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ABSTRACT Fibromyalgia is a chronic pain syndrome associated with sleep disturbances, which may
manifest as altered electroencephalography and electrocardiography (ECG) signal alterations during sleep.
We aimed to develop a lightweight machine learning model for diagnosing fibromyalgia using single-lead
ECG signals recorded during sleep. We analyzed 139 single-lead ECGs recorded during Stage 2 and Sleep
Stage 3 of 16 patients with fibromyalgia and 16 age and sex matched controls. ECG records were divided into
15-second segments: 3308 and 1783 in healthy vs fibromyalgia classes, respectively. Our model comprised
(1) feature extraction that combined an 8-wavelet filter and 4-level multiple filters-based multilevel discrete
wavelet transform signal decomposition with a novel local binary pattern (LBP)-like function, 3LBP, that
generated multiple patterns (analogous to quantum superposition) for feature map value extraction (the
optimal input-specific pattern was dynamically selected using a novel forward-forward algorithm); (2)
feature selection using neighborhood component analysis and Chi-square functions; (3) classification with
k-nearest neighbors and support vector machine classifiers using leave-one-record-out cross-validation;
and (4) mode function-based iterative majority voting to generate voted results, from which the best model
result was derived. Our model attained binary classification accuracies of 93.87% and 92.02% for Sleep
Stage 2 and Sleep Stage 3, respectively. The observed outcomes and empirical evidence unequivocally
demonstrate the efficacy of our proposed methodology in differentiating the electrocardiographic signatures
of fibromyalgia patients from control subjects. The model exhibited self-organizational properties and
computational efficiency, rendering it amenable to facile clinical integration.

INDEX TERMS ECG-based fibromyalgia detection, 3LBP, multiple filters-based multilevel discrete wavelet
transform, leave-one-record-out cross-validation, quantum-based feature extraction.

I. INTRODUCTION connective tissue, and around joints [3], as well as fatigue and
A. BACKGROUND difficulty with memory, concentration, and sleep [4], [5]. The
Fibromyalgia, a chronic pain syndrome, is associated with cause of fibromyalgia is unclear, although genetic predispo-
pain [1], [2] in various body regions, especially in muscles, sition, physical or emotional trauma, various infections, and
hormonal imbalances have been implicated as triggers [6],

The associate editor coordinating the review of this manuscript and [7], which may vary among patients [8]. During the clini-
approving it for publication was Anandakumar Haldorai . cal evaluation of fibromyalgia, the usual procedure involves
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reviewing symptoms, conducting a physical examination, and
performing specific laboratory tests [9]. The diagnosis of
fibromyalgia is challenging [10], and hinges crucially on a
history of pain persistence in the absence of an identifiable
medical cause [11]; specific laboratory or imaging diagnostic
tests remain elusive. As definitive treatment for fibromyalgia
is lacking [12], current management revolves around allevi-
ating symptoms and enhancing patients’ quality of life [13],
i.e., symptom-relieving drugs, exercise, physical therapy, and
sleep planning [14], which may need to be individualized
depending on the different patterns of symptom presentation
in individual patients [15].

A few researchers investigated the use of biomedical
signals to facilitate the diagnosis of fibromyalgia [16],
including analyses of continuous electroencephalograpram
(EEG) and electrocardiography (ECG) signals recorded dur-
ing sleep [17]. High data volume and temporal variations
at different sleep stages render manual signal interpreta-
tion highly challenging [18]. This interpretative task may
be posed as a classification challenge, for which automated
artificial intelligence-enabled solutions may be applied [19].
For example, automated EEG- and ECG-based models have
been proposed for the diagnosis of neurological [20] and
cardiac [20], [21] conditions, respectively. In this study,
we present a lightweight machine learning model for discrim-
inating fibromyalgia vs healthy subjects using single-lead
ECG signals recorded during sleep.

B. LITERATURE SURVEY

Disturbed sleep is a cardinal symptom of fibromyalgia.
Thomas et al. [17] used spectrograms and statistical analy-
ses to study EEG and ECG signals recorded during sleep
from fibromyalgia and control subjects. They demonstrated
that fibromyalgia-associated sleep instability induced per-
turbations consistently in both EEG and ECG signals,
implying a heart-brain connection in the disease manifes-
tation. Bilgin et al. [22] examined the correlation between
heart rate variability, a marker of sympathetic nervous sys-
tem activation [23], and anxiety levels in fibromyalgia
patients using ECGs obtained from 56 fibromyalgia and
34 control subjects. The ECG signals were decomposed
into sub-bands using wavelet packet transform and input
to multilayer perceptron neural networks for classification.
ECG-assessed heart rate variability parameters were shown
to be useful for fibromyalgia diagnosis. Aksu et al. [16] stud-
ied the ECGs of 43 fibromyalgia and 30 control female
subjects. From the analysis of parameters like fragmented
QRS morphology, P dispersion, QT dispersion, as well as
inter- and intra-atrial electromechanical delay, they found
fibromyalgia patients more likely to have ECG changes
that predisposed to atrial and ventricular arrhythmia. This
pro-arrhythmia potential was corroborated in animal exper-
iments by Nakata et al. [24], who showed that experimental
high walking exercise loads could induce arrhythmia in
mouse models of fibromyalgia.
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C. LITERATURE GAP

While there is limited research on ECG-based fibromyal-
gia diagnosis, a few promising scientific insights have
emerged, such as the association between fibromyalgia
status and ECG signals [16], [22], and the -correla-
tion between sleep EEG-ECG signals in sleep-impaired
fibromyalgia patients [17]. Additionally, few classification
models have been developed for automated ECG-based
fibromyalgia detection. Recognizing this gap, we aimed to
create an accurate yet computationally efficient model for the
high-throughput analysis of sleep ECG signals in diagnosing
fibromyalgia. To achieve this, we used handcrafted multilevel
dynamic feature engineering techniques. These techniques
emulate the deep feature extraction and superior classification
performance of deep learning networks, eliminating the need
for time-consuming sequential weight optimization across
different network layers.

D. MOTIVATIONS AND OUR MODEL

The heart-brain connection suggests that changes in biophys-
ical signals like EEG and ECG may occur concomitantly in
diseases that affect the nervous system primarily; this obser-
vation has been harnessed to advantage in computer-aided
diagnosis of neurological diseases [25], including fibromyal-
gia [17]. Our research question is centered on demon-
strating the feasibility of a computationally lightweight
self-organized ECG signal-based handcrafted machine learn-
ing model for distinguishing ECG of fibromyalgia patients
from healthy controls. To overcome the limited performance
of non-deep learning models, we proposed innovative fea-
ture engineering methods. Our model comprised four phases:
(1) feature extraction that combined multiple filters-based
multilevel discrete wavelet transform (MFMDWT) pre-
processing [26] with a novel local binary pattern (LBP) [27]-
like textural feature generator, 3LBP; (2) feature selection
by neighborhood component analysis (NCA) [28] and Chi-
square (Chi2) [29] functions; (3) classification with standard
shallow k-nearest neighbors (kNN) [30] and support vec-
tor machine (SVM) [31] classifiers; and (4) information
fusion using mode function-based iterative majority voting
(IMV) [32]. Of note, MFMDWT enabled multilevel fea-
ture extraction in both the spatial and frequency domains
from the decomposed wavelet sub-bands. Additionally, the
3LBP-based feature generator incorporated a novel dynamic
forward-forward (FF) feature map value selection opera-
tion that emulated the Hinton’s FF algorithm [33] that was
originally proposed for deep learning. The 3LBP generated
multiple patterns per signal input, which is somewhat akin
to the concept of quantum superposition: a quantum sys-
tem can exist in multiple states at the same time until it
is measured. We designed a straightforward FF operation
inspired by Hinton’s FF algorithm that dynamically selected
from among those generated one optimal pattern specific
to the input signal that could.be used for downstream tex-
tural feature extraction The FF strategy simulated human

VOLUME 11, 2023



P. D. Barua et al.: Innovative Fibromyalgia Detection Approach

IEEE Access

neural systems and was computationally less costly compared
with ubiquitous backpropagation (which is unlikely to occur
in nature [33]) seen with deep learning. Through dynamic
input signal-specific feature extraction [19], we believed that
quantum-based models could affect fast, comprehensive and
deep characterization of data features that would enhance
downstream model classification performance.

E. NOVELTIES

In this work, we proposed an innovative feature engineering
model to detect fibromyalgia. The highlights of the work are
as follows.

- Enhanced the standard multilevel discrete wavelet trans-
form (MDWT) method for signal decomposition.

- Integrated multiple filters with unique attributes, facili-
tating the design of wavelet filters with diverse charac-
teristics [34].

- Previously applied to one-dimensional sound sig-
nals [34], and in this work we applied it to the ECG
signals.

- Introduced a custom 3LBP feature generator.

- Drawing inspiration from both quantum mechanics and
Hinton’s FF algorithm [33].

- Incorporated an optimal feature map value selection
function, ensuring dynamic and input signal-specific
feature extraction.

We improved the standard multilevel discrete wavelet
transform-based signal decomposition by incorporating mul-
tiple filters with distinct properties, thereby allowing the
creation of wavelet filters with a broad range of charac-
teristics [34]. Previously applied to one-dimensional sound
signals [34], MFMDWT was used for the first time in this
study to analyze ECG signals. Our customized 3LBP fea-
ture generator incorporated a quantum- and Hinton’s FF
algorithm [33]-inspired optimal feature map value selection
function that enabled dynamic and input signal-specific fea-
ture extraction.

F. CONTRIBUTIONS
The contributions of our proposal are as follows:

- Our model achieved outstanding binary classification
accuracies of more than 92%.

- Employed leave-one-record-out
validation (CV) approach [35].

- LORO CV considers differences among individual
ECG records.

- This method is generalizable as we employed LORO
CV using ECG signals.

- To the best of our knowledge, we are the first group
to present an automated fibromyalgia detection system
using ECG signals. We have employed the LORO CV
and a self-organized feature engineering model in our
study.

(LORO) cross-
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FIGURE 1. Example ECG signals used in the study dataset.

- Also, our model is computationally efficient, making it
suitable for ECG-based clinical screening of fibromyal-

gia.

Il. STUDY DATASET

We analyzed 139 single-lead ECGs recorded at Sleep Stage 2
and Sleep Stage 3 (which exemplify light sleep and non-rapid
eye movement deep sleep, respectively) of polysomnographic
sleep studies of 16 healthy subjects and 16 patients with
fibromyalgia [36]. ECG signals were sampled at 512 Hz
and stored as.edf files. These were converted to.mat files
and divided into non-overlapping 15-second segments with
7680 data points (=15 x 512) each. We adopted a systematic
naming convention for these mat files, which incorporated the
sleep stage, class name, record number, and segment num-
ber. There were 3308 (=1811 4+ 1497) and 1783 (=1012 +
771) segments corresponding to the healthy and fibromyalgia
classes, respectively (Table 1), examples of which are shown
in Figure 1.

Ill. PROPOSED FEATURE ENGINEERING MODEL

Our feature engineering model encompassed several phases:
feature extraction, feature selection, classification, and infor-
mation fusion. Initially, input signals were decomposed using
an 8-wavelet filter within a 4-level MFMDWT framework.
Both the generated low-pass filter wavelet sub-bands and the
raw ECG signal were then processed using the 3LBP textural
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TABLE 1. 16-subject study ECG dataset stratified by Sleep Stage and
Class.

Sleep Stage Class ECG records ECG
(n) segments (n)
2 Healthy 42 1811
Fibromyalgia 32 1012
3 Healthy 36 1497
Fibromyalgia 26 771

II ECG Signals

3LBP

Fﬂll -

Categorical feature merging

Eﬂl-- -

Feature selectors

---- ﬂ

Classifiers

\.HIHE - [

‘ Iteratlve majonty voting |

FIGURE 2. Block diagram of the proposed feature engineering model.
**w, wavelet sub-band; f, feature vector generated by 3LBP function; F,
merged feature vector; s; selected feature vector; p, prediction vector; v,
voted prediction vector; a, calculated accuracy.

Final result

\_T_l
rH-H H

Accuracy calculation

feature extraction function. This process yielded 40 feature
vectors, each of length 256. These vectors were subse-
quently grouped according to their corresponding wavelet
filter, consolidating them into 8 vectors, each of length
1280 (=256 x 95).

These consolidated vectors were introduced to NCA and
Chi2 feature selectors. From each of these merged vectors,
two refined feature vectors with reduced dimensionality were
derived. Each of these vectors retained the most informative
256 features out of the initial set of 1280. Consequently,
asum of 16 (=8 x 2) selected feature vectors emerged. These
were further input to kNN and SVM classifiers, producing 32
(=16 x 2) classifier-wise prediction vectors.

As a concluding step, IMV was applied to these 32 pre-
diction vectors, generating an additional 30 voted prediction
vectors. From the aggregated 62 (32 + 30) results, the predic-
tion with the paramount classification accuracy was selected
(refer to Figure 2). Comprehensive details of each phase will
be expounded upon in the subsequent sections.

A. FEATURE EXTRACTION

The feature extraction architecture incorporated MFMDWT,
facilitating multilevel feature generation from both the raw
signal and its decomposed wavelet sub-bands. Additionally,
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FIGURE 3. Block diagram of the MFMDWT.

the 3LBP method was used, which autonomously produced
multiple patterns, akin to “quantum states.” From these
patterns, the optimal one specific to the input signal block
was dynamically selected using an integrated handcrafted
FF function. This function, reminiscent of Hinton’s FF
algorithm, was employed to derive map values for the cre-
ation of histogram-based feature vectors.

1) MULTIPLE FILTERS-BASED MULTILEVEL DISCRETE
WAVELET TRANSFORM
The MFMDWT [34] enhances the traditional multilevel
discrete wavelet transform by integrating multiple wavelet
filters concurrently. This expands the selection of appropri-
ate wavelet filter types for signal decomposition (refer to
Figure 3), which could potentially lead to improved classi-
fication performance.

Equations (1) — (4) below defines MFMDWT-based signal
decomposition into low- and high-pass wavelet sub-bands.

S1: Select wavelet filters.

S2: Input signal to the MFMDWT.

[lowﬁ,high’i]:é(signal,ﬁi), ie{1,2,... kb (1)
[loij, high]%+l]=5 (zow]’i,f") . jell2...n @
wé];l = low} 3)

Wl2j = high]l- 4

where low represents low-pass filter band; high, high-pass
filter band; §(., .), discrete wavelet transform function; f,
wavelet filter; k, number of wavelet filters; and n, number
of levels.

2) 3LBP: A QUANTUM-INSPIRED FEATURE EXTRACTION
FUNCTION

For each input signal block, the 3LBP function produced
nine distinct patterns. To identify the optimal pattern specific
to the input signal, we developed a handcrafted FF pattern
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FIGURE 4. Block diagram of the 3LBP feature extraction function. **Pt,
pattern; Pts, selected pattern; v, value within each signal block.

selection algorithm, drawing inspiration from Hinton’s FF
algorithm [33] (Figure 4).

The 11 steps below define the proposed quantum-inspired
3LBP feature extraction function.

S1: Calculate the mean value of the signal.

L
1
= - ignal 5
my 7 Zszgna (@) Q)
gqg=1
where mv represents the mean value of the signal; and £,
signal length.
S2: Divide the signal into overlapping blocks of length 27.
bl" (1) = signal (h+1t—1), he{l,2,...,L—26},
te{l,2,...,27} 6)
where bi", represents h™ overlapping block of length 27.
S3: Create sub-blocks from the block generated in S2.
b x+9x (a—1)=bl"(x), xe{l,2,...,9},
aef{l, 2,3} (N
where b represents the sub-block. Here, three sub-blocks
were created.

S$4: Create nine groups using the three sub-blocks created
in S3.

8ra = ba ®
gra (ngh(e)) = by (ngh(e)), gra(5)=02(5),  (9)
grs (ngh(e)) = b1 (ngh(e)), grs(5)=b3(5)  (10)
gre (ngh(e)) = ba (ngh(e)), gre(5) =b3(5) (1)
gr1 (ngh(e)) = by (ngh(e)), gr1(5)=0b1(5)  (12)
grg (ngh(e)) = b3 (ngh(e)), grg(5)=b1(5)  (13)
gro (ngh(e)) = b3 (ngh(e)), gro(5) =b2(5)  (14)
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nghef{l,2,...,9} and ngh #5, e€cf{l,2,...,8}

15)

where ngh represents the index of the neighbor value; gr,

group.
S5: Calculate the mean value of each group.

9
1
gmvy = 5;% 0, befl,2,....9  (16)
where gmv represents the mean value of each group. Here,

nine mean values were calculated.
S§6. Calculate differences in the mean values.

dify = [mv — gmvy| (17)

where dif represents the calculated difference.
S7: Find the index of the minimum distance.

id = min(dif) (18)

where id represents the index of the minimum difference.
Equations (16) - (18) define the novel FF mean value-based
group selection method to select the optimal group (pattern)
for downstream textural feature extraction.
S8: Extract binary features by applying the signum func-
tion to the selected index.

bit () = signum (gria (ngh (€)) , gria (5)) 19)
signum (griq (ngh (e)) , gria (5))

0, gria (ngh (e)) — gria (5) <0
1, griq (ngh (€)) — gria (5) = 0

= (20)
where bit represents generated binary values.
S$9: Compute map value using the 8 bits generated in S8.

8
map (h) = bit(e) x 27! 1)

e=1

S10: Repeat S2-S9 for the number of overlapping blocks
in the signal to generate the map signal.

S11: Extract histogram of the map signal to generate fea-
ture vector.

fv = n(map) (22)

where fv represent generated feature vector of length 256
(= 28); and n, histogram extraction function.

3) STEPS OF THE PROPOSED FEATURE EXTRACTION
METHOD

The steps for feature extraction in our model, based on
MFMDWT and 3LBP, are outlined below.

Step 1: The generic MFMDWT function is defined in
Section III-Al. To ensure a comprehensive coverage of
wavelet domains in our model, we employed eight renowned
filters: Haar, Daubechies 4 (db4), Coiflet 4 (coif4), Symlet 4,
Fejér-Korovkin 6 (fk6), Discrete Meyer (dmey), BiorSplines
3.5 (bior3.5), and Reverse Bior 3.5 (rbior3.5). Additionally,
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the MFMDWT was executed at four levels of signal decom-
position, using low-pass filters to produce wavelet sub-bands
for subsequent feature extraction.

[low’i,high’i]:ﬁ (signaz,fﬂ'), ie{l,2,...,8) (23)
[low;I+1 : high]’iH] =5 (lowj,f") L, jell,2,3,4) (24

Step 2: Both the raw ECG signal and the derived low-pass
wavelet sub-bands were fed into the proposed 3LBP-based
feature extractor.

fli = w(signal) (25)
flo = allow)) (26)

where «(-) represents the 3LBP feature extraction function
(the detailed steps are defined in Section III-A2); and f,
extracted feature vectors of length 256.

Step 3: Concatenate the generated feature vectors categor-
ically based on the wavelet filter used.

Fi(r 4+256 x (b — 1))
=fl(r), ref{l,2, ..., 256},
be{l,2,...,5), iefl,2,...,8 (27)

where F denotes the merged feature vector. We generated
eight merged feature vectors, each of length 1280, facilitating
a comprehensive survey of signal data characteristics specific
to each wavelet filter. These characteristics had been previ-
ously segmented into multiple frequency domains.

B. MULTIPLE SELECTORS-BASED FEATURE SELECTION
We deployed standard NCA [28] and Chi2 [29] feature selec-
tion functions in our model. NCA assigns positive weights
to features based on their distance-related importance to
select the most informative features, while Chi2 employs
the Chi-squared statistical metric. Both methods enable the
efficient identification of the most discriminative features,
considerably reducing data dimensionality. From the eight
merged feature vectors, each of length 1280, NCA and Chi2
produced 16 feature vectors, each spanning 256 units in
length.

To elucidate the feature selection process using multiple
selectors, we detail the steps of this phase below.

Step 4: Generate qualified indexes of all features by
deploying NCA and Chi2 feature selectors.

ind" = (F", y) (28)

indS = x (F'.») (29)
where ind" represents qualified index generated by NCA;
ind€ , qualified index generated by Chi2; (., .), NCA feature
selection function; x(.,.), Chi2 feature selection function;
and y, output.

Step 5: Create 16 selected feature vectors using both NCA-
and Chi2-generated indexes.

sid,c) = F (d,ind{" (c)), de(l,2,...,N},
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cefl,2,...,256) (30)
sivs (d, ¢) = F (d, indC (c)) 31)

where s represents the selected feature vector of length 256;
and N, the number of observations.

C. CLASSIFICATION

The 16 selected feature vectors were fed into the established
and effective shallow kNN [30] and SVM [31] classifiers. Uti-
lizing the LORO CV strategy, we employed the fine KNN and
quadratic SVM within the MATLAB Classification Learner
Toolbox, deriving two classifier-specific outcomes for each
selected feature vector. An explanation of these classifiers is
provided below.

1) kNN [30]

kNN is a non-parametric, instance-based classifier. It classi-
fies a data based on how its neighbors are classified. When
a data needs to be classified, the algorithm looks for the ‘k’
nearest data point (where ‘k’ is a user-defined parameter) and
assigns a label based on the majority class of those neighbors.
kNN is simple, intuitively easy to understand, and is generally
effective for datasets where data points close to the feature
space have the same label. It is computationally intensive
for large datasets, sensitive to unrelated features, and can be
distorted by unstable datasets.

2) SVM [31]
SVM is a supervised learning algorithm. Its primary function
is to find a hyperplane that best divides a data into classes;
This makes it particularly effective in high-dimensional
spaces and where there is a clear margin of separation. One of
the advantages is its effectiveness in these high-dimensional
spaces. It can also use a subset of training points, known
as support vectors, in the decision function and is versatile
due to its ability to use different kernel functions for data
separation. The selection of an appropriate kernel function is
crucial and the algorithm may become less effective if there
is a significant amount of noise in the dataset.

The hyperparameters used for various classifiers are tabu-
lated in Table 2.

Step 6: Classify the 16 selected feature vectors by deploy-
ing kNN and SVM classifiers.

pr =kNN (sp,y), t€{l,2,...,16} (32)
Prv16 = SVM (51, y) (33)

where p represents the prediction vector. 32 prediction vec-
tors were generated from the 16 selected feature vectors.

D. INFORMATION FUSION

We utilized the mode function-based IMV [32] to produce
voted prediction vectors. With the iteration range set from 3
(the minimum number of vectors required for mode function-
based selection) to 32 (the total number of classifier-wise
prediction vectors), we generated an additional 30 voted
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prediction vectors. Each of these vectors was derived from
an array of the top classifier-specific outcomes, representing
the collective decision-making process. We computed the
classification accuracies for each of the classifier-specific
prediction vectors as well as the IMV-voted prediction vec-
tors, comparing them. The result with the highest accuracy
was chosen as the model’s final outcome. This informa-
tion fusion facilitated a self-organized determination of the
model’s optimal result. The steps are detailed further below.

Step 7: Deploy IMV to calculated voted prediction vectors.

v=w(p) (34)

where @ (-) represents IMV function; and v, voted prediction
vector. Here, 30 voted prediction vectors were generated from
32 classifier-wise prediction vectors.

Step 8: Select the most accurate result as the final result
according to classification accuracy.

acy =¢ (py), well,2,...,32} (35)

acern =¢ (vg), g€{1,2,...,30 (36)
indx = max(ac) 37
indx » indx < 32
fres = | Pindee 1MEE= (38)
Vinx—32, indx > 32

where ¢(-) represents the accuracy calculation function; ac,
classification accuracy; indx, index of the output with maxi-
mum accuracy; and fres, final result.

Steps 1-8 above define our ECG signal classification model
for fibromyalgia detection.

IV. EXPERIMENTAL RESULTS
The model was developed and implemented in MATLAB
(2020a) programming environment on a personal computer
with a 3.6 GHz central processing unit, 64 GB memory, and
Windows 10 Professional operating system. The parametric
model settings are detailed in Table 2.

Standard evaluation metrics were used to assess the
model’s performance: accuracy, specificity, sensitivity, and
geometric mean. The mathematical definitions are listed
below.

tp+1n

—__rrm 39
T tfitftm (39
m
sp = 40
4 tm (40)
1
sn=—2 (41)
fa+1tp
1 1,
gm= | P (42)

X
fo+m  fan+1ip
where ac represents accuracy; sp, specificity; sn, sensitivity;
gm, geometric mean; tn, true negative; tp, true positive; fu,
false negative; and fp, false positive.

A. CLASSIFIER-WISE RESULTS
We stratified the results by sleep stage. Our model attained
excellent classification results for ECG signals acquired at
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TABLE 2. Parameter settings of proposed model.

Phase Method Input Output | Parameter
Feature MFMDWT | ECG 32 8 wavelet
generation signal wavelet | filters;
bands. number of
levels: 4
3LPB- ECG 40 Length of
based signal and | feature overlapping
feature generated | vectors block: 27;
32 bit
vector wavelet extraction
extraction sub-bands function:
signum;
number of
patterns: 9;
selection:
mean
differences-
based
algorithm;
length of
feature
vector: 256
Categorical | 40 feature | 8 Length of
merging vectors merged | each merged
feature feature
vectors vector: 1280
Feature NCA 8 merged | 8 Length of
selection feature selected | each
vectors feature selected
vectors feature
vector: 256
Chi2 8 merged | 8 Length of
feature selected | each
vectors feature selected
vectors feature
vector: 256
Classification | kNN 16 16 KNN | k:1;
selected results distance:
feature L2-norm
vectors (Euclidean);
voting:
none;
validation:
LORO CV
SVM 16 16 Kernel: 2™
selected SVM polynomial
feature results order; kernel
vectors scale:
automatic;
box
constraint:
1.
Information IMV 32 30 Iteration
fusion classifier- | voted range: 3 to
wise results 32; sort
results criteria:
descending;
voting
function:
mode.
Selection 62 results | 1result | Selection:
of final maximum
result calculated
accuracy

Sleep Stage 2 (Table 3) and Sleep Stage 3 (Table 4). The high-
est classification accuracy of 93.20% at Sleep Stage 2 (light
sleep) was attained by the 29" prediction vector (wavelet
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TABLE 3. Classifier-wise results for Sleep Stage 2.

TABLE 4. Classifier-wise results for Sleep Stage 3.

No. Ac (%) Sp (%) Sn (%) Gm (%) No. Ac (%) Sp (%) Sn (%) Gm (%)
1 90.72 87.69 96.15 91.82 1 84.57 89.31 75.36 82.04
2 92.35 88.68 98.91 93.66 2 87.39 95.66 71.34 82.61
3 92.84 89.51 98.81 94.05 3 90.12 94.32 81.97 87.93
4 93.16 90.39 98.12 94.18 4 85.32 90.71 74.84 82.39
5 89.90 86.14 96.64 91.24 5 86.29 94.12 71.08 81.79
6 92.67 89.73 97.92 93.74 6 89.55 96.39 76.26 85.74
7 92.21 89.56 96.94 93.18 7 86.42 94.19 71.34 81.97
8 90.58 86.31 98.22 92.07 8 89.42 96.26 76.13 85.61
9 86.72 86.36 87.35 86.86 9 89.81 95.99 77.82 86.43
10 87.81 87.63 88.14 87.89 10 85.89 90.85 76.26 83.24
11 89.98 89.07 91.60 90.32 11 89.37 96.66 75.23 85.27
12 88.91 87.41 91.60 89.48 12 87.30 95.99 70.43 82.22
13 88.49 86.14 92.69 89.35 13 89.29 96.06 76.13 85.52
14 89.27 88.24 91.11 89.66 14 88.14 95.99 72.89 83.65
15 89.87 89.56 90.42 89.99 15 88.27 96.46 72.37 83.55
16 89.02 87.19 92.29 89.70 16 87.65 95.32 72.76 83.28
17 89.30 87.41 92.69 90.01 17 84.30 87.51 78.08 82.66
18 91.04 86.47 99.21 92.62 18 83.29 86.97 76.13 81.37
19 92.63 89.40 98.42 93.80 19 87.70 89.98 83.27 86.56
20 91.96 89.12 97.04 92.99 20 84.22 87.44 77.95 82.56
21 90.68 86.86 97.53 92.04 21 81.79 87.17 71.34 78.86
22 92.03 88.51 98.32 93.29 22 85.71 90.51 76.39 83.16
23 90.65 86.80 97.53 92.01 23 83.82 87.58 76.52 81.86
24 90.83 86.42 98.72 92.36 24 85.19 87.11 81.45 84.23
25 90.97 87.96 96.34 92.06 25 90.08 94.12 82.23 87.98
26 92.28 88.85 98.42 93,51 26 86.29 88.38 82.23 85.25
27 92.49 89.62 97.63 93.54 27 85.45 87.91 80.67 84.21
28 90.72 86.86 97.63 92.09 28 83.51 88.91 73.02 80.58
29 93.20 89.90 99.11 94.39 29 84.79 87.58 79.38 83.38
30 92.74 90.06 97.53 93.72 30 86.07 90.71 77.04 83.60
31 90.97 88.51 95.36 91.87 31 90.26 96.46 78.21 86.86
32 90.54 87.36 96.25 91.69 32 88.80 91.85 82.88 87.25
Mean 90.86 88.12 95.77 91.85 Mean 86.75 92.01 76.53 83.86
** Ac: accuracy; Sp: specificity; Sn: sensitivity; Gm: geometric mean.

filter: fk6; feature selector: Chi2; classifier: SVM) (Table 3); 1 o "

and of 90.26% at Sleep Stage 3 (deep sleep), by the 31% g &

prediction vector (wavelet filter: bior3.5; feature selector: 2 2

Chi2; classifier: SVM) (Table 4). . 5

B. MAJORITY VOTING RESULTS 1 . ”

1

Our model attained excellent voted classification results for
ECG signals acquired at Sleep Stage 2 (Table 5) and Sleep
Stage 3 (Table 6) that surpassed the classifier-wise results.
In the information fusion phase, the highest classification
accuracy of 93.87% at Sleep Stage 2 (light sleep) was attained
by the 8™-voted prediction vector (majority voting of the
following ten classifier-wise prediction vectors in descend-
ing order of accuracy: a, b, ¢, d, e, f, g, h, i, j) (Table 5);
and of 92.02% at Sleep Stage 3 (deep sleep), by the 7"
voted prediction vector (majority voting of the following
nine classifier-wise prediction vectors in descending order of
accuracy: A, B, C, D, E, F, G, H, I) (Table 6).

C. FINAL RESULTS

Based on the highest calculated accuracy, the final results of
our model are shown in Table 7. The corresponding confusion
matrixes demonstrated overall acceptable rates of misclassifi-
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Predicted Class

(a) Sleep Stage 2

Predicted Class
(b) Sleep Stage 3

FIGURE 5. Confusion matrixes based on final model classification results,
**pt, pattern; Pts, selected pattern; v, value within each signal block.
**Classes: 1, fibromyalgia; 2, healthy.

cation, with false positive rates of 14.2% and 5.8% for Sleep
Stage 2 and Sleep Stage 3, respectively, and false negative
rates of 0.4% and 8.9% for Sleep Stage 2 and Sleep Stage 3,
respectively (Figure 5).

V. DISCUSSION

Our quantum-inspired ECG classification model attained
excellent binary classification accuracy rates of >92% for
discrimination of fibromyalgia vs healthy classes using
single-lead ECG signals acquired during light (Sleep Stage 2)
and deep (Sleep Stage 3). Notably, the results were attained
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TABLE 5. Voted results for sleep stage 2.

TABLE 6. Voted results for sleep stage 3.

using robust LORO CV, which by aligning the fold count with
the record count (there were a total of 139 ECG recordings
in the dataset), was of greater relevance for the diagnostic
assessment of individual ECG records than the conventional
k-fold random splitting of ECG segments.

The model analyzed 15-second ECG segments (data length
7680), which were each divided into 7654 (=7680 — 27 + 1)
overlapping signal blocks (data length 27) to feed to the
3LBP feature extractor. Nine patterns were generated by
the quantum-inspired 3LBP function, from which only one
was dynamically selected, using a mean distance-based FF
algorithm, to extract map values from each input signal block.
Figure 6 depicts an example of the frequency distribution of
individual patterns used to process one ECG segment.

Our model generated 32 (=8 x 2 x 2) classifier-wise
prediction vectors, each of which was the product of sequen-
tial processing by one each of eight wavelet filters, two
feature selectors, and two classifier options. To assess the
relative contributions of different wavelet sub-band, wavelet
filters, feature selectors, and classifier options on classifi-
cation performance, we stratified the results according to
various utilized parameter options. For the best-performing
20th (wavelet filter: fk6; feature selector: Chi2; classifier:
SVM) and 318 (wavelet filter: bior3.5; feature selector: Chi2;
classifier: SVM) prediction vectors at Sleep Stage 2 and Sleep
Stage 3, respectively (Tables 3 and 4), raw ECG signals con-
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No. Ac (%) Sp (%) Sn (%) Gm (%) No. Ac (%) Sp (%) Sn (%) Gm (%)
1 03 43 90 34 99 11 9262 1 91.80 96.66 82.36 89.22
2 93.77 90.94 98.81 94.80 2 91.67 97.26 80.80 88.65
3 93.69 90.56 99.31 94.83 3 91.84 97.19 81.45 88.98
4 93.77 90.78 99.11 94.85 4 90.61 97.33 77.56 86.88
5 93.73 90.50 99.51 94.90 5 91.84 97.33 81.19 88.90
6 93.77 90.67 99.31 94.89 6 91.36 97.39 79.64 88.07
7 93.66 90.45 99.41 94.82 7 92.02 97.39 81.58 89.14
8 93.87 90.78 99.41 94.99 8 91.40 97.39 79.77 88.14
9 93.73 90.50 99.51 94.90 9 91.40 97.39 79.77 88.14
10 93.80 90.67 99.41 94.94 10 91.36 97.39 79.64 88.07
11 93.66 90.45 99.41 94.82 11 91.45 97.39 79.90 88.21
12 93.62 90.45 99.31 94.77 12 90.48 97.39 77.04 86.62
13 93.59 90.34 99.41 94.76 13 90.61 97.33 77.56 86.88
14 93.62 90.39 99.41 94.79 14 89.59 97.39 74.45 85.15
15 93.34 89.95 99.41 94.56 15 89.64 97.39 74.58 85.23
16 93.38 90.06 99.31 94.57 16 89.64 97.39 74.58 85.23
17 93.20 89.73 99.41 94 .44 17 90.39 97.39 76.78 86.48
18 93.23 89.78 99.41 94.47 18 89.90 97.39 75.36 85.67
19 93.16 89.67 99.41 94.42 19 90.48 97.33 77.17 86.67
20 93.27 89.84 99.41 94.50 20 90.48 97.33 77.17 86.67
21 93.27 89.84 99.41 94.50 21 90.61 97.33 77.56 86.88
22 93.27 89.90 99.31 94.48 22 90.39 97.33 76.91 86.52
23 93.27 89.90 99.31 94.48 23 91.09 97.26 79.12 87.72
24 93.34 90.01 99.31 94.54 24 90.65 97.39 77.56 86.91
25 93.34 90.01 99.31 94.54 25 91.01 97.26 78.86 87.58
26 93.41 90.23 99.11 94.56 26 90.74 97.26 78.08 87.14
27 93.34 90.06 99.21 94.52 27 90.61 96.86 78.47 87.18
28 9341 90.23 99.11 94.56 28 90.43 96.93 77.82 86.85
29 93.34 90.12 99.11 94.51 29 89.99 96.13 78.08 86.63
30 93.45 90.34 99.01 94.57 30 89.68 96.13 7717 86.13
Mean 93.49 90.25 99.30 94.66 Mean 90.77 97.21 7827 87.22

TABLE 7. Final model classification results stratified by sleep stages.

Sleep Accuracy Specificity Sensitivity Geometric
stage (%) (%) (%) mean (%)
2 93.87 90.78 99.41 94.99
3 92.02 97.39 81.58 89.14
1800 1 —
1500 - ]
12000
[S]
3
3 900+
o
Q
-
600 -
300 - {w
. 1 o O R
1 2 3 4 5 6 7 8 9
Pattern

FIGURE 6. Frequency distribution of 3LBP-generated patterns used for an
example ECG segment.

tributed the most to the corresponding selected feature vectors
(and thence classifier-wise results), although the cumulative
contributions of all four wavelet sub-bands were 165 and
166 features out of 256 selected features for Sleep Stage 2
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100 ¢ Il Sleep stage 3
90 + [ Sleep stage 2

Number of features

Raw signal  Low 1 Low 2 Low 3 Low 4
Input

FIGURE 7. Frequency distribution raw ECG signal vs wavelet sub-band
input contributing to the selected feature vectors that yielded the most
accurate classifier-wise prediction vectors for both sleep stages.

and Sleep Stage 3, respectively (Figure 7). The latter obser-
vation underscores the value-add of the multilevel discrete
wavelet transform in our model. Figure 8 and Figure 9 depict
the differential contributions of the various classifiers, fea-
ture selectors and wavelet filters to classifier-wise results,
expressed in terms of mean accuracies, in Sleep Stage 2 and
Sleep Stage 3, respectively. For Sleep Stage 2, coif4 wavelet
filter, NCA feature selector, and SVM yielded the highest
classification ability (Figure 8); and for Sleep Stage 3, coif4,
Chi2, and kNN (Figure 9).

Comparing the accuracy rates of classifier-wise and voted
results for Sleep Stage 2 vs Sleep Stage 3, except for the 9
and 13" classifier-wise prediction vectors, all Sleep Stage 2
accuracy results surpassed those of Sleep Stage 3 (Figure 10),
by as much as 1.85% (= 93.87% — 92.02%) (Table 7).

A. ABLATION STUDY
To examine the impact of 3LBP and LORO CV on model
performance, we performed an ablation study using a sim-
plified base model. We compared the 3LBP model with
standard one-dimensional LBP [37] by applying these fea-
ture extractors to Sleep Stage 2 raw ECG signals and
inputting the extracted features to the kNN classifier for
classification using a 10-fold cross-validation strategy. 3LBP
outperformed LBP, with accuracies of 98.94% and 95.71%,
respectively. These results were also superior to those
obtained with LORO CV. To examine this further, we re-
analyzed the classifier-wise prediction vector results of our
full MFMDWT-3LBP model for Sleep Stage 2 and Sleep
Stage 3 using a 10-fold CV instead of a LORO CV. With
a 10-fold CV, all classifier-wise results surpassed 99%
accuracy for both sleep stages, with some even attain-
ing 100% classification accuracy (Figure 11). Nevertheless,
we remained convinced that LORO CV was the more rigorous
standard, as well as more relevant and applicable for clinical
fibromyalgia detection using ECG records.

Moreover, we have compared the classifiers using the best
feature vectors of the sleep stage 2 and 3 stages. We have
obtained these results using 10-fold CV. The computed
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FIGURE 8. Mean accuracies of classifier-wise prediction vectors stratified
by (a) classifier, (b) feature selector, and (2) wavelet filter using
Sleep 2 ECG signals.

classification performances of the classifiers are shown in
Figure 12. Figure 12 demonstrated that the best classifiers are
the kNN and SVM as they yielded the classification accuracy
of above 99.5%.

B. HIGHLIGHTS

Highlights of our research are listed below.
Findings:

- Overall, for Sleep Stage 2, the most effective wavelet
filter, feature selector, and classifier were coif4, NCA,
and SVM, respectively; and for Sleep Stage 3, coif4,
Chi2, and kNN, respectively.

- The best individual classifier-wise results for Sleep
Stage 2 and Sleep Stage 3 were obtained using fk6
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FIGURE 9. Mean accuracies of classifier-wise prediction vectors stratified
by (a) classifier, (b) feature selector, and (2) wavelet filter using
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and bior3.5 filters, respectively, coupled with the Chi2 Classifier-wise result
feature selector and SVM classifier for both sleep stages. FIGURE 11. Classifier-wise prediction vector accuracy results analyzed
- The final results obtained via voting surpassed classifier- using 10-fold CV.
wise results
Advantages: - The excellent performance of 3LBP showcased the
- Our proposal has shown that ECG signals obtained from potential for deep feature generation using integrated
fibromyalgia patients can be effectively distinguished dynamic and signal input-specific feature map value
from those of healthy controls, indicating the significant extraction, which was inspired by both quantum super-
influence of the disease on the autonomic nervous sys- position and FF neural networks.
tem, either as a primary factor or as a result of the pain - Trained and validated using robust LORO CV, our
that accompanies the condition. model results were excellent (>92% accuracy for both
- We introduced a novel feature extraction function, 3LBP, sleep stages), generalizable, and clinically applicable.
that was based on and, in an ablation study, surpassed 10-fold CV-based results are also provided for reference
LBP textural feature extraction (Section V-A). (Section V-A).
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FIGURE 12. Performance comparisons of the classifiers. Herein, DT:
Decision Tree, LD: Linear Discriminant, SVM: Support Vector Machine, NB:
Naive Bayes, RF: Random Forest, kNN: k Nearest Neighbor.

- The model is self-organized and can automatically cal-
culate the best overall result.

- The model architecture is lightweight, which should
enhance the ease of its clinical implementation.

Disadvantages:

- Our dataset was relatively modest. The findings should
preferably be replicated on a larger and more diverse
ECG signal dataset.

- We employed a simple mean absolute difference-based
optimal pattern selection algorithm for 3LBP. Alterna-
tive mathematical models could be explored.

o Ideally, our future objective is to replicate the study
by comparing the ECG signals of fibromyalgia patients
with those of individuals who have other chronic painful
medical conditions, matching them in terms of age,
sex, and pain scores. By doing so, we can determine if
the changes observed in the ECG signals are specific
to fibromyalgia or if they are present in other similar
conditions.

VI. CONCLUSION

In this study, we developed a new model for classifying
ECG signals from fibromyalgia patients and healthy controls.
Our model is based on quantum-inspired 3LBP (local binary
patterns) and is a self-organized feature engineering model.
We evaluated our model using LORO cross-validation and
achieved classification accuracies of over 92% for both sleep
stages 2 and 3. We also identified the optimal configurations
of wavelet filters, feature selectors, and classifiers for each
sleep stage. These findings demonstrate the effectiveness of
our model for detecting and distinguishing ECG signals from
fibromyalgia and healthy control patients.

In future works, we aim to expand the scale and diver-
sity of our dataset. Building upon the foundation of our
quantum-based model, our focus will shift towards exploring
alternative mathematical models, feature selectors, and fea-
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ture extractors to develop more effective ECG signal-based
classification models.
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