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Abstract— Internet of Things based systems (IoT systems for short) are becoming increasingly popular across different industrial 

domains and their development is rapidly increasing to provide value-added services to end-users and citizens. Little research to 

date uncovers the core development process lifecycle needed for IoT systems, and thus software engineers find themselves 

unprepared and unfamiliar with this new genre of system development. To ameliorate this gap, we conducted a mixed 

quantitative and qualitative research study where we derived a conceptual process framework from the extant literature on IoT, 

through which 27 key tasks for incorporation into the development processes of IoT systems were identified. The framework was 

then validated by means of a survey of 127 IoT practitioners from 35 countries across 6 continents with 15 different industry 

backgrounds. Our research provides an understanding of the most important development process tasks and informs both 

software engineering practitioners and researchers of the challenges and recommendations related to the development of next-

generation of IoT systems.  

Index Terms— software engineering, software management, software development process, empirical software engineering, 

Internet of Things (IoT) 
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1 INTRODUCTION  

 
ccording to its proponents, Internet of Things (IoT) is 

becoming a major phenomenon in recent years. Smart cit-
ies, smart grids, wearable devices, smart agriculture, In-
dustry 4.0, and self-driving cars are some examples of ap-
plication domains that IoT promises to revolutionize 
[1],[2],[3]. An IoT system potentially includes thousands of 
distributed smart objects, backbone services, platforms, 
and applications that are interconnected to provide added-
value and intelligent reasoning for other systems and to 
end-users [4]. Design and implementation of this class of 
systems have now become mainstream in both academia 
and for smart cities, retail, logistics, manufacturing, agri-
culture, healthcare, and so on [5]. This momentum is con-
comitant to an ever-increasing number of dedicated inter-
national venues, such as journal special issues, conference 
tracks, and workshops, for software engineering of IoT, 
that has stimulated the motivation for our current research. 
Software development processes-, e.g. process frameworks 
or engineering methodologies-, are an integral part of the 

software engineering discipline and the centerpiece of 
quality management initiatives to develop and maintain 
software systems in a cost-effective manner [6], [7]. As the 
software engineering discipline is periodically faced with 
major new emerging technologies such as IoT [8], it is nec-
essary to continually rethink how to develop systems in re-
sponse to a shift to new paradigms and if conventional 
ways of software engineering are still applicable.  
Initially, IoT systems were not viewed as a new concept, 
i.e., a world of connected things that can share data, but as 
theoretically similar to an end-to-end architecture. One 
might thus expect that the development process of IoT sys-
tems would have drawn on the existing software engineer-
ing body of knowledge, which has been accumulated, ma-
tured, applied, and tested thoroughly over time. There are 
occasional references confirming this viewpoint and belief 
that the IoT system development as so-called old petunias 
in new bowls, e.g., [9], [10],[11],[12]. However, there is a lack 
of empirical support for this argument. At the flip side, op-
ponents, e.g.,[13],[14], [15], believe that- in contrast to the 
conventional software engineering which takes place pre-
dominantly within an individual system- the socio-tech-
nical nature of IoT systems raises a range of new important 
complexities. For example, various hardware and software 
components, each with their own distinct development 
process, are linked to different parties and are working in 
an extremely dynamic and distributed fashion. They incor-
porate requirements from various stakeholders such as cit-
izens, legislators, and administrative authorities. Whilst 
some of these complexities are rooted in the immaturity of 
current technologies, some are intrinsic to IoT. The devel-
opment of IoT systems is thus much more complicated 
than that typically deemed in the conventional software 
development wisdom [4],[5]. Confronted with the recent 
and rapid development of various IoT systems in different 
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domains, many software engineers have started to query 
how IoT systems should best be developed. For instance, 
Tecnalia et al. raise the issue that the majority of research 
done in this area has been focused on purely technical, i.e., 
implementation-oriented, aspects of IoT system develop-
ment. A high-level process-oriented understanding and its 
related issues still remain few and far between [4]. Moreo-
ver, Fahmideh et al, point out that a holistic picture of the 
development process and different tasks to take into con-
sideration for IoT system development is non-extant in the 
current software engineering literature [16]. 

As with any emerging software engineering paradigm, the 
successful development of IoT-based systems not only im-
plies providing new tools and technologies, but also an un-
derstanding of the way of development cycle needs to aid 
software engineers to achieve reliable and systematic im-
plementation of these systems [5]. This is confirmed by 
Giray et al. [14] who point out that similar to the development 
of other systems, it is important for IoT systems to be developed 
in a systematic manner in order to achieve a proper system with 
respect to both the functional and non-functional requirements. 
This needs to zoom out beyond various underlying techni-
calities around IoT and to identify an overarching view of 
the development process for this class of systems. Given 
the seeming absence of a collective and broad, yet IoT spe-
cific, development process view [5], our key research ques-
tions are: 

RQ1. What tasks are suggested in the literature about 

IoT system engineering for incorporation into the de-

velopment process of IoT systems?  

RQ2. How do IoT experts perceive the importance of 

these development process tasks?   

RQ3. How do IoT experts believe these tasks are im-

portant and become challenging in practice? 

RQ4. What overall recommendations do IoT experts 
suggest to conduct these tasks? 

To address the above research questions, we adopted a 
mixed qualitative and quantitative research method orga-
nized in two-phase of exploratory and confirmatory. In the 
first phase, we drew from the extant material in IoT litera-
ture a generic platform-agnostic process framework of 
phases and tasks. In the second phase, we examined the 
validity of the resultant probing framework and its sound-
ness via conducting a Web-based survey of randomly se-
lected experienced IoT software engineering practitioners. 
We engaged a total of 127 practitioners - based in 35 coun-
tries across 06 continents - with diverse professional back-
grounds, including IoT architects, developers, project 
managers, with experience across diverse IoT sectors such 
as robotics, home automation, and transportation. Both 
phases of this research make significant contributions to 
the limited literature on software engineering of IoT sys-
tems. As further discussed later during the literature re-
view, previous studies have not had the opportunity to ex-
plore and identify a development process framework at-
tuned with IoT and did not offer such an empirical phase. 
No prior research has been undertaken to explicitly focus 
on the aspect of the software engineering development 

process for IoT systems. As will be discussed in Section 6, 
some researches [17], [18], [19] discuss enabling Internet-
based computing technologies, such as cloud computing 
and data analytics, that provide backbone services to im-
plement IoT systems. The second stream of studies, includ-
ing [20], [21], [22], [23], presents an initial effort to help soft-
ware engineers to better understand IoT system develop-
ment. However, they are very broad and lack an empirical 
evaluation by experts and fail to highlight key develop-
ment process tasks, as presented in this research. Hence, 
we deem our work as the first comprehensive effort that 
explicitly addresses and defines an IOT-based software en-
gineering process, gains empirical feedback on this pro-
cess, and has significant implications for the development 
of IoT systems in real-world-scenarios. This paper pro-
vides a description of how IoT development processes are 
understood and their relevancy for software teams, which 
makes it a pioneer revelatory research in its kind in turn. 
Our primary contributions are: 

• Introducing an empirically derived conceptual process 
framework, including 27 common tasks organized into 
3 phases along with their definitions, manifested 
themselves into the development processes of IoT sys-
tems; 

• Providing quantitative justifications of how the frame-
work’s tasks are perceived important by IoT experts 
along with contextual example highlighting as to why 
these tasks are important and problematic during the 
development process of IoT systems;  

• Sharing the overall recommendations for software en-
gineering individuals and teams to consider in real-
world IoT system development scenarios; and 

• Constructing potential research directions for the soft-
ware engineering research community to build sup-
ports for IoT developments and address emerging and 
futuristic challenges of IoT systems.  

This paper brings both research and practical implica-
tions. Our framework can be viewed as an appraisal in-
strument enabling software teams to examine the extent 
to which their in-house approach supports IoT system de-
velopment phases and tasks and, if necessary, apply aug-
mentation. Moreover, those who are interested to join 
software engineering for IoT or in training and need reli-
able guidance can use the framework. Furthermore, the 
framework can be used as a starting point to study the en-
gineering process of IoT systems regardless of their un-
derlying enabling technologies and application domains.  

In Section 2 we explain the research method used follow-
ing by the presentation of the framework supplemented by 
the findings from domain experts in Section 3. Section 4 
discusses the implications of this research. The threats, lim-
itations, and further works of this research are presented 
in sections 5 and 6. We summarized key learnings in Sec-
tion 7. 

2 RESEARCH METHOD   

To answer the research questions above, we use both qual-
itative and quantitative research methods, i.e., a mixed 
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methods. As some prior researches acknowledged, e.g. 
[24], the mixed methods is recognized to be useful to get 
breadth and depth of understanding and corroboration of 
a phenomenon for which extant research is fragmented, 
premature, or equivocal. Given IoT area is in the relative 
infancy stage, mixed methods research increases the relia-
bility and accuracy of our research findings. Using this 
method was justified by our initial screening and our pilot 
review of literature, where we found a limited number of 
studies answering our stated research questions. The sec-
ond reason was the lack of consistent and agreed terminol-
ogies in the field [5], which makes identifying develop-
ment process tasks challenging. We followed Venkatesh’s 
guidelines [25] in designing the mixed methods presented 
in Fig.1 and detailed in subsections 2.1 and 2.2. 

2.1 Phase 1— framework derivation  

2.1.1 IoT system conceptualization  

Typically, new system development process approaches 
are grounded on some fundamental concepts and under-
lying logic. IoT systems are understood as a vision of a  
more connected world. For example, Cisco coined the term 
IoT as the network of physical objects that contain embedded 
technology to communicate and sense or interact with their in-
ternal states or the external environment [26]. An agreed defi-
nition of IoT, offered by the joint technical committee of the 
International Organization for Standardization (ISO) and 
the International Electrotechnical Commission (IEC), is an 
infrastructure of interconnected objects, people, systems and in-
formation resources together with intelligent services to allow 
them to process information about the physical and the virtual 
world and react [27]. These definitions are commonly rooted 
in a few key elements that an IoT system is built upon (Fig. 
2) according to the literature [5],[15],[28]. The term things 
(or objects) refers to small/large physical trackable, config-
urable, and controllable objects such as sensors, smart ob-
jects, devices, humans, RFID tags, and buildings, with the 
ability to store, process, transmit or receive data. Software 
applications, such as web portal, mobile app or legacy sys-
tems, enable users to use functionalities provided by IoT 
system. An IoT platform including middleware, backbone 
services, and Application Programming Interfaces (APIs) 
give end-users access working with the IoT system for data 
collection, storing, analysis, and visualization. Another key 

fundamental element of an IoT system is its infrastructure 
which provides hardware for data processing, storing, 
computing, and interconnectivity among data centers, 
servers, and things via different network communication 
protocols. There are other elements such as people who con-
nect to the system and use its provided functionalities. Col-
lectively viewed, applications, things, platforms, and infra-
structure are a combination of software and hardware 
components responsible to manage context-aware interac-
tions with people. These fundamental elements are the ba-
sis for our proposed framework.  

2.1.2 Steps for framework derivation 

Our framework derivation was in line with RQ1 and per-
formed between April 2019 and September 2019. To identify 
a generic process model, we initially started with reviewing 
existing literature survey papers that could lead us to con-
tinuous engagement and hermeneutic conceptual under-
standing of IoT development process [29]. This could help 
us avoid missing related important studies and forming a 
foundation for identifying relevant studies. Next, we con-
ducted the following steps.  

Step 1. identifying literature sources. We used guidelines 
for conducting the systematic literature review [30] as a 
point of departure to identify relevant studies to RQ1 fol-
lowed with strict adherence to PRISMA (Preferred Report-
ing Items for Systematic reviews and Meta-Analyses) [31] 
as depicted in Fig.3 and elaborated as follows. 

Eligibility criteria. Inclusion and exclusion criteria for 
study selection were defined. A paper could be selected if 
it: 

(i) was published between 2010 and 2019. To manage 
the complexity of literature search in the voluminous 
IoT literature, we set this interval to reduce the num-
ber of papers to be identified in the first iteration and 
then later we used the snowballing technique [32] to 
identify papers earlier than 2010; 
(ii) was published in software engineering or infor-
mation systems related journals/conferences pro-
ceedings or by leading IoT solution providers such 
as Oracle, IBM, and Amazon. 
(iii) described explicitly its research context, goals, 
methods, and results; 
(iv) focused, either partially or fully, on the IoT-
based software development process 

Fig.1. Research method 
Fig .2. Fundamental constituents of IoT systems 
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We excluded the papers that: 
(i) were in non-English language; and 

(ii) were too general or short introductory papers that 
couldn’t provide input for the framework derivation 
steps.  

Data sources. The common scientific digital libraries 
IEEE Explore, ACM Digital Library, SpringerLink, Sci-
enceDirect, Wiley InterScience, ISI Web of Knowledge, 
and Google Scholar were set as sources for the literature 
search. They contain by far the majority of publications 
on IoT and software engineering approaches. Further-
more, we took into account international venues in 
leading information systems and software engineering 
journals and conference proceedings mainly IEEE 
Transactions on Software, Engineering/Cloud Compu-
ting (TSE and TCC), JSS, IST, TOSEM, the senior basket 
of eight IS journals, SIG recommended journals by as-
sociated of information systems (AIS) (See Appendix 
A). Regarding RQ1, we paid particular attention to the 
proceedings of international conferences, symposiums, 
and workshops dedicated to the IoT domain. In partic-
ular, we sought papers published in IEEE IoT (IoT-J) 
and recently established venue of ACM transaction of 
IoT (TIOT). As recommended by Ogawa et al. [33], we 
did not neglect the importance of grey literature such as 
internet blogs, white papers, and trade journal articles, 
that could lead us to insights on the IoT software engi-
neering development process as listed in Appendix A. 
We used an abbreviation for each study, based on its 
proposal whether it was a model, approach, platform, 
etc., along with the identifier S and a number, denoted 
as [S#], to refer to the studies that we identified and 
used as input for further steps.  
Search strings. Initially, we defined combined search 
strings based on IoT AND (approach, method, methodol-
ogy, system development method, process, development pro-
cess, process model, process lifecycle, and framework). How-
ever, our initial screening of the literature showed that 

the information on the development process of IoT sys-
tems was scattered over different themes. For example, 
we discerned that a fragment of IoT literature 
knowledge is attuned with IoT platform development 
[5] where papers related to this theme could present dif-
ferent functionalities to be realized by an IoT system 
and hence imply specific development tasks. We added 
the term platform to our updated search strings.    
Study selection. As shown in Fig. 4. a total of 250 papers 
were found by our initial search in both academic and 
grey literature. Following with forward and backward 
search recursively for each identified paper’s references 
via snowballing [32], 53 new papers were added to our 
study list. This resulted in 303 papers that were reduced 
to 295 after removing 8 duplicated ones from the same 
authors. We screened the title, abstracts, and in most 
cases, the full texts of the retrieved papers, and this re-
sulted in 169 papers based on the eligibility criteria. We 
came up with 66 papers, 17 from the grey literature, and 
49 from the academic literature, which met the inclu-
sion criteria for our framework derivation defined 
above. A summary of the identified papers’ demo-
graphic information is shown in Figure 4 but the full 
details are available in Appendix A.   
Step 2. shortlisting common tasks underpinning IoT 
development. The identification of tasks was an itera-
tive and gradual process. In the first iteration of this 
step, we reviewed all 66 identified papers from the pre-
vious step where, for each one, we tried to identify text 
segments that could be explicitly or implicitly labelled 
as an individual task for the inclusion into the target 
process framework. We set three criteria for extracting 
a text segment from a paper as a potential task: 

Fig. 3. PRISMA flow through the different steps of a systematic review 
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(i) Being sufficiently generic to a variety of IoT sys-
tem domains regardless of underlying technologies; 
(ii) Widespread recurring themes in the paper set as 
an indicator of its importance for inclusion in the 
framework  
(iii) Traced to the fundamental elements of IoT sys-
tems as discussed in Section 2.1.1. 

We discarded tasks related to the maintenance phase as this 
was out of the scope of our current proposed framework. 
We were not interested in identifying roles and work-prod-
ucts that could be associated to the tasks. We excluded the 
tasks that were related to governance, such as risk manage-
ment, quality assurance, configuration management, and 
measurement. These all were out of the scope of our current 
research and considered as future work as discussed in Sec-
tion 4.2. 
According to the first criterion (i), problem-specific or 
technology-oriented tasks were omitted. For instance, us-
ing Apache CouchDB or Hadoop distributed file system design 
in CiDAP [S3] (Appendix A) discusses operationalization 
data management mechanisms in the design phase. We 
found that not all IoT systems may necessarily adopt these 
technologies and, hence, they were deemed too specific 
for inclusion in the framework and thus they were not ex-
tracted from CiDAP [S3]. With respect to the second crite-
rion (ii), we took into account the frequent patterns of any 
particular text segment, theme, or definition in a paper as 
a yardstick to decide to code that text fragment as a task 
grounded in what other papers commonly referred to it. 
As an illustration, the task Resource discovery design in the 
resultant framework, which concerns with providing 
publish/subscribe mechanisms in system architecture to 
enable discovering and to allow smart objects to connect 
the IoT system, is jointly pointed out by studies VITAL 
[S2], CiDAP [S3], IoT-ARM [S8], OpenIoT [S9], FIWARE 
[S12], Telco USN-Platform [S18], GAMBAS [S25], Nitti 
[S43]. For criterion (iii), we checked if a text segment could 
be related to IoT fundamental concepts. The output of this 

iteration was an initial list of 384 labelled tasks including 
their original reference papers. They were stored in a 
spreadsheet [34]. This enabled us to have the track of task 
origination from the identified papers. 
The second iteration aimed at synthesizing 384 fine 
grained tasks extracted from the first iteration to a higher-
order set of distinct IoT software development process 
tasks. This was undertaken on the basis of inherent simi-
larities of tasks and the fact that people working on IoT 
coming from different domains may use different termi-
nologies and phrases to refer to identical things. For exam-
ple, from studies VITAL [S2], IoT-ARM [S8], FIWARE 
[S12], Vilajosana [S13], Giang [S21], RERUM [S32], BASIS 
[S44], SORASC [S46], and IoTEP [S63], we observed that a 
task like Interaction design, collectively, deals with identify-
ing integration points, data flow between hardware and 
software components, and how data is entered to the sys-
tem and sent out. This step resulted in 27 tasks. These tasks 
are Ideation, Domain requirement analysis, Infrastructure re-
quirement analysis, Application requirements analysis, 5. Smart 
object requirement analysis, 6. Stakeholder analysis, 7. Plan def-
inition, 8. Resource discovery design, 9. Data collection design, 
10. Data cleaning design, 11. Data storing design, 12. Data pro-
cessing design, 13. Query processing design, 14. Meta-data gen-
eration design, 15. Data visualization design, 16. Monitoring 
design, 17. Service composition design, 18. Event processing de-
sign, 19. Platform architecture design, 20. Smart object architec-
ture design, 21. Interaction design, 22. Application architecture 
design, 23. Application coding, 24. Smart object coding, 25. Plat-
form coding, 26. Testing, and 27. Installation. Note that, tasks 
Testing and Installation included testing subtasks for appli-
cations, smart objects, and platforms but we summarized 
under one task name.  

Organising tasks into lifecycle phases. A simple yet suffi-
ciently generic core process framework which could en-
compass the identified IoT software engineering process 
tasks was targeted. Influenced by the generic software de-
velopment lifecycle (SDLC) introduced by Pressman [35] 

Fig. 4. Demographic information of identified studies 
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that provides adequate high-level coverage on any classes 
of software system development, we set a simple lifecycle 
covering phases of Analysis, Design, Implementation and 
Test, where each phase was populated by the identified 
tasks. Adopting such a generic SDLC in a top-down fash-
ion for process framework design is consistent with prior 
researches, such as work in designing process metamodels 
for cloud computing migration [17], and the approach pro-
posed for software language engineering in the agent-ori-
ented software engineering research domain [36]. Placing 
the tasks in each phase was mainly based on their similar-
ities and semantic relationships to a phase. For instance, 
the tasks related to requirements analysis and plan definition 
were positioned in design phase with an aggregation rela-
tionship, i.e.,  between the phases and tasks. The se-
quence between the phases is shown using  symbol.   

Deciding on granularity. In the development of any con-
ceptual models, researchers face the issue of determining 
trade-offs between pros and cons of simple vs. complex 
model, i.e., too generic or too specific [17] ,[37]. Given that 
the priority of our framework was understandability over 
completeness and being adequately versatile, cohesive, 
and including distinct tasks with minimum overlapping, 
we did not include complex and domain-specific tasks in 
the framework to make it more generic and less detailed. 
We did not commit to narrow it down into operationaliza-
tion of tasks via supportive techniques or modelling tools. 
Given the sheer volume of research suggesting techniques 
for IoT system development, as reviewed in Section 6.2, we 
deemed such a dedication would be premature. Moreover, 
we recognized it is intuitive that a task could be associated 
with one or more fundamental elements of an IoT system. 
For example, the task coding in the framework was 
founded as a coarse-grain overarching task as it is per-
formed for elements software applications, smart objects, 
and platforms. We decided to define the coding as the su-
per-class task in the framework where making the tasks ap-
plication coding, thing coding, and platform coding as sub-
class tasks. This relationship was indicated via the special-
ization symbol, i.e., , in the framework.  

2.2 Phase 2— framework validation 

To answer RQ2, RQ3, RQ4, our second phase was confirm-
atory where we conducted a survey to validate and to as-
sess how the framework could be generalized to a broader 
population in the view of the research questions. Follow-
ing the guidelines for survey design in Pinsonneault et. al, 
[38], we performed three steps as outlined below. 

Designing survey instrument. The primary purpose of the 
survey was to examine if the framework’s tasks are per-
ceived as important by IoT experts. We used the Qualtrics 
[39] online survey software creator to design and conduct 
our survey. We provided the framework tasks along with 
their definitions. For RQ2, we asked respondents to rate 
the importance of each task based on seven Likert-scale 
from 1 to 7, where 1 and 7, respectively, indicated not at all 
important and extremely important. Regarding RQ3 and 
RQ4, we also provided open-ended questions asking re-
spondents to give their reasons why these tasks are im-
portant, the most important IoT-specific challenges that 

software engineers may face during development com-
pared to non-IoT system development, and, if any, recom-
mendations. The respondents were also asked to suggest 
any missing important tasks that should be added to the 
framework. We also obtained the survey questions, con-
sent form, participant selection technique, and survey data 
management which were reviewed and approved by our 
academic institute ethics authority. 

Conducting pilot survey. We piloted our survey to check 
if it was as coherent and concise as possible whilst gather-
ing sufficient feedback. Minor issues reported and ad-
dressed were related to spellings, IoT-specific terminolo-
gies, the sequence of questions and activities, and adding 
one question to the survey. The link to the survey is avail-
able at [40].  
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Collecting survey data. The survey was made online be-
tween September 2019 and February 2020 [40]. Since IoT is 
a nascent field, the entire population of IoT domain experts 
was unknown to draw a sample size for the data collection 
and it was difficult to identify qualified people with real-
world experience in the development of IoT systems who 
could take part in the survey. Hence, we performed pur-
poseful sampling [41] and manually screened the profes-
sional profiles across the world and purposefully selecting 
respondents who had real-world experience and had been 
involved in an end-to-end development process of, at least, 
one IoT system. We sought potential respondents in differ-
ent online IoT communities, in particular, LinkedIn, Face-
book, GitHub, and academic research groups. For exam-
ple, we used GitHub APIs to mine commit logs in Github 
repositories to identify the email addresses of active IoT 
developers who had submitted changes and contributed to 
at least one IoT project. After checking her/his online pro-

file, we confirmed the credibility of each selected respond-
ent by directly asking she/he to provide their professional 
and demographic information, in particular, their roles, 
development process, and technologies they used during 
their IoT project. This allowed us to check the differences 
between opinions from various backgrounds. Once will-
ingness and expertise were confirmed, an invitation letter 
along with the survey link was formally issued. In total, we 
sent this voluntary survey to a list of 340 randomly identi-
fied and verified IoT experts through personalized emails 
or direct messages.  

Finally, 127 respondents provided complete answers with 
an overall response rate of 37%. In terms of the geograph-
ical distribution of the respondents from 35 different coun-
tries, an ascendant ordering of participants based on seven 
continents revealed the response rates for Europe with 
33.9%, Oceania with 23.6%, Asia with 20.5%, North Amer-
ica with 12.6%, South America with 4.7%, and Africa with 
4.7% as shown in Fig. 5. The majority of the participants 
were from Australia, the United States, and Saudi Arabia 
with a response rate of 22.8%, 11%, and 7.1%, respectively. 
We observed 3.1% response rate each from Ireland, Singa-
pore, and Netherland.  

We characterized the respondents with respect to their 
roles in IoT projects classified as the software programmer, 
software architect, hardware designer, software tester, pro-
ject manager, consultant, security engineer, researchers, 
supporter, trainer, and industrial engineer. The majority of 
respondents, i.e., 69 and 46 out of 127, mentioned that they 
have been involved in IoT development processes as a soft-
ware architect and software programmer, respectively. 
Additionally, the respondents were allowed to select mul-
tiple industry sectors, wherever relevant. We found that 
the respondents come from 14 industry sectors, among 
them, their experience was more related to IoT system de-
velopment for logistics and transportation, agriculture and 
smart farming, manufacturing, smart energy, and utilities 
(Fig 6. a). The respondents were with an average of 5 years’ 
of experience, accounting for a collective 656 years of expe-
rience in the field of IoT. Years of experience were classified 

Fig. 5. Geographical distribution of participants 

Fig. 6. a) Distribution of (a) participants' industry sectors and b) years of experience in IoT 
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into four groups, i.e., 45% between 1 and 3 years, 35% be-
tween 4 and 7 years of experience and. Finally, 2% and 20% 
of respondents had less than one and more than eight years 
of experience, respectively (Fig 6. b). 

3 FINDINGS 

The following subsections 3.1, 3.2, 3.3, and 3.4 present the 
answers to the research questions RQ1, RQ2, RQ3, and 
RQ4, respectively, based on the findings obtained from the 
research phases as in Fig 1. 

3.1 Process framework 

We use an object diagram to represent our framework. In 
response to RQ1, Fig. 7 visualize the framework, including 
in total 27 tasks (note that some fine-granular tasks pre-
sented in Fig. 8 and Fig. 9), rooted in the literature but with-
out being bounded to situation-specific operationalization 
and technical details. Definitions of framework tasks are 
summarized in Appendix B and in Section 3.4. 

3.2 Developers’ perception about process 
tasks 

Quantitative data analysis. To answer RQ2, the following 
steps were performed. We used SPSS software to examine 
the perceived importance of tasks across the demographic 
groups. For each individual task in the framework, the null 
and alternative hypothesizes were defined: H0: the mean of 
the importance of the task is less than 5 vs. H1: the mean of the 
importance of the task is more than 5. That is, if a development 
task is rated equal to or more than mid-point 5, i.e., some-
what important in Likert-scale, it is perceived as im-
portant. We used One-Sample T-Test to check if their im-
portance ratings of tasks were distributed away from the 
median 5. This test was suitable for determining if the 
mean of an independent variable sample data is different 
from a specific value. We checked T-Test’s assumptions 
first. This included the assumption of approximate nor-
mality of the sample responses, i.e. tasks as the dependent 
variables, which was checked using Kolmogorov–Smirnov 

test [33]. The p-value of Kolmogorov–Smirnov test was less 
than 0.05 indicating the data had positive skew, i.e., a vio-
lation from the normality assumption. Hence, we lever-
aged the central limit theorem [42], i.e., a sufficiently large 
sampling distribution, N=127 in this case, has an approxi-
mate normal distribution. We checked this argument visu-
ally via the normal Q-Q plots generated by Kolmogorov–
Smirnov test confirming that all the data points were close 
to the diagonal line. This argument has also been verified 
by simulation results showing the parametric tests are not 
sensitive to the non-normality assumption in general [35], 
[36]. One-Sample T-Test also assumes that the dependent 
variables should be measured at a ratio or interval level. 
Using the Likert-scale to measure the importance of the 
tasks met this condition. Finally, the test assumes that the 
responses are collected independently. This assumption 
holds as none of the respondents were aware of the iden-
tity of other participants in this survey. Below, we provide 
survey results on the relative importance of our frame-
work's tasks and the view about these tasks across differ-
ent demographic groups.  
Perceived importance of task. Table 1 shows the descrip-
tive statistics and the results of One-Sample T-Test’s given 
p < .05 for each task. The p values in Table 2 were divided 
by 2 as the hypothesis was formulated for a right-tailed 
test. From column six of this table, it can be observed that, 
despite the diversity of respondents, they statistically rated 
the majority of the framework’s tasks, i.e. 25 out of 27, im-
portant (p < .05): these tasks are important for considera-
tion during the development process. Of the framework 
tasks, Data cleaning design (t-test statistic of=0.522, p-value 
of=0.3) and meta-data generation design (t-test statistic 
of=0.071, p-value of =0.47) were not regarded by the re-
spondents as significant compared to other tasks. All the 
tasks were rated quite high, with even the lowest, i.e., meta-
data generation design, and received an average rating of 
5.01. The highest rated task is test (mean of 6.23), which is 
performed in implementation phase and indicating the im-
portance of testing. Ideation (mean of 6.18) and domain re-
quirements analysis (mean of 5.99) follow in rating. These 

Fig. 7. Conceptual development process framework for developing IoT based systems 
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demonstrate the importance of understating if an IoT sys-
tem is a viable solution for a given context to solve a prob-
lem as well as the significance of elicitation, analysis and 
validation of requirements in an IoT system. As discussed 
in Section 3.3, the relatively high rating of these tasks sug-
gests that respondents are most concerned about the un-
derstanding the added value of an IoT system develop-
ment, its requirements, and the successful addressing of 
these requirements via testing. This implies that IoT sys-
tem requirements gathering and testing are more complex 
than conventional software development. In contrast, the 
meta-data generation design is the lowest rated task (Table 2). 
Available tools for automatic generation of different meta-
data, making it transparent to developers, may help ex-
plain this low rating. Averages of rates for each phases of 
analysis, design and implementation are 5.74, 5.48 and 
5.83. The respondents seem to believe implementation has 
more importance vs design. 

Power analysis. A post-hoc analysis was performed via the 
G*power 3 software [43] to check the statistical power of 
our performed One-Sample T-Test. The analysis takes the 
parameters effect size, i.e., d, sample size, and α error prob-
ability. Cohen [44] defines three levels to conceptualize the 
power, i.e., small effect (d = 0.2), moderate effect (d = 0.5), 
and large effect (d = 0.8). In this research, the alpha = 0.05, 
effect size d = 0.2, and sample size 127, were sufficient 
enough to achieve the statistical power 0.7 (1-β error prob-
ability). 

Demographic analysis. We looked for any demographic 
differences in the perceived importance of the tasks. This 
was conducted in two steps. First, with univariate analysis, 

we ran One-Way ANOVA test to check if the ratings of each 
task, as a dependent variable, would be different by each 
of the three demographic independent variables, i.e., the 
years of experience, geographical location, and practition-
ers vs. academia. The results shown in Table 3 indicate that, 
except for task ideation highlighted with gray, as deter-
mined by (F (3,123) = 5.08, p = .01), there was not a statisti-
cally significant difference in the ratings based on the 
groups of the respondents’ years of experience, i.e., y<=3, 
4=<y<=7, and years>=8. In the second step, i.e. multivariate 
analysis, the test was re-run to check if there is any overlap 
among the three group of years of experience regardless of 
the variables geographical location, and practitioners vs. 
academia. This would allow us to understand the unique 
amount of the variance in the task rating that could be at-
tributed to each independent variable. A Tukey post-hoc 
test in the multi-variate analysis, confirmed this difference 
and revealed that the importance of task ideation was sig-
nificantly different between the respondents with the years 
of experience between 1 and 3 compared to those with 
more than 8 years of experience (p = .01). In other words, 
in both univariate and multi-variate analysis, the im-
portance of the task ideation was perceived differently, in-
dicating that the respondents who had more experience in 
IoT projects rated the task higher than those with less.  

We wanted to know if the respondents’ geographical loca-
tion would have impacted the ratings. We divided the re-
spondents into six continents, and performed One-Way 
ANOVA test for each individual task. The test identified 
the difference in the ratings with respect to the continent. 
In Table 2, each grey highlighted row shows the different 
perceived importance by the respondents based on their 
continents. For example, the post-hoc multi-variate analy-
sis shows that Asian respondents (N=28) rated the task do-
main requirement analysis, relatively higher than all other 
groups. Similar observations are also true for the tasks IoT 
application requirements analysis, resource discovery design, 
query processing design, and IoT application code. We refrain 
from drawing a conclusion on such a difference and dis-
cuss it in the research threats section 4.2.   

We compared the importance of ratings between academic 
respondents and practitioner ones as the academia are typ-
ically possess extensive theoretical knowledge in a field of 
research in terms of knowing how and why the newly in-
troduced technology works whereas practitioner who of-
ten use, promote, or disseminate technical inventions [45]. 
The practitioners (N=105), i.e., developers, architects, test-
ers, project managers, consider certain tasks more im-
portant than the academia (N=22) do. We used Independ-
ent-Samples T-test to check this. Table 2 shows that the 
practitioners are more strongly in favor of tasks ideation T 
(125) = 4.34, p=0.00, stakeholder analysis (T (125) = 2.57, 
p=0.01), event processing design (T (125) = 2.1, p=0.03), and 
installation (T (125) = 4.34, p=0.05) compared to academics. 
This implies that IoT practitioners focus on requirements 
analysis, which is less important from the perspective of 
academics.

TABLE 1 Descriptive statistics for the framework tasks and the results of One Sam-

ple T-Test for each task 

Tasks Mean Std.  

deviation  

T-Statistic  

value  

p-value 

Analysis 
1. Ideation 6.18 0.97 13.59 .00 

2. Domain req. analysis 5.99 0.93 11.91 .00 

3. Infrastr. req. analysis 5.60 1.01 6.62 .00 

4. App. req. analysis 5.61 1.11 6.21 .00 

5. Smart obj. req. analysis 5.39 1.07 4.03 .00 

6. Stakeholder analysis 5.81 1.10 8.28 .00 

7. Plan definition 5.62 0.99 7.07 .00 

Design 

8. Resource dis. design 5.34 1.18 3.22 .00 

9. Data collection design 5.84 1.02 9.24 .00 

10. Data cleaning design 5.07 1.52 0.52 .30 

11. Data storing design 5.44 1.16 4.26 .00 

12. Data process. design 5.59 1.28 5.19 .00 

13. Query process. design 5.45 1.17 4.31 .00 

14. Meta-data gen. design 5.01 1.24 0.07 .47 

15. Data vis. design  5.61 1.13 6.02 .00 

16. Monitoring design 5.67 0.98 7.67 .00 

17. Service composition 5.21 1.19 2.00 .02 

18. Event processing 5.56 1.05 5.99 .00 

19. Platform arch. design 5.51 1.20 4.80 .00 

20. Smart obj. arch. des. 5.87 1.02 9.51 .00 

21. Interaction design 5.26 1.19 2.44 .00 

22. App. arch. design 5.72 1.16 6.91 .00 

Implementation 

23. Application coding 5.76 1.11 7.62 .00 

24. Smart object coding 5.80 1.11 8.03 .00 

25. Platform coding 5.69 1.08 7.22 .00 

26. Testing (all types) 6.23 0.75 18.26 .00 

27. Installation (all types) 5.68 1.09 6.95 .00 
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TABLE 2. Univariate analysis between the demographic variables (independent variables) and the perceived importance of tasks, i.e., task rating (dependent variables) 

Task 

Years of experience Continents Practitioners vs. academia 

y<=3 (N=59) 
4=<y<=7 

(N=43) 
y>=8 (N=25) 
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North America 

(N=16) 
Asia (N=26) Africa (6) 

F 

p
-v

al
u

e 

Practitioners 

(N=105) 
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1. Ideation 5.93 1.01 6.26 0.90 6.64 0.86 5.08 0.01 6.07 1.10 6.17 1.07 6.43 0.97 6.31 0.60 6.14 0.97 6.33 0.81 0.25 0.93 6.34 0.84 5.41 1.22 4.34 0.00 

2. Dom. req. analysis 5.95 1.04 6.05 0.75 6.00 1.00 0.13 0.87 6.00 0.92 5.98 0.75 5.57 0.97 6.06 0.85 6.29 0.76 5.00 2.09 2.30 0.04 6.01 0.92 5.91 1.01 0.45 0.65 

3. Infrastructure req.  analysis 5.54 1.03 5.56 0.93 5.8 1.11 0.61 0.54 5.76 1.15 5.37 1.09 5.43 0.53 5.31 0.94 5.82 0.86 6.33 0.51 1.81 0.11 5.70 1.03 5.14 0.83 2.38 0.01 

4. Application req. analysis 5.49 1.05 5.70 1.05 5.76 1.33 0.69 0.50 5.76 1.02 5.17 1.09 5.43 1.51 5.81 0.83 5.96 1.17 6.00 0.89 2.35 0.04 5.63 1.09 5.55 1.22 0.31 0.75 

5. Smart object req. analysis 5.33 1.00 5.44 0.99 5.39 1.07 0.10 0.89 5.69 1.03 5.29 0.84 5.14 1.06 4.81 1.27 5.61 1.16 5.33 1.36 1.79 0.11 5.36 1.11 5.50 0.91 -0.54 0.58 

6. Stakeholder analysis 5.75 1.26 5.72 0.90 6.12 0.97 1.23 0.29 6.03 1.21 5.59 1.16 6.29 0.75 5.75 0.93 5.82 1.05 5.83 1.16 0.84 0.52 5.92 1.08 5.27 1.03 2.57 0.01 

7. Plan definition  5.47 1.07 5.72 0.85 5.8 1.00 1.27 0.28 5.83 0.96 5.56 0.97 5.71 0.75 5.31 0.87 5.61 1.22 5.83 0.40 0.65 0.66 5.63 1.05 5.59 0.59 0.16 0.87 

8. Resource discovery design 5.41 1.27 5.28 1.05 5.28 1.20 0.18 0.83 5.90 1.08 5.10 1.11 5.29 0.75 5.00 1.67 5.46 0.74 4.67 1.86 2.48 0.03 5.38 1.25 5.14 0.77 0.88 0.38 

9. Data collection design 5.90 1.04 5.84 0.81 5.72 1.30 0.26 0.77 5.83 1.10 5.93 0.87 5.86 0.69 5.88 1.08 5.82 0.90 5.33 2.16 0.34 0.88 5.89 1.01 5.64 1.09 1.03 0.30 

10. Data cleaning design 5.12 1.54 4.98 1.53 5.12 1.53 0.12 0.88 5.34 1.63 5.39 1.30 4.29 1.70 4.69 1.35 4.71 1.67 5.17 1.72 1.45 0.21 5.11 1.54 4.86 1.45 0.69 0.48 

11. Data storing design 5.39 1.16 5.60 1.05 5.28 1.37 0.71 0.49 5.62 1.08 5.44 1.02 5.00 1.15 5.06 1.34 5.68 1.12 5.00 2.00 1.08 0.37 5.49 1.21 5.23 0.86 0.94 0.34 

12. Data processing design 5.64 1.33 5.58 1.11 5.48 1.44 0.14 0.86 5.66 1.42 5.68 1.10 4.71 1.49 5.13 1.02 5.89 1.10 5.50 2.34 1.48 0.20 5.54 1.33 5.82 1.00 -0.91 0.36 

13. Query processing design 5.46 1.22 5.49 0.93 5.36 1.44 0.09 0.90 5.79 1.17 5.49 0.97 4.86 0.69 5.06 0.85 5.61 1.39 4.50 1.76 2.19 0.05 5.50 1.16 5.18 1.22 1.17 0.24 

14. Meta-data gen. design 4.98 1.30 4.77 1.15 5.48 1.15 2.68 0.07 5.34 1.17 5.02 1.06 4.86 1.06 4.50 1.41 5.00 1.33 4.83 1.94 1.00 0.41 5.03 1.25 4.91 1.23 0.40 0.68 

15. Data visualization design 5.56 1.23 5.58 1.11 5.76 0.92 0.28 0.75 5.76 1.35 5.37 1.11 6.29 0.75 5.31 0.87 5.82 0.98 5.50 1.51 1.42 0.22 5.61 1.15 5.59 1.05 0.07 0.94 

16. Monitoring design 5.78 0.89 5.65 0.97 5.48 1.19 0.80 0.45 5.79 0.97 5.70 0.99 5.71 1.11 5.38 0.88 5.61 1.03 6.00 1.09 0.53 0.75 5.74 0.99 5.33 0.91 1.75 0.08 

17. Service composition 5.25 1.26 5.19 0.95 5.16 1.40 0.07 0.93 5.52 1.27 5.10 1.17 5.14 0.90 4.69 1.30 5.43 1.13 5.00 0.89 1.31 0.26 5.24 1.25 5.09 0.86 0.52 0.60 

18. Event processing design 5.54 1.05 5.74 0.98 5.32 1.14 1.25 0.28 5.62 1.26 5.68 0.88 5.57 1.27 5.06 0.99 5.54 1.07 6.00 0.63 1.04 0.39 5.65 1.08 5.14 0.77 2.1 0.03 

19. Platform architecture design 5.49 1.19 5.44 1.20 5.68 1.24 0.32 0.72 5.41 1.26 5.41 1.14 5.43 1.27 5.06 1.48 5.89 1.03 6.17 0.75 1.49 0.19 5.54 1.24 5.36 1.00 0.63 0.52 

20. Smart object arch. design 5.88 1.03 5.93 1.00 5.72 1.06 0.34 0.71 6.00 1.25 5.78 0.90 5.71 1.11 5.69 1.01 5.93 1.01 6.17 0.75 0.39 0.85 5.93 1.06 5.55 0.73 1.62 0.10 

21. Interaction design 5.29 1.23 5.26 1.02 5.20 1.41 0.04 0.95 5.45 1.12 5.12 1.18 5.29 0.95 4.63 1.31 5.68 1.24 5.00 0.63 1.96 0.08 5.23 1.21 5.41 1.14 -0.64 0.52 

22. Application arch. design 5.64 1.22 6.02 0.85 5.36 1.38 2.84 0.06 5.83 1.25 5.56 1.05 5.71 0.75 5.75 1.34 5.75 1.29 6.00 1.09 0.26 0.93 5.70 1.21 5.82 0.95 -0.44 0.65 

23. Application coding 5.71 1.09 5.74 1.04 5.88 1.30 0.2 0.81 5.90 1.37 5.44 0.86 6.14 0.69 5.38 1.31 6.18 1.05 5.83 0.75 2.19 0.05 5.78 1.10 5.64 1.21 0.55 0.58 

24. Smart object coding 5.78 1.11 5.77 1.06 5.88 1.23 0.09 0.91 6.17 1.19 5.61 0.97 5.86 1.06 5.69 1.35 5.75 1.17 5.67 0.51 0.94 0.45 5.81 1.16 5.73 0.88 0.31 0.75 

25. Platform coding 5.71 1.09 5.56 0.95 5.88 1.23 0.71 0.49 6.10 1.23 5.61 0.91 5.86 0.90 5.56 1.15 5.32 1.12 6.17 0.40 1.92 0.09 5.75 1.11 5.41 0.85 1.36 0.17 

26. Test (all types) 6.25 0.75 6.19 0.79 6.24 0.72 0.10 0.90 6.34 0.72 6.20 0.84 6.14 0.90 6.25 0.68 6.11 0.73 6.50 0.54 0.46 0.80 6.24 0.77 6.18 0.66 0.31 0.75 

27. Installation (all types) 5.58 1.08 5.77 0.99 5.76 1.30 0.46 0.63 5.93 0.96 5.66 1.19 5.57 0.97 5.69 0.94 5.50 1.26 5.50 0.83 0.49 0.78 5.76 1.02 5.27 1.35 1.92 0.05 
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3.3 Challenging process tasks in practice 

Qualitative analysis. To analyze the responses to RQ3, we 
used our proposed framework to organize responses 
based on each task to deduce a higher level of abstraction 
of comments. In explaining perceptions and experiences, 
the respondents highlighted challenges related to the tasks 
making IoT development process different compared to 
non-IoT system development as described in the following 
subsections 3.3.1 to 3.3.3. For the sake of space, we cannot 
report all comments, as they are publically available at [46], 
and do not repeat similar explanations. We delineate the 
phases and tasks synthesized with the relevant quotes 
from both the survey participants, if any, as qualitative 
confirmatory evidence to answer the research question 
RQ3. Hence, our findings are contextualized, explaining 
why tasks are considered important and they raise issues 
during the development. In the following, we use icons to 
indicate,  if a quote is about a problem,  recommenda-
tion, and  general information. We use an individual 
identifier and number P#, for each participants’ quote.  

3.3.1 Challenges related to analysis phase 

The phase is mainly aimed at understanding what the IoT 
system will provide and, includes four tasks ideation, re-
quirements analysis, stakeholder analysis, and plan definition.  

3.3.1.1 Ideation  

This task is to develop, refine, and prioritize an IoT system 
ideas based on problems from a business point of view and 
goals to be achieved via techniques such as brainstorming. 
Respondents found the ideation task a difficult exercise to 
stimulate free thinking due to unrealistic expectations and 
uncertainty of values provided by an IoT system:  

 Identification of what is the benefit of an IoT system is 
not easy... customers and developers might have unreason-
able ideas… what can be done? what cannot be done? what 
can be done easier? [P9]. 

 Any IoT solution needs to clarify the features on the 
value chain of the need including application hardware in-
tegration sensor, electronics/ firmware integration, net-
work management, software platform, data analysis, and 
added value for the end user [P59]. 

 Understanding business value for the relevant custom-
ers is a must but difficult [P86]. 

3.3.1.2 Requirement analysis  

Task requirements analysis has four sub tasks domain require-
ments analysis, software application requirement analysis, smart 
objects requirements analysis, and infrastructure requirements 
analysis. Forty respondents (40) stressed the elicitation and 
validation of the requirements as an important task. This 
rationale was captured quite well by a respondent: 

 Requirement is extremely important for development 
of IoT Systems, in terms of type of data required, fre-
quency of data, use cases specific for business domain for 
which the platform needs to be built for and most im-
portantly the end customer needs who will be the user of 
the system [P96] 

The respondents mentioned several reasons for difficulty 
in addressing various stakeholder’s requirements as they 
dynamically change and new expectations arises as the 
system keep evolving: 

 Gathering the requirements and refining the require-
ments as you progress during the development stage 
never will be static. They should continue to evolve as 
assumptions you have made are proven false and/or in 
need of adjustment and new assumptions arise to replace 
and/or supplement the original set of assumptions 
[P83]. 

 IoT is in very early stage and usually use cases are not 
mature enough then requirements are not clear which 
might lead to multiple requirement changing through-
out the project [P43]. 

Different groups of stakeholders in an IoT project have dif-
ferent requirements to be identified and addressed:  

 As nature of IoT technology, every customer/industry 
has their own requirements, you should be flexible 
enough to meet every customers’ requirements. To man-
age IoT projects, requirements of broader horizontal ex-
pertise on new technologies, e.g., electronics, communi-
cation, software development, etc should be identified 
[P7]. 

 Keeping requirements consistency is an issue [P3] 

In an IoT project, groups of stakeholders that are from industry 
sectors have different requirements [P7] where keeping require-
ments consistency is an issue [P3].  
An area of concern for the respondents was the difficulty 
of specifying security and privacy requirements related to 
storing personal or interaction data:  

 Most often system performance and capability could 
suffer due to satisfying the end user’s privacy specific 
concerns. In our project it was hard to negotiate with 
common people and agree on what to capture and what 
not in private context of a home and resident where our 
smart home services may involve image capturing and 
processing [P2]. 

When it comes to various requirements, the respondents 
also expressed the frustration about addressing con-
trasting requirements, such as scalability vs. data privacy:   

 Addressing the scalability requirements is a key to en-
able to compose multiple services as the number of users 
grows…. But we need to meet the privacy requirements 
for customer [financial] and sensitive data and scalabil-
ity in our projects. This forces us to deployed system on 
servers located in our country region [P20]. 

3.3.1.3 Stakeholder analysis 

Identifying who are the right stakeholders to elicit system 
requirements form is critical to the success of any system 
development endeavor, and is equally important in IoT 
projects. IoT projects may take stakeholders from different 
industrial fields with different backgrounds as recognized 
by the respondents: 

 The industrial IoT space presents its own challenges as 
culture and backgrounds of people involved can be very 
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different [P44]. 

 The variety of stakeholders and customers that must 
work together [P47]. 

3.3.1.4 Plan definition  

Beyond conventional software system planning, such as 
project time frames and necessary resources, software en-
gineers should take into account how the interoperability of 
heterogeneous components influences the project cost and 
effort required in further phases. A so-called interoperabil-
ity-based IoT project planning, as also recommended by 
SCRM [S19] and BSI [S45], enables identifying interopera-
bility requirements to be addressed in advance. This also 
was pointed by respondents, for example:  

 The project plan definition should be mainly dedicated to 
the interoperability as we need to integrate many devices of 
existing brands and our custom devices all under one IoT 
platform [P2]. 

Some participants believed that the distributed nature of 
software and hardware components, as they have differ-
ent independent development lifecycles, force to have 
supplementary plans for testing [P5], [P11], [P15], [P16], 
[P33], and deployment [P15], [P37], [P50].  

What experiences exists amongst software engineers may 
not sufficient when moving to IoT projects. A mixed 
knowledge of software, hardware, and networking pro-
gramming skills to design and implement at the different 
layers of IoT system deems to be difficult to find in soft-
ware teams and impact coding productivity as was cau-
tioned by respondents. Many respondents highlighted 
this issue during planning. Illustrating this, example opin-
ions are: 

 A diversity of software development technologies re-
quired for developing a complete end-to-end IoT system...  
device development requires embedded software develop-
ment skills, and low-level programming languages such as 
C. gateway development requires embedded application 
development skills… IoT backend system development re-
quires cloud and backend development skills, mastery of 
various analytics technologies and/or machine learning 
systems. It is extremely difficult to find developers who 
can master all the development technologies in a large-
scale end-to-end IoT system [P37]. 

 Identifying the right team to work on before developing 
an IoT project as issues detected at later stage could prove 
to be a costly and time wasting exercise [P75]. 

 IoT systems usually require a broader depth of domain 
knowledge and expertise. There is currently far less people 
with experience in developing IoT systems [P44]. 

3.3.2 Challenges related to design phase 

This phase is to exploit and map the elicited requirements 
from stakeholders that are identified in the previous 
phase to a to-be solution architecture which addresses the 
requirements via a collection of software application com-
ponents, IoT platforms, things, and infrastructure. In ad-

dition to the general architecture design tasks service com-
position design, event processing design, resource discovery de-
sign, and monitoring design, there are three specific classes 
of architecture design, i.e., application architecture design, 
platform architecture design, and smart object architecture de-
sign, that together provide a holistic architecture which 
guarantees flawless operation of system components (Fig. 
8). Each is elaborated in the following subsections 3.3.2.1 
to 3.3.2.3. 

3.3.2.1 Application architecture design  

A wide range of applications such as mobile applications, 
legacy applications, business analytics reports, and virtu-
alization are designed to enable end-uses to use core func-
tions provided by an IoT system. Although IoT application 
design has many similarities to conventional system appli-
cation development, an important issue that should be 
borne in mind is the role of software applications to handle 
interruptions in hardware components, e.g., smart objects:  

 Smart objects have limited hardware resources. Any fault 
or failure at hardware level must be taken care by fault tol-
erance implementation by software, e.g. try to restart the de-
vice, add backup device, and continuously capture device 
state and data. For example, in smart home setting, if any 
device stops responding or lags communication, backup de-
vice must be contacted by control software/services [P2]. 

3.3.2.2 Platform architecture design 
As presented in Fig 9, there are seven preliminary sub-
tasks, under the data management design task, used to design 
mechanisms to collect, clean, store, process, and visualize 
both structured and non-structured data from internal and 
external environments such as applications and smart ob-
jects. Respondents agreed the importance of the data man-
agement design task in an IoT system, but also tried to be 
cautious about the data quality concern influencing the de-
velopment process cost. A respondent shared an overall 
comment about this tasks and its relevant sub-classes: 

 Removing nulls, multi-level cleaning logic for de-dupli-
cating, data labelling, and some ad-hoc manual text manip-
ulation all are challenging to perform, e.g. cost and effort, 
but these help to do further data processing task, i.e., provid-
ing personal finance insights for example [P30]. 

Fig.8. Tasks in design phase 
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 The amount of time spent on collecting, cleaning, and la-
belling good quality data for model development is always 
underestimated in IoT projects. Our company was no excep-
tion, as considerable resources with our team were to prepare 
the data for model development for example identifying right 
product catalogues and labelling data [P42]. 

An important issue when doing task meta-data design, i.e., 
defining mechanisms to facilitate the identification, classi-
fication, reasoning, retrieval, and exchanging of data be-
tween heterogeneous and distributed system components 
in adherence to interoperability and discoverability, is the 
fact that the operational environment of IoT system is 
changing. Related to this, the importance of designing dy-
namic meta-data for accurate data processing was another 
common issue stated:  

 The meta-data, such as ontologies, that we use for data 
processing should regularly be revised and updated to ad-
dress the upcoming changing objectives of the IoT system 
and be aligned with application and stakeholder require-
ments. Data, i.e., catalogues of items in our projects that are 
scraped from various websites to use for training the deep 
learning model, are casually changing which our ontology 
is not able to detect them and to be used in our deep learning 
models. For instance, sometimes there is an inconsistency 
between new meta-data created by our users, i.e., merchants 
for item categorization, and our meta-data adopted in our 
platform [P30].  

Providing an effective data visualization including dash-
boards, reports, message boards, 3D spaces, and 2D maps, 
as defined in data visualization design task should be ad-
dressed in an IoT platform with respect to configurability 
and customizability, amongst other, in data visualization 
functions.  

 Visualization components as gauges, charts, maps, tables 
should be designed configurable and should allow you to 
change their data sources, visual representation, and to or-
ganize widgets into logical groups and layout. Moreover, 
dashboard templates allow you to reuse one configuration 
for multiple device dashboards [P30]. 

3.3.2.3 Smart object architecture design 

We frequently received comments from the respondents 
to incorporate factors such as efficient energy consumption 
[P32], low memory usage [P7], portability and interoperability 

of devices [P2] into the architecture design for smart ob-
jects.   

3.3.2.4 General architecture design tasks 

The importance of other architecture related design tasks 
service composition design, event processing design, resource 
discovery design, monitoring design, and interaction design, as 
highlighted in the IoT literature, for example VITAL [S2], 
IoT-ARM [S8], FIWARE [S12], SPITFIRE [S20], ESPRESSO 
[S48], and iCore [50], are reminiscent of the architecture de-
sign in conventional software engineering. For example, 
the purpose of monitoring design task is to ensure both soft-
ware and hardware IoT system components, i.e., applica-
tions, platforms, smart objects, and infrastructure, to keep 
track of system performance to identify anomalies, corre-
lations, or similar patterns of divergence. Monitoring data 
can be system log such as operation history, energy log, re-
source consumption of smart objects deployed in different 
regions and their battery lifetime, network log, transmis-
sion queue size, the number of collisions, packet error rate 
and other critical networking statistics. The importance of 
monitoring design was described: 

 In dynamic IoT environment it is difficult to find if an 
affected device or software, we should always have live event 
in the microcontroller to check the status of all devices and 
do a proper action could be taken before any mishap [P2]. 

The interaction design task is to identify and specify the 
message flow, interrelationships, sequential logic, and in-
teraction protocols between the system components. The 
task illustrates how certain functions are governed by in-
teraction protocols and accomplished in the context of the 
overall system. The complexity of interaction design task 
was frequently mentioned by respondents:   

 IoT development is all about interaction/collaboration of 
distributed components. There will be a lot of components 
depending on each other. It is a challenging task to organize 
the development in a way to deliver value fast and still keep-
ing the overview [P82].  

The respondents elaborated the complexity of identifying 
interactions between system components by terms such as 
interaction between low-resource hardware and software [P76], 
interaction between device and the IoT-network [P76], and in-
teraction of 3rd party web services to distribute data [P81]. An-
other insight that emerged provided additional evidence 
in relation to this task, i.e., identifying the potential com-
munication barriers between system components in terms 
of security or the quality data exchange: 

 This task helps us to identify communication issues. 
Through the analysis of things, we discovered that our IoT 
system abilities are restricted by privacy settings of users’ 
mobile applications. We also realized that there is an issue 
related to data exchange in the system, i.e., generating text 
from low-quality images can cause noisy input data that can 
affect data processing, model outputs and insights provided 
to users of the system [P30]. 

 Interaction design is a major part of development process 
to explicitly identify communication issues of portable IoT 
sensors and devices such as resource poverty, computation 

Fig.9. Sub-tasks related to platform architecture design task 
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available on-device, device performance, and continuous. 
For example, traditional hardware systems, e.g. work-
stations and mobile devices, have bigger hardware sensors 
that ensure strong WiFi signals and reliability of data trans-
fer. But, in IoT, due to weak capacity of GPS and WiFi sen-
sors (miniature hardware), connectivity is a big issue as IoT 
device/sensor is prone to frequent disconnections and low 
transfer rates. All these should be identified and analyzed 
[P2]. 

3.3.2.5 Other architecture design challenges 

Some respondents commented overall challenges of archi-
tecture design. 30 respondents emphasized interoperability 
design for software and hardware components which dif-
ferentiates the development of IoT systems from non-IoT 
ones. This is due to the lack of communication standards 
and protocols for the exchange and ingestion between soft-
ware and hardware components which can dynamically 
join and leave the system. The interoperable architecture 
design for heterogeneous hardware components is the 
highest priority and an ongoing challenge: 

 There is no standard way to do integration. No standard 
models, protocols, and behavior descriptions. Different 
vendors try to keep their data and service in their own for 
business purposes. Many existing devices provide very 
limited service access through the vendors [P35]. 

A similar expression, but from the software component 
viewpoint, was mentioned as well.   

 Integration of IoT system with enterprise system is 
critical. Looking at IoT system as connected devices and 
their data is wrong. IoT is an end-to-end system which 
leverage all existing systems, future systems and new 
services. For instance, IoT systems should be integrated 
with CRM, ERM, EAM, etc to triggers action which is 
critical [P51]. 

Other than that, the respondents described the chal-
lenges of interoperable architecture design by terms 
such as achieving interoperability in IoT systems is a difficult 
task [P7], heterogeneity of data and devices [P29], heteroge-
neous environment, integration of heterogeneous IoT devices 
and systems [P29], device or things integration [P11] and 
communication protocol [P28].  

According to the 19 respondents, the providing a design 
supporting a big connectivity and availability of differ-
ent system components is one of the most challenging 
aspect of IoT architecture design task. Disconnection dur-
ing execution time which may poses a huge risk for 
large-scale and critical IoT system happens for several 
reasons such network ban or broken network. 

 From my position, building IoT system, [for example], for 
the agriculture, most of the farms is in far ways with very 
weak connectivity and most of connecting ways are forbid-
den here. Wide-area network technologies like LoRa can be 
used in military purposes ONLY! [P49]. 

Available network to guarantee the data collection, com-
munication modules, and power consumption for IoT sys-
tems is the most challenging aspect [P64].  

3.3.3 Challenges related to implementation phase 

This phase focuses on coding, testing, and installation tasks 
of IoT software and hardware system components, each 
with a specialized instance for applications, smart objects, 
and platforms, to operationalize the designed architecture 
in the previous phase. When we asked the respondents to 
specify technologies that they use during the implementa-
tion phase, as many as 127 respondents, 86 listed a variety 
of technologies (Table 4). The number in parenthesis repre-
sents the frequency of respondents who listed that technol-
ogy. To be more specific, Arduino (%19), Microsoft Azure 
IoT (%17), Eclipse (%12), AWS IoT (%11.63), Raspberry 
(%9), IBM Watson (%5), ThingsBoard (%2) are the most 
popular pre-built IoT platforms using for both software 
and hardware components at the implementation phase. A 
minority of the respondents mentioned that they use Intel 
IoT, IoT Boards, Nokia Wing, and Vodafone INVENT (Ta-
ble 3). Among the listed platforms, Eclipse and Things-
Board are an open-source IoT platform for device manage-
ment, data collection, processing, and visualization. Fur-
thermore, the respondents reported the use of mainstream 
tools and programming languages such as Python, Java, 
C++, NodeJS, Matlab, Microsoft SQL, Microsoft Visual Stu-
dio, REST API, and React, for coding, scripting, transfer-
ring/streaming, and data manipulation. In particular, 
Node-RED and BoxPwr are programming tool for wiring 
together hardware devices. A few respondents (%2), relies 
on OMNeT and AnyLogic tools for compiling discrete 
event models and system dynamics simulation.  

3.3.3.1 Coding 

The issue of integrity of the development tool set for during 
coding tasks is not a trivial issue. Ranging from Python 
scripts for mobile applications, Scrapy library, to large 
platforms such as Microsoft Azure, to Azure Databricks, 
Azure Data Factory, and Scala, thus required integrity sup-
port. Some respondents mentioned frustration about rais-
ing incompatibilities with the version of same tools. 

 Sometimes libraries that we use are not compatible with 
latest version released and therefore lack certain features. 
For example, the Python language version on Azure has 
certain limitations for modelling activities [P30]. 

This issue is equally a true fact for hardware components 
since the most effort in hardware coding is to provide a 
support for connecting a variety of third-party smart ob-
jects together. Illustrating this, one respondent said:  

 The integration of different third-party hardware each 
having different protocols and standards, make IoT imple-
mentation and testing difficult for us compared to other 
development types [P2]. 

Despite the availability of a large suite of tools, some re-
spondents believe that the lack of right tools is a challenging 
aspect. In relation to software components, for example, 
the respondents mentioned:  

 There are many IoT platforms and choosing the right 
platform (the trade-off of the ease of use and technical effi-
ciency) in which you will collect everything together, and is 
the real challenge [P100]. 

 Use of appropriate tools and technologies to ensure QoS 
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for IoT [P12]. 

 Selection of most suitable code libraries/APIs [P19]. 

This problem extended to hardware components as well. 

 The choice of sensors is critical for programming [P23]. 

 Finding the right mix of hardware components (under-
lying chipsets) is issue [P42]. 

Clearly, the choice of software tools in implementation 
phase is undergone by the architectural design decisions 
in the design phase, which influences the tool integrity 
and subsequently software team productivity. 

 The coding activities are circumscribed by architectural 
decisions that are made earlier at the IoT design phase. This 
causes incompatibility between architectural choices and 
technologies needed for implementation. For instance, the 
choice of big data platform, i.e., in our case Microsoft Azure, 
restricted us to use of certain version of libraries when de-
veloping our deep learning model. Our development speed 
got down [P30]. 

In contrast to literature suggesting that software and 
hardware components can be implemented via open 
source technologies [16], this was not the case where a re-
spondent mentioned his tension to use well-established 
tools: 

 Open source tools specific to IoT (LoRA etc.) lack ma-
turity. Well established tools and software services (Amazon 
AWS, Android Toolkit) can be effectively used to develop IoT 
systems [P2]. 

On the other side of spectrum, the choice of hardware 
technologies influences the performance of software com-
ponents. This rationale was: 

 A very well written IoT software applications may 
be influenced by the performance issues of IoT hard-
ware whose state/data/ must be used and managed by 
software. This is why hardware with proper 
SDK/APIs/code libraries are almost preferred over 
ones that may be cheap, easy to implement and config-
ure but lack sufficient software libraries [P2]. 

3.3.3.2 Testing 

Although testing tasks in IoT system development have 
many similarities to traditional system development, 
they become challenging as there is no a clear line be-
tween the distributed, heterogeneous, and strongly con-
nected software and hardware components of IoT sys-
tems. Seventeen (17) respondents jointly shared their 
opinions about the testing issues in terms of its prolon-
gation and the heterogeneity of components:  

 There might be many types of hardware and soft-
ware components that should run harmoniously. 
Creating a testing environment might be difficult 
[P5]. 

You want something to last five years on battery 
but can't test it for five years to make sure it works. 
You need to do a lot of testing and put the devices 
through a variety of situations to ensure longevity 
[P32]. 

 The acceptance of the solution by the target audi-
ence, despite of all validations and due diligence, 
takes a lot of time [P46]. 

One unique aspect of test in the IoT development pro-
cess is the interdependency of test for hardware and soft-
ware components, where each component is provided 
by external vendors, causing delay in timely and cost ef-
fective delivering system increments. 

 You need the hardware/firmware design ready to go 
to start implementing prototypes while your build a 
small percentage of the software. You can’t complete 
software testing/regression testing until the hardware 
is in a testable and reliable state which takes month of 
iteration in itself [P48].  

Due to distributed nature of IoT-based systems where 
each component may be deployed in different geo-
graphical regions it is difficult to draw a line between 
the test and instalment tasks.  

 In contrast to theoretical SDLC, iterative, Agile meth-
ods, where testing and deployment could be considered 
as two distinct phases, in IoT context, actual testing 
mainly happens post-deployment. It will be more accu-
rate to say that in IoT life engineering cycle, it’s a single 
phase that primarily refers to test-driven deployment. 
For example, in logistics tracking, RFID tags that 
worked well as part of controlled experimentation exhib-
ited totally different behaviours [due to differences in al-
lowed frequency in different countries, herein United 
State and Pakistan. Software services and modules 
worked all fine in Pakistan however, due to regulatory 
issues of allowed frequency on which IoT devices (RFID 
sensors) could operate in United State, the software 
functionality needed to be rewritten to deal with low fre-
quency issues [P2]. 

TABLE 3 Technologies used by respondents during implementa-

tion phase 

Multiple occurrences 

Arduino (16) 

Eclipse (10) 

Raspberry (8) 

Python (5) 

React (4) 

NB-IoT (2) 

ThingsBoard (3) 

Visual Studio (2) 

Buildroot (2) 

Yocto (2) 

Azure IoT (15)  

AWS IoT (10) 

Agile (8) 

Matlab (5) 

IBM Watson (4) 

DevOps (4) 

REST API (2) 

ARM Embedded (2) 

 

Single occurrences 

Java 

Node-Red  

ARM Embedded 

Intel IOT  

IoT Boards 

Nokia Wing 

Isar 

MQTT 

HTTPS 

PTC ThingWorx 

IoT Hub 

RTOS 

ESP8266/ESP32 

OMNeT 

AnyLogic 

Master of Thins 

Thing Workx 

IoT Architecture Blueprint 

Azure IoT Hub 

Microsoft SQL 

Particle 

Cmake 

Django 

AEPs 

GDSP 

Event Hub 

Cervello 

NodeJS 

BoxPwr 

C++ 
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The severity of incompatible regulations, like national 
communication protocols, across different countries 
during performing test, which appear to be costly, is also 
salient:  

 The software and hardware that worked well during 
testing was required to be altered post-deployment. In 
this case, regulatory issues concerning the IoT hard-
ware, as per US laws, triggered the need to refactor 
some of the software coding to support new device fre-
quency indicated by United Stated’s law. We can say 
that hardware implications enforced changes in soft-
ware modules for compatibility issues. In a general 
context, regulatory issues of IoT signalling and fre-
quency also impact IoT source code and implementa-
tion [P2]. 

Along this line, some respondents hasten to note the 
challenges of testing hardware components, for example 
smart objects that are deployed far from software teams 
and may not be always proximate and easily accessible 
to test and fix:  

 Conventional software systems do not involve phys-
ical objects which have to be deployed in the field for 
testing in order to get the software to actually work 
properly in the real world [P53] 

 Debugging devices which stop communicating all 
suddenly, need for physically reaching the site for de-
bugging device issues [P73] 

 Quality testing IoT devices is crucial - once they are 
out then it is hard to fix [P61] 

3.3.3.2 Installation  

Compared to the most non-IoT systems deployed on cen-
tralized host environments, IoT systems are deployed on 
distributed and decentralized network. The respondents 
raised the challenge of installation task due to complexity 
and increased the remotely deployed things:  

 One of the biggest challenges in IoT is deployment in 
the large, i.e., deploying and dynamically updating IoT 
systems that consist of thousands or even millions of 
things, e.g. sensors [P37]. 

Other than that, some respondents believe that con-
ventional software systems typically do not involve 
physical objects which have to be deployed in the en-
vironment. They highlighted challenges associated 
with physical devise installation by the terms such wa-
ter/rain proof electronic devices [P16], installation of the de-
vice must be secured and fast [P23], controlling noisy sen-
sors and inaccurate motors [P46], and ensuring the deploy-
ment doesn’t become an Island of things by engagement 
with the right stakeholders [P103]. 

3.4 Recommendations of IoT developers to address 
outstanding software engineering challenges? 

Based on their experience, the respondents shared some 
overall advices for software teams in addressing the dis-
cussed challenges in sections 3.3.1 to 3.3.3. In response to 
RQ4, we classified the recommendations under nine 
groups as synopsized in the following. 

 Multi-disciplinary process. The respondents pointed 
the fact that the development process of IoT systems, un-
like other systems, is highly interdependent and tightly 
coupled with different facets such as market, cost, and 
technologies that account for consideration: 

 In most cases developing IoT systems force a multi dis-
cipline approach. There will always be at least driver code 
written for an embedded device as well as some web based 
development. Market pressure also means that Android 
and or IoS will need to be considered. This means your 
starting point has a minimum of 3 or 4 frameworks to con-
tend with. Additionally, to make IoT devices affordable it's 
is likely that the team will need to undertake some elec-
tronics design and manufacture tasks [P1]. 

 IoT is not software development only. It needs a deep 
understanding of civil/ mechanical engineering, electron-
ics, and radio frequency then properly integrated into IT 
solutions [P59]. 

Changes in organizational structure, in development team 
and users, should also be taken into account:  

 The impact of IoT system requires organizational and 
mindset changes. Every one of the development team 
will be affected. From the developer, over the product 
manager, salesperson, till human resource [P82]. 

IoT development has the learning curve with knowledge 
in both hardware and software components. Training and 
tutorials are needed to assist the learning of software engi-
neers and to utilize community Q&A sites. 

 Co-operative process. IoT systems are typically devel-
oped jointly by multiple development teams and stake-
holders. A good cooperation between these entities 
needed: 

 For IoT, the main reason for failure is because IoT pro-
jects are driven by IT team. This should be more collab-
orative and driven from the field experts such as civil, 
mechanic, instrumentation, etc [P59].  

 An IoT project requires the cooperation of many con-

tributors such as hardware manufacturer, network en-

gineers, developers, clients. You must therefore work 

with all of them at the same time to make sure your IoT 

solution will be successful [P45]. 

 Bespoke process. The respondents expressed the 
necessity of having tailored development process 
aligned with project situational factors which can be cat-
egorized broadly as technical, (the choice of smart ob-
jects), organizational (project goals, or human), level of 
expertise, and privacy of end-users. There is no reason 
to think that the development process tailoring, which 
has a long-standing acknowledgment in the software en-
gineering [14], is not required in IoT projects.  

 Development tasks depend on the situational factors. 

For instance, if a team’s domain expertise is low, domain 

analysis becomes more important. It might be better to 

try to find out the situational factors that are central to 
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IoT system development. Afterwards, an importance/rel-

evance ranking can be done according to the changing 

situational factors [P5].  

 Development method or tool usage are dependent on 

the project or delivery at hand [P13]. 

Agile-driven process. Incorporating Agile software de-
velopment practices, lean software development and iterative de-
velopment, i.e., think big and start to develop in gradual and 
iterate way, which are based upon Agile manifesto, into 
the development process of IoT system lessen the issue of 
uncertain and changing requirements:  

 IoT application requirements are more speculations 
when you write them down since the marketing and sup-
port team joins the project usually at a much later phase. 
Due to the high number of parties that must work to-
gether in realising an IoT solution, you should switch to 
a stage gate Agile methodology to enable you to get all 
key-decision-makers as early as possible on board and 
you benefit from their knowledge from a very early stage 
of the development [P45]. 

 Secure-aware process. Through the respondents’ 
comments, there was a constant recommendation on ad-
dressing security requirements throughout the develop-
ment process lifecycle and across the IoT system layers. 
Forty-five (45) respondents reckoned strict security as-
pects such as design security for everything, such as data 
streaming, sensors, device, communications, network, 
configuration, and user interface that should be identified 
at the early phases and governed during the development 
process lifecycle for all hardware and software compo-
nents. The simplest way to explain the difference between 
security design in IoT systems and conventional system 
development was distinguished in terms of scale and va-
riety of working things in the system:  

 When it comes to IoT, a very important but perhaps an 
overlooked aspect of designing IoT solutions is the selec-
tion process of the things regarding, among other criteria, 
security. Weak security practices on the side of the devices 
and their connectivity layer pose a huge risk for large-scale 
and critical IoT-based solutions [P63]. 

 Ensuring the data security and privacy particularly in 
countries where these are sensitive/enforced should be con-
sidered [P10]. 

 In IoT development we have to deal with huge amounts 
of data, intense communications between devices, vast 
range of user interfaces and security issue is different from 
conventional applications [P43]. 

 Test-driven process. Software engineers need to be 
prepared to conduct rigorous and concurrent testing of 
hardware and software components to ensure the code 
quality concerns such as the limited memory of device, 
massive data, and noisy environment, security, interop-
erability and performance. Otherwise, neglecting code 
quality is hard to rectify:  

 Developers are used to building software. In their 
mind, it’s just code. However, when you throw real 

physical hardware that is not commonly used and may 
have unexpected behavior introduces challenges that a 
developer has to consider early on. Some hardware issues 
can potentially brick a hardware if the software design is 
flawed and at this point software developer may not be 
able to bring the device back [P48]. 

Not only common code refactoring techniques should 
be used to improve the system source codes, the behav-
ior of the system upon external input events should be 
analyzed to further improvement of system source 
codes.  

 Dynamic analysis of source code refactoring needs 
high quality attention [P14]. 

 Integrated architecture-driven process. IoT develop-
ment needs multi-level development processes such as 
embedded software and hardware components, each is 
governed by different teams who focus on only one group 
of architecture design tasks, but, these processes are not in 
isolation and have impact on each other. An integrated 
view- co-design- of software and hardware architecture de-
sign, due to reasons such as low-speed hardware and fast-
speed software, is recommended.  

 There is an additional hardware module. A multi-code 
developer is needed and who knows how to handle both 
hardware, and software environments…it is necessary 
to have an integration of both environments [E88]. 

 IoT should always be seen from two perspectives, i.e., 
hardware and software. And, hardware should be seen 
through its phases - hardware design, writing firmware 
code [P42]. 

 Automated processes. One unique aspect of IoT sys-
tems is the right choice of compliant tool sets to lessen the 
effort for multi-device coding and testing hardware and 
software components and to achieve automation resulting 
development productivity: 

 Development of IoT based systems need to consider 
the degree of the automation [P24]. 

 Energy-aware process. Eleven respondents (11) rec-
ommended visibility into energy usage that emphasizes 
the graceful power optimization and factors such as event 
frequency and available resources at the all software and 
hardware levels of system development hierarchy. This is 
not limited to the design and implementation phases but 
also the analysis phase where the limitations of hardware 
components and the trade-off among cost, size, and relia-
bility: 

 A lot comes from restrictions of hardware. Low memory, 
low power, and long life all provide their own unique chal-
lenges. For example, you are developing a software chat ser-
vice which allows users to message other users with minimal 
delay and near-real time notifications when a message is re-
ceived. In IoT land, this is very different. If you want to talk 
to a sensor, it may not always be able to listen for new mes-
sages and responding instantly. This is due to a decision 
made to reduce power consumption [P32]. 
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 Managing the power for remotely deployed things 
[P7].  

Table 4, synopsizes the research findings –publically avail-
able at [46]– in the form of Five Ws Scheme (5W2H model), 
including when, what, why, how, and who (who refers to 
development teams) action plan. This would pave the way 
for designing engineering methodologies in the view of 
Whats (challenges) are associated with the tasks and How 
(recommendations) are available.  
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TABLE 4 Summary of Findings  

When (phase) What (challenge) Why How (recommendations) 

Analysis •Ideation task: Uncertain value of IoT system •Understanding attainable business values for an IoT system 

might not be perceivable by all stakeholders (e.g. “an IoT 

toaster is nice, but does it solve any issue?” [P12]) 

•Value creation. Identify, analyze, and get agreement on alterna-

tive value chains achievable by an IoT system. 

• Requirement analysis task: Dynamic, conflicting, 

and evolving requirements  

•There are far more unknowns in IoT systems as they involve 

a wide range of stakeholders, such as hardware/software de-

velopment teams, end-users, and citizens with uncertain re-

quirements and priorities.  

• Agile-driven process. Incorporate agile practices such as lean 

governance, risk-based milestones, short iterations, and value 

people over process/tool into the IoT software development 

process.  

• Bespoke process. Define bespoke development processes with 

respect to the choice of hardware/software technologies such as 

devices, platforms, programming tools, APIs, project goals, and 

environmental/organizational settings. The impact of tailoring 

should be assessed and discussed by development teams. 

• Plan definition task: Variety of required skills •An IoT system relies on diverse technologies such as embed-

ded software development, low-level programming lan-

guages such as C, backend programming, device configura-

tion, data analytics, and machine learning algorithms, and so 

on. It may be difficult to find teams with sufficient mastery 

over these technologies. 

•Multi-disciplinary process. Create a cross-functional team and 

develop collaborative communication between hardware and 

software teams and experts from different fields of experts in 

the project domain. For example, if the IoT system is developed 

for the healthcare domain, bring experts and ask for their feed-

back. 

•Requirements analysis task: Data security and pri-

vacy 

•Different stakeholders and a wide range of heterogeneous 

hardware/software components are joining and leaving an 

ever-changing ecosystem for IoT systems. Each brings with it 

different security concerns. 

•Secure-aware process. Define security and privacy requirements 

and mechanisms to monitor and control software and physical 

objects throughout the development lifecycle and system layers. 

• Stakeholder analysis task: Stakeholder collabora-

tion with different industrial and cultural back-

grounds   

•Stakeholders from different industry domains, cultural 

backgrounds, and skillsets are involved in an IoT software de-

velopment project.  

•Stakeholders-driven process. Identify and engage the right stake-

holders that are important and specify their responsibilities 

during the development process of an IoT system. 

•Training. Familiarize both hardware and software develop-

ment teams and stakeholders with the different aspects of IoT 

system development and interdependencies between hardware 

and software components (e.g., 1-day in-house tutorial, Web re-

search). 

Design • Architecture design task: No standardization for 

data ingestion and exchange between hard-

ware/software components, heterogeneity of data 

and devices, and communication protocols 

 

•IoT third-party hardware/software components use their 

own protocols, data formats, communication models, and se-

mantics to exchange data and call their functions.  

•Integrated-architecture driven process. Identify interaction points 

between software and hardware components and define mech-

anisms such as adaptors or proxies for interoperable plug-and-

play components to communicate. Note that hardware inter-

faces do not change as fast compared to many software compo-

nents.  

• Interoperability plan. Define a plan with a focus on interopera-

bility including integration strategies and their costs which 

used in the design phase.  

• Architecture design task: Unpredictable discon-

nection and unavailability of distributed soft-

ware/hardware components, e.g. third-party 

•Components may become unavailable due to device bat-

tery/power run-out, Internet/wireless network restriction ac-

cess or regulations 

•Replicate-driven design. Use common system engineering prac-

tices such as replicating and synchronization of hardware/soft-

ware components of IoT system based on the different layers of 
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smart objects devices, and legacy systems IoT chain.  

 • Architecture design task: Resource poverty of IoT 

sensors/devices  

•Limitations of hardware components and technologies cho-

sen or enforced by third-party developers’ decisions to reduce 

power consumption. 

•A trade-off between portability and context-sensitivity that 

inherits resource poverty 

•Power-aware architecture design. Adopt graceful power optimi-

zation techniques for (remotely) deployed things in architecture 

design. 

Implementation • Coding task: Incompatible programming librar-

ies, third-party devices, communication protocols  

• Coding task: Lack of maturity or right tools and 

choice of smart objects, e.g. sensors    

• Testing task: Debugging and configuring 

• Third-party coding libraries and hardware technologies 

have their own limited APIs and predefined protocols which 

might be incomplete or inconsistent. 

•Remote and low-memory hardware components in noisy 

environments 

•Tool selection. Consider the choice platform, hardware technol-

ogy, tool, APIs, visualisation using KPI, reports, graphs, and 

dashboard. 

•Dynamic code analysis and refactoring 

•Automated processes. Increase automated coding and testing 

system components.  
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4 DISCUSSION  

4.1 Implications for research and practice 

Research implications. There are implications that arise from 
this research. Although debatable, we believe that IoT de-
velopment process is not necessarily a new revolutionary 
genre and it can be well connected and positioned in the 
conventional wisdom of software engineering, however, it 
reappears taking to an extreme level. We observed such an 
interpretation in some respondents’ comments in relation 
to RQ2 who speculated that IoT development processes 
possess many issues, traits, and principles of conventional 
system development process, but, issues are scaled up in 
IoT context. That is why 3 out of 127 respondents did not 
believe much noticeable distinctions in IoT development 
process challenges compared to the conventional software 
development, for example: 

 In my perspective, there is not much of a difference. IoT is 
just a new term used for hardware components that can con-
nect, interact and consolidate information to be perceived 
and monitored. Things existed in IoT sense even before. e.g., 
wireless devices talking to each other over larger regions us-
ing long range relays [P42]. 

Secondly, it is important to realize inherent challenges at 
the micro process level, i.e., performing development 
tasks, signifying that not everything necessarily from the 
conventional software engineering literature can be 
equally applied in an IoT context. In IoT projects, software 
teams deal with very large amounts of data, design inter-
action between software and hardware components, coop-
eration of different stakeholders, vast range of user inter-
faces, and security and reliability issues. For example, as 
discussed in Section 3.3.1.2, identifying rapidly-changing 
requirements from various key stakeholders in IoT is a 
challenging exercise compared to conventional software 
engineering. This is also true, as noted earlier (Section 
3.3.4), for a security-aware development process which ex-
tends concerns from software components to hardware 
ones.  

The third research implication is the common intersection 
between the findings in this research and those that have 
already highlighted in other software engineering do-
mains. While our findings (Section 3) have originality for 
software engineering researchers, they are in conjunction 
of the results in other software engineering domains, 
which increases the credibility of our findings. For exam-
ple, the framework tasks under data management design task 
lead to the quality of IoT-based systems, which concur 
with the findings of Kim et al. [19] reporting on challenges 
of software engineering of data analytics systems. Our 
findings (Section 3.3.2.3) are confirmatory to their work as 
both studies mention the importance of data quality de-
sign. In line with this, as IoT systems have share issues 
such as heterogeneously and security of components, as 
presented discussed earlier, with other modern computing 
paradigms namely cloud computing and data analytics. 
Consequently, the findings in Section 3 can be exploited to 

inform software engineering researchers about the devel-
opment process of cloud-based or data analytics applica-
tions. 

Implications for practice. Our proposed framework is im-
portant for software practitioners in a few ways. Firstly, it 
can be as a guideline for software engineering managers 
showing tasks that are anticipated for IoT scenarios. Based 
on the personal experiences of our respondents, the frame-
work has been enriched with a list of challenges and rec-
ommendations that software engineers should be aware of. 
For example, in Section 3.4, we provided some recommen-
dations such as the choice of development tools, frequent 
and dynamic code review of software and hardware com-
ponents, cultural shift, security, and training for the inclu-
sion in the development process. These would pave the 
way for the design of new IoT specific independent and 
decomposable IoT software engineering methodologies. 
Secondly, software teams can treat the framework as a tool 
or to-do checklist to appraise the extent to which their in-
house development approach supports the development 
of IoT systems. They can use the framework’s tasks in their 
development approach to extend its capability for IoT de-
velopment. Moreover, as the framework includes the do-
main-independent tasks, it can be used as an evaluation 
tool to identify shortcomings, strengths, similarities, and 
differences among alternative approaches for IoT develop-
ment. In other words, the framework aids the selection of 
approaches that suit situation-specific characteristics rele-
vant to a given IoT project. Such a normative application of 
the presented framework, is in line with the software process 
improvement as quality management initiatives committed 
by software teams to ensure quality and repeatable devel-
opment processes in a cost-effective way, herein IoT sys-
tems. Thirdly, despite our reported recommendations in 
(Section 3.4) being IoT centered, there is no reason to think 
that they cannot be applied to system development pro-
cesses for other computing paradigms. Software teams can 
examine if the findings of this study, the development pro-
cess tasks and identified challenges, will reoccur. 

4.2 Research limitations and future work 

The results of our research need to be understood in light 
of some limitations. The framework definition has been ab-
stracted away from underlying technical and domain-spe-
cific implementation details. We did not discuss how the 
framework is formally integrated into existing in-house 
development processes. This, foremost, needs to define 
technology-centric techniques and heuristics to operation-
alize our proposed conceptual framework per task. Future 
research is needed to properly enrich the framework via 
implementation techniques. 

When software teams integrate development processes, 
they may consider who is responsible for the execution of 
each framework task and associated steps. In addition to 
conventional software engineering roles, IoT specific ones, 
if any should be defined, which is, yet another, the im-
portant subject of future research. For example, a stake-
holder-driven IoT system development.  

Our paper solidifies a conceptual framework, including 
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phases and tasks, supported by domain experts’ opinions. 
The presented recommendations in Section 3.4 do not sup-
plant the engineers’ expertise and subjective judgment 
about which task set should be performed for an IoT pro-
ject. As pointed out by the respondents in Section 3.3.4, 
there is a need for tailoring of development process with 
respect to IoT project situational factors. Otherwise, there 
is a risk of losing project goals. This raises questions about 
how developers select or tailor development processes for 
IoT context. This is in line with the findings in Fahmideh 
et al. [5] suggesting to design situation-specific IoT devel-
opment approaches, which is reiterated by our survey re-
spondents. Development teams can use a wide range of ap-
proaches like assembly-based method engineering, [47] 
,[48] and the semi-automated way [49] discussing mecha-
nisms to deal with this through the construction of project-
specific development process which can be equally applied 
in IoT domain. The presented framework in this paper is a 
starting point for studying how development processes 
can be tailored for IoT system development projects. 

5 THREATS TO VALIDITY 

There are threats to the validity of this research’s findings, 
based on the conducted research method (Fig 1.), in terms 
of construct validity, internal validity, external validity, and re-
liability [50] which is discussed in this section. 

5.1 Construct validity 

Construct validity concerns the adequacy of measures used 
to test a concept studied [50], herein the framework’s tasks. 
We defined a process framework in an exploratory fashion 
that is rarely explored in software engineering. The ques-
tion is therefore whether the tasks are representative of a 
development process lifecycle for IoT systems. We found 
that the phrase IoT development process, with its multi-disci-
plinary nature, is a new topic and interpreted differently 
by people in different domains. During phase 1, we did not 
find any clear or universal definition of the term and hence 
the presented framework in Fig. 7 is a cumulative view-
point of different studies. This may raise the concern as to 
whether we have correctly measured the validity of the 
framework and if the right questions have been asked from 
participants in the right way. To minimize this, in Section 
2.1.2, we discussed the issues of defining the appropriate 
granularity level, an aspect of any conceptual modelling 
endeavour [17],[37], and the fact that we tried to identify 
common recurring tasks that are stated in the literature for 
this framework. Since survey participants gave promising 
comments about the survey questions, i.e., representing 
the framework, this threat can be considered mitigated. 

Our adopted mixed methods research in this paper is in-
formed by prior works [17],[37] recommending two high-
level exploratory and confirmatory phases to get an in-
depth understanding of a phenomenon that is in its infancy 
stage. Second threat to construct validity with this type of 
research method is related to the dependability of the re-
search phases, i.e. framework derivation and framework 
evaluation. As both phases have been conducted by the 
same research team, there is a concern that the researchers’ 

opinions may have biased the research findings. To mini-
mize this effect, we engaged in a technique termed venting 
[51] or cross-checking [52], through which we informally 
discussed the framework and piloted our draft survey in-
strument in multiple occasions with practitioners and re-
searchers who were interested in IoT to get us their opin-
ions that allowed us to refine the framework and survey. 
For example, one reviewer suggested us to visualize the 
framework in the survey and some clarifications to phrase 
the tasks to present clear items to be evaluated in the sur-
vey by the respondents. During the survey data collection, 
we included questions that asked respondents to share 
their observed critical issues about the presented frame-
work and our survey instrument. In one particular in-
stance, out of 127 respondents, two commented that 
providing situational factors indicating whether incorpo-
rating a framework task is a missing feature of the frame-
work. In line with this comment, three respondents added 
that rating the importance of tasks in the survey might not 
be a plausible question due to requirements variability in 
IoT project. One respondent believed that our research 
question cannot be examined because “IoT projects are not 
typically approached with such formal framework... everyone is 
making it up as they go… compare IoT to web development in 
the '90s. It's all new and unknown.” Except for this opinion, 
we did not receive any fundamental critiques that could 
introduce a serious construct validity issue with our re-
search method. Furthermore, from our surveyed industry 
experts ranging from managers to software/hardware de-
velopers located in different countries and in different IoT 
development domains, we found that the framework and 
survey instrument are resonated with respondents’ expe-
rience and no fundamental critique related to the research 
phases was reported. Finally, the post-hoc analysis with 
the alpha = 0.05, effect size d = 0.2, and statistical power 0.7, 
as reported in Section 3.2, indicated that our sample size 
127 is sufficient to identify a given effect size at certain per-
centage, i.e. %99.  

5.2 Internal validity 

As for internal validity, i.e., concerning with situations that 
may have affected research outcomes whilst researcher has 
not been aware of them [50], we cannot ignore the fact that 
our time/effort intensive survey needed the participants’ 
concentration to respond the questions accurately. The is-
sue of respondent fatigue bias may have caused some re-
spondents to complete the survey in a cursory way, which 
may have had a negative impact on the rating of the frame-
work’s tasks or open-ended questions and thus limited the 
validity of the reported statistical tests and quotes. In all 
cases that we found odd or having unclear responses in an 
answer sheet, we directly contacted the respondents to 
double-check the accuracy of her/his responses. A further 
issue related to the internal validity is the survey design, in 
particular, misunderstanding the survey questions due to 
the complex and multi-faceted nature of IoT systems. As a 
countermeasure, during our purpose sampling, we ex-
plained—both verbally and in writing—the terminologies 
and objective of the survey for the selected participants to 
give them an understanding of our research objective and 
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our perspective with respect to IoT system development. 
Additionally, although it was mentioned that IoT system 
development comprises both software and hardware 
teams, the number of survey participants from software 
groups was significantly less than hardware teams (93 vs. 
3), as discussed in Section 2.2, this may have caused a bi-
ased view of the investigated framework. A good fre-
quency of comments related to hardware aspects of IoT de-
velopment, presented in Section 3.3, likely lessened this is-
sue.  

5.3 External validity 

With respect to the external validity, i.e., the extent to which 
research outcomes can be generalized to other contexts, 
firstly, in the derivation of the framework, we tended to 
identify commonly grounded tasks in the literature. Nev-
ertheless, it is likely that we have missed other, yet less 
cited, tasks that could be important for the inclusion in the 
framework. We do not claim that the framework is capable 
to manifest all necessary tasks for all IoT system develop-
ment scenarios. Moreover, as we purposefully selected 
random samples for the survey, the survey findings may 
be limited to those who participated in this survey and 
generating biased results. As discussed in Section 2.2, 
whilst we experienced the lack of expert participants, due 
to infancy stage of IoT field, we tried to have participants 
from a range of backgrounds in our limited sample size, 
which is in line with the suggested maximum variation 
sampling strategy by Patton [41]. We abstain from claiming 
the generality of our research findings. However, in light 
of maximum variation sampling rule [41] that suggests 
varying opinions and experiences to avoid attrition bias, 
we ensure that the respondents from 35 countries distrib-
uted across 6 continents, 15 industry sectors, seniority lev-
els, and years of experience are good representative to an-
swer to the stated research questions. Finally, we needed 
to identify experts who would be active in IoT system de-
velopment to participate in our survey. We contacted 
many experts and development companies but only hear-
ing that they could not share their experience with entities 
external to their companies due to privacy, regulatory is-
sues, and intellectual property matter. We are aware that 
some challenges related to the tasks may not have been 
shared by the respondents or have been misrepresented. 
Thus, we cannot firmly state that the framework and find-
ings from our survey in this article are completely the rep-
resentative of the opinions about IoT system development 
process.  

6 RELATED WORKS 

The IoT field is polymorphous and multidimensional but 
in this research we narrowed our focus on the develop-
ment process for IoT systems. Given that, we divided the 
literature of software engineering for IoT into less-related 
and closely-related studies are delineated in the following 
subsections.  

6.1 Enabling technologies for IoT systems 

The less related literature refers to enabling technologies 

for IoT systems. These are the synergical Internet-based 
computing paradigms such as cloud computing, data ana-
lytics, and blockchain that have similar characteristics and 
provide backbone services for IoT systems. For example, 
cloud computing primarily helps IoT via providing re-
sources for the storage and distributed processing of the 
acquired sensor data. We reviewed the existing process 
frameworks related to cloud-based system development to 
find a possible intersection with our proposed framework. 
Via adopting a metamodeling approach, Fahmideh et al. 
[17], propose a generic cloud-centric software application 
development process framework, including 18 tasks iden-
tified from 75 papers, which integrates various viewpoints 
of the same development process of cloud-based systems. 
We found that blockchain technology is attributed to em-
power IoT systems for the security of exchanging data be-
tween hardware and software components. The survey of 
156 blockchain developers by Bosu et al. [18] is to identify 
the differences between the development processes of 
blockchain-based systems and conventional systems. Our 
work focuses on the development process tasks and their 
related challenges while Bous et al. focus on the motiva-
tions of developers towards this class of system and chal-
lenges related to tools. All of the abovementioned works 
are silent to uncover the IoT-centric development process 
as discussed in this paper.  

IoT systems rely on computing capabilities of data analyt-
ics systems. In a survey, Kim et al. asked data scientists of 
challenges they face and practices use to handle these chal-
lenges [19]. Based on respondents’ professional experi-
ence, skills, education, working style and time spent on 
work activities, the authors clustered the survey respond-
ents into three categories named data, analysis, and peo-
ple. While both our work and Harris et al. use a survey-
based research approach, our focus is on the development 
process. Regarding the challenges that both IoT and data 
analytics systems may face, both studies point the issue of 
data quality, implying how prior work in other domains 
can, in conjunction with our findings, stimulates further 
studies. 

6.2 Software engineering for IoT systems 

Few studies to date deal with the software engineering 
methodology attuned to IoT system development. An is-
sue with methodologies like Collin’s [20], Ignite [21], Inter-
Meth [22], ACOSO-Meth [23] is that they are too general 
and largely untested in practice. Another limitation of 
these works is where they express the same development 
process but in different ways and levels of abstraction. 
Whilst it is unavoidable fact to have a variety of methodol-
ogy designs for an application domain where each has its 
own focus and scope, an overall domain-independent and 
empirically evaluated framework by domain experts that 
highlights key development process tasks, as reported 
here, does not yet exist. 

Apart from the multitude reported ad-hoc techniques for 
addressing challenges of IoT systems, but applicable at the 
implementation level, such as programming of heteroge-
neous objects [53], seamless integration [54], or platform 
development [55] to name few, there is a stream of research 
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that focuses on accommodating of common software engi-
neering approaches. These includes mashup-based (WoT-
Kit [56]), model-driven development (ThingML[57]), do-
main-specific languages (Midgar [58]), or visual program-
ming languages ([59]) that facilitate the implementation of 
both software and hardware components of IoT systems. 
These studies concern topics such as service composition, 
automated code generation, and addressing the interoper-
ability of things. In this spirit, Ciccozzi et al. [60] propose a 
model-driven engineering methodology with a focus on 
addressing the issues of interoperability among compo-
nents of real-time IoT systems. Nevertheless, one finds it 
difficult how their suggested fine-granular techniques can 
be pulled up together to form a series of high-level intel-
lectual bins, i.e., the conceptual process framework to pro-
vide a full end to end picture of developing IoT systems. 
We believe that such implementation techniques can be 
greatly adopted to operationalize the framework. In addi-
tion to their platforms in marketplace, big players like IBM 
[S47], Cisco [S6], Amazon [S64], Google Cloud IoT [S65], 
CityPulse [S39], ThingSpeak [S59], and Microsoft Azure 
IoT [S66] (see Appendix A) provide some case studies of 
successful implementation of IoT-based systems, however, 
there has been little attention to underlying development 
process enacted. Whilst the presented process framework 
has been inspired by existing work in the literature, we ex-
tended them with new important features in the following 
ways: 
Focus and depth of analysis. In contrast to previous research, 
our study is the first one that explores the aspect of the 
development process for IoT software systems. It narrows 
its view to existing proposals providing either a complete 
or a partial approach for the development of software for 
IoT platforms. Thus, it is much more focused compared to 
the abovementioned works. Our proposed framework en-
compasses key tasks, challenges, and recommendations 
which can be sequenced into the existing fragmented 
structured system development processes to enhance 
their capability to support IoT systems. Moreover, the 
framework can be used as a checklist to assess the level of 
support offered by existing approaches for IoT system de-
velopment. Furthermore, providing a deeper explanation 
of the framework organized into tasks under different 
phases enriched with IoT experts’ opinions is another dis-
tinct feature of the current study. Such features have not 
been covered by any of the existing works. 

Research method. In comparison to prior studies, our pro-
posed framework has been based on the use of explorative 
research techniques including qualitative and quantita-
tive ones which have been unavailable in reviewed works. 
As noted in “Section 2.1.2 Steps for framework derivation”, 
the framework derivation has been based on (i) top-down 
way where reviewing general literature on IoT and con-
ventional software engineering gave us insights on the 
foundation of IoT system development (such as basic 
components devices, smart objects, systems, and plat-
forms as noted in Section 2.1.1); and (ii) bottom-up way 
via examining and abstracting out different existing stud-
ies focusing either partial or fully on IoT development 
process. Moreover, our study has been done at a large 

scale of evaluation by a great many IoT experts, as op-
posed to existing studies were their findings are quite lim-
ited from an empirical evaluation perspective. 

7 SUMMARY 

The objective of this revelatory study was to demystify the 
software engineering of IoT software systems from the per-
spective of the development process. This is a substantial 
factor for development teams to achieve more maintaina-
ble IoT systems. We presented the first in-depth study to 
answer this issue by identifying a process framework in-
cluding 27 development tasks organized in a three-phase 
based process framework and then obtaining quantitative 
and qualitative support through a Web-based survey re-
sults. We provided some recommendations to manage the 
development process complexity of this class of systems. 
The software engineering literature has not observed such 
a scientific and contextual understanding of the overall de-
velopment process as it is anticipated to get to know what 
is new or re-iterated.  

This research and its explanatory generic framework su-
persede or will ultimately become commonly accepted by 
researchers is a lofty goal. What is significant is that the 
framework was derived through synthesizing the litera-
ture pertaining to the IoT field and validated it in a stepped 
and transparent way. Our findings have implications for 
both research and practice:  

• It envisages a codified development process for IoT 
systems in the words of software teams along with given 
concrete examples grounded in their experience. Given 
the current lack of understanding on this topic, the 
framework provides an overarching view helping to bet-
ter focus and classify future research studies, and, hope-
fully, stimulates researchers to ask further research. 
• It represents a starting point for improving research 
and practice understanding how IoT systems can be bet-
ter planned, anticipated and organized from the perspec-
tive of software development process.  
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