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ABSTRACT Sleep EEG signals analysis is an approach that helps researchers identify and understand
the different phenomena concealed within sleep EEG data. This research introduces a time-frequency
analysis approach to untangle the parameters of the sleep stages classification from EEG data. This approach
computes the spectral estimation of a signal based on a set of controlled wavelets using a multitaper with
convolution (MT&C) method. In this study, the MT&C methods is implemented to extract the features from
a single sleep EEG data channel. Then two separated approaches are applied for sleep stage classification.
The first one is based on the EEG waves characteristic definitions of sleep stages (named as Rules-based
method) to directly classify each 30 second EEG segment after the feature extraction. The second approach
uses a support vector machine with quadratic equation (SVM-Q) classifier to classify the sleep stages based
on experts’ scoring. The experimental results are evaluated, and the outcomes show an overall accuracy of
90% with an average sensitivity of 96.2% and an average specificity of 93.2% using an SVM-Q classifier
and an 87.6% accuracy for the Rules-based method on healthy subjects. On the other hand, the accuracy on
subjects with abnormal sleep EEG data is of 78.1% with the SVM-Q classifier and 73.4% with the Rules-
based method.

INDEX TERMS Multitapers, support vector machine, SVM-Q, spectral estimation, sleep EEG, sleep stages,

sleep rules, spectra density estimation (SDE).

I. INTRODUCTION
The electroencephalography (EEG) data represents the neu-
rocognitive process of an individual and the interactions
between neurons in the brain [1]-[3]. Its complexity creates
a real-world challenge for researchers to generate various
algorithms that are able to accurately identify the cognitive
dynamics in a certain time frame in which cognition appears.
An optimum time to analyse the cognitive dynamics of the
human brain is while it is resting, as most of the body func-
tions are partially suspended.

Sleep is essential not just because humans spend one-third
of our lives sleeping, but also because it is a recovery process,
and its quality dictates the neurological and physiological

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed M. A. Moustafa

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

status of individuals. Therefore, sleep analysis has been a
focus of scientific research for many decades, and there are
a large number of algorithms dedicated to the analysis of
the physiological dynamics of sleep. However, many EEG
sleep analysis algorithms face enormous dilemmas due to
the variation of their results for individuals and between
databases. Often some algorithms perform better than others,
yet none of them produces a flawless result [4]-[6].

Manual scoring has been used as the main method
for sleep stages classification, and it is still one of the
most common practices applied today, although it is time-
consuming and subject to expert’s fatigue and personal
biases [7], [8].

This research introduces a methodology to unveil the char-
acteristics of sleep stages based on EEG data using a time-
frequency method, multitapers with convolution (MT&C).
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TABLE 1. Sleep stages classification criteria and parameters.

Sleep Stage EEG Waves Additional criteria
Frequency (Hz) Voltage (uV) Duration (second, s)
Awake(active) beta (14-30 Hz) High Amplitude - Active EOG
Awake(relax) alpha (8-13 Hz) and burst of beta Low Amplitude - Active EOG
Stage 1 theta (4-8 Hz) and burst of alpha Low Amplitude <=1.5s. (alpha burst) Reduced EOG activity
Stage 2 theta with K-complex or spindles or both. =~ Low Amplitude (Mostly theta) 0.5 —2.5s (Spindles) EOG maps activity of EEG
Spindles and K — complex 0.2 —1.5s (K-complex)
Stage 3 delta (0.1-4 Hz) >T75uv delta > 50% of the epoch Quiet EOG
REM Desynchronised mix of frequencies, Low Amplitude delta ~ 40%, theta ~ 30%, ~ Active EOG

possible EOG, and sawtooth waves

alpha ~ 15%, beta < 10%.
possible active EOG

The MT&C method is used to generate representative fea-
tures that are linked to specific characteristics found in
each sleep stage according to Rechtshaffen and Kales rules
(R&K rules) [9].

The main focus of the feature extraction method used in
this research is the time-frequency analysis of the signal to
identify the presence of specific waves (slow waves, theta,
alpha, and beta) in sleep EEG data [10]. The objective is
to apply signal analysis methods to decompose the original
signal in a multidimensional frame, to uncover the most
prominent elements in the signal (frequency, time-duration
and power), which will then provide potential prospects of
hidden features and characteristics in each sleep stage.

In this paper, the features from sleep EEG signals are
extracted using the MT&C, then those features are classi-
fied using a support vector machine (SVM) with quadratic
equation (SVM-Q) and a proposed Rules-based sleep stage
classification method. The results from each classification
method are then evaluated and compared with other existing
methods [11]-[14] that used the same databases. In the Rules-
based method, the classification of sleep stages is imple-
mented based on EEG wave characteristic definitions and
parameters (frequency, amplitude, and time duration). Each
feature generated by the MT&C method is evaluated for
their match with specific waves characteristics of the sleep
stages. Table 1 displays the sleep EEG stages characteristic
definitions and criteria.

The novelty of this study is the incorporation of the Gabor
wavelets together with the MT&C method to extract the
key features from Sleep EEG data and the classification of
those features using the SVM classifier and the Rules-based
classifier. The Rules-based method is also a novelty method
because it incorporates the R&K rules to analyse and classify
each stage based on already known parameters.

This paper is organised as follows. Section 2 contains
an overview on the current related research in sleep classi-
fication. Section 3 explains the sleep EEG databases used
in this research. Section 4 introduces the MT&C method
for feature extraction and the classification methods used.
Section 5 reports the experimental results and the evaluation
performed in this research. Finally, Section 6 summarizes the
research and future work.
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Il. RELATED WORK

Sleep stages classification has been under development for
decades. There are various methods and algorithms capable
of classifying sleep stages using diverse approaches based
on EEG data, and targeting at different subjects, like healthy
subjects [15], older adults [16], [17], newborns [18], patient
with Alzheimer [19], epilepsy [20], [21], and many other con-
ditions [17], [22], [23]. The methods are often distinguished
by the techniques used to extract the hidden information
within data and the classifiers used for the classification. The
interpretations and use of available information (like hypno-
grams) and the assumptions applied play an important role in
the methodology design for sleep EEG stages scoring [15].

A. MULTI-TAPERS RELATED APPLICATIONS

Multi-tapers (MTs) related methods have been used for
time-frequency analysis and spectral estimation with appli-
cations not only in multi-trial EEG data analysis, but also
in other areas where an in-depth analysis of signals is
fundamental [24], [25].

MTs were first developed by Thomson [26] in 1982 as
a novel method to analyse the harmonics in a time series,
and then the method was improved by Park et al. [27] to
estimate the frequency oscillation of the planet Earth. Since
then, that method has been widely used in many research
areas for signal analysis and signal decomposition. Recently,
MTs were used to analyse the spectra density estimation of
EEG signals [24], [25], [27], [28] to classify sleep stages and
identify abnormal activity on awake subjects [24].

A study by Jeyaseelan and Balaji [29] derived the spectral
characteristics of EEG waves using a MTs-based method, and
it was reported that the spectral estimation by the MTs method
was better than that from fast Fourier transform (FFT). One of
their findings was that MTs improved the level of autonomy
based on the number of tapers, reducing inconsistencies and
producing smoother spectral peaks with a defined estimation
of uttermost frequencies.

Babadi and Brown [25] presented a detailed analysis of the
MTs spectral and the standard non-parametric spectral esti-
mation. They applied the MTs method to analyse anesthetic
and sleep EEG data. Their research showed that by specifying
the spectral resolution of the tapers, the frequencies outside
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of such resolution became blurry, allowing them to identify
only the elements within the spectral resolution. That study
gave an insight into how MTs was capable of identifying
an accurate spectral estimation for different types of EEG
signals.

Prerau et al. [30] presented a review of the neurophysiol-
ogy of sleep EEG data using the spectral analysis generated
by the MTs spectrograms. They demonstrated how the MTs
method could be used as an effective tool to present a more
defined way to visualize EEG data, producing better and
faster results of classifying sleep stages. They found that
the spectrograms allowed them to identify the embedded
oscillatory mechanisms of each particular sleep stage and
create a visual representation that was easier to map with
their hypnogram compared to the original signal. Their results
showed a very close relationship between expert’s labels and
the spectrograms produced by the MTs method.

B. EXISTING STUDIES FOR RESULT COMPARISONS

The performance of the proposed methods in this paper are
compared against four other similar studies that used the same
databases as the ones proposed in this research.

The first study by Zhu et al. [3] combined a deep belief
networks approach with bi-directional long short-term mem-
ory to improve the performance and time efficiency for sleep
stages classification using the St. Vincent’s University Hos-
pital database. That paper reported an average accuracy of
68.6% with good performance on Stage 2, but very low
accuracy on REM stage.

The second study by Chokroverty et al. [4] proposed the
use of a deep belief network to extract representative features
and automatically classify sleep stages. That study reported
an average accuracy of 65.3%.

The third study by Diykh et al. [5] presented a sleep stages
classification method using two-stage networks. In the first
step, the network combined the hand-crafted features with
a network generated feature. In the second step, the net-
work combined a sequence learning process with a prediction
model that classified sleep stages using a training and test-
ing approach. That approach produced an average accuracy
of 78.6%.

Aboalayon et al. [6] proposed a method based on a
U-Network architecture. The aim of that method was to gen-
erate a spontaneous temporal scale based on the sequences
of the labels produced from mapping sequential inputs of
a subjective length. So, the final prediction was given by
classifying each single time-point in a signal and attaching
those classifications over static intervals. That study used
both the St. Vincent’s University Hospital database and the
CAP Sleep database. That approach produced an average
accuracy of 72.8% for the St. Vincent’s database and 67.8%
for the CAP Sleep database.

Ill. EXPERIMENTAL DATA
In this study, three databases were used, two open-access
from PhysioNet [31] and one private database from our
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industry partner. The first open-access database is the
St. Vincent’s University Hospital and the University College
Dublin Sleep Apnea Database (St. Vincent’s Database) pub-
lished by Heneghan [32]. The second database is the Cyclic
Alternating Pattern of EEG Activity During Sleep Database
(CAP Sleep Database) published by Terzano et al. [33].
The database from our industry partner known as the Delica
Database is for closed access and is used for testing.

A. ST. VINCENT'S DATABASE
The St. Vincent’s Database was published in 2007 and revised
in 2011. That database contains a full overnight polysomno-
gram EEG data from a three-channel Holter of 25 adult
subjects with suspected sleep disorders. For that database, the
subjects were randomly selected from a group of individuals
over 18 years of age, who were not under any medication, and
did not present any cardiovascular diseases, or dysautonomia.
The hypnograms from the database were manually labelled
by a sleep technologist using the R&K rules [9].

TABLE 2. St. Vincent’s data information (from 12 subjects).

Sleep Stage The Number of Stages
Awake 2309
Stage 1 1348
Stage 2 1746
Stage 3 & Stage 4 33(()39 6(?2;43
REM 995
Total: 10051

B. CAP SLEEP DATABASE

The CAP Sleep Database contains the EEG, electrooculog-
raphy (EOQG), electromyography (EMG), respiration signals
and electrocardiography (ECG or EKG) polysomnograms
of 108 subjects divided into eight groups, from which the
non-pathology subject group is used on this research. The
hypnograms were made by an expert trained at the Sleep
Centre using the R&K rules [9].

The non-pathology datasets from CAP Sleep Database
comprise 16 healthy subjects of mixed genders in an age
range of 25 to 42, who were not on any medication that could
alter the central nervous system. The data of each subject
contains around 9 hours of an overnight sleep recording. The
datasets are available in a sampling rate of 256 hertz (Hz).

C. DELICA DATABASE

The Delica Database contains the EEG, EOG, EMG and EKG
of an overnight sleep from three different healthy subjects
from 17 to 23 years old. That database uses a sampling rate of
500Hz in a frequency band of 0.05 to 100Hz. The data from
that database has not been filtered or modified. It has five
individual EEGs channels (F4, C3, C4, O1, 02, A1, A2), four
EOGs (two vertical electrooculograms and two horizontal
electrooculograms) and three EKGs (one right and two left).
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TABLE 3. CAP Sleep data information (from 11 subjects).

Sleep Stage The Number of Stages
Awake 985
Stage 1 390
Stage 2 4107
874 & 1551

Stage 3 & Stage 4 (2425)
REM 2174
Total: 10081

TABLE 4. Delica database (from 3 subjects).

Sleep Stage The Number of Stages
Awake 467
Stage 1 311
Stage 2 934
Stage 3 319
REM 587
Total: 2618

IV. METHODOLOGY

This research uses one main feature extraction method for the
general features and one supplementary method to extract the
features of muscle movement (MM). Then, the features are
classified into stages using two different approaches.

A. EEG DATA AND DATA PROCESSING

This study uses the EEGs from C3-A2 and C4-Al chan-
nels for the MT&C feature extraction method, and the right
(R) and left (L) EOGs channels together with the C3-A2 and
C4-A1l for the MM feature extraction method. In the case
of the EEGs used in MT&C, those bio-signal channels were
selected in accordance with R&K [9] as they are the main
channels to score sleep stages using sleep EEG data. The data
from the EEG channels were filtered using a notch filter and a
bandpass filter. The starting frequency of 0.2Hz on the notch
filter were selected to avoid negative frequencies as described
in [34]-[36], and the top frequency of SOHz in the notch filter
as well as in the bandpass filter were designated to exclude
frequencies over 5S0Hz which were not relevant to this study.

In the case of the MM feature extraction method, additional
filters were applied in the right (R) and left (L) EOG channels
as well as in the EEG data. Accordingly, considering that the
features from the MM method reflect the outsized increase
of the amplitudes (over 15Hz) in sleep EEG data whenever
there is muscle movement in subjects, all four channels used
in this method were filtered above the alpha range (15Hz)
using a high-pass filter.

The average of signal to noise ratio (SNR) in the CAP
database [33] is around 0.0198 decibels (dBs). For the
St. Vincent’s database [32] the SNR is around 0.132 dBs
and 0.223 dBs for the Delica database. That noise corre-
sponds to the high amplitudes, and high or abrupted fre-
quencies (>30Hz, 50Hz) that are removed from the data for
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the sleep stages classification. Also, the segments that are
flagged as noisy due to constant muscle movement and awake
are deducted from the data that is used for sleep analysis.
It’s unclear what preprocessing and denoising methods were
applied in the two open-source EEG databases (CAP and
St Vincent’s). But we applied xx denoise method before used
all the EEG data.

B. FEATURE EXTRACTION

Feature extraction was conducted using two individual meth-
ods of the MM and MT&C. The features obtained from the
MM method are integrated with those from the MT&C. For
the MT&C feature extraction, the data was segmented in
epochs of 30 seconds to match the hypnograms for the sleep
stage scoring. The data were segmented in epochs of one sec-
ond to compute bipolar differences and then it was grouped
back to epochs of 30 seconds to match the hypnograms in the
MM feature extraction.

1) MM FEATURE EXTRACTION

The Muscle movement or MM characteristic features were
originally defined by the R&K rules [2] and used in many
other studies when analysing EEG data for sleep stages
classification [7], [8], [10], [23], [24], [35].

Fig. 1 shows the algorithmic form diagram in the MM
feature extraction. Firstly, the sleep EEG and EOGs data
were pre-processed, then the EEGs from C3-A2 and C4-Al
channels were integrated into a single signal (X1), so did
the R-EOG and L-EOG channels (X2). After that, the data
were segmented into one second epoch and the root mean
square (RMS) was calculated for each epoch. The moving
average (MA) technique was then used to smooth out the
small fluctuations for every 0.5 second of the input data
to highlight the outliers from those high amplitudes. Then
the data were grouped back into 30 second epochs and the
mean (X) of the entire data was computed and passed as
features X1 and X2.

The sensitivity analysis surrounding the relationship of the
MM features and awake stage was based on the correlation
between all awake instances on the hypnogram and the high
amplitudes found on the MM features. It was established that
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FIGURE 2. Correlation between muscle movement and eye movement using the features from MM method.

awake stages and high amplitudes on frequencies above 15Hz
have a significant correlation with the number of instances
(artifacts) found on each awake stage. Consequently, by cal-
culating the number of artifacts in each epoch and smoothing
them out using a moving average function, most of the awake
stages were defined by using the MM features from the EEG
bipolar channel (BC) called MM-BC and the EOGs called
MM-EOG [37]. Muscle movement was determined when the
MM-BC and the MM-EOG surpassed the general average
(Tr_Ave) of the MM-BC, as seen in Fig. 2.

Using the features from MM method the muscle movement
was determined when the MM-BC was three times larger
than its general average (3MM_Tr_Ave) as shown in Fig. 2.
Likewise, when the artifacts in one of the surrounding epochs
were above the general mean of the signal, and its artifacts on
the current epoch were above the mean, that epoch also were
given the MM status. Parallel to that analysis, the MM was
also validated using the SVM-Q classification method from
MATLAB. It was found that the final MM features had a high
correlation with the wake stage, and by using the MM from
C3-A2 or C4-Al, the classification tool was able to predict
an average classification accuracy of 87.7% for awake stages
using a support vector machine (SVM).

2) MT&C FEATURE EXTRACTION

This main feature extraction in this study is the MT&C
method. It generates a spectra density estimation (SDE) from
a signal by convoluting predefined wavelets with a row signal.
The predefined wavelets are orthogonal to each other in
terms of frequency, and they are generated using the Gabor
function.

The Gabor kernel is selected as the main function after
intensive literature review [15], [24], [39]-[41] and experi-
ments performed and compared with other kernels like Haar,
Laplacian, Sobel, and a combination of them. The Gabor
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function in (1), which is used to create the wavelets that
convolute the signal, is a permutation of a Gaussian function
in [15], [38], [39] with an imaginary cosine wave as used
in [24], [40].
(=)
g (1) = e< <252>>e<"2”f“> (1

(ﬂﬂ)

where g (¢) is the Gabor wavelet, e< (%) / is the Gaussian
window, e(27/t) ig an imaginary cosine wave, ¢ is the time
instance which also represents the duration of the wavelet
(1 second with the sample rate (R) of the raw signal) and fk
is the frequency, which also refers to a specific the wavelet,
meaning that each wavelet is referenced by the frequency
used to generate it.

Naturally, a cosine wave (e'27fiDy is a constant infinite
oscillatory wave, that by itself does not present much mean-
ing to the interpretation of fluctuated signals as the ones
presented in EEG sleep data [41], [42], [44].( Tzl;erefore, it is

—t

used together with the Gaussian function (e \ *°) /), which is
a window that transforms the cosine wave into a wavelet with
specific characteristics (f¢) that allows to identify specific
elements in fluctuating signals. From the Gaussian function,
there is an adjustable standard deviation (S) (described in (2))
that allows to modify the size or range of the wavelet, mean-
ing that S in the Gaussian function defines the width of the
wavelet.
n

S:
2rfi)

where n is the number of cycles of the wavelet, and f; is the
frequency of the signal at level k.

The kernel function implemented here is based on
Mallat [39], in combination with the one by Cohen [24], [40]
in an attempt to reduce the complexity of the wavelet used in

@
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the MT&C by creating a complex wavelet, where redundancy
is not compromised, but its size is reduced, improving the
computational power, especially for extensive signals decom-
position [45].

The number of wavelets used in the MT&C are associated
to the frequencies that are desired to be extracted from an
EEG signal [46]. Considering that each wavelet (gx) can offer
an autonomous estimation of the spectral density function
(SDE(fx)) of a signal within a time-window. The SDE of
the signal is computed with a convolution process as shown
in (3), and graphically represented in Fig. 3.

n

Y @OXy) 3)
r=R(~ %R)
where R is the sampling rate, t is one second (duration of
the wavelet) and it starts from ¢ — (1/2R), and it goes up to
w—+(1/2R) with increments of 1/R. gi(¢) is the kernel function
in the frequency instance k with ¢ duration. X,,, is the original
EEG data with ¢ duration from the total duration w.

Based on SDE(f;), g«(¢) multiplies the original signal X,
and generates a dot-product for every point in X,,,. This
process is achieved by sliding each wavelet across the sig-
nal (X,,), meaning that if there are five kernels at different
frequencies, the convolution will generate five different new
signals, where each one contains the information related to
the wavelet at the frequency. For instance, if the wavelet has
afrequency of 15, the generated signal will show the instance,
the power, and the amount of frequency (15) in the evaluated
signal [28].

As described in (3), the dot-product between a wavelet and
a signal is the sum of all points of the wavelet with a ¢ duration

SDE(fi) =

71304

multiplied by the signal of the same duration (red mark in
Fig. 3(A). In other words, it is generated by convoluting every
point of the kernel against the input signal. Considering that
the maximum power a wavelet is in its centre, we must pad a
0.5R of zeros at the beginning and at the end of the original
signal. Otherwise, if no additional points are added into the
original signal, the first and the last 1/2 second of the resulting
signal will not have an unbiased meaning. Those new extra
points in the signal will have a value of zero to cancelling
biased values and noise in the resulting signal, which means
that the rightmost point of the kernel will be lined up with
the leftmost point of the original signal at the start and the
end of the convolution. The size of the resulting signal will
be equal to the size of the original signal plus the size of the
kernel minus one. The minus one occurs because the kernel
overlaps the raw signal by one (Fig. 3(B)).

In general, the MT&C method behaves like a filter, where
the signal is passed through a tunnel named kernel, which
bypasses the frequencies that are outside it, resulting in a new
signal that will only have amplitude wherever the frequency
from the kernel is present [24], [46].

C. MT&C FUNCTIONALITY

Fig. 4 shows the algorithm structure for the MT&C feature
extraction and classification method, where the data from
one sleep EEG channel (C3-A2 or C4-Al) is pre-processed
and segmented into epochs of 30 seconds. Subsequently, each
epoch is convoluted to generate its SDEs. The resulting SDEs
from each epoch are then grouped in wave bands, and their
results are the MT&C features.

1) MT&C ALGORITHM
The MT&C algorithm includes four elements: an array that
contains the data from one sleep EEG channel, a minimum
frequency, a maximum frequency, and the number of frequen-
cies that the algorithm is going to retrieve from the signal. The
algorithm creates a linearly spaced vector from the minimum
to the maximum frequency. The distance between individual
frequencies will vary according to the number of frequencies
requested by a user. Based on each element of the linearly
spaced vector, the algorithm will then generate one Gabor
atom using (3). Each wavelet generated will be convoluted
across the signal [47].

The MT&C algorithm returns a matrix with all applied
frequencies, a 2D matrix with the average power for each
evaluated frequency and a matrix with the spectrogram.

D. FEATURE DIMENSIONALITY REDUCTION

The features generated from the MT&C method are a series
of multidimensional descriptive matrices which can become
problematic to be applied in the sleep stages classification
methods. There is, therefore, a customised dimensionality
reduction section for each classifier. The matrices from the
MT&C are reduced to 30 features. Each feature represents the
power spectrum presence on each of the frequencies, which
are sorted in an ascending order based on the frequency.
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FIGURE 4. Feature extraction and classification using MT&C.

Those features are then grouped with the two features from
the MM method before they are passed to the next phase of
the classification.

E. SLEEP STAGES CLASSIFICATION WITH THE SVM-Q

The SVM-Q was implemented in this study after carefully
analysing other supervised classifiers like decision trees,
discriminant analysis, naive bayes classifier, nearest neigh-
bour classifier and ensemble classifier. It was found that the
SVM-Q have better performance and accuracy over the other
classifiers. SVM classifiers, also known as binary classifiers,
are popular supervised learning algorithms used for regres-
sion and classification. The idea behind the SVMs is to find
a hyperplane that denotes clear distinction between features
into distinctive domains [48]. The quadratic kernel in the (4)
is computed using quadratic optimization approach [49].

K(x,y) = (xT*y+c)2 )

The SVM-Q classifier is fed with 32 features (30 from
the MT&C and two from the MM), along with the expert
labels. 70% of the data were used as the training data and
the remaining 30% was divided equally for testing and vali-
dation. There are five main parameters used by the SVM-Q
classifier used are. 1) The regularisation of the ‘c’ variable
that defines the trade-off rate between the model minimiza-
tion complexity and the minimization of the training error.
2) The box constrain level, that variable changes the number
of support vectors (SVs) used in the classification algorithm,
it is set individually for each subject and the computational
power requirements fluctuates based on the number of the
SVs used. 3) The kernel scale, by default it uses heuristic
procedure to select the kernel scale value, however, in some
instances the kernel scale is manually set. The algorithm splits
the elements of the predictor matrix on the number of the
kernel scale and then it applies the kernel norm to generate the
main matrix. 4) The multiclass method, those variables have
two options, ether one-vs-one or one-vs-all. When one-vs-
one is applied, the classifier trains one learner for each pair of
classes, which allows the learner to distinguish one class from
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another. When one-vs-all method is applied, the classifier
trains one learner against each class, that allows the class to
distinguish each class from all others. 5) The standardise data
and non-standardise data, that parameter specifies whether or
not to scale every coordinated distance. In some cases (for
some subjects), where the predictors have a substantial scale
difference, standardization improves the prediction.

1) RULES-BASED CLASSIFICATION

Fig. 5 shows the classification workflow diagram in the
Rules-based classification method. The first step is to identify
clear MM instances from sleep or very relaxed stages. So, any
stage that contains a constant beta activity and active EOG
movement is scored as Awake.

a: STAGE 3

To identify sleep Stage 3, all the spectral coefficients are
analysed against each wave frequency sections. For instance,
if the band frequency delta is predominant over every other
band (theta, alpha or beta), and theta is smaller than delta but
larger than alpha and beta, the stage is scored as Stage 3 [50].

b: STAGE 2

If the power spectrum is predominant between theta and delta
(mostly theta), and at the same time are much larger than
alpha and beta, then, the epoch is scored as sleep Stage 2.

c: STAGE 1

Stage 1 is scored only when the spectral coefficient of low-
alpha (8-10Hz) is smaller than 40%, and the spectral coeffi-
cient of theta is higher than 40%.

d: REM
If the power spectrums across alpha, theta and delta bands are
considerably low and close to each other, which at the same

time are larger than the beta amplitude, the epoch is scored as
REM.

2) PERFORMANCE MEASUREMENT METRICS

The performance of this study is evaluated using three mea-
surement metrics: accuracy, sensitivity and specificity [51].
The accuracy metric is based on the number of the cor-
rect assessments, true positive (TP) and true negative (TN),
divided by the total number of assessments, TP, TN and
false positive (FP) and false negative (FN), as shown in (5).
The measurement shows the percentage rate of the correct
classification in terms of all [52], [53].

TP +TN
Accuracy = 5)
TP +TN + FP + FN
The sensitivity metric, which is defined as the TP divided
by the sum of the TP and FN as shown in (6), shows the ability
of the algorithm to identify a specific sleep stage in terms of

others [52].

TP
Sensitivity = TP—}——FA’ (6)
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delta_ WPS>75uV.

&&
theta_ WPS <
delta_ WPS
Muscle Movement (MMno>2%) No &&
30s Ep MMn1>2%)//(MMn-1>2X alpha_WPS &&
(MM_EOGs_Thr & ¢ G ) beta_ WPS <
MM_BC_Thr) theta_ WPS
Yes Yes
Awake Stage 3

| No

(delta_WPS ~
theta_ WPS ~
L-alpha_WPS ) <
7Bns

alpha_WPS < 7Bns
&&
(delta_ WPS &&
| alpha_WPS) > 11Bns

&& No L-alpha_WPS < 40% | No &&
(beta_WPS && beta_WPS <
&&theta_ WPS)<5Bns theta_ WPS > 40% theta_ WPS
Yes
Yes Yes No
Stage 1 REM Awake

Stage 2

FIGURE 5. Rules-based classification method for MT&C features (WPS = wavelet power spectrum).

The specificity metric, which is based on the TN divided by
the sum of FP and TN as in (7), is the ability of the algorithm
to exclude specific stage from others [52].

N

—_— 7
FP+TN ™

Specificity =
V. EXPERIMENTAL RESULTS
The algorithms presented in this research are evaluated
using a set of experiments with the databases mentioned in
Section 2. The results from the SVM-Q classifier and the
Rules-based classification are compared with one another and
with other existing studies that used the same databases. The
features used for the classifications are from the MT&C in
conjunction with the MM features.

The experiments consisted of four parts: A) graphical
analysis using the MT&C against experts hypnograms;
B) stages classification using the Rules-based classification
and the SVM-Q classifier; C) Results comparisons between
the Rules-based method and the SVM-Q; and D) Results
comparison with the others in the literature as discussed
in Section 2.2.

A. GRAPHICAL ANALYSIS OF THE MT&C

After generating the spectral estimation of the EEG data,
it was visualized on a heat-map to identify and analyse the
common element between the hypnogram generated by the
experts and the spectral estimation generated by the MT&C
method, as seen in Fig. 6.

Fig. 6 shows the correlation between the spectral esti-
mation in respect to each sleep stage. The most prominent
distinction was on Stages 2 and 3, where the amplitudes were
highly concentrated on the delta wave range (green/yellow
and red-wide colours in heat-map Fig. 6). Another sleep stage
that is highly distinctive is the Awake stage. There the beta
waves range (light blue lines between 13 Hz and 30 Hz)
becomes evident when the subject enters into Awake stage.
In the case of REM, the spectral estimation of the frequen-
cies becomes quiet, with low amplitudes in varying ranges
between low-alpha (L-alpha, 8-10 Hz) and delta. It has also
been found that during REM, the MM-EOG factor becomes
quite active and the MM factor from C4-Al and C3-A2
remains quiet as seen in Fig. 6 (EOG & MM factors are at
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the bottom side on Fig. 6). For Stage 1, it was found that
the amplitudes in the spectrogram started to do a smooth
transition from L-Alpha to theta wave range, the amplitudes
on that stage were low and transitory.

B. EXPERIMENTAL RESULTS WITH THE SVM-Q
CLASSIFIER AND THE RULES-BASED CLASSIFICATION

The number of features generated by the MT&C was given by
the number of specific frequencies which are directly related
to the number of wavelets applied. It was found that when
the number of specific frequencies were larger than 40, not
only did the size of the matrix increase massively but so
did the computational power required to generate the spec-
tral estimation. Moreover, when the ‘“lined spaced vector”
between one frequency to the next was higher than 1, the
descriptive values of the frequencies after the convolution
did not match the parameters of the sleep stages. The best
outcomes were achieved when there was a “lined spaced
vector” between 1 to 29, and a 0.2 element was attached
to that vector. The 0.2 element was incorporated to match
the EEG sleep parameters of delta waves. The Rules-based
classification for the MT&C features was applied based on
the graphical analysis of the MT&C and the classification
criteria stated in Table 1.

It was found that the accuracy of the sleep stages classifi-
cation with the Rules-based method using the features from
the MT&C and the datasets from St. Vincent’s database was
good, however, the accuracy of the sleep stages classifica-
tion on healthy subjects was considerably better (CAP Sleep
Database) [54]. The average accuracy in sleep classification
on the St. Vincent’s database was 73.4%, with an average
specificity of 81.8% and an average sensitivity of 87.7%.
While the average accuracy of the sleep stages classification
on the CAP Sleep Database was 87.6%, as seen in Fig. 7 with
an average sensitivity of 93.1% and an average specificity
of 91.6%. In Fig.7 (confusion matrix) it can be seen that
most of the stages had a good performance, however, Awake
stage and Stagel had a significant number of FPs (36.5% and
36.4%) compared to the number of the evaluated stages (416
for Awake stage and 264 for Stagel). The performance of the
other sleep stages (Stage 2, Stage 3 and REM) in terms of FPs
were significantly better with FPs rates between 18.1% and
5% (Fig. 7 far-right column).
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Spectogram Subject N1 from CAP sleep database
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FIGURE 6. Spectrogram generated by the MT&C feature extraction. It shows the distribution of the power across 30 frequencies (1-30Hz) over one night
sleep. The distribution of frequencies is contrasted with labels from an expert (red-line: 0 = awake, 1 = stage 1, 2 = stage 2, 3 and 4 = deep-sleep stage,

5 = REM).

TABLE 5. Methods accuracy on St. Vincent's database.

Methods Main Other Channels Features Average Accuracy /stage (%)
Channel Accuracy Aw S1 S2 S3 REM
MT&C-rules C3A2 C3A2 32 73.4% 78 63 86 80 83
MT&C(SVMQ) C3A2 C3A2 32 78.1% 80 60 82 78 67
gBi-LSTM [11]  ——--- C3A2, C4A1, EMG, EOG 28 features 68.6% 75 75 90 69 34
DBN[12] - C3A2, C4A1, EMG, EOG 28 features 65.38% 68 33 76 88 60
BLSTM+WDBN C3A2 No mentioned 40 features 78.6% 81 57 83 88 84
[13]
U-Time [14] C3A2 EOG, EMG No mentioned 72.8% 75 51 79 86 73
TABLE 6. Methods accuracy on CAP Sleep Database.
Methods Main Other Channels Features Average Accuracy /stage (%)

Channel Accuracy W S1 S2 S3 REM

MT&C-Rules C3A2 C3A2 32 87.6% 97 84 82 89 86

MT&C(SVMQ) C3A2 C3A2 32 90% 92 85 87 89 95

U-Time [14] C3A2 EOG, EMG No mentioned 67.8% 78 29 76 80 76

CNN [14] C3A2 EOG, EMG No mentioned 68% 77 35 76 78 76

CNN-LSTM [14] C3A2 EOG, EMG No mentioned 65% 77 28 69 71 75

In terms of FNs, all stages predictions perform signifi-
cantly good, with FNs rates between 2.9% and 17.4%, as seen
in Fig.7 bottom row. Most of the stages had FNs with the
immediately following stage except by Stage 2 which had
FNs with Stage 3 and REM.

As seen in Tables 5 and 6, the performance of the SVM-Q
classifier was slightly better than the classification with the
Rules-based method. The best results were archived with
the combination of the SVM-Q classifier with the features
generated from the CAP Sleep Database. The average accu-
racy of the SVM-Q classifier using the MT&C features from
the St. Vincent’s Database were of 78.1%, with an aver-
age sensitivity of 82.2% and average specificity of 93.9%.
And the average accuracy of the SVM-Q classifier using the
MT&C features with the CAP Sleep Databa was of 90.1%,

VOLUME 10, 2022

with an average sensitivity of 96.2% and average specificity
of 93.2%.

Fig. 8 (boxplot) shows the accuracy range of each stage
on a different test performed in each subject from CAP Sleep
Database using the Rules-based method.

Fig. 9 (confusion matrix) shows the classification results
of the sleep stages classification on the Delica Database
using the SVM-Q classifier, it had an average accuracy of
80%, an average sensitivity of 87% and average specificity
of 90.5%. In Delica Database the SVM-Q classifier also per-
formed better than the Rules-based method which archived
and average accuracy of just under 78% using the same
number of subjects as in the SVM-Q classifier.

Considering the SNR mentioned on section V.A, it is noted
that the performance of the algorithms has a high correlation
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TABLE 7. Methods performance on all three databases used (St. Vincent's, CAP Sleep and Delica) with the proposed methods.

Average Average Average
Methods Database Features Specificity Sensitivity Accuracy SdT}\;R
(%) (%) (%) (dBs)
MT&C-Rules St. Vincent's 32 81.8 87.7 73.4
MT&C(SVM St. Vincent's 32 93.9 82.2 78.1 0.132
Q)
MT&C- CAP Sleep 32 91.6 93.1 87.6
Rules
.01
MT&C(SV CAP Sleep 32 93.2 96.2 90.1 0.0198
MQ)
MT&C-Rules Delica 33 83.4 88.4 77.5
MT&C(SV Delica 33 90.5 87 80 0.223
MQ)

Sleep stage classification with the rules-based method (CAP database)

0 264 8 12 32
1 8 168 80 8
2 24 60 208 272
P
kK
o
93 464
=]
=
5 96 1816

2.9%

13.4%

16.0%

0 1 2 3 5
Predicted Class

FIGURE 7. Confusion Matrix for 9224 predicted stages from 10 different
subjects with features from MT&C using the Rules-based classification
method vs expert labels for CAP Sleep Database.

SVM-Q Accuracy on CAP Database

1
1
|
1
1
1

L

w REm s
Sleep Stages

FIGURE 8. Accuracy on the CAP Sleep Database using the Rules-based
classifier.

with the SNR of a database. As seen in Table 7, the results
from the CAP database with lower SNR (mentioned in section
V.A) preformed significantly better that the other databases
that have a greater SNR (St. Vincent’s and Delica databases).

71308

Sleep stages classification with the SVM-Q classifier (Delica Database)

REM 3 31 6 8.6%
si| 38 81 74 9 40.1% | 59.9%
s2| 14 3 668 13 5 5.0%
]
5 sws 38 111 25.5%
w
=
w| 2 2 77 59 37.1% | 62.9%

14.6% 9.0%

24.8%

10.5% 25.3%

REM S1 52 SwWs W
Predicted Class

FIGURE 9. Confusion Matrix for 1679 predicted stages from 3 different
subjects with features from MT&C using the SVM-Q classifier method vs
expert labels for Delica Database.

C. COMPARISONS OF THE PROPOSED METHODS WITH
OTHER EXISTING SLEEP CLASSIFICATION STUDIES

To verify the performances of the proposed methods, a com-
parison with other classification methods that used the same
databases was conducted. For the St. Vincent’s Database,
the studies from Gorriz et al. [55], Sunetal [13] and
Peslev et al. [14] were used. The comparison performances
were listed in Table 5. For the CAP Sleep Database, the
study from Peslev et al. [14] was used, their comparison
performances are listed in Table 6. The performances by the
proposed methods and those reported in [13] and [14], [55]
were very similar with the St. Vincent’s Database. It is
evidence that the performances of the proposed methods were
significantly better than those from [14] for the CAP Sleep
Database, as listed in Table 6.

VI. CONCLUSION

This paper applies time frequency analysis methods to sleep
EEG data and identifies a significant difference in per-
formance accuracies between healthy subjects and subjects
with abnormal sleep patterns. It was found that the both
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classification methods, the Rules-based and SVM-Q classi-
fiers, struggled the most in trying to predict Stage 1 in subjects
with abnormal sleep EEGs. Even though that the SVM-Q
performed better that the Rules-based method in subjects
with abnormal sleep EEGs, it had a very low performance
in classifying the REM stage compared to the Rule-based
method on the same type of subjects [37].

It can be concluded that the features from the MT&C
with the data from healthy subjects were more descriptive
in terms of the correlation to the sleep stages that the ones
from subjects with abnormal sleep. The performance of both
classifications was considerably better when using the data
from the CAP Sleep Database and the data from Delica
Database.

It is very clear that the SVM-Q classifier performs better in
accuracy over the Rules-based method. However, the Rules-
based classifier has lots of potential for future improvements.
For instance, as new descriptive features are incorporated into
the Rules-based classifier algorithm, it has the possibility
to identify more detailed elements from each stage, which
at the same time will improve the classification of stages
that are uncleared or controversial. The Rules-based classifier
algorithm has the potential to show a graphical interpreta-
tion of the events that took place in each particular stage,
which will also help experts on identification of particular
characteristics.

More importantly, this study suggests that by using similar
principles as the ones applied by the MT&C, sleep stages
classification can be improved. For instance, this method
could use an additional descriptive wavelet method to identify
specific characteristics in sleep stages like spindles and k-
complexes, improving the performance and the accuracy of
this sleep EEG classification method.

In summary, the applied methods in this research not only
produce a good sleep stages classification on different sleep
EEG databases as show in table 7, but it can also display the
actual events that take place in each stage by visualizing the
features produced by the MT&C method. This means that
the sleep stages predictions are performed by the spectral
estimation generated and then displayed in the spectrogram,
which gives a graphical description of the events inside each
stage.
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