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Abstract: Background: N-of-1 trials offer an innovative approach to delivering personalized clinical
care together with population-level research. While increasingly used, these methods have raised
some statistical concerns in the healthcare community. Methods: We discuss concerns of selection
bias, carryover effects from treatment, and trial data analysis conceptually, then rigorously evaluate
concerns of effect sizes, power and sample size through simulation study. Four variance structures for
patient heterogeneity and model error are considered in a series of 5000 simulated trials with 3 cycles,
which compare aggregated N-of-1 trials to parallel randomized controlled trials (RCTs) and crossover
trials. Results: Aggregated N-of-1 trials outperformed both traditional parallel RCT and crossover
designs when these trial designs were simulated in terms of power and required sample size to obtain
a given power. N-of-1 designs resulted in a higher type-I error probability than parallel RCT and cross
over designs when moderate-to-strong carryover effects were not considered or in the presence of
modeled selection bias. However, N-of-1 designs allowed better estimation of patient-level random
effects. These results reinforce the need to account for these factors when planning N-of-1 trials.
Conclusion: N-of-1 trial designs offer a rigorous method for advancing personalized medicine and
healthcare with the potential to minimize costs and resources. Interventions can be tested with
adequate power with far fewer patients than traditional RCT and crossover designs. Operating
characteristics compare favorably to both traditional RCT and crossover designs.

Keywords: N-of-1 trial; evidence-based medicine; comparative effectiveness; clinical trial; single-case
study; simulation study; statistical methods; RCT

1. Introduction

The N-of-1 trial design is increasingly popular among healthcare researchers and clinicians. N-of-1
trials are increasingly proposed as an alternative to randomized controlled trials (RCTs) [1,2]. N-of-1
trials are particularly useful for evaluating treatment of chronic stable conditions such as attention
deficit hyperactivity disorder (ADHD), chronic pain, and many other chronic stable conditions [3–9].
Such designs can be implemented for a variety of populations (from children to the elderly [10–14]),
settings (developed and developing countries [15,16]), demographics (races and ethnicities [17]), and
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indications (e.g., targeted efforts to deprescribe excessive medication [18]). Taken together, N-of-1 trials
could represent the next advance in personalized medicine given their ease of integration with health
technology data [19,20].

N-of-1 trials can result in demonstrably higher patient care quality while simultaneously
minimizing costs because they identify treatment effectiveness for individual patients [21]. Pooling
(aggregating) the effects from a series of N-of-1 trials using standardized protocols has been shown
to produce robust effect estimates with fewer individuals required relative to randomized controlled
trials [2,12]. Training of investigators in the protocol allows N-of-1 trials to be implemented in the same
way at each site and aggregated results to be more accurately generalized. These aggregated N-of-1
trials contain the added benefit of demonstrating clinically meaningful results at reduced sample sizes
relative to randomized controlled trials [22] Because they require fewer participants to obtain the same
power as an RCT, and thus can achieve the required sample size more quickly, the cost compared
to other designs can be less [10] However, their use and appeal vary widely among the healthcare
community. Clinicians interviewed by Kravitz et al. [23] to identify clinical issues that manifest as
barriers to N-of-1 implementation primarily reported issues with the duration of N-of-1 trials and
general lack of procedural knowledge. Work is underway to explore these issues further.

Methodologists have also raised issues with trial design and analysis techniques [12–14]. Repeated
observations of outcomes across multiple treatment and control periods is required from the participant
in an N-of-1 trial, in order to provide sufficient statistical power to detect true treatment effects at
the individual level. The need for repeated observations can lead to statistical issues which can be
addressed through careful statistical analysis. Selection bias, power, sample size, design and method
of data analysis are important considerations for any clinical trial.

1.1. Selection Bias, Power, & Sample Size

An issue when conducting aggregated N-of-1 trials (i.e., data aggregated from a series of N-of-1
studies) is the generalizability (external validity) of their results. Selection bias in aggregated N-of-1
trials could result from not including a sufficiently sized, representative sample of participants. This
concern is also relevant to RCTs. The external and internal validity of aggregated N-of-1 trials can
be limited by three primary forms of selection bias: lack of representativeness due to a small sample
size, lack of random sequence allocation of intervention and control periods, and lack of allocation
concealment [24]. To address these, one can use block randomization or counterbalancing and single,
double, or triple blinding treatment when feasible. Other strategies to increase scientific rigor include
repeated assessments within treatment periods, adaptive trial “stopping rules” to terminate trials as
soon as negative or positive treatment effects are demonstrated, and applying appropriate design and
methods of analysis that yield highest power and effect size without inflating type-I error [23,25]. An
important statistical consideration in planning an aggregated N-of-1 study (i.e., data aggregated from
a series of N-of-1 studies) involves calculating internally valid power and sample size. Aggregated
N-of-1 trials require smaller overall sample sizes than traditional RCTs, as individuals are serving as
their own controls. One must account for power needed to achieve identification of individual- and
group-level differences resulting from treatment.

1.2. Trial Design and Carryover Effects

Carryover effects are present in N-of-1 trials when the effect of a treatment cycle impacts subsequent
cycles beyond any assigned washout periods. Washout periods are pre-defined blocks of time in
which treated individuals do not receive the treatment of interest to allow time for the effect of a
treatment delivered in a previous period to wash out. It is possible that including blocks with varying
lengths might best address this issue. Future work might evaluate the number of “control days” could
be randomly picked in a set of numbers between 1 and 3 following an “intervention day.” Rather
than equal time spent in control and treatment cycles, this randomization of block length potentially
addresses the possibility of confounding effects from treatment carryover. Stronger carryover effects
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may result in more conservative differences in treatment effects due to inflation of type-II error [16].
Thorough reviews of pilot data or relevant literature should be implemented prior to trial design in
order to determine the potential length of a carryover effect and inform the design of the N-of-1 study
periods [26].

1.3. Data Analysis in N-of-1 Trials

There are no known “gold standard” approaches to analyze data for N-of-1 trials. Several
approaches have been proposed and are well argued with simulated or trial data [26–28]. However,
issues of missing data and autocorrelation persist. Many techniques to handle missing data are being
developed for both observational and interventional study designs [11,16,17]. Simulation studies
can incorporate missingness but are difficult to model similarly to real-world data. Autocorrelation
presents an additional complication when analyzing N-of-1 data. Autocorrelation implies a serial
dependency within the data collected from the same individual over time—i.e., patient’s stress level
today may be highly correlated with their stress yesterday and tomorrow. Thus, it is important to
check for autocorrelation in data from N-of-1 trials and address it if detected. Traditional tests of
difference such as the t-test are not appropriate for analyzing data from N-of-1 trials because they
violate key assumptions of statistical independence. Two common methods to address autocorrelation
include an autoregressive model or a dynamic model, where autocorrelation is modelled as part of the
analysis procedure [23,29]. Random effect parameters can be included to account for autocorrelation in
multi-level or hierarchical models.

The aim of this paper is to compare N-of-1 trials to parallel and crossover RCT designs and
evaluate (1) effect sizes, (2) power and (3) sample size for each study design through simulation
study. Results from this study will provide information about the adequacy and utility of N-of-1 trials
compared to traditional trial designs under a range of potential trial conditions.

2. Methods

We performed a simulation study to compare the operating characteristics of aggregated N-of-1
trials, RCTs and crossover designs for varying sample sizes and effect sizes. We examined the
differences in a proposed trial of a new therapy versus placebo over 3 cycles. These cycles were
sampled representatively to include a proportion with cycle effects, without cycle effects and then
disproportionally from a population with intentional lack of generalizability. In general, data was
generated from:

Yick = µi + τ Zick + εick,

where Zick is the treatment indicator for patient i at cycle c = 1, 2, 3 and “look” k = 1, 2 within a cycle.
τ is the treatment effect of interest. We considered µi ∼ N

(
µ, σµ

)
and εick ∼ N(0, σε) and τ = 0.25 to

be a moderate effect. We looked at 4 different standard deviation structures.

• Scenario 1—Weak heterogeneity and moderate error: σµ = 0.1 and σε = 0.5.
• Scenario 2—Homogeneity and moderate error: σµ = 0 and σε = 0.5.
• Scenario 3—Strong heterogeneity and moderate error: σµ = 0.5 and σε = 0.5.
• Scenario 4—Strong heterogeneity and large error: σµ = 0.5 and σε = 1.

For each of the four variance settings and each of 5000 simulations, we generated c = 3 N-of-1
cycles from the above model. The first cycle’s observations were used for a crossover trial. One of
the two observations, including outcome and treatment assignment, in this first cycle were randomly
chosen with equal probability for use within the parallel RCT. This ensured that the same data was used
in each of the 3 trials to provide a fair comparison. Power was computed as the proportion of times
that each simulation rejected the null hypothesis of no treatment effect [30]. This was done using the
‘lmer’ function in R statistical software version 3.5.2, (R Foundation for Statistical Computing, Vienna,
Austria), and follows previously proposed approaches to estimate power in N-of-1 studies [30]. Two
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models were estimated (1) an intercept only model and (2) a model with an intercept and treatment
effect, where each fitted model contained patient-specific random effects. The difference in deviance of
the two models was then used for the chi-squared test of no treatment effect at the nominal 0.05 type-I
error level. Deviance calculations included random effect calculations for each model. p-values for this
test that were less than 0.05 were considered to be statistically significant. The null treatment effect
hypothesis was tested similarly for the crossover design, while a standard linear regression model was
used to test this hypothesis for the RCT.

3. Results

In each simulation setting, power for N-of-1, parallel RCT and crossover design were computed
for maximum sample sizes of n = 10, 20, 30, 40, 50, 100, 150, 200 with a fixed treatment effect
τ = 0.25. After finding the value of n that produced a power above 0.8 for the N-of-1 design, we fixed
this sample size and varied τ = 0, 0.05, 0.10, . . . , 1 to determine how each design performed as the
true treatment effect increased. Here τ = 0 represents a case where the treatment provides no true
improvement over placebo, causing rejection of the null hypothesis when it is true, to constitute a type
I error.

First, we examined how N-of-1, parallel RCT and crossover trials performed when all patients
come from the population of interest, with true treatment effect τ = 0.25, and no washout or carryover
effects with a placebo vs treatment comparison in c = 3 cycles. Figure 1 displays the power of the 3
designs as a function of trial sample size for the 4 different variance structure scenarios.
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Figure 1. Simulation study for representative sample without washout effects. This figure displays the
power for detecting τ = 0.25 for given sample sizes and the 3 different designs considered.

Across the 4 scenarios, the N-of-1 sample sizes needed to achieve 80% power with a main effect of
τ = 0.25 were 30, 30, 30 and 100, respectively. For scenarios 1 and 2, the parallel RCT achieved 80%
power with n = 150 patients and the crossover design achieved 80% power with n = 100 patients. The
corresponding power of the N-of-1 designs for these two sample sizes were both 100%. The power of
the two alternative designs in scenario 1 at n = 30, where the N-of-1 design had a power of 92%, were
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32% and 50% for the parallel RCT and crossover designs, respectively. For scenario 2, the power for
the N-of-1 design was 92% at n = 30, compared to 26% and 52% for the parallel RCT and crossover
designs, respectively. In scenario 3, the parallel RCT did not achieve power above 80% for any sample
size considered, and the crossover design required 100 patients to obtain a power of 94%, compared to
a parallel RCT power of 70% for n = 50. For scenario 4, where the random patient effect variance and
error variance were largest, neither the parallel or crossover designs achieved power above 80%, with
empirical power values of 34% and 70%, respectively for a sample size of n = 200. The power for the
N-of-1 design for this sample size was 99%.

Figure 2 displays the power of a representative sample without washout effects for a fixed
sample size in each scenario and a varying treatment effect τ. The sample size used in each scenario
corresponded to the minimum sample size needed to achieve at least 80% power for the N-of-1 design.
For an effect size of τ = 0, the N-of-1 empirical type I error probability was 0.05, 0.05, 0.05, 0.05, for
the 4 scenarios, respectively. The empirical type I error probability for the RCT was 0.05, 0.06, 0.04,
0.05 across the 4 scenarios. The empirical type I error probability for the crossover design was 0.07,
0.07, 0.06, 0.05, across the 4 scenarios, respectively. The N-of-1 design best matched the empirical
type-I error probability to the desired nominal type I error probability. By design, τ = 0.25 produced
power figures above 80% for both N-of-1 designs and the considered sample sizes. For parallel RCTs,
τ = 0.60, 0.50, 0.80, 0.65, and for the crossover designs, τ = 0.40, 0.40, 0.40, 0.45 were required to
achieve a power of at least 80% across the 4 variance scenarios.
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Next, we examined the operating characteristics of each design in the presence of carryover effects.
We increased patient outcomes by 0.05, 0.1, and 0.15 if they had just received the new therapy. By
increasing patient outcomes in this manner, we do not consider length of cycle or washout, and remove
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the time-washout relationship from this simulation study. These represented small, medium, and
large carryover effects compared to the true treatment effect of 0.25. Thus, patient outcomes could be
increased for placebo or therapy outcomes within a cycle, or during the next cycle in N-of-1 designs.
For example, if a patient received treatment in the first period in a cycle, their next outcome within the
cycle for placebo will be increased due to the washout effect. Similarly, if a treatment is given at the end
of a cycle, the next cycles first outcome – whether from a patient receiving treatment or placebo—will
be increased from the washout effect. This did not affect parallel RCT operating characteristics as
patients only receive either the placebo or treatment and only have one observation. For the crossover
design, carryover effects were only seen if a patient received the new therapy before the placebo
treatment, whereas carryover effects could be seen within each cycle and in between cycles in N-of-1
studies. Figure 3 displays the power for sample sizes of n = 10, 20, 30, 40, 50, 100, 150, 200 and a
fixed treatment effect τ = 0.25 for the three different carryover effects considered.
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The sample sizes required for the N-of-1 design to achieve at least 80% power were increased to
n = 40, 40, 40, 150, respectively, for a moderate carryover effect size of 0.1. The power of the crossover
design at these sample sizes was 45%, 45%, 43%, and 43%, which was still higher than the parallel RCT
despite it having no change in operating characteristics from the carryover effect. The N-of-1 designs
required a sample size of n = 30, 30, 30, 150 to achieve 80% power with a carryover effect of 0.05 and
n = 50, 50, 100, 200 for a carryover effect of 0.15. The N-of-1 designs achieved an exact power of
80% for n = 200 and a large carryover effect of 0.15. The power of the crossover design for the same
required sample sizes for 80% power for N-of-1 design with small and large carryover effects were
45%, 45%, 42%, 48%, and 45%, 46%, 63%, and 44%, across the four scenarios, respectively. When a true
treatment effect was present, the N-of-1 trial designs had a higher power to detect a difference than
traditional parallel RCT and crossover designs for any carryover effect size, if this effect was not larger
than the treatment effect. For a very large carryover effect of 0.15, the power curves for the parallel
RCT and crossover designs crossed, indicating that with a large enough sample size the parallel RCT
outperformed the crossover design. This is likely due to crossover designs only having a carryover
effect when the placebo is given after the treatment, which decreases the chances of detecting a true
treatment effect.

Next, we examined the operating characteristics for varying τ at each sample size required to
achieve 80% power in the N-of-1 design for the small, moderate, and large carryover effect sizes of
0.05, 0.10, and 0.15. This also allowed us to examine the design performance as the treatment effect
changes relative to the carryover effect. First, we should note that the empirical probability of a type I
error was inflated for both the N-of-1 designs and crossover designs compared to the parallel RCT. The
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N-of-1 design resulted in empirical type I error probabilities of 15%, 15%, 14%, 14%, and the crossover
design had empirical type I error probabilities of 11%, 12%, 11%, and 9% for a moderate effect size of
0.1. For a small carryover effect of 0.05, the N-of-1 and crossover designs had better controlled type I
error probabilities of 8%, 7%, 6% 7%, and 7%, 7%, 6%, 6%, respectively. For a large carryover effect of
0.15, which is over half the true treatment effect size, the type I errors across the 4 scenarios considered
were 25%, 26%, 27%, 23% for the N-of-1 design and 17%, 17%, 16%, 15% for the crossover design.
These inflations are entirely due to the carryover effect and can be seen in the curved upwards left tail
of the 4 plots in Figure 4. For the crossover design, if a patient receives the placebo after treatment,
the estimated treatment effect will be negative when τ = 0. Likewise, the N-of-1 design can have
treatment effect estimation bias for the placebo within a cycle if the new therapy is given first and
biased for the new therapy if it is given at the end of a cycle and beginning of the following cycle,
without washout. Additionally, we fit an N-of-1 model that adjusted for carryover effects by including
an additional binary fixed effect corresponding to whether or not the patient received treatment in the
previous treatment period. The type I error and corresponding power for different values of τ were
nearly identical when controlling for carryover effects. These results indicate that special care should
be given to controlling for carryover effects, particularly to avoid type I error. Still, when τ > 0, the
power is higher for the N-of-1 design for any effect size, with the crossover design achieving at least
80% power with effect sizes of τ = 0.40 for each scenario. Normally data from days when there could
be a carryover effect is not used in the analysis.
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Figure 4. Simulation study for representative sample with a washout effect size of 0.05 (left), 0.10
(middle), and 0.15 (right). Displays the power for a fixed sample size n with varying true treatment
effects τ for the 3 different designs considered. The power for τ = 0 represents the type I error probability.

Finally, we examined the extent of issues that N-of-1 trials can have when there is a
non-representative sample for the population of interest (i.e., selection bias). We have already
demonstrated that if samples are drawn from the population of interest, N-of-1 trials obtain desired
power with fewer patients than parallel RCTs or crossover designs and maintain type I error constraints
when carryover effects are not present.

Consider an N-of-1 trial of a new therapy versus placebo targeting improvements of psychological
health in adults age 25–50 years old. It is plausible that our population contains individuals with
disproportionately high or low baseline risk of poor psychological health relative to our target
population. If we sample from this sub-population our statistical conclusions about the population of
interest may be incorrect.

To test performance under selection bias, we performed the following simulation experiment
using the 4 error variance structures described above. With probability p, we sample patients for
our N-of-1 trial from the population of interest, which has no treatment advantage (τ = 0). With
probability 1− p, we sample patients from a sub-population that has a treatment effect of τ = 0.25. The
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probability that we falsely conclude that a treatment effect is present in the population of interest (i.e.,
make a type I error) is plotted in Figure 5 for varying p and an N-of-1 sample size of 30.
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Figure 5. Simulation study for non-representative sample of size 30. This figure displays the
probability of making a false discovery (i.e., type I error) for the population as a function of
misrepresentation proportions.

When p = 1, the type I error is 0.05, as desired for each of the 3 designs in each scenario. But when
p→ 0 , the empirical probability of type I error increases, particularly for the N-of-1 design. When
p = 0.7, indicating that we incorrectly sample on average 9 patients from the sub-population, the type
I error for the parallel RCT, crossover and N-of-1 designs are (7%, 6%, 6%, 6%), (11%, 11%, 9%, 7%),
(19%, 19%, 17%, 9%), across the 4 scenarios, respectively.

When p = 0.5, indicating that we incorrectly sample on average 15 patients from the sub-population,
the type I error for the parallel RCT, crossover and N-of-1 designs are (9%, 10%, 7%, 6%), (18%, 19%,
17%, 9%), (37%, 39%, 40%, 13%), across the 4 scenarios, respectively. This indicates that special
care must be taken to ensure that the sample represents the population of interest for the crossover
design and especially for the N-of-1 design. A greater number of observations from the same patient
compounds the error caused by non-representative sampling.

Next, we examined the power in a similar manner, when the population of interest truly has a
treatment effect of τ = 0.25 and patients from some sub-population have a true treatment effect of
τ = 0 (i.e., the treatment does not work for the sub-population). We examine the power for varying p
and a fixed sample size of 30 in Figure 6.
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Figure 6. Simulation study for non-representative sample of size 30. This figure displays the power for
the population of interest as a function of the proportion of patients sampled from this population.

We see that for all 4 scenarios, the power increases dramatically as p increases. It is essential that
patients represent the population of interest to generalize conclusions from an N-of-1 trial. If p = 0.8,
indicating that about six patients are sampled from the non-representative population, the power for
the N-of-1 design is (81%, 81%, 80%, 30%) for the 4 scenarios, compared to (18%, 17%, 12%, 8%) and
(37%, 36%, 34%, 14%) for the parallel RCT and crossover designs, respectively. This indicates that the
non-representative sampling from a sub-population not of interest has a much greater effect on type I
error probability than power for the N-of-1 design compared to the parallel RCT and crossover designs.

In practice, we will never know if patients enrolled in a trial are representative of our treatment
population or not. While N-of-1 designs exacerbate this problem compared to parallel RCT and
crossover designs through leveraging multiple observations on each patient under two different
treatments, N-of-1 designs also allow better estimation of patient-level random effects, which might
possibly be used in future methodological improvements to better determine which patients are
representative of the target population. As an example, to show this we simulated 1000 trials from
scenario 1, with n = 100 and p = 0.5, i.e., about 50% of patients enrolled in the trial have no treatment
effect, whereas the other 50% have a treatment effect of 0.25. In each simulation, we computed the
average random effect for representative and non-representative patients using both the N-of-1 and
crossover designs. Parallel RCTs cannot estimate patient-level random effects because they only have
one observation on each patient. Figure 7 displays the density of the differences in average random
effects between the non-representative and representative patients for both the crossover and N-of-1
designs. We see that the N-of-1 design correctly identified that the individual random effects of the
non-representative group are higher than for our population of interest, as indicated by the shift in
densities. These results were similar, but less striking for n = 30, and more apparent with more cycles
in the N-of-1 design. While these are individual random effects, and not individual treatment effects,
these results suggest that future methodological advancements may be able to cluster patient treatment
effects to determine existence of subgroups within patient cohorts.
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4. Discussion

N-of-1 trial designs offer a rigorous method for advancing personalized medicine and healthcare
while minimizing costs and resources, provided treatments are ethically designed for chronic stable
conditions with sufficient washout periods. We performed a simulation study to examine the operating
characteristics of N-of-1 designs compared to parallel RCT and crossover designs. Our results follow
closely from previous theoretical results which demonstrated simulated sample sizes required to
achieve a given power were lower for N-of-1 trials than for parallel RCTs, as the number of cycles
administered increased [31]. We validated this theoretical result through simulations and showed that
N-of-1 operating characteristics were superior to those of crossover designs. We also examined the
effects of carryover and sample representativeness on the operating characteristics of each of the three
trial designs. Carryover effects can result in inflated type I error probabilities for both crossover and
especially N-of-1 designs, but when treatment effects are present, N-of-1 designs have better power
than both crossover and parallel RCT designs, regardless of carryover effect size. When trial samples
are not fully representative of the target population, all three trial designs make incorrect conclusions
about the treatment effects in the target population, but N-of-1 designs make incorrect conclusions
far more often due to increased numbers of observations on each patient. However, due to multiple
observations taken on each patient under different treatment periods, N-of-1 designs provide the
opportunity to identify patients who are not alike within the population of interest, suggesting the
need for Bayesian clustering methods to be further developed and implemented [12,23,26,32].

In addition to expanding the analytical approaches to quantifying carryover effects (i.e., slow vs.
long), N-of-1 studies offer a unique advantage: they can often provide their own “pilot data” through
initial phases prior to data aggregation or meta-analysis. Researchers with little prior information on
expected carryover effects for a phenomenon could gather pilot data before conducting a full trial.

We have shown that N-of-1 trials have more power at lower sample sizes compared to parallel
RCT and crossover designs. This finding has also been shown in similar studies [31,33]. N-of-1 studies
should be considered high-grade evidence for informing subsequent research, e.g., proof-of-concept,
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or traditional randomized control trial designs. We posit that N-of-1 trials offer benefits not present in
traditional designs.

Limitations
We acknowledge several limitations. First, testing the full range of possible design variants

would exceed the scope of this paper. Some designs were arbitrary and unlikely to occur in true trial
conditions such as scenarios with very high or low variance or sample sizes in the 10’s or 200’s. These
structures are necessary to consider, however, as they demonstrate the comparative effects on each
trial design when scaling up or down from average sample sizes. Thus, attempts to cover this range
substantially, but also efficiently, were emphasized. Indeed, not all statistical challenges present with
N-of-1s could be evaluated with equal rigor—selection bias cannot be modelled as comprehensively or
accurately as power, sample size, or even carryover effects. Subsequent research is warranted which
might further model and formalize selection bias hierarchically with other concerns.

5. Conclusions

N-of-1 trials can be demonstrably effective in ascertaining treatment effects, both at individual
and population levels. Interventions can be tested with adequate power with far fewer patients than
traditional RCT and crossover designs. Operating characteristics compare favorably to both traditional
RCT and crossover designs.

N-of-1 trials demonstrate potential to significantly improve clinical decision-making. Physicians
can continue to treat individuals where improvement is demonstrable and stop treatment for those
who have harmful or null effects. Such trial designs may offer a vital complement to traditional research
methods. Our findings provide further evidence that N-of-1 trials can produce rigorous, evidence-based
results to inform personalized healthcare.
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