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Abstract In this paper, an integral collocation approach based on Chebyshev poly-

nomials for numerically solving biharmonic equations [Mai-Duy and Tanner, Journal

of Computational and Applied Mathematics, 201(1) (2007) 30–47] is further devel-

oped for the case of irregularly shaped domains. The problem domain is embedded

in a domain of regular shape, which facilitates the use of tensor product grids. Two

relevant important issues, namely the description of the boundary of the domain

on a tensor product grid and the imposition of double boundary conditions, are

handled effectively by means of integration constants. Several schemes of the inte-

gral collocation formulation are proposed, and their performances are numerically

investigated through the interpolation of a function and the solution of 1D and 2D

biharmonic problems. Results obtained show that they yield spectral accuracy.

Keywords: Integral collocation formulation; biharmonic problems; complex geome-

tries; fictitious domains; Chebyshev polynomials

1 Introduction

Many engineering problems, such as the deformation of a thin plate and the motion

of a fluid, are governed by the biharmonic equations – fourth-order partial differential

equations (PDEs). Generally, problems involving high-order PDEs and complex

geometries are more difficult to solve than those with second-order PDEs and regular

geometries, respectively.

Spectral collocation/pseudo-spectral methods (cf. [2],[3],[4]) are known to have the

capability to provide an exponential rate of convergence as the grid is refined or the

degree of the interpolation polynomial is increased. The drawback of these tech-

niques is that they require a computational domain be square −1 ≤ x, y ≤ 1. For

solving problems with complex geometries, domain decompositions and coordinate
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transformations have usually been employed to convert irregular domains into regu-

lar ones (e.g. [5]). Another way, which is a subject of the present study, is based on

the use of fictitious domain. It is noted that fictitious-domain/domain-embedding

techniques can be traced back to the early 1950s. The basic idea behind these tech-

niques is to extend domains of complicated shapes to those of simpler shapes from

which the generation of meshes is simple and well-established efficient numerical

solvers can be applied. Fictitious domains have been widely used in the context

of finite elements, where the boundary conditions are implemented by means of

Lagrange multipliers (e.g. [6] and references therein).

In the present work, the problem domain of irregular shape is embedded in the

reference square. This new domain is then discretized using a tensor product grid.

Clearly, the grid points do not generally lie on the boundary of the actual domain.

It is thus difficult to impose boundary conditions here with conventional differential

approaches.

In our earlier work [1] which deals with biharmonic problems defined in rectangular

domains, it has been shown that the use of integration to construct the Chebyshev

approximations provides an effective implementation of double boundary conditions.

Unlike conventional differential formulations, the integral collocation formulation

has the capability to generate extra expansion coefficients (integration constants).

These additional unknown values can be utilized to incorporate normal derivative

boundary conditions into the Chebyshev approximations.

This paper is concerned with the development of the integral collocation formulation

for the case of irregularly shaped domains. Three schemes of the integral collocation

formulation are presented, and their performances are numerically investigated by

considering several 1D and 2D test problems.
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The remainder of the paper is organized as follows. A brief review of differential

and integral collocation formulations is given in Section 2. In this section, the

integral collocation formulation is analyzed and several practical schemes of the

formulation are presented. The proposed numerical procedure based on integral

collocation schemes and fictitious domains is then described and verified through

the interpolation of a function and the solution of 1D and 2D biharmonic equations

in Sections 3, 4 and 5, respectively. Section 6 gives some concluding remarks.

2 Collocation formulations

2.1 Differential formulation

Consider a univariate function f(x) defined in [−1, 1]. This function can be repre-

sented by the Chebyshev interpolant of degree N as follows

f(x) =
N∑

k=0

akTk(x), (1)

where {ak}N

k=0 are the coefficients of expansion and {Tk(x)}N

k=0 are the Chebyshev

polynomials of the first kind defined as Tk(x) = cos(k arccos(x)). Expressions of

derivatives of f are then obtained through differentiation.

At the Gauss-Lobatto (G-L) points,

{xi}N

i=0 =

{
cos

(
πi

N

)}N

i=0

, (2)
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the values of derivatives of f are simply computed by

d̂f

dx
= D̂(1)f̂ = D̂f̂ , (3)

d̂2f

dx2
= D̂(2)f̂ = D̂2f̂ , (4)

· · · · · · · · · · · ·

d̂pf

dxp
= D̂(p)f̂ = D̂pf̂ , (5)

where the symbol .̂ is used to denote a vector/matrix that is associated with a grid

line, f̂ = (f0, f1, · · · , fN)T , d̂kf

dxk =
(

dkf0

dxk , dkf1

dxk , · · · , dkfN

dxk

)T

with k = {1, 2, · · · , p},

and D̂(.) are the differentiation matrices. The entries of D̂ (D̂(1)) are given by

D̂ij =
c̄i

c̄j

(−1)i+j

xi − xj

, 0 ≤ i, j ≤ N, i 6= j, (6)

D̂ii = − xi

2(1 − x2
i )

, 1 ≤ i ≤ N − 1, (7)

D̂00 = −D̂NN =
2N2 + 1

6
, (8)

where c̄0 = c̄N = 2 and c̄i = 1 for i = {1, 2, · · · , N −1}. It is noted that the diagonal

entries of D̂ can also be obtained in the way that represents exactly the derivative

of a constant

D̂ii = −
N∑

j=0,j 6=i

D̂ij. (9)

For the case of smooth functions, the Chebyshev approximation scheme ((1)-(5)) is

known to be very accurate (exponential accuracy) with the error being O(N−α) in

which α depends on the regularity of a function. It should be emphasized that there

is a reduction in accuracy for the approximation of derivatives and this reduction is

an increasing function of derivative order (cf. [4]).
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2.2 Integral formulation

The integral collocation formulation uses a truncated Chebyshev series of degree N

to represent a derivative of an unknown function f , e.g. a derivative of order p,

dpf(x)

dxp
=

N∑

k=0

akTk(x) =
N∑

k=0

akI
(p)
k (x). (10)

Expressions for lower-order derivatives and the function itself are then obtained

through integration as

dp−1f(x)

dxp−1
=

N∑

k=0

akI
(p−1)
k (x) + c1, (11)

dp−2f(x)

dxp−2
=

N∑

k=0

akI
(p−2)
k (x) + c1x + c2, (12)

· · · · · · · · · · · · · · ·

df(x)

dx
=

N∑

k=0

akI
(1)
k (x) + c1

xp−2

(p − 2)!
+ c2

xp−3

(p − 3)!
+ · · · + cp−2x + cp−1, (13)

f(x) =
N∑

k=0

akI
(0)
k (x) + c1

xp−1

(p − 1)!
+ c2

xp−2

(p − 2)!
+ · · · + cp−1x + cp, (14)

where I
(p−1)
k (x) =

∫
I

(p)
k (x)dx, I

(p−2)
k (x) =

∫
I

(p−1)
k (x)dx, · · · , I

(0)
k (x) =

∫
I

(1)
k (x)dx,

and {ci}p

i=1 are the constants of integration.

2.3 An analysis of the integral formulation

Since a truncated Chebyshev series expansion representing dpf/dxp is the interpolant

of degree N , the integration process defined by (10)-(14) leads to an approximate

expression for f that is the interpolation polynomial of degree (N + p) with (N + p)

coefficients. Based on this observation, in addition to (14), we also consider the
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following expansion

f(x) =
N∑

k=0

akTk(x) + c1g1(x) + c2g2(x) + · · · + cpgp(x), (15)

where {gi(x)}p

i=1 are chosen in such a way that

• they are polynomials,

• all basis functions in (15) are linearly independent, and

• the resultant expansion (15) has the same degree of the polynomial and the

same number of expansion coefficients as (14).

Possible choices for such basis functions include

{TN+1(x), TN+2(x), · · · , TN+p(x)} and (16)

{
xN+1, xN+2, · · · , xN+p

}
. (17)

From here on, ICSI , ICSII and ICSIII are used to represent three schemes of the

integral collocation formulation, (14), (15)&(16) and (15)&(17), respectively. The

value of p in (10) is regarded as the order of the integral collocation scheme, denoted

by ICSp. A differential collocation scheme can be considered as a special case of

ICS by letting p be zero (ICS0).

To make notations simple, we also use
{

I
(i)
k (x)

}k=N,i=p

k=0,i=0
to denote the basis functions

associated with {ak}N
k=0 in (15) and its derivatives, and {gi(x)}p

i=1 to represent the

basis functions associated with {ci}p
i=1 in (14). Solution procedures for the three

schemes are exactly the same.
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The evaluation of f and its derivatives at the G-L points leads to

d̂pf

dxp
= Î(p)

[p] ŝ, (18)

̂dp−1f

dxp−1
= Î(p−1)

[p] ŝ, (19)

· · · · · · · · ·

d̂f

dx
= Î(1)

[p] ŝ, (20)

f̂ = Î(0)
[p] ŝ, (21)

where subscript [.] and superscript (.) are used to indicate the orders of ICS and

derivative function, respectively; ŝ = (â, ĉ)T in which â = (a0, a1, · · · , aN)T and

ĉ = (c1, c2, · · · , cp)
T ;

Î(p)
[p] =




I
(p)
0 (x0), I

(p)
1 (x0), · · · , I

(p)
N (x0),

dpg1

dxp (x0),
dpg2

dxp (x0), · · · , dpgp

dxp (x0)

I
(p)
0 (x1), I

(p)
1 (x1), · · · , I

(p)
N (x1),

dpg1

dxp (x1),
dpg2

dxp (x1), · · · , dpgp

dxp (x1)

· · · · · · · · · · · · · · · · · · · · · · · ·

I
(p)
0 (xN), I

(p)
1 (xN), · · · , I

(p)
N (xN), dpg1

dxp (xN), dpg2

dxp (xN), · · · , dpgp

dxp (xN)




;

Î(p−1)
[p] =




I
(p−1)
0 (x0), · · · , I

(p−1)
N (x0),

dp−1g1

dxp−1 (x0),
dp−1g2

dxp−1 (x0), · · · , dp−1gp

dxp−1 (x0)

I
(p−1)
0 (x1), · · · , I

(p−1)
N (x1),

dp−1g1

dxp−1 (x1),
dp−1g2

dxp−1 (x1), · · · , dp−1gp

dxp−1 (x1)

· · · · · · · · · · · · · · · · · · · · ·

I
(p−1)
0 (xN), · · · , I

(p−1)
N (xN), dp−1g1

dxp−1 (xN), dp−1g2

dxp−1 (xN), · · · , dp−1gp

dxp−1 (xN)




;

· · · · · · ; and

Î(0)
[p] =




I
(0)
0 (x0), I

(0)
1 (x0), · · · , I

(0)
N (x0), g1(x0), g2(x0), · · · , gp(x0)

I
(0)
0 (x1), I

(0)
1 (x1), · · · , I

(0)
N (x1), g1(x1), g2(x1), · · · , gp(x1)

· · · · · · · · · · · · · · · · · · · · · · · ·

I
(0)
0 (xN), I

(0)
1 (xN), · · · , I

(0)
N (xN), g1(xN), g2(xN), · · · , gp(xN)




.
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3 Function interpolation

Consider a function f(x) defined in [-1,1]. The domain of interest is discretized using

the G-L points. Here, we concern the case, where given information consists of the

values of the function at the grid points and some “extra” values. The latter can be

the values of f and its derivatives at some points that do not coincide with the grid

nodes. Let xbi and fbi (dkfbi/dxk) with i = {1, 2, · · · } denote the extra points and the

extra information values, respectively. Unlike conventional differential formulations,

the integral collocation formulation can easily incorporate extra information into

the Chebyshev approximations. Two approaches are proposed below.

3.1 Approach 1

For the sake of simplicity, assume that there are p/2 extra points (p−an even num-

ber) and each point is associated with two given values, f and df/dx. One thus has

p extra values

f̂extra =
(
fb1, dfb1/dx, · · · fb

p

2

, dfb
p

2

/dx
)T

. (22)

The expansion coefficients can be determined using the ICS scheme of order p

(ICSp) 


f̂

f̂extra


 =




Î(0)
[p]

B̂


 ŝ = Ĉ ŝ, (23)
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where

B̂ =




I
(0)
0 (xb1), I

(0)
1 (xb1), · · · , I

(0)
N (xb1), g1(xb1), g2(xb1), · · · , gp(xb1)

I
(1)
0 (xb1), I

(1)
1 (xb1), · · · , I

(1)
N (xb1),

dg1

dx
(xb1),

dg2

dx
(xb1), · · · , dgp

dx
(xb1)

· · · · · · · · · · · · · · · · · · · · · · · ·

I
(0)
0 (xb

p

2

), I
(0)
1 (xb

p

2

), · · · , I
(0)
N (xb

p

2

), g1(xb
p

2

), g2(xb
p

2

), · · · , gp(xb
p

2

)

I
(1)
0 (xb

p

2

), I
(1)
1 (xb

p

2

), · · · , I
(1)
N (xb

p

2

), dg1

dx
(xb

p

2

), dg2

dx
(xb

p

2

), · · · , dgp

dx
(xb

p

2

)




,

Ĉ is the system matrix of dimension (N + 1 + p)× (N + 1 + p) and other notations

are defined as before. The above expression indicates that the integral formulation

takes into account the extra information values. After solving (23) for ŝ, one can

easily calculate the values of derivatives of f at the grid points using (18)-(20).

3.2 Approach 2

As mentioned earlier, the constants of integration are generated for the purpose of

dealing with extra information. It can be seen that every grid point is associated

with the same set of integration constants. The relationship between ĉ and f̂extra

is as follows

f̂extra = B̂




â

ĉ


 = B̂1â + B̂2ĉ, (24)

or

ĉ = −B̂−1
2 B̂1â + B̂−1

2 f̂extra, (25)

where B̂1 and B̂2 are the first (N + 1) and the last p columns of B̂, respectively. It

is noted that one can solve (24) for ĉ in an analytical manner.
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Substitution of (25) into (21) yields

f̂ = Ĉ â + k̂, (26)

where

Ĉ =
((

Î(0)
[p]

)
1
−

(
Î(0)

[p]

)
2
B̂−1

2 B̂1

)
and

k̂ =
(
Î(0)

[p]

)
2
B̂−1

2 f̂extra,

in which
(
Î(0)

[p]

)
1

and
(
Î(0)

[p]

)
2

are the first (N + 1) and the last p columns of Î(0)
[p] ,

respectively.

The expansion coefficients are then obtained through (26) for â and (25) for ĉ.

Approach 1 and Approach 2 are equivalent from the mathematical point of view.

However, Approach 1 involves solving one set of equations, while Approach 2 involves

solving two smaller sets of equations.

Consider a function f = sin(πx) with −1 ≤ x ≤ 1. In addition to the grid function

values, there are 4 extra values given (f and df/dx at x = −1/3 and x = 1/3). The

three integral collocation schemes are employed to evaluate the values of derivatives

of f at the grid points. Since there are 4 extra information values, one can employ

ICSs of order 4. Each scheme is implemented in conjunction with Approach 1 and

Approach 2. Results obtained are given in Tables 1, 2 and 3. They indicate that

the three schemes of the integral formulation yield similar degrees of accuracy on

grids where their system matrices are well-conditioned.

It should be pointed out that the system matrix of each integral collocation scheme

has an entirely different range of the condition number. In each scheme, Approach

1 and Approach 2 also strongly affect the matrix condition number. Approach 2 is
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seen to be much better than Approach 1, except for ICSIII . The ICSII scheme

appears to be the best one as its condition number is very low, ranged from 101

to 102 (Table 2). The reason for that is probably due to the fact that the system

matrix of ICSII is composed largely of Chebyshev polynomials. The approximation

scheme based on ICSII and Approach 2 is recommended for use in the interpolation

of a function and its derivatives.

4 One-dimensional biharmonic problems

Consider the following 1D biharmonic equation

d4u

dx4
+

d2u

dx2
= b(x), xb1 ≤ x ≤ xb2, |xbi| ≤ 1, (27)

where b(x) is a known driving function, subject to Dirichlet boundary conditions at

both ends

u(xb1) = ū1,
du

dx
(xb1) =

dū1

dx
,

u(xb2) = ū2,
du

dx
(xb2) =

dū2

dx
.

The problem domain is embedded in [-1,1] and the extended domain is discretized

using the G-L points.

Making use of (14)/(15) and its relevant derivatives with p = 4, the governing
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equation (27) and the boundary conditions can be transformed into

N∑

k=0

akI
(4)
k (x) +

N∑

k=0

akI
(2)
k (x) + c1x + c2 = b(x), (28)

N∑

k=0

akI
(0)
k (xb1) + c1

x3
b1

6
+ c2

x2
b1

2
+ c3xb1 + c4 = ū1, (29)

N∑

k=0

akI
(1)
k (xb1) + c1

x2
b1

2
+ c2xb1 + c3 =

dū1

dx
, (30)

N∑

k=0

akI
(0)
k (xb2) + c1

x3
b2

6
+ c2

x2
b2

2
+ c3xb2 + c4 = ū2, (31)

N∑

k=0

akI
(1)
k (xb2) + c1

x2
b2

2
+ c2xb2 + c3 =

dū2

dx
. (32)

The evaluation of (28) at the whole set of the G-L points {xi}N

i=0 plus the boundary

conditions (29)-(32) leads to a determinate system of equations




Î(4)
[4] + Î(2)

[4]

B̂


 ŝ = t̂, (33)

where ŝ = (a0, a1, · · · , aN , c1, c2, c3, c4)
T , t̂ = (b0, b1, · · · , bN , ū1, dū1/dx, ū2, dū2/dx)T ,

and

B̂ =




I
(0)
0 (xb1), I

(0)
1 (xb1), · · · , I

(0)
N (xb1), x3

b1/6, x2
b1/2, xb1, 1

I
(1)
0 (xb1), I

(1)
1 (xb1), · · · , I

(1)
N (xb1), x2

b1/2, xb1, 1, 0

I
(0)
0 (xb2), I

(0)
1 (xb2), · · · , I

(0)
N (xb2), x3

b2/6, x2
b2/2, xb2, 1

I
(1)
0 (xb2), I

(1)
1 (xb2), · · · , I

(1)
N (xb2), x2

b2/2, xb2, 1, 0




.

The resultant system (33) can be solved in a direct manner (like Approach 1 in the

case of function interpolation) or by splitting it into 2 smaller sets of equations (like

Approach 2).
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The three schemes are numerically verified using the following data

xb1 = −2/3, xb2 = +2/3,

b = −π2 sin(πx) + π4 sin(πx),

ū1 = −
√

3/2, dū1/dx = −π/2,

ū2 = +
√

3/2, dū2/dx = −π/2.

The exact solution of this problem is given by

ue = sin(πx).

Results obtained are presented in Tables 4, 5 and 6. Relative L2 errors of u (Ne(u))

are computed at the grid points. Unlike the case of function interpolation, the

construction of the system matrix here is mainly based on the approximation of

derivative functions (the differential equation) rather than based on the original

function. It can be seen that the first scheme involves more Chebyshev polynomials

Tk(x) than the others. Numerical results show that ICSI yields a system matrix with

the condition number much lower than those associated with ICSII and ICSIII . Its

values are considerably small, especially for Approach 2 (Table 4). It is recommended

that the numerical scheme based on ICSI and Approach 2 be considered for solving

1D biharmonic equations.

5 Two-dimensional biharmonic problems

Consider a 2D Dirichlet biharmonic problem. The governing equation takes the

form

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
= b(x, y), (34)
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where b(x, y) is a known driving function, subject to double boundary conditions (u

and ∂u/∂n, n−the normal direction) along the boundary. The proposed numerical

procedure is presented in detail through a domain of irregular shape Ω depicted in

Figure 1. This irregular domain is embedded in the reference square, which allows

the use of tensor product grids (Nx +1)× (Ny +1). The present method divides the

prescribed boundary conditions into two groups. The first group is made of the given

values of the solution at the regular boundary points (grid points which lie on the

actual boundary), while the second group is formed from the remaining boundary

conditions. The latter consists of normal derivative boundary conditions at the

regular boundary points, and the boundary conditions at the irregular boundary

points (the intersections of grid lines and irregular boundaries). The construction

of approximate expressions for ∂2u/∂x2 and ∂4u/∂x4 is similar to that for ∂2u/∂y2

and ∂4u/∂y4. Only derivatives of u with respect to y are considered here. Unlike the

case of 1D biharmonic problems, the Chebyshev approximations will be expressed

in terms of nodal variable values (physical space) to avoid the problem of increasing

the system matrix size. Some typical cases are as follows.

Case 1 - Line aa’:

Along this line, one needs to impose the values of u only. The ICS0 scheme can be

employed here. The values of ∂2u/∂y2 and ∂4u/∂y4 at the grid points are computed

using (3)-(5).

Case 2 - Line bb’:

This line intersects the actual boundary at two points yb1 and yb2 (yb1 < yb2). The

first boundary point yb1 is a grid node (regular boundary point). There is one extra

value associated with this node, namely ∂ū1/∂n.

If the second boundary point yb2 is also a grid node, the treatment for yb2 will be
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the same as that for yb1. There are thus two extra values in total along this line.

To impose them, one can use the ICS2 scheme. The transformation of the spectral

space into the physical space is based on the following system




û

∂ū1

∂y

∂ū2

∂y




=




Î(0)
[2]

B̂







â

c1

c2




= Ĉ




â

c1

c2




, (35)

where Ĉ is the conversion matrix of dimension (Ny+3)×(Ny+3), â =
(
a0, a1, · · · , aNy

)T
,

û =
(
u0, u1, · · · , uNy

)T
, and

B̂ =




I
(1)
0 (yb1), I

(1)
1 (yb1), · · · , I

(1)
Ny

(yb1),
dg1

dy
(yb1),

dg2

dy
(yb1)

I
(1)
0 (yb2), I

(1)
1 (yb2), · · · , I

(1)
Ny

(yb2),
dg1

dy
(yb2),

dg2

dy
(yb2)




[2]

.

Solving (35), in a direct manner (Approach 1), yields




â

c1

c2




= Ĉ−1




û

∂ū1

∂y

∂ū2

∂y




. (36)

The values of ∂2u/∂y2 and ∂4u/∂y4 at the grid points are then computed by

∂̂2u

∂y2
= Î(2)

[2] Ĉ−1




û

∂ū1

∂y

∂ū2

∂y




, (37)

∂̂4u

∂y4
= Î(4)

[2] Ĉ−1




û

∂ū1

∂y

∂ū2

∂y




, (38)
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where

Î(4)
[2] =




d2T0

dy2 (y0),
d2T1

dy2 (y0), · · · ,
d2TNy

dy2 (y0), 0, 0

d2T0

dy2 (y1),
d2T1

dy2 (y1), · · · ,
d2TNy

dy2 (y1), 0, 0

· · · · · · · · · · · · · · ·
d2T0

dy2 (yNy
), d2T1

dy2 (yNy
), · · · ,

d2TNy

dy2 (yNy
), 0, 0




.

If the second boundary point yb2 does not coincide with any grid points, there are two

extra values, namely ū2 and ∂ū2/∂n, at yb2, leading to a total of three extra values

along line bb’. They can be imposed through the ICS3 scheme. The transformation

system is given by




û

∂ū1

∂y

ū2

∂ū2

∂y




=




Î(0)
[3]

B̂







â

c1

c2

c3




= Ĉ




â

c1

c2

c3




, (39)

where Ĉ is the conversion matrix of dimension (Ny + 4) × (Ny + 4) and

B̂ =




I
(1)
0 (yb1), I

(1)
1 (yb1), · · · , I

(1)
Ny

(yb1),
dg1

dy
(yb1),

dg2

dy
(yb1),

dg3

dy
(yb1)

I
(0)
0 (yb2), I

(0)
1 (yb2), · · · , I

(0)
Ny

(yb2), g1(yb2), g2(yb2), g3(yb2)

I
(1)
0 (yb2), I

(1)
1 (yb2), · · · , I

(1)
Ny

(yb2),
dg1

dy
(yb2),

dg2

dy
(yb2),

dg3

dy
(yb2)




[3]

.

The remaining steps for obtaining expressions of ∂2u/∂y2 and ∂4u/∂y4 are similar

to the previous case and therefore omitted here for brevity.

Case 3 - Line cc’:

This case involves 4 intersection points: yb1, yb2, yb3 and yb4. The first and last points

are regular boundary points. Assume that yb2 and yb3 are not grid points. There are

6 extra values to be imposed. The process of transforming the expansion coefficients
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into the nodal variable values is based on the following system




û

∂ū1

∂y

ū2

∂ū2

∂y

ū3

∂ū3

∂y

∂ū4

∂y




=




Î(0)
[6]

B̂







â

c1

c2

c3

c4

c5

c6




= Ĉ




â

c1

c2

c3

c4

c5

c6




, (40)

where Ĉ is the conversion matrix of dimension (Ny + 7) × (Ny + 7) and

B̂ =




I
(1)
0 (yb1), · · · , I

(1)
Ny

(yb1),
dg1

dy
(yb1), · · · , dg6

dy
(yb1)

I
(0)
0 (yb2), · · · , I

(0)
Ny

(yb2), g1(yb2), · · · , g6(yb2)

I
(1)
0 (yb2), · · · , I

(1)
Ny

(yb2),
dg1

dy
(yb2), · · · , dg6

dy
(yb2)

I
(0)
0 (yb3), · · · , I

(0)
Ny

(yb3), g1(yb3), · · · , g6(yb3)

I
(1)
0 (yb3), · · · , I

(1)
Ny

(yb3),
dg1

dy
(yb3), · · · , dg6

dy
(yb3)

I
(1)
0 (yb4), · · · , I

(1)
Ny

(yb4),
dg1

dy
(yb4), · · · , dg6

dy
(yb4)




[6]

.

It can be seen that the Chebyshev approximations of derivatives at a grid point are

now expressed in terms of the nodal values of u along the grid line that goes through

that point. As with finite-difference and finite-element techniques, one will gather

these approximations together to form global matrices for the discretization of the

PDE. Their final forms can be written as

∂̃iu

∂xi
= D̃ixũ + k̃ix (41)

∂̃iu

∂yi
= D̃iyũ + k̃iy, (42)

where .̃ is used to denote a vector/matrix that is associated with a 2D tensor product

18



grid, D̃ix and D̃iy are known matrices of dimension (Nx+1)(Ny+1)×(Nx+1)(Ny+1),

and k̃ix and k̃iy are known vectors of length (Nx + 1)(Ny + 1).

The mixed partial fourth-order derivatives can be computed using the following

relation

∂4u

∂x2∂y2
=

1

2

[
∂2

∂x2

(
∂2u

∂y2

)
+

∂2

∂y2

(
∂2u

∂x2

)]
. (43)

In the calculation of the RHS of (43), approximate expressions (41) and (42) are used

to evaluate the values of ∂2u/∂x2 and ∂2u/∂y2 at the grid points, while second-order

differential operators are simply replaced by

∂2

∂x
() =

(
D̂2

x ⊗ Iy

)
(), (44)

∂2

∂y
() =

(
Ix ⊗ D̂2

y

)
(), (45)

where ⊗ denotes the Kronecker tensor product; D̂x and D̂y are the differentiation

matrices in the x− and y− directions, respectively (D̂ij are defined by (6)-(8)); and

Iy and Ix are identity matrices of dimension (Ny+1)×(Ny+1) and (Nx+1)×(Nx+1),

respectively. In (44) and (45), the grid points are numbered from bottom to top

and from left to right.

It is worth mentioning that approximate expressions for derivatives of u already

contain information about the boundary of Ω (location and value).

By collocating the governing equation at the grid points and then deleting rows

corresponding to points that lie on the boundary, a determinate system of algebraic

equations is obtained, which is solved for the approximate solution.
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The proposed procedure is tested using the following functions

b = 4 cos(πx) cos(πy) + cos(πx) + cos(πy), (46)

ue =
1

π4
[1 + cos(πx)] [1 + cos(πy)] . (47)

Two cases, namely single domain and multi-domains, are studied.

5.1 Single domain

A unit circular domain is considered (Figure 2). This domain is embedded in the

reference square. Results obtained by the ICSI and ICSII schemes are presented in

Table 7. Unlike the cases of function approximations and 1D biharmonic equations,

a numerical solution here is solved directly in the physical space. It can be seen that,

in the physical space, the ICSI and ICSII schemes essentially yield the same results

with respect to the condition number and the relative L2 error. An exponential rate

of convergence with grid refinement is achieved.

5.2 Multi-domains

An irregular domain, which is displayed in Figure 3, is divided into three sub-

domains. Sudomain 1 is a simply-connected domain, while subdomains 2 and 3

are multiply-connected domains. Points A, B, C, D, E, F and G are located at

(0,0), (0,-1), (-1,-1), (1,1), (-7/12,1), (-1,7/12) and (-1,0), respectively. The circular

hole is of radius 1/3 and centered at (1/2,-1/2), while the square hole is taken as

[1/6, 1/6] × [5/6, 5/6]. Along the subdomain interfaces, the unknowns are chosen

to be u and ∂u/∂n. These unknown values are determined using the continuity of

∂2u/∂n2 and ∂3u/∂n3 across the interfaces. Table 8 presents relative L2 errors of the
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solution u at the interior points of the three subdomains and of the whole domain.

It can be seen that the proposed technique yields spectral accuracy.

6 Concluding remarks

This paper reports a Chebyshev integral collocation approach for solving biharmonic

equations in irregular domains. The problem domain is embedded in the reference

square, and this extended domain is handled using integral collocation schemes.

Boundary conditions are simply divided into two groups. The first group is made

of the given values of the solution at the regular boundary points, while the second

group is formed from the remaining boundary conditions. The latter consists of

normal derivative boundary conditions at the regular boundary points, and the

boundary conditions at the irregular boundary points. All boundary conditions

in the second group can be implemented in a similar fashion, making the present

numerical procedure very attractive in terms of simplicity. Very accurate results are

achieved using coarse grids.
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Table 1: f = sin(πx), −1 ≤ x ≤ 1: Relative L2 errors, denoted by Ne, of derivatives
of f at the grid points and the condition numbers of the system matrix A, denoted
by cond(A), obtained by the ICSI

4 scheme. In addition to the grid function values,
there are 4 extra values imposed (f and df/dx at x = −1/3 and x = 1/3).

Grid cond(A) Ne(df/dx) Ne(d
2f/dx2) Ne(d

3f/dx3) Ne(d
4f/dx4)

(N + 1) Approach 1
5 3.4e+5 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 2.0e+6 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 1.0e+8 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 1.6e+9 1.0e-07 3.1e-06 2.9e-05 3.4e-04
13 4.8e+8 1.1e-09 4.4e-08 5.7e-07 8.8e-06
15 5.4e+8 9.1e-12 4.7e-10 7.9e-09 1.5e-07
17 3.9e+9 4.7e-14 2.9e-12 6.3e-11 1.5e-09

(N + 1) Approach 2
5 7.1e+3 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 4.8e+4 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 1.8e+6 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 2.7e+7 1.0e-07 3.1e-06 2.9e-05 3.4e-04
13 8.9e+6 1.1e-09 4.4e-08 5.7e-07 8.8e-06
15 1.2e+7 9.1e-12 4.7e-10 7.9e-09 1.5e-07
17 7.2e+7 6.1e-14 3.9e-12 8.5e-11 2.1e-09
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Table 2: f = sin(πx), −1 ≤ x ≤ 1: Relative L2 errors of derivatives of f at the grid
points and the condition numbers of the system matrix A by the ICSII

4 scheme. In
addition to the grid function values, there are 4 extra values imposed (f and df/dx
at x = −1/3 and x = 1/3).

Grid cond(A) Ne(df/dx) Ne(d
2f/dx2) Ne(d

3f/dx3) Ne(d
4f/dx4)

(N + 1) Approach 1
5 3.7e+1 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 5.6e+1 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 7.1e+2 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 3.6e+3 1.0e-07 3.1e-06 2.9e-05 3.4e-04
13 3.9e+2 1.1e-09 4.4e-08 5.7e-07 8.8e-06
15 1.7e+2 9.1e-12 4.7e-10 7.9e-09 1.5e-07
17 6.9e+2 8.6e-14 5.3e-12 1.1e-10 2.7e-09

(N + 1) Approach 2
5 1.8e+1 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 1.6e+1 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 1.6e+2 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 6.8e+2 1.0e-07 3.1e-06 2.9e-05 3.4e-04
13 8.6e+1 1.1e-09 4.4e-08 5.7e-07 8.8e-06
15 4.1e+1 9.2e-12 4.7e-10 7.9e-09 1.5e-07
17 1.3e+2 3.6e-14 1.2e-12 3.0e-11 5.5e-10
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Table 3: f = sin(πx), −1 ≤ x ≤ 1: Relative L2 errors of derivatives of f at the grid
points and the condition numbers of the system matrix A by the ICSIII

4 scheme. In
addition to the grid function values, there are 4 extra values imposed (f and df/dx
at x = −1/3 and x = 1/3).

Grid cond(A) Ne(df/dx) Ne(d
2f/dx2) Ne(d

3f/dx3) Ne(d
4f/dx4)

(N + 1) Approach 1
5 2.5e+3 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 1.5e+4 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 8.3e+5 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 2.2e+7 1.0e-07 3.1e-06 2.9e-05 3.4e-04
13 1.3e+7 1.1e-09 4.4e-08 5.7e-07 8.8e-06
15 3.4e+7 9.1e-12 4.7e-10 7.9e-09 1.5e-07
17 5.0e+8 8.6e-14 5.3e-12 1.1e-10 2.7e-09

(N + 1) Approach 2
5 2.4e+06 1.1e-02 1.2e-01 2.7e-01 1.2e+00
7 1.5e+08 3.8e-04 5.5e-03 2.3e-02 1.4e-01
9 8.7e+10 7.6e-06 1.6e-04 1.0e-03 9.0e-03
11 2.4e+13 1.1e-07 3.3e-06 3.0e-05 3.5e-04
13 1.5e+14 2.0e-07 3.5e-06 2.4e-05 2.3e-04
15 3.8e+15 1.0e-06 1.7e-05 1.7e-04 1.9e-03
17 4.1e+17 2.9e-05 7.9e-04 8.8e-03 1.3e-01
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Table 4: 1D biharmonic problem, Dirichlet boundary conditions, −2/3 ≤ x ≤ 2/3:
Relative L2 errors of the solution u and the condition numbers of the system matrix
A by the ICSI

4 scheme.

Grid Approach 1 Approach 2
(N + 1) cond(A) Ne(u) cond(A) Ne(u)

5 4.6e+1 1.0e-01 2.2e+0 1.0e-01
7 5.3e+1 2.3e-03 2.3e+0 2.3e-03
9 6.0e+1 1.2e-05 2.2e+0 1.2e-05
11 6.6e+1 2.4e-07 2.2e+0 2.4e-07
13 7.2e+1 4.9e-10 2.1e+0 4.9e-10
15 7.7e+1 1.4e-11 2.1e+0 1.4e-11
17 8.2e+1 1.5e-14 2.1e+0 1.5e-14
19 8.6e+1 2.2e-15 2.1e+0 1.0e-15
21 9.1e+1 6.8e-16 2.1e+0 4.4e-16
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Table 5: 1D biharmonic problem, Dirichlet boundary conditions, −2/3 ≤ x ≤ 2/3:
Relative L2 errors of the solution u and the condition numbers of the system matrix
A by the ICSII

4 scheme.

Grid Approach 1 Approach 2
(N + 1) cond(A) Ne(u) cond(A) Ne(u)

5 1.4e+5 1.0e-01 1.5e+3 1.0e-01
7 9.4e+5 2.3e-03 4.6e+3 2.3e-03
9 4.3e+6 1.2e-05 4.1e+4 1.2e-05
11 1.5e+7 2.4e-07 8.9e+4 2.4e-07
13 4.8e+7 4.9e-10 4.2e+5 4.9e-10
15 1.2e+8 1.4e-11 8.2e+5 1.4e-11
17 3.1e+8 2.3e-14 2.5e+6 6.2e-14
19 6.8e+8 4.9e-15 4.9e+6 3.9e-14
21 1.4e+9 2.0e-15 1.0e+7 2.2e-13
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Table 6: 1D biharmonic problem, Dirichlet boundary conditions, −2/3 ≤ x ≤ 2/3:
Relative L2 errors of the solution u and the condition numbers of the system matrix
A by the ICSIII

4 scheme.

Grid Approach 1 Approach 2
(N + 1) cond(A) Ne(u) cond(A) Ne(u)

5 1.9e+3 1.0e-01 2.3e+03 1.0e-01
7 1.6e+4 2.3e-03 2.2e+04 2.3e-03
9 1.6e+5 1.2e-05 1.4e+05 1.2e-05
11 1.0e+6 2.4e-07 1.5e+06 2.4e-07
13 4.9e+6 4.9e-10 1.5e+07 4.9e-10
15 1.7e+7 1.4e-11 1.8e+08 1.5e-11
17 5.3e+7 1.5e-14 1.7e+09 1.7e-12
19 2.3e+8 1.5e-14 2.0e+10 5.0e-12
21 1.5e+9 2.7e-15 2.0e+11 4.5e-12
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Table 7: Biharmonic equation, single domain, Approach 2: Relative L2 norms of
the solution u at the interior points of the actual domain by the ICSI and ICSII

schemes. Results concerning the matrix condition number are also included.

Grid ICSI ICSII

cond(A) Ne(u) cond(A) Ne(u)
4 × 4 2.1e+2 3.0e-01 2.1e+2 3.0e-01
6 × 6 7.7e+3 1.4e-02 7.7e+3 1.4e-02
8 × 8 8.6e+4 1.5e-04 8.6e+4 1.5e-04

10 × 10 6.5e+5 6.0e-07 6.5e+5 6.0e-07
12 × 12 4.4e+6 8.7e-09 4.4e+6 8.7e-09
14 × 14 3.4e+7 7.5e-11 3.4e+7 7.5e-11
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Table 8: Biharmonic equation, three subdomains: Relative L2 norms of the solution
u at the interior points of the three subdomains and of the whole domain by the
ICS scheme.

Grid N1
e (u) N2

e (u) N3
e (u) Ne(u)

5 × 5 1.4e-03 4.5e-03 1.4e-03 2.8e-03
7 × 7 6.3e-05 4.9e-05 1.5e-05 4.8e-05
9 × 9 2.1e-07 3.6e-07 1.3e-07 2.5e-07

11 × 11 9.6e-10 2.0e-09 2.5e-09 1.9e-09
13 × 13 4.5e-12 1.1e-11 9.4e-12 8.7e-12
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Figure 1: 2D Biharmonic equation: Irregular domain, extended domain and dis-
cretization. The mark + is used to denote the interior points of the actual domain
Ω.
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Figure 2: Biharmonic equation, single domain: Geometry and discretization. The
mark + is used to denote the interior points of the actual domain Ω.
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Figure 3: Biharmonic equation, three subdomains: Geometry, extended subdomains
and discretization. The mark + is used to denote the interior points of the actual
domain Ω.
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