLAB toolbox EEGLAB [39] for noise and baseline removals. Moreover, the
independent component analysis was used to prune the EEG signals. Then, a rhythm
extraction procedure based on wavelet decomposition was employed to obtain the four
rhythms, theta, alpha, beta, and gamma. The theta band oscillates between 4 and 8 Hz from
these four bands. The activity of this band was heightened in moments of meditation and
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drowsiness. The alpha band, called the basic rhythm, consists of frequencies between 8 and
13 Hz. The activity of this band is high during awake and eyes open. It weakens especially
when visual attention and mental effort are required during motor activities. Its activity
is high in the middle part of the head. The beta band oscillates between 13 and 30 Hz. It
becomes more evident during active thinking and concentration. The gamma band covers
oscillations of 30 Hz and above. It is related to information processing and the onset of
voluntary movements [40].

Experiments were carried out with the properties obtained from these bands. The
Differential Entropy (DE) features are extracted from all 59 channels of each rhythm. SVM,
kNN, NB, DT, and LR classifiers are used in the classification stage of the proposed scheme.
The VREED dataset, which contains 19 subjects, is considered in the experimental works,
and various evaluation metrics are used to evaluate the performance of the proposed
method. Hold-out validation method, 70% of each subject is used for training, and the
other 30% of each subject is used for testing purposes. We obtained the maximum average
accuracy of 76.22% ± 2.06 with the SVM classifier. The original contributions of this work
are as follows:

1. To the best of our knowledge, we obtained the highest classification accuracy using
the VREED dataset;

2. This is the first-time Differential Entropy has been used for the VREED dataset.

The rest of the paper is organized as follows: In Section 2, the proposed scheme and
its application steps are provided. Moreover, the theory of the considered methods and the
description of the dataset is provided in Section 2. In Section 3, the experimental results
are interpreted in detail. In Section 4, the advantages and disadvantages of the proposed
method are emphasized. Finally, the paper is concluded in Section 5.

2. Proposed Method

The methodology of the proposed scheme is illustrated in Figure 1. As seen in Figure 1,
the input EEG signals are initially decomposed into four sub-bands for rhythm extraction.
These sub-bands are theta, alpha, beta, and gamma. For the rhythm extraction, the WT
used the ‘db8’ mother wavelet. The 5-level decomposition is employed, and the delta
band is not considered due to eliminating noises such as pulses, neck movement, and eye
blinking [41]. After the rhythms are extracted, DE is used to extract a bunch of features
from all channels of each EEG rhythm. As mentioned in [42], the logarithm of the energy
spectrum of a fixed-length EEG signal is equal to the DE of the signal [29].

Hence, the DE of the alpha, beta, gamma, and theta bands of the EEG signal are used
to classify the negative and positive emotions. Each rhythm contains 59 channels, so the DE
feature set is a 59-dimensional feature vector. The SVM, kNN, NB, DT, and LR classifiers
are used in the classification stage of the proposed scheme. The classification accuracy is
used as the performance evaluation metric.

2.1. Wavelet Transform

A signal is decomposed into a series of mutually orthogonal wavelet basis functions
using the wavelet transform (WT) [4]. These functions vary from sinusoidal basis functions
in which they are spatially localized, meaning that they are nonzero only across a portion
of the whole signal duration. Wavelet functions are also dilated, translated, and scaled
variants of the mother wavelet, a common function ψ. The WT is invertible, much as
Fourier analysis; hence the original signal can be fully retrieved from its WT form. The
continuous WT (CWT) is defined as:

CWT(a, b) =
1√
|a|

∫
f (t)ψ

(
t− b

a

)
∂t (1)
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where a and b are the scale and translation parameters, respectively. ψ and f (t) are the
wavelet function and given signal, respectively. The discrete WT (DWT) is defined as:

DWT(m, n) =
∫

f (t)ψm,n(t)∂t (2)

where m and n are the scaling and translation constants, respectively. In this work, we used
DWT for our analysis.
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2.2. Differential Entropy (DE)

The concept of DE is the equivalent of the concept of entropy for continuous dis-
tributions in Shannon’s original paper [43]. The DE is used to measure the complexity
of continuous and random variables. However, it measures the relative uncertainty, or
changes in the uncertainty, rather than calculating an absolute measure of uncertainty [44].

Consider continuous time random variable X and pX(x) is the probability density
function (PDF) of X, the DE of X is calculated as follows:

hX = −
.∫

S

pX(x) log(pX(x))dx (3)

where S = {x|pX(x) > 0} is the support set of X [44]. As the random variable fits the
Gaussian distribution N

(
µ, σ2), the DE of that variable is calculated as follows:

p(x) =
1√
2πσ

e−
x2+µ2

2σ2 cosh
(µx

σ2

)
(4)
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Then the DE can be calculated as:

hX =

+∞∫
−∞

p(x) ln(p(x))dx (5)

hX =
1
2

log2

(
2πeσ2

)
+ L

(µ

σ

)
(6)

where L(·) is the function of µ/σ which goes from 0 to 1 (ln 2), e is Euler’s constant, and
σ is the standard deviation of x. Figure 2 shows the DE values for positive and negative
emotions for the EEG signal of subject-12. The columns of Figure 2 show the DE values for
each rhythm for positive and negative emotions.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

where m and n are the scaling and translation constants, respectively. In this work, we 

used DWT for our analysis. 

2.2. Differential Entropy (DE) 

The concept of DE is the equivalent of the concept of entropy for continuous distri-

butions in Shannon’s original paper [43]. The DE is used to measure the complexity of 

continuous and random variables. However, it measures the relative uncertainty, or 

changes in the uncertainty, rather than calculating an absolute measure of uncertainty 

[44]. 

Consider continuous time random variable X and 𝑝𝑋(𝑥) is the probability density 

function (PDF) of X, the DE of X is calculated as follows: 

ℎ𝑋 = − ∫ 𝑝𝑋(𝑥) log(𝑝𝑋(𝑥))𝑑𝑥

.

𝑆

 (3) 

where S = {𝑥|𝑝𝑋(𝑥) > 0} is the support set of 𝑋 [44]. As the random variable fits the Gauss-

ian distribution 𝑁(𝜇, 𝜎2), the DE of that variable is calculated as follows: 

𝑝(𝑥) =
1

√2𝜋𝜎
 𝑒

−
𝑥2+𝜇2

2𝜎2  𝑐𝑜𝑠ℎ (
𝜇𝑥

𝜎2
) (4) 

Then the DE can be calculated as: 

ℎ𝑋 = ∫ 𝑝(𝑥) ln(𝑝(𝑥)) 𝑑𝑥

+∞

−∞

 (5) 

ℎ𝑋 =
1

2
 log2(2𝜋𝑒𝜎2) + 𝐿 (

𝜇

𝜎
) (6) 

where 𝐿(⋅) is the function of 𝜇/𝜎 which goes from 0 to 1 (ln2), 𝑒 is Euler’s constant, and 

𝜎 is the standard deviation of 𝑥. Figure 2 shows the DE values for positive and negative 

emotions for the EEG signal of subject-12. The columns of Figure 2 show the DE values 

for each rhythm for positive and negative emotions. 

 Theta Alpha Beta Gamma 

 

    

 

    

Figure 2. The calculated DE features for all channels of each rhythm for Subject-12 for positive and 

negative emotions where the x-axis (horizontal) shows channel number and the y-axis (vertical) 

shows DE value. 

  

P
o

si
ti

v
e 

N
eg

at
iv

e 

Figure 2. The calculated DE features for all channels of each rhythm for Subject-12 for positive and
negative emotions where the x-axis (horizontal) shows channel number and the y-axis (vertical)
shows DE value.

2.3. Dataset

The dataset used in the study was created by watching 4 s long 60 VR videos of three
types recorded in 3D by the Shanghai Film Academy with the help of VR glasses. These
video types are positive, negative, and neutral. The dataset was initially created with a
group of 15 men and 10 women with a mean age of 22.92 and a standard deviation of 1.38
for these ages. The following steps were applied in the emotion elicitation protocol stage:

As provided in Figure 3, 60 videos from three types were randomly selected and
divided into two groups, 20 positive–10 negative and 20 negative–10 neutral. Researchers
who created this dataset did not include negative and positive images in the same video
group since VR images have a much higher stimulating effect than normal two-dimensional
images. Thus, interference between different emotions was prevented. Each subject was
shown two different groups of videos, and the videos in these groups were in random
order. Participants were provided a 3 min relaxation time before starting the experiment.
After a warning sign of 3 s, the video was played. In this three-second warning sign, the
electrical activity in the brain is marked as a baseline in the dataset. At the end of the
videos, a relaxation time was provided to the subjects. At the end of each video watched,
the subjects were asked to evaluate the induction of the videos on the subjects’ emotions.
The videos in two groups were shown to each subject twice with the above-mentioned
steps. In other words, 120 EEG signal data were collected from each subject.
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Figure 3. The dataset collection protocol [38].

These recordings were recorded with a 64-channel wireless EEG recorder with a
sampling frequency of 1000 Hz, with the impedance of the probes below 5 kΩ. A total
of 59 of these 64 channels, corresponding to five different regions of the brain: occipital,
parietal, frontal, right temporal, and left temporal, were placed according to the expanded
international 10-20 system (10-10 systems) [45] as seen in Figure 4.
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After all the recording processes were completed, these data were preprocessed with
the help of the EEGLAB Toolbox [39]. Low-quality recordings were deleted during this
preprocessing. After this deletion, a dataset of 19 people with a mean age of 22.84 and
a standard deviation of 1.50 for these ages was formed. Then, the artifacts and power
frequency interference of these data were removed, and the baseline parts were marked.

3. Experimental Results

The experiments were conducted on MATLAB. Initially, EEGLAB was used to extract
the epochs for each subject. Then, each EEG signal was used to discriminate two-class
emotion recognition. Finally, hold-out cross-validation was utilized by dividing the sam-
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ples of each participant into a 70% training set and a 30% test set while maintaining a
roughly constant percentage of each class in each set compared with the original data. The
classification process was performed ten times, and the average classification accuracy was
computed to lessen the unpredictability introduced by the random partition of the dataset.
As mentioned earlier, various machine learning architectures were used in the classification
stage of the proposed method. The parameters of these classifiers were tuned by using a
hyperparameter optimization algorithm.

Table 1 shows the average accuracy scores obtained with the DE features and the
mentioned machine learning classifiers for each rhythm and concatenated all rhythms,
respectively. For example, Table 1 shows that using the SVM classifier, 61.0773%, 66.6826%,
70.9104%, and 73.9968% average accuracies were obtained using the DE features for theta,
alpha, beta, and gamma rhythms, respectively. Moreover, we obtained 58.0034%, 65.4013%,
68.8021%, and 72.9261% average accuracies for the theta, alpha, beta, and gamma rhythms,
respectively. Similarly, we obtained average accuracy scores for DT, NB, and LR in the
third, fourth, and fifth rows of Table 1, respectively. The last column of Table 1 also shows
the obtained average accuracy scores for each classifier by concatenating all the features
from all rhythms. It can be noted that the SVM produced its best average accuracy score
of 76.2236% by concatenating all rhythms, where the recorded average accuracy score
was 76.2236%.

Table 1. The achievements of the DE features with SVM, kNN, NB, DT, and LR classifier. The bold
cases show the highest average accuracy scores.

Frequency Bands

Used
Classifier Theta Alpha Beta Gamma ALL

SVM 61.0773
± 2.1893

66.6826
± 1.4038

70.9104
± 2.6534

73.9968
±1.4518

76.2236 ±
2.0648

kNN 58.0034
± 3.6462

65.4013
± 1.8120

68.8021
± 2.0587

72.9261
± 1.9973

72.6460 ±
1.1198

NB 54.5211
± 2.1678

57.9541
± 2.8655

54.1148
± 2.7935

59.7951
± 1.4314

59.0151
± 2.5699

DT 55.5866
± 2.6421

60.5877
± 2.1038

58.3750
± 1.4536

61.5310
± 2.8403

59.6243
± 2.0847

LR 55.5442
± 2.8434

62.6286
± 2.2601

62.4054
± 1.9679

64.0111
± 1.4145

61.6993
±3.4722

Similarly, the kNN classifier produced the best average accuracy score of 72.9261%
with the gamma rhythm. Classification accuracy of 72.6460% was obtained for all rhythms.
The classifiers NB, DT, and LR, obtained average accuracy scores of 59.7951%, 61.5310%,
and 64.0111%, respectively. It can be noted from the obtained results that the gamma band
produced the best average accuracy scores with all classifiers.

Figure 5 shows the cumulative confusion matrices obtained using the DE features and
SVM classifier. The blue cells show the true average classifications for both positive and
negative classes, and the orange regions show the false classifications for each class. For
example, all rhythm concatenations obtained 78.9% and 73.6% average accuracy scores for
positive and negative classes, respectively.
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Figure 5. The obtained confusion matrices for DE features and SVM classifier.

In Figure 6, the obtained cumulative confusion matrices for each rhythm and concate-
nated all rhythms for the kNN classifier are provided. As the gamma rhythm produced the
best achievement for the kNN classifier, its cumulative confusion matrices were observed,
and the true classification accuracies for positive and negative classes were 74.5% and
73.5%, respectively. Conversely, the false positive and negative accuracy scores were 25.5%
and 26.5%, respectively.
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Similarly, Figure 7 shows the obtained confusion matrices for the NB classifier. Again,
the true classification accuracies for positive and negative classes for the gamma rhythm
were 60.4% and 59.2%, respectively.
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Moreover, the false classifications for positive and negative classes were 39.6% and
40.8%, respectively. In Figure 8, the obtained cumulative confusion matrices for each
rhythm and all rhythms using the DT classifier were provided. It can be noted that the
gamma rhythm produced the best achievement using the DT classifier. While the true
classification accuracies for positive and negative classes were 61.1% and 62%, respectively.
The false positive and negative accuracy scores were 38.9% and 38%, respectively.
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Figure 9 shows the obtained cumulative confusion matrices for each rhythm and all
rhythms using LR classifier. Similar to the previous results, the gamma rhythm produced
the best achievement with this classifier. The true positive and true negative rates obtained
were 63.5% and 64.6%, respectively. The false positive and negative accuracy scores
obtained were 36.5% and 35.4%, respectively.
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4. Discussion

This paper proposed an improved approach for 3D-VR-EEG-based emotion recog-
nition. In the proposed method, the input EEG signals undergo a preprocessing stage
for noise removal and baseline adjustment. Then, the DWT approach decomposes pre-
processed EEG signals into sub-bands (rhythms). Each sub-band extracts the DE features
from all channels considered and fed to SVM, kNN, NB, DT, and LR classifiers to find the
optimum performing classifier. In this work, we used the VREED dataset obtained by 3D
VR videos with positive and negative emotions. We obtained a high average accuracy of
76.22%. To maintain a relatively consistent percentage in each class and each set compared
with the original data, hold-out cross-validation was used by splitting each participant’s
samples into a training set and a test set. Table 2 compares the obtained results with another
reported work [38].

Table 2. Comparison of the proposed approach with the existing approach. The bold case indicates
the best accuracy score.

Study Year Dataset Extracted Features Classifier Validation
Method Highest Accuracy

Yu et al. [38] 2022 VREED RP SVM Hold-out validation (70%–30%)
Average of the 10 runs 73.77%

Yu et al. [38] 2022 VREED MPLV SVM Hold-out validation (70%–30%)
Average of the 10 runs 67.91%

Proposed 2022 VREED DE SVM Hold-out validation (70%–30%)
Average of the 10 runs 76.22%
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We compared our proposed method’s accuracy with the work by Yu et al. [38]. They
provided a baseline for the effectiveness of the classification of negative and positive
emotions using the new dataset. They used relative power and mean PLV approaches for
feature extraction and SVM classifier to classify the obtained features. The authors reported
that combining the relative power characteristics in the theta, alpha, beta, and gamma
bands produced the best average accuracy of 73.77%. As seen in Table 2, the obtained
average accuracy score of 76.22% is better than the method by Yu et al. [38]. The extracted
feature is the main difference between the two works. As mentioned earlier, Yu et al. [38]
considered extracting the RP and PLV features to characterize the EEG signals. On the other
hand, we used the DE features, a nonlinear method to extract the hidden erratic nature of
the EEG signals and discriminate the two emotions.

The advantages of the proposed work are provided below:

(1-) The DE feature extraction is a simple method with low computational complexity;
(2-) The DE features are nonlinear in nature, hence able to extract hidden complexities in

the EEG signals effectively;
(3-) The RP and PLV methods used in [38] try to capture regular repeating patterns, while

DE provides better results for irregular rhythms such as EEG signals. Moreover, DE is
a measure of disorder, and our method obtained high classification performance.

The disadvantages of the proposed study are:

(4-) As mentioned in [46], DE features are unsuitable for CNN-type classifiers.

5. Conclusions

This paper studied EEG-based emotion recognition on a virtual reality-based EEG
dataset. First, we preprocessed the EEG signals to apply the proposed classification meth-
ods. Then, decomposed the preprocessed EEG signals of all channels into four sub-bands
and extracted DE features. In the classification step, we used five classifiers, namely SVM,
kNN, NB, DT, and LR, to classify into positive or negative valence.

Our results show that the gamma rhythm produced efficient features that yielded high
average classification accuracies with most of the classifiers. The DE is a nonlinear feature
that is able to extract the hidden irregularity present within the EEG signals which has
yielded high classification performance (76.22% ± 2.06).

The test results prove that DE can be used as a suitable measure for evaluating chaotic
situations, such as inconsistencies, complexities, and unpredictability, using EEG signals.

The literature [47–51] shows that the high-frequency band of EEG signals, especially
the gamma band, has more intense network connections between positive, neutral, and
negative moods than the other frequency bands. Hence, this band contributed significantly
to high classification performance. The limitation of this work is that classification accuracy
is not very high. In the future, we plan to develop deep learning models to increase the
model’s performance for the VREED dataset.

In future works, we will investigate the achievement of the deep learning methods
on the dataset. Moreover, various feature extraction and selection algorithms can be
incorporated to improve the classification accuracy score [52].
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