Hindawi

Complesity \%Y Q@) Hindawi
Volume 2022, Article ID 3123475, 15 pages l L EY

https://doi.org/10.1155/2022/3123475

Research Article

Integration of Multiple Models with Hybrid Artificial Neural
Network-Genetic Algorithm for Soil Cation-Exchange
Capacity Prediction

Mahmood Shahabi,' Mohammad Ali Ghorbani,' Sujay Raghavendra Naganna (®,
Sungwon Kim,’ Sinan Jasim Hadi®,* Samed Inyurt,5 Aitazaz Ahsan Farooque,G’7
and Zaher Mundher Yaseen (»**1°

'Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
*Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, Karnataka, India
*Department of Railroad Construction and Safety Engineering, Dongyang University, Yeongju 36040, Republic of Korea
“Department of Real Estate Development and Management, Faculty of Applied Sciences, Ankara University, Ankara, Turkey
®Faculty of Engineering and Architecture, Department of Geomatics Engineering, Tokat Gaziosmanpasa University,
Tokat, Turkey
®Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A4P3, Canada
7School of Climate Change and Adaptation, University of Prince Edward Island, Charlottetown, PE C1A4P3, Canada
8New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar,
Nasiriyah 64001, Iraq
’Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
Bangi 43600, Selangor, Malaysia
°Adjunct Research Fellow, USQ’s Advanced Data Analytics Research Group, School of Mathematics Physics and Computing,
University of Southern Queensland, Toowoomba, QLD 4350, Australia

Correspondence should be addressed to Zaher Mundher Yaseen; yaseen@alayen.edu.iq
Received 20 February 2022; Revised 23 April 2022; Accepted 5 May 2022; Published 13 June 2022
Academic Editor: Gonzalo Farias

Copyright © 2022 Mahmood Shahabi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The potential of the soil to hold plant nutrients is governed by the cation-exchange capacity (CEC) of any soil. Estimating soil CEC
aids in conventional soil management practices to replenish the soil solution that supports plant growth. In this study, a multiple
model integration scheme supervised with a hybrid genetic algorithm-neural network (MM-GANN) was developed and employed
to predict the accuracy of soil CEC in Tabriz plain, an arid region of Iran. The standalone models (i.e., artificial neural network
(ANN) and extreme learning machine (ELM)) were implemented for incorporation into the MM-GANN. In addition, it was
tested to enhance the prediction accuracy of the standalone models. The soil parameters such as clay, silt, pH, carbonate calcium
equivalent (CCE), and soil organic matter (OM) were used as model inputs to predict soil CEC. With the use of several evaluation
criteria, the results showed that the MM-GANN model involving the predictions of ELM and ANN models calibrated by
considering all the soil parameters (e.g., Clay, OM, pH, silt, and CCE) as inputs provided superior soil CEC estimates with a Nash
Sutcliffe Efficiency (NSE) = 0.87, Root Mean Square Error (RMSE) = 2.885, Mean Absolute Error (MAE) = 2.249, Mean Absolute
Percentage Error (MAPE) =12.072, and coefficient of determination (R*) =0.884. The proposed MM-GANN model is a reliable
intelligence-based approach for the assessment of soil quality parameters intended for sustainability and management prospects.
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1. Introduction

Cation-exchange capacity (CEC) refers to the extent of soil’s
capacity to preserve exchangeable cations, the like of which
have a direct bearing on the soil fertility triangle [1]. Soil
CEC is a sensitive indicator of natural and human-induced
perturbations over soil profile and groundwater [2]. Mon-
itoring changes in soil CEC can assist in predicting whether
soil quality has degraded, improved, or sustained under
diverse agricultural or forestry schemes. In the course of
conventional soil management practices to replenish the soil
solution that supports plant growth, the negatively charged
clay particles and organic substances adsorb and hold on
positively charged soil nutrients (e.g., NH;, K*, Mg**, Ca®*,
etc.) via electrostatic forces [3, 4]. The preferential ad-
sorption of cations is as per the sequence:
AP’ > Ca® > Mg’ > K" =NH} >Na" [5]. Depending on the
soil structure, CEC clearly demonstrates the shrink-swell
potential of any soil; a high CEC value (>40meq/100g)
denotes that a soil structure will recuperate gradually and
sometimes can show expansive behavior. In contrast, a soil
with low CEC value (<10 meq/100g) will have a reduced
capacity to hold water and end up being acidic rapidly [6].
Soil CEC can fluctuate according to clay percentage, soil pH,
ionic strength, soil-to-solution ratio, clay type, and changing
organic matter composition. It is sometimes affected by the
redistribution of cations (exchange kinetics) in the soil at-
tributed to soil solution buffering and solute transport. CEC
also enables the categorization of certain soils including
oxisols, vertisols, alfisols, mollisols, and ultisols [7]. In
general, the organic matter enriches soils and, usually, clays
(except kaolinite) have a high CEC, while sands have no
CEC. For agriculture, the preferred value of CEC is >10 meq/
100 g for exchange between plant root hairs and soils [8]. The
leaching of contaminants into the underlying aquifer system
is usually affected by CEC and percent base saturation which
are eloquent indices of soil fertility and nutrient retention
capacity. In areas of intensive irrigation, the continuous use
of inorganic fertilizers (in excess) inundates the soil profile
with more nutrients and thereby flushes a plume of con-
taminants into the groundwater [9]. Hence, in the early
stages of agriculture, it is necessary to estimate CEC for
determining the supplemental nutrient needs or to remove
excess salts which influence soil structure and agricultural
productivity. Soil CEC is a sensitive indicator of natural and
human-induced perturbations over soil profile and
groundwater. Monitoring changes in soil CEC can assist in
predicting whether soil quality has degraded, improved, or
sustained under diverse agricultural or forestry schemes
[10].

Various methods for direct measurement of soil CEC
have been reported and extensively discussed in the liter-
ature [11-13]. Multiple comparison of CEC estimation
techniques is presented by Conradie and Kotze [14]. In
addition, there exist several ancillary approaches such as
pedotransfer functions (PTF) for estimating CEC based on
easily measured soil’s physical and chemical properties
[15-18]. Several other researchers conducted studies on the
functional relationships between CEC, water retention, and
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particle-size distribution. Lambooy investigated the influ-
ence of CEC on the water retention characteristics of soils
[19]. Implementing multiple regressions, Parfitt et al. esti-
mated CEC by taking into account soil organic carbon and
clay content [20]. Krogh et al. modeled CEC rates of Danish
soils by using clay and organic matter content as input
variables through multiple linear regression analysis [21].
The actual CEC of agricultural soils was found to be directly
related to the estimated charge of clay and organic carbon in
the soil mass at the actual pH [22]. Using soil organic matter
and noncarbonate clay contents as predictors, Seybold et al.
explained the variation in CEC for several soil horizons
based on soil pH, mineralogy class, taxonomic family, and
CEC-activity class [23]. Fooladmand derived PTFs using
multiple linear regression between CEC and soil textural
data including sand content, clay content, geometric mean
particle size diameter, the soil particle-size distribution, and
soil organic matter content [24]. Several PTFs relating soil
CEC with soil’s sand, silt or clay fractions, and soil organic
carbon content were evaluated by Khodaverdiloo et al.
taking into account calibration dataset size on the prediction
accuracy of soil CEC [25]. These classical pedotransfer
function-based approaches often suffer from a high degree of
inaccuracy due to spatial scale dependence, nonlinear re-
lationships among variables, and incompetence to handle
mixed data [26]. Hence, the motivation of the current state
of the art is directed toward a new research era where more
intelligent models should be explored in this field.

Recent research studies have focused on improving the
estimation accuracy of soil CEC by means of artificial in-
telligence (AI) techniques. Artificial neural network (ANN)
based PTFs have become popular to predict/estimate soil
CEC of different soil types under diverse climatic zones
[27-31]. Kalkhajeh et al. conducted the accurate prediction
of soil CEC using different data-driven models [32]. They
compared the performance of multiple linear regressions
(MLR), adaptive neurofuzzy inference system (ANFIS),
multilayer perceptron (MLP), and radial basis function
(RBF) based ANN models for predicting the soil CEC using
the bulk density, calcium carbonate, organic carbon, clay,
and silt content (%) of the soil as input variables. The MLP
model gave the most reliable prediction of soil CEC. A set of
AI models along with empirical PTFs were developed and
evaluated by Ghorbani et al. [33]; the authors found the most
influential soil properties that influence soil CEC through
sensitivity analysis. The ANFIS model provided the superior
performance to RBF, MLP, MLR, and empirical PTFs while
estimating soil CEC. Arthur [2] presented an ANN based
methodology for estimating CEC from soil water content at
different relative humidity ranges. Relatively few studies
utilize a support vector machine (SVM), random forests
(RF), genetic expression programming (GEP), multivariate
adaptive regression splines (MARS), and a subtractive
clustering algorithm based ANFIS for estimating soil CEC
using readily measured soil properties as inputs [34-38]. A
hybrid model integrating ant colony optimization (ACO)
algorithm with ANFIS improved the prediction accuracy of
soil CEC accompanied by an optimal choice of input subset
which comprised soil properties (e.g., soil organic matter,
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clay, silt, pH, and bulk density) [39]. Although there has
been noticeable progress in Al implementation in the field of
geoscience, the enthusiasm for developing and exploring
more reliable intelligent predictive models is still an ongoing
research era. In addition, the applications of hybrid AI
models have been observed remarkably reported in the
literature and for diverse engineering and sciences domains
[40-43]. As a result, the inspiration for developing multiple
learning intelligent models is investigated here for modeling
soil CEC.

Soil CEC is a sensitive indicator of natural and human-
induced perturbations over soil profile and groundwater.
Monitoring changes in soil CEC can assist in predicting
whether soil quality has degraded, improved, or sustained
under diverse agricultural or forestry schemes. Hybrid soft
computing approaches involving evolutionary algorithms
coupled with AI techniques facilitate the development of
more sophisticated models with higher prediction accuracy.
Hence, in the present study, a hybrid approach involving the
multilayer perceptron neural network optimized with a
genetic algorithm (GANN) was developed and employed to
enhance the prediction efficiency of soil CEC in Tabriz plain,
an arid region of Iran. In addition, a multiple model inte-
gration scheme supervised with hybrid GANN (MM-
GANN) was also simulated and verified to improve the soil
CEC prediction efficiency. This multiple model integration
scheme supervised with the GANN approach is a unique
form of a hybrid model for soil CEC prediction. Standalone
MLP artificial neural network (ANN) and extreme learning
machine (ELM) models were also implemented for incor-
poration into the multiple model integration scheme and for
reasonable evaluation with MM-GANN model predictions.

2. Theoretical Overview

2.1. Artificial Neural Network (ANN). The multilayer per-
ceptron (MLP), a class of feedforward ANN, is one of the
most versatile algorithms that has proven able to simulate
highly complex and nonlinear relationships between a set of
input variables (predictors) and the output data (predictand)
[44]. A multilayer perceptron (MLP) neural network with 1
hidden layer is shown in Figure 1. The network is trained to
learn a function, f(-): P4 — P° on a set of training data,
where “d” denotes the number of input dimensions and “0”
denotes the number of output dimensions of the model [45].
The Levenberg-Marquardt backpropagation (BP) algorithm
fine-tunes the weights and parameters of the MLP network.
The network architecture involving the input layer consists
of a set of processing units (neurons) {p;|p;, Pas---> Pul
signifying the model input features and every hidden layer
neuron performs a nonlinear transformation of the inputs
from the previous layer via weighted linear summation of
inputs (w, p; + w,p, + -+ +w,p,). A nonlinear activation
function (o) is then applied to each hidden unit to make a
specific topology of weighted links more flexible following
the affine transformation [46]. The neurons of the final layer
receive connections from hidden layers of the network and
are referred to as the output layer that produces a refined
output. Some of the commonly used activation functions

include hyperbolic tangent (tanh) and sigmoid (logsig)
functions. There are no general rules for choosing training
algorithms and adjusting associated parameters of the MLP
architecture to maximize the efficiency of the network. A
good introduction and mathematical concepts of ANN and
its applications are provided in the following literature
[47-51].

2.2. Extreme Learning Machine (ELM). The extreme learning
machine (ELM) model proposed by Huang et al. [52] for a
single layer feedforward network (SLEN) has been widely
used for the prediction, forecasting, and estimation in many
engineering fields [53-55]. Previous research studies have
proved the outstanding advantages of the ELM model over
the traditional AI techniques [56-58]. In addition, the ELM
model can be implemented easily and has improved features
such as fast learning speed [59], superior generalization
performance [60], and utilization of activation functions (of
nondifferentiable form) for training SLFN [52, 61]. Figure 2
portrays the general network structure of an ELM model.
For N arbitrary distinct input samples (X;, Y;) € R” x R", the
standard SLFN with “L” hidden layer nodes can be described
as follows:

N N
Zﬂig(xi) = Zﬁig(wi'xi +¢) =Y, k=123,...N,
i=1 i=1

(1)

where ¢; € R is the assigned bias of the i™ hidden node,
w; € Ris the assigned input weight connecting the /™ hidden
and input layer nodes, f; isthe weight connecting the i
hidden and output layer nodes, and g(X;) is the output of
the /™ hidden layer node with respect to the input X;. Each
input is assigned to the hidden nodes in the ELM model. The
output weights can be derived by finding the least square
solutions to the linear system. The main difference between
the ELM model and traditional AI techniques is that the
parameters of the feedforward network including its input
weights and the hidden layer biases are randomly selected
without any adjustment in the ELM model. For good in-
troduction and mathematical concepts of ELM and its ar-
chitectures, refer to Huang et al. [62], Martinez-Martinez
et al. [63], Wang et al. [64], and Ding et al. [53].

2.3. Hybrid Genetic Algorithm-Neural Network (GANN).
Genetic algorithm (GA) belongs to a class of search iter-
ative approaches based on the “Darwinian” theory of
natural selection and genetics that provide optimum so-
lutions for combinatorial optimization, heuristic search, or
process planning problems [65, 66]. GA implements ge-
netic operators like reproduction, crossover, and mutation
for upgradation and search for the best population by
imitating the natural evolution process artificially. The
genetic algorithm is initiated with individuals, an initial
population of possible solutions, with a specified objective
(fitness function) wherein every single individual is sym-
bolized using a chromosome, a distinct form of encoding
[67]. The chromosomes of a population are nominated for
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FiGURE 1: Architecture of MLP network.

reproduction based on the fitness value and the fittest
individuals so selected are manipulated using crossover and
mutation. The rudimentary idea here is the hope that
superior parents can probabilistically produce superior
offspring. The offspring of the next generation are gener-
ated by applying the GA operators crossover and mutation,
upon the selected parents. The iteration process continues
until the search converges to the termination criterion
[65, 68]. The schematic illustration of the GA cycle is
represented in Figure 3. The advantages of GA include (1)
rapid convergence to the global optima, (2) superior
multidirectional global search even in complex search
surfaces, (3) use of probabilistic transition rules, and (4) the
not deterministic ones in the search spaces where the
gradient information is missing. The training of an MLP
network, which is a type of neural network (NN), is
somewhat a cyclic process. However, in the present case of
the hybrid genetic algorithm-neural network (GANN), the
intelligent search technique (GA) allows the user to con-
figure the weight initialization range and the number of
hidden layer neurons and update the weights and bias
terms of an MLP network. Eventually, GA is used to learn
the best hyperparameters for an MLP network. Even
though the weights of the MLP network are initialized
randomly, GA does not adhere to a simple random walk.
Based on the parameter settings, it effectively exploits the
information to gamble on fresh search points for antici-
pated improved performance [69]. GA selects the primary
superlative solution with the best fitness values iteratively
and recombines it with mutation and crossover operators
to introduce offspring into the population. This process
continues until the optimal solution with the highest fitness
value is found based on any stopping criterion. Thus, the
population’s most fit MLP network is determined.

2.4. Multiple Model Integration Scheme Supervised with Hy-
brid GANN Model. The proposed multiple-model integra-
tion scheme involves the development of ANN and ELM

models individually using input combinations as defined in
their model structures. The discrete outputs (predicted se-
ries) of individual ANN and ELM models are then unified as
inputs for the GANN model to obtain superior soil CEC
predictions. The implementation of this multiple-model
scheme involves two phases. In the first phase, the best-
performing ANN and ELM models are identified by
simulating all possible combinations of inputs. Later, in the
second phase, the discrete outputs (predicted series) of the
best ANN and ELM models are unified as inputs to sim-
ulate the GANN model. The GA optimizes the number of
hidden layer neurons and updates the weights and bias
terms of an ANN. The final output derived from this
proposed scheme is referred to as integrated multiple
models supervised with a hybrid GANN (MM-GANN)
strategy (Figure 4).

3. Case Study and Data Description

The study area (Tabriz plain) considered encompasses
an area of 150000 hectares (between 45°25'-46°12" E,
37°50'-38720" N) and is located in the East Azerbaijan
province of Iran. The surface topography of the area
comprises rugged, mountainous rims, and the study area
is sited toward the north-eastern part of Urmia Lake
(Figure 5). Tabriz plain is a high-altitude location (1360 m
above mean sea level) characterized by cooler, wetter winters
and hot summers with a tropical and subtropical steppe
climate. The study area never receives greater than 40 mm of
rainfall in any of the months, and the annual mean precip-
itation is around 360.7 mm. The geology of the area includes
recent alluvium, fine elastic sediments, and red conglomerate
with an alternation of sandstone and red marl. The method of
ammonium saturation as mentioned in Chapman [70] was
used for the cation-exchange capacity determination. The
descriptive statistics of soil CEC and other soil parameters of
the study area under consideration are tabulated in Table 1.
The spatial distribution of observed soil CEC is presented in
Figure 6. The clay and soil organic matter were positively
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FIGURE 5: Location of the study area along with sampling points.
TaBLE 1: Descriptive statistics of CEC and the soil parameters at the sampling points (training (n=195) and testing (1 = 85)).
. Standard
. min max Mean .. . .
Data set Units deviation Correlation with CEC
Train Test Train Test Train Test Train Test
Clay % 3.80 4.80 70.5 69.3 37.77 36.42 16.38 16.31 0.630
Silt % 6.00 2.00 68.0 66.6 39.06 40.98 12.07 13.21 0.117
Sand % 1.30 3.00 81.8 88.2 23.08 22.58 19.80 18.04 —-0.605
OM % 0.03 0.06 1.64 1.40 0.47 0.48 0.30 0.32 0.534
pH — 7.00 6.90 8.70 8.20 7.65 7.60 0.35 0.30 0.284
CCE % 0.55 1.60 26.55 45.0 13.02 13.82 5.00 6.38 0.220
CEC cmol(+) kg - 6.20 5.90 45.00 42.0 21.89 21.38 9.23 8.05 —
CCE: carbonate calcium equivalent; OM: organic matter, CEC: cation-exchange capacity.
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correlated, while the sand was found negatively correlated
with soil CEC. The silt, pH, and carbonate calcium equiv-
alent (CCE) parameters were not so significantly correlated
with the soil CEC.

4. Modeling Development

Based on different combinations of soil parameters, the
framework of model input-output scenarios was set for
the development of ANN and ELM models with soil CEC as
the output parameter. The input-output scenarios put on
trial are listed in Table 2. The performance of the developed
models was assessed based on the multiple statistical indices,
namely, Root Mean Square Error (RMSE), Mean Absolute

7
TaBLE 2: Input-Output structures for model development.

Models Input combination Output
Model 1 Clay CEC
Model 2 Clay + pH CEC
Model 3 Clay + OM CEC
Model 4 Clay + OM + pH CEC
Model 5 Clay + OM + pH +silt CEC
Model 6 Clay + OM + pH +silt + CCE CEC

Error (MAE), Nash Sutcliffe Efficiency (NSE) [71], Mean
Absolute Percentage Error (MAPE), and coefficient of de-
termination (R?).

n _ 2
Root Mean Square Error (RMSE) = M,
n
Mean Absolute Error (MAE) = M,
n
n . 2
Nash Sutcliffe Efficiency (NSE) = 1 - M,
i (%= X) (2)
100

Mean Absolute Percentage Error (MAPE) = —
n

coefficient of determination R> =

xi‘)’il

Xi

YL XY~ Qi X ey Vi

VX 2 = (X %) \n Y v2 - (S0 »)

where x; is the actual value, y; is the model estimated value, X
is the mean of true values, ¥ is the mean of the model es-
timated values, and # is the number of data points.

5. Results and Discussion

5.1. Performance of ANN and ELM Models. The ANN and
ELM models were simulated for predicting the soil CEC
based on the input-output combinations as mentioned in
Table 2. The model structure (input nodes-hidden layer
nodes-output nodes) and performance metrics of the ANN
model for each input combination are presented in Table 3.
In this study, the proposed ANN, ELM, and MM-GANN
models were developed using MATLAB interface coding.
The input-output scenario involving all the soil parameters
(i.e., Clay+OM +pH +silt+ CCE) provided the virtuous
estimates of soil CEC with an NSE = 0.842. The input-output
scenario involving four soil parameters (i.e., clay, OM, Ph,
and silt) also offered relatively good soil CEC estimates with
an NSE=0.826. Despite having a significant correlation
between clay and soil CEC, the single input-output ANN
model (i.e., clay-CEC) failed to provide good soil CEC
predictions. The spatial distribution map of ANN predicted

>

soil CEC is presented in Figure 7. The ability of the MLP
network to formulate a priori explicit hypotheses about a
possible nonlinear relationship among several input vari-
ables makes it illustrious from other AI methods.

The performance metrics of ELM models for each
input-output scenario are tabulated in Table 4. The scenario
involving all the soil parameters (ie.,
clay + OM + pH +ssilt + CCE) provided the virtuous predic-
tions of soil CEC with an NSE=0.835. The ELM model
efficiency was slightly lesser than that of ANN. The ELM
model simulated with four inputs (i.e., clay, OM, pH, and
silt) had reasonably substandard performance when com-
pared to that of the ANN model with a similar input
structure. The spatial distribution map of ELM predicted soil
CEC is shown in Figure 8. The scatter plots presented in
Figure 9 of the three efficient models display the accounted
linear relationship between the observed and estimated soil
CEC by ANN and ELM models. According to Figure 9, the
ELM outperformed ANN although they have very close
performance in terms of the statistical indices (Tables 3 and
4). The ELM is known for its superior learning speed and
virtuous generalization performance than the ANN
architecture.
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TaBLE 3: The performance criteria of the ANN model for six input combinations.
o Train Test
Input combination ~ Output  Structure > 5
MAE RMSE MAPE  NSE R MAE RMSE MAPE  NSE R
Model 1 CEC 1-4-1 5593 6904 27784 0.438 0.438 4.599  6.162 23.598  0.407  0.409
Model 2 CEC 2-6-1 3.913 5.186 20.008  0.683 0.683 4.425  6.016 23.007  0.435  0.442
Model 3 CEC 2-5-1 4.571 5.619 24.081  0.627  0.628 4.101 5.326 22.161  0.557  0.577
Model 4 CEC* 3-7-1 2.664  3.361 13911 0.866 0.866 3.105 3.818 16.504 0.787 0.787
Model 5 CEC** 4-5-1 2.807  3.496 15.701 0.855 0.855 2736 3.338 15.043 0.826 0.827
Model 6 CEC™™* 5-6-1 2352 2927 12492 0.899 0.899 2585 3.177 13.695 0.842 0.843
Note: the unit of MAE and RMSE is cmol (+) kg’l,
45500000 45600000 45700000 45300000 45900000 46000000 46100000 46200000
§ 1 1 1 1 1 L 1 L §
B ANN 3
s | cEc
f-g (Cmol+/kg) I~ ?-g
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FIGURE 7: The spatial distribution map of ANN predicted soil CEC (ANN model with 5 inputs).
TaBLE 4: The performance criteria of the ELM model for six input combinations.
o Train Test
Input combination Output 5 2
MAE RMSE MAPE NSE R MAE RMSE MAPE NSE R
Model 1 CEC 5.626 6.966 28.784 0.428 0.428 4.609 6.202 23.698 0.399 0.408
Model 2 CEC 3.965 5.310 20.108 0.667 0.668 4.744 6.384 23.307 0.364 0.432
Model 3 CEC 4.659 5.740 24.181 0.611 0.612 4.261 5.425 22.261 0.540 0.560
Model 4 CEC* 2.541 3.210 13.711 0.878 0.878 2.977 3.840 16.554 0.769 0.804
Model 5 CEC™™ 2.942 3.656 15.801 0.842 0.842 3.064 3.674 16.043 0.789 0.808
Model 6 CEC*** 2.019 2.597 10.844 0.920 0.920 2.463 3.248 13.640 0.835 0.858

Note. The unit of MAE and RMSE is cmol (+) kg’l.

5.2. Performance of MM-GANN Models. The soil CEC esti-
mates of ANN and ELM models were employed as new inputs
to the GANN model to predict soil CEC. To select the optimal
input combinations in further modeling steps, examples from
previous literature were referred to for enhancing the accuracy
of models based on the different fields [72-75]. Within this
category, it is worth mentioning that only the three highest
performed combinations were considered in this hybrid model.
The parameters of the genetic algorithm for adjusting the
weights and bias terms of the ANN are presented in Table 5.
Also, the performance statistics of MM-GANN models are
shown in Table 6. The MM-GANN models involving the

predictions of ELM and ANN models calibrated by considering
all the soil parameters (i.e., clay, OM, pH, silt, and CCE) as
inputs provided superior performance with an NSE=0.87 in
the test phase. The ANN parameters of the best MM-GANN
model are charted in Table 7. The multiple model integration
scheme imparts potential to the hybrid GANN model through
the usage of standalone model outputs as inputs to the model.
Thus, the hybrid GANN model exploits the previously learned
information to improvise the predictive power of the model.
The multiple model integration scheme is apparently en-
hancing the learning process of the hybrid model, where the
output of the standalone models is used as relative informative
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TaBLE 5: Parameters of GA-Toolbox model.
Inputs Outputs Population Generation Crossover fraction Mutation operator
ANN weights + bias Best weights + bias 1000 500 0.7 Gaussian
TaBLE 6: The performance of MM-GANN models for the three best input combinations.
o Train Test

Input combination Output ANN-structure 5 5

MAE RMSE MAPE NSE R MAE RMSE MAPE NSE R
CEC*(ELM), CEC*(ANN) CEC 2-5-1 2465 3.107 13.620 0.886 0.878 2.816 3.583 14.802 0.800 0.828
CEC**(ELM), CEC**(ANN) CEC 2-6-1 2.640 3.320 13.893 0.870 0.866 2.491 3.054 13.020 0.854 0.857
CEC***(ELM), CEC***(ANN) CEC 2-5-1 1.942 2486 10.236 0.927 0.929 2.249 2.885 12.072 0.870 0.884
Note: The unit of MAE and RMSE is cmol (+) kg’l.

TaBLE 7: ANN Parameters of the best MM-GANN model.
Inputs Output Structure Hldden.layer Output.layer Hidden layer Training algorithm
function function neurons

CEC***(ELM), . . .
CEC***(ANN) CEC 2-5-1 Tansig Linear 5 Trainlm

predictors. The spatial distribution map of MM-GANN pre-
dicted soil CEC is presented in Figure 10 which is very much
similar to that of the observed soil CEC map. The MM-GANN
models developed with the predictions of ELM and ANN
models calibrated by considering three and four soil param-
eters as inputs also offered convincingly good soil CEC pre-
dictions with NSE =0.80 and 0.854, respectively. The scatter
plots of MM-GANN models shown in Figure 9 depict the
goodness of fit of the model predictions against the actual soil
CEC values. In Figure 9, it is evident that the third combination
of the MM-GANN model indicated a very close linearly fitted
line to the 1:1 line, especially for the combination that had all
the parameters.

Table 8 compares the performances of the best model of
ANN, ELM, and MM-GANN models based on the statistical
measures during the training and testing phases. This table
shows that the performance accuracy of the hybrid model is
higher than the ELM and ANN models, respectively, based on
all the criteria values. The Taylor diagrams plotted for the best
ANN, ELM, and MM-GANN models are shown in Figure 11.
According to the Taylor diagram, it is very much evident that
the multiple-model scheme (MM-GANN) offered relatively
accurate estimates of soil CEC compared to the ELM and ANN
models based on three statistical metrics (RMSD, standard
deviation, and correlation coefficient). The MM-GANN model
was the closest to the observed/actual data. The point density
plots presented in Figure 12 also supported the above statement
by exposing the tradeoff between observed soil CEC against the
modeled.

5.3.  Validation with  Published Research  Studies.
Validating the results of current research with reliable
published literature within the context of a similar kind of
study area (i.e., semiarid region) is worthwhile. The corre-
lation coefficient (R?) indices were selected as an indicator of

the prediction capability. The best R* obtained for MM-
GANN, ELM, and ANN models is R*~0.88, 0.85, and 0.84. In
one of the earliest research performed on the soil CEC
simulation along the Zayandehroud River in Isfahan, Iran,
Amini et al. [27] established two classical ANN algorithms
(i.e., feed-forward neural network and generalized regres-
sion neural network). The applied models were performed
with poor prediction results with R*~0.69 and 0.66. Another
study was conducted by Emamgolizadeh et al. to predict soil
CEC on collected soil information from Semnan, Mashahad,
and Taybad cities of Iran [35]. The authors developed two
new data intelligence models, namely, genetic expression
programming (GEP) and multivariate adaptive regression
spline (MARS). GEP and MARS models attained an R*~0.80
and 0.86. Overall, the current study showed a convincing
correlation performance over the state-of-the-art research
studies.

Although the current research was the solitary approach
to develop and assess the multiple model integration scheme
supervised with hybrid GANN (MM-GANN), the certified
limitations should be addressed in future research. It is
evident from tables and figures that the MM-GANN model
can improve the prediction accuracy of soil CEC when the
inputs involving the predictions of ELM and ANN models
calibrated by considering all the soil parameters (e.g., clay,
OM, pH, silt, and CCE) are provided. However, one of the
disadvantages of the MM-GANN model lies in the selection
of the best standalone model for enhancing the prediction
accuracy of soil CEC. Therefore, it is recommended to in-
corporate the prediction results of other data-driven models
as the inputs of the MM-GANN model which can enhance
the model’s performance. In addition, this concept can be
expanded and applied to other engineering fields such as
structural, hydrologic, water resources, climatic, and dif-
ferent time series prediction/forecasting.
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TaBLE 8: Comparing performances of the best models of ANN, ELM, and MM-GANN.

Train Test
Input combination Output Model structure 5 5
MAE RMSE MAPE NSE R MAE RMSE MAPE NSE R
ANN model 6 CEC*** 5-6-1 2.352 2927 12492 0.899 0.899 2585 3.177 13.695 0.842 0.843
ELM model 6 CEC*** 2.019 2597 10.844 0.920 0.920 2.463 3.248 13.640 0.835 0.858
CEC***(ELM), CEC***(ANN) CEC 2-5-1 1.942 2.486 10.236 0.927 0.929 2.249 2.885 12.072 0.870 0.884
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Figure 10: The spatial distribution map of MM-GANN predicted soil CEC (MM-GANN model calibrated with CEC***(ELM) and
CEC***(ANN) as inputs).
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6. Conclusion

Over the past two decades, there is a noticeable demand for soil
data assessment with regard to pollution and land degradation.
The new era of soil process modeling using data intelligence
models has been rapidly boosted. The current study was to
develop a hybrid machine intelligence model based on the
multimodel genetic algorithm-neural network for soil cation-
exchange capacity. Two classical artificial intelligence models,
namely, the ANN and ELM, were developed to evaluate their
performance in estimating soil CEC along with the proposed
hybrid MM-GANN model. Several correlated soil parameters
including clay, silt, pH, carbonate calcium equivalent (CCE),
and soil organic matter (OM) were used in the form of input
attributes to the proposed and the comparable machine in-
telligence models. In particular, the hybrid MM-GANN model
which received the predicted values of ANN and ELM as input
attributes performed well in the estimation of soil CEC. Overall,
the proposed multiple model integration scheme supervised
with hybrid GANN model functions as an efficient pedotransfer
function to predict or estimate soil CEC using readily available

soil parameters (ie., clay, OM, pH, silt, and CCE) as input
variables. In particular, the conclusions of the current investi-
gation are as follows:

(i) Based on the applied evaluation metrics, the ELM
model provided superior CEC estimates than ANN.

(ii) The proposed hybrid MM-GANN model outper-
forms both standalone ANN and ELM models in
terms of all the statistical metrics.

(iii) The proposed integrated hybrid machine intelli-
gence scheme (MM-GANN) proved to be a reliable
modeling strategy for modeling the soil cation-ex-
change capacity of the study area.

Before this end, it is worth stating the possibility for future
research. As a fact, soil CEC is influenced by several mor-
phological parameters [76, 77]; thus, integrating a feature se-
lection as a prior modeling phase for the prediction process is
highly recommended to be established. In addition, owing to
the associated variability with each soil CEC type, it is an ideal
proposition to estimate each type individually.
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