
Isotropic turbulence surpasses gravity in affecting bubble-

particle collision interaction in flotation 

Duc Ngo-Conga,*, Anh V. Nguyen b,* and Thanh Tran-Cong a,c 

 

a Computational Engineering and Science Research Centre, University of Southern Queensland, 

Toowoomba, QLD 4350, Australia. 

b School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia. 

c School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Science, 

University of Southern Queensland, Toowoomba, QLD 4350, Australia. 

 

ABSTRACT 

Turbulence and mechanical flotation cells have been the workhorse of the mining industry to 

process the high tonnage but low-grade ores for more than a century. However, our quantitative 

understanding of the effect of turbulence on flotation is still limited. Here we theoretically 

investigate the bubble-particle collision in flotation in homogeneous isotropic turbulence using the 

correlation method. We show a novel paradigm that isotropic turbulence can surpass gravity in 

affecting bubble-particle collision in flotation. Specifically, motions of particles of micrometer 

sizes and bubbles of millimeter sizes are described using the Basset-Boussinesq-Oseen equation. 

The drag forces on particles and bubbles are calculated using Stokes' law with a particle-size 

correction factor and Allen's law, respectively. The correlation method is applied to determine 

bubble and particle velocity variances and covariances. The collision kernel is then calculated, 

taking into account the effects of turbulence acceleration and shear, and gravity of the bubble-

particle system. We compare our collision model with the available models and investigate the 

influence of bubble and particle sizes, particle density and dissipation rate of turbulent kinetic 

energy on the collision kernel. The results show that the bubble-particle collision kernel increases 

with increasing bubble and particle sizes, and dissipation rate of turbulent kinetic energy. 

Importantly, turbulence can significantly enhance the collision efficiency, exceeding the ideal rate 

of collision by gravity and leading to the turbulence collision efficiency greater than unity. 
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1. INTRODUCTION 

Different types of flotation cells have been invented since the invention of froth flotation (Lynch et 

al., 2010; Nguyen and Schulze, 2004). Of these cells, the mechanical cells have dominated the 

industry since the beginning. It is very unlikely that these mechanical cells are going to be 

replaced by different cell types because of the demand to process the high tonnage of low-grade 

ores which has led to the current use of very large cells (> 500 m3). Special cell designs such as 

flotation columns, Microcels and Jameson cells fulfill the special need of the industry for coal 

flotation or special cleaning circuits. 

In a mechanical flotation cell, air is introduced into the cell near the impeller to form fine bubbles 

of millimeter size under the mixing effect of the impeller. The rising fine bubbles collect and carry 

hydrophobic particles (valuable particles) to form a froth layer and exit to the launders while 

hydrophilic particles (gangue particles) sink to the bottom of the cell to be rejected (Napier-Munn 

and Wills, 2006). A turbulent flow is claimed to be beneficial to bubble-particle collision and 

attachment. However, the turbulent effect can cause coarse particles with a high inertia to detach 

from bubbles, which decreases the flotation efficiency. Three major bubble-particle interaction 

sub-processes, namely, collision, attachment, and detachment, can be treated separately since their 

governing forces are independent of each other (Nguyen and Schulze, 2004). 

In the literature, the model development of bubble-particle collision in turbulent flow is very 

limited when compared to that of droplet-droplet collision (Hu and Mei, 1997; Panchev and Haar, 

1971; Pinsky et al., 2006; Saffman and Turner, 1956; Wang et al., 1998) or/and particle-particle 

collision (Abrahamson, 1975; Alipchenkov and Zaichik, 2003; Ayala et al., 2008; Kruis and 

Kusters, 1997; Meyer and Deglon, 2011; William and Crane, 1983; Yuu, 1984) in gas-particle 

flows. We note that these available models developed by considering the similar sizes of droplets 

or solid particles are physically inconsistent with bubble-particle interactions in flotation which 

have different sizes with different orders of magnitudes (Meyer and Deglon, 2011). Saffman and 

Turner (1956) derived a collision model of droplets in the turbulent cloud for the limit of small 

particles which are perfectly correlated with the surrounding carrier fluid. Abrahamson (1975) 

suggested a model for the limit of very high inertial particles whose velocities are completely 

mailto:duc.ngo@usq.edu.au
mailto:anh.nguyen@eng.uq.edu.au


 
3 

uncorrelated with the surrounding carrier fluid. Since the particle density is assumed to be much 

larger than that of the carrier fluid, these models are not applicable to the particle-liquid system 

where the liquid density has the same order as the particle density. Yuu (1984) developed an 

expression for the fluctuating relative velocity of two inertial particles taking into account the 

relative velocity between fluid and particle, and the added mass effect experienced by solid 

particles in a liquid system. He found that the collision due to the spatial variation of turbulence 

was the predominant factor for small inertial particles in a water stream. However, the particle 

motion relative to water still increases the collision rate by about 20%. 

There have been many deterministic models for bubble-particle collision efficiency available in 

the literature (Dai et al., 2000; Nguyen et al., 2016). In order to investigate the influence of 

microturbulence on bubble-particle collision in flotation, a stochastic approach to modeling 

turbulent flows is highly necessary (Nguyen et al., 2016). Schubert et al. (Schubert, 1996; 

Schubert, 1999; Schubert and Bischofberger, 1978, 1998; Yoon, 2000) were the first to consider 

and quantify the effect of turbulence in flotation. Typically, turbulence was considered to affect 

the collision rate between bubbles and particles in flotation. Modifying the collision rate derived 

for the particle-particle interaction by Abrahamson (Abrahamson, 1975), Schubert (Schubert, 

1999) obtained the following expression for the bubble-particle collision frequency (i.e., the 

number of collision per unit volume and time): 

 
2

2 25 v ' v 'p b p b p bn n R R     (1) 

where pn  and bn  are the particle and bubble number concentrations, respectively, pR  and bR  are 

the particle and bubble radii, 2v 'p  and 2v 'b  are the root-mean-square values of the turbulent 

velocity fluctuations of the particles and bubbles, respectively, relative to the turbulent fluid 

velocity. Using Kolmogorov’s theory of isotropic turbulence, these velocities can be connected 

with the rate dissipation energy, , within the flotation cell, giving the following equation 

(Schubert, 1999): 

 

 
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  
  

 
 (2) 
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where  is the liquid density,  is the liquid dynamic viscosity and the index “i” can be “p” or “b” 

for particles and bubbles, respectively. Many other expressions for the turbulent collision rates 

between particles or droplets are recently reviewed (Meyer and Deglon, 2011). Schubert et al.’s 

approach to quantifying the effect of turbulence in flotation was re-applied and re-analyzed by a 

number of researchers (Jameson et al., 2007; Pyke et al., 2003; Yoon, 2000). In these studies, the 

effect of turbulence on flotation was incorporated into the bubble-particle collision frequency 

which is an important term of the rate constant of flotation kinetics in a mechanical cell. 

Specifically, turbulence has not been considered in predicting the bubble-particle collision 

efficiency. The available models for the collision efficiency are based on the deterministic 

collision interaction unaffected by the stochastic interactions with turbulence.  

In the present study, we focus on modeling the bubble-particle collision rate and efficiency by 

taking into account the dependence of colliding particle and bubble velocities through the 

covariance of bubble-particle fluctuating velocities. We apply the correlation method to derive 

new expressions for the bubble-particle velocity covariance and related models.  

2. MODELLING OF BUBBLE-PARTICLE COLLISION IN ISOTROPIC 
TURBULENCE 

When dealing with turbulent motions, it is customarily to apply the Reynolds decomposition, 

whereby instantaneous quantities are decomposed into their time-averaged and fluctuating 

quantities. For turbulent bubble-particle collision interaction, it is shown previously (Nguyen et 

al., 2016) that the Reynolds decomposition can be used to decompose the bubble-particle relative 

velocity into the time-averaged (deterministic) and fluctuating (stochastic) components. This 

decomposition splits the collision efficiency into two terms: the collision efficiency due to the 

time-averaged (mean) interactions and the collision efficiency due to the fluctuating relative 

motion between the bubble and particles. The results for the time-averaged interactions are 

reviewed previously.  Here our focus is on the collision efficiency due to the fluctuating relative 

motion between the bubble and particles. Therefore, if not otherwise stated, all velocity 

components (and many other variables) in this paper are the fluctuating quantities.  

The bubble-particle collision rate is defined as the number of particles colliding with a bubble per 

unit time (Nguyen and Schulze, 2004),  

c b p b pN d n d n      J S W S  (3) 
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where 
pn  is the particle number density; J  the particle flux vector; bdS  the bubble surface 

element vector; W  the bubble-particle relative velocity vector; and   the bubble-particle collision 

kernel defined by  

bd  W S  (4) 

Following the available literature (Nguyen and Schulze, 2004), the ideal rate of bubble-particle 

collision in flotation is determined by the ideal relative motions of bubbles and particles by gravity 

and described by 

 2

ci p i p pz bzN n n R V V     (5) 

where pzV  and bzV  are the terminal velocities of particle settling and bubble rising, respectively, 

and p bR R R  . The collision efficiency is determined as 

 2

c
c

ci pz bz

N
E

N R V V


 


 (6) 

For simplicity, we use the following expressions for calculating the particle and bubble terminal 

velocities (Nguyen and Schulze, 2004): 

 
2 1

0.755
0.7492 ( )

1 1 0.079
9 96

p p

pz

R g Ar
V Ar

 




        

 (7) 

 
1

2 12 0.462 2 2
*44

3

b b b
b

bz

a Ar MoR g
V

k





   
  

  

 (8) 

where  3 28 /p pAr R g      and 3 2 2
* 8 /bAr R g   are the Archimedes numbers for the 

particles and bubbles, respectively, and 4 3/( )Mo g   is the Morton number. The numerical 

constants (a, b and k) on the right-hand side of Eq. (8) are given, as a function of the bubble 

Archimedes number, in Table 5.1 of Nguyen and Schulze (Nguyen and Schulze, 2004). It is also 

noted that Eq. (8) is valid for the air bubbles with their Reynolds numbers being larger than 130. 

For the bubbles with smaller Reynolds numbers, one can apply Eq. (7) where the density 
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difference, p  , in Eq. (7) and Ar by the liquid density, . 

 

 

Figure 1. A bubble-particle collision model (not to scale), designed relative to an origin O. 

 

 

The velocity vectors of a bubble and a particle with their centers at the position bx  and px   (Fig. 

1) are determined using a Taylor expansion as follows (Yuu, 1984): 

bI
b bI b


 



V
V V R

s
 (9) 

pI

p pI p


  



V
V V R

s
 (10) 

where bV  and pV  are the velocity vectors of the bubble and the particle at their positions bx  and 

px , respectively; bIV  and pIV  are the velocity vectors of the bubble and the particle at the contact 

point I ;  , ,b bx by bzR R RR  and  , ,p px py pzR R RR . Here we only deal with spherical particles 

and bubbles. For non-spherical particles and bubbles, the size of particles and bubbles could be 

replaced by their volume-equivalent diameter. 

 The variance of bubble-particle relative velocity 
2

W  is calculated as follows: 
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 
2

2 2 2 2p b p b p b    W V V V V V V .  (11) 

Substitution of Eqs. (9) and (10) into Eq.(11) gives 

 

 

2 2
2

2 2

2

pI pIbI bI
pI bI p b p b

pIbI
pI bI b p

        
              

         

 
     

  

V VV V
W V V R R R R

s s s s

VV
V V R R

s s

 (12) 

The real variance of 2
W  is the arithmetic average of two cases expressed by the plus/minus sign 

in Eq. (12). Thus, we obtain 

22

2 2 2 2 2
pI pIbI bI

bI pI pI bI b p p b

    
           

      

V VV V
W V V V V R R R R

s s s s
.  (13) 

2.1.  Particle motion equation 

The particle motion equation is written in the absence of the Basset history force and the 

gravitational force as follows (Abrahamson, 1975; Nguyen et al., 2016): 

3 3 3

6 6 12

p p p p p

p Dp

drag force
pressure force

added force

d d d d dd d

dt dt dt dt

  
  

 
    

 

V VV V
F .  (14) 

The viscous drag acting on a particle is determined by 

 6Dp p p pR f F V V  (15) 

where 2/31 0.169Rep pf    (for 0 Re 700p  ) is the correction factor to Stokes' law for drag, and 

Re 2 /p p pR  V V  is the particle Reynolds number. 

The particle motion equation (14) can be rewritten as follows: 

,
p

p p p p

d
a a b

dt t


  



V V
V V  (16) 



 
8 

where reciprocal relaxation time 
pa  and the buoyancy coefficient 

pb  are given by 

 2

36

2

p

p

p p

f
a

d



 



 (17) 

 
3

2
p

p

b


 



.  (18) 

For simplicity, Eq. (16)  is rewritten as follows: 

,
pi i

p pi p i p

dV V
a V a V b

dt t


  


 (19) 

where piV  and iV  are the particle and liquid fluctuating velocities in the ith direction, respectively. 

2.2.  Bubble motion equation 

 The bubble motion equation is described in the absence of the Basset history force and the 

gravitational force as follows:  

3 3 3

6 6 12

b b b b b
b Db

drag force
pressure force added force

d d d d dd d

dt dt dt dt

  
  

 
    

 

V VV V
F .  (20) 

The drag acting on the bubble is determined by 

 6Db b b bR f F V V .  (21) 

where 
1/25Re /12b bf   is the factor of the drag correction and Reb  is the bubble Reynolds number. 

Similarly to Eq. (19), the composite expression of Eq. (20) gives 

bi i
b bi b i b

dV V
a V a V b

dt t


  


 (22) 

where biV  is the bubble fluctuating velocity in the i-direction and the parameters are given as 

follows: 
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 2

36

2

b
b

b b

f
a

d



 



 (23) 

3

2
p

b

b


 



.  (24) 

2.3. Bubble-particle collision kernel without gravity effect 

Eq. (13) is expanded as follows: 

     

22 2

2 2 2 2 2 2

2 2 2

2 2 2

2

2 2 2

bI bI bI
bI pI pI bI bx by bz

pI pI pI

px py pz

pI pI pIbI bI b
px bx py by pz bz

R R R
x y z

R R R
x y z

R R R R R R
x x y y z

      
         

      

       
       

       

       
        

       

V V V
W V V V V

V V V

V V VV V V I

z

 
 

 

 (25) 

Here the bubble and particle velocity variances and covariance ( 2

bIV , 2

pIV , and bI pIV V ) are 

determined by 

2 2

bI bAV V  (26) 

2 2

pI pAV V  (27) 

2

bI pI BV V V  (28) 

where bA , pA , and B are calculated as shown in Appendix. Substitution of Eqs. (26)-(28) into Eq. 

(25) gives 

 
2 2 2

2 2 2 2

2 2 2

2 2 2 2 2 2
2 2 2

2 2 2 2 2 2

2

2

p b px py pz p

bx by bz b px bx py by pz bz

A B A R R R A
x y z

R R R A B R R R R R R
x y z x y z

   
      

   

        
        

        

2 2

2 2

W V V

V V

 (29) 

After re-arranging, we have equivalently 
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   

   

2
2 2 2

2

2 2
2 2 2 2

2 2

2 2

2 2

p b px p px bx bx b

py p py by by b pz p pz bz bz b

A B A R A BR R R A
x

R A BR R R A R A BR R R A
y z


     



 
     

 

2
2

2 2

V
W V

V V
 (30) 

Since the turbulent flow field is isotropic, the following relation holds (Taylor, 1935) 

22 2

3x y z





      
      

      

V V V
.  (31) 

Substitution of Eq. (31) into Eq. (30) gives 

   2 2 22 2
3

b p b b p p p b

acceleration
shear

A A B A R A R BR R




 
       

 

2
W V .  (32) 

In the absence of gravity, we can assume the isotropy of particle and bubble motions and the 

normal distribution of pV , bV , and W , thus 

1/ 2
28

3

 
  
 
 

W
W .  (33) 

The bubble-particle collision kernel without gravity effect is determined by 

2R  W .  (34) 

Substitution of Eqs. (32) and (33) into Eq. (34) yields 

   
1/ 2 1/ 2

2 2 28
2 2

3 3
b p b b p p p bR A A B A R A R BR R

 



   
         

   

2V  (35) 

If the particles and bubbles have very small inertia ( 0, 0p b   ) and follow the fluid 

completely, we have 1, 1p bA A   and 1B  . Then, Eq. (35) becomes 
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1/ 2 1/ 2 1/ 2

3 38
1.67

9
R R

  

 

     
       

     
 (36) 

We refer Eq. (35) and Eq. (36) to as Model 1 and Model 2, respectively. Note that these models 

are analogically similar to the particle-particle collision models given by Yuu (1984) which are not 

applicable to the particle-bubble collision interaction in flotation due to the different size scales of 

(micrometer) solid particles and (millimeter) air bubbles as described below. 

For fine particles and small air bubbles in flotation, the correlations of bubble and particle 

velocities are respectively determined by Nguyen and Schulze (2004) as follows: 

2/34/9 7 /9
2

1/3
0.83 b b

b

R
V

  

 

  
  

 
 (37) 

3

2

2

2

135

p p

p

R
V

 

 

 
  

 
.  (38) 

Equations (37) and (38) were established based on the balance for fine bubbles between the 

inertial subrange acceleration and Allen's drag, and the balance for fine particles between the 

dissipative subrange acceleration and Stokes' drag. Note that 2 23bI bVV  and 2 23pI pVV . Making 

use of Eqs. (37) and (38) to determine 2

bIV  and 2

pIV , Eq. (25) becomes 

24/3 68/9 14/9 2
2

2/3 4

2 2

4
2.0667

6075

                  2 2
3 3 3

p pb b

b b p p p b

RR

B A R A R BR R

    

   

  

  

   
    

   

   2

W

V

 (39) 

Substitution of Eq. (39) into Eq. (34) gives 

1/ 2
24/3 68/9 14/9 2

1/ 2
2/3 4

2

2 2

4
2.0667

8 6075

3
2 2

3 3 3

p pb b

b b p p p b

RR

R

B A R A R BR R

    

    

  

  

    
               

    
 

2V

 (40) 

Equation (40) is our proposed model. The six terms in the square bracket on the RHS of (40) 
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represent the effect of bubble acceleration, particle acceleration, the coupling of bubble-particle 

acceleration, bubble shear, particle shear, and bubble-particle shear coupling on the bubble-particle 

collision kernel, respectively. 

2.4. Bubble-particle collision kernel with gravity effect 

When the gravitational forces acting on the bubble and particles are considered, we adapt 

Abrahamson's solution (Abrahamson, 1975) to obtain the bubble-particle relative velocity as 

follows: 

2 / 3
pz bz

pz bz

V V f
V V

 
  

 
 

' W
W  (41) 

where pzV  and bzV  are the terminal velocities of particle settling and bubble rising, respectively; 

erf is the error function, and 2
W  is determined by Eq. (39). The function in Eq. (41) is defined as 

follows: 

   
3/ 2

2

1/ 2 2

2 1 1
exp 1

2 2

x
f x x erf

x x

  
      

   
  (42) 

In the case of no turbulence, Eq. (41) becomes  

pz bzV V '
W .  (43) 

In the absence of gravity, Eq. (41) reduces to 

1/ 2
28

3

 
  
 
 

' W
W  (44) 

which is identical to Eq. (33). The bubble-particle collision kernel with gravity effect is 

determined by 

2R  '
W  (45) 

3. RESULTS AND DISCUSSION 
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The integral time scale in isotropic turbulence is given by (Yuu, 1984) 

20.265
fLT




V
.  (46) 

In the isotropic turbulence 

2
2 2 2 2

0
3

x y zV V V u   
V

 (47) 

where 2

0u  is the mean square intensity of turbulence. The Lagrangian integral length scale is given 

by (Abrahamson, 1975) 

2

0L fLL T u .  (48) 

3.1. Model verification 

Consider 
2 2 20.01 m /sV , 6 21.002 10  m /s    (at 20oC ), the liquid density 

3 310  kg/m  , the 

particle density 3 31.3 10  kg/mp    (coal) and 3 35.0 10  kg/m  (sulfide minerals), the bubble 

density 31.4 kg/mb  , the gas-liquid surface tension 70 mN/m   and 5 W/kg  . We obtain 

45.3 10  sfLT    and 31 μmLL  . The minimum and maximum limits of particle radius pR  are 

chosen to be 5μm  and 250μm , respectively. Figs. 2a and 2b present the result of bubble-particle 

collision kernel with respect to (w.r.t.) pR  for 3 31.3×10 kg/mp   and 3 35.0×10 kg/m , 

respectively. The present results are compared with those of other models including Models 1 and 

2, Bloom and Heindel (2002)’s model and Nguyen and Schulze (2004)'s model. Nguyen and 

Schulze's model is as follows: 

 
2 2

2 b p

pz bz

pz bz

V V
R V V f

V V


 
   
 
  

 (49) 

where Eq. (42) describes the function f, the bubble and particle velocity variances, 2

bV  and 2

pV , are 

determined by Eqs. (37) and (38), respectively. It can be seen that for 3 31.3×10 kg/mp  the 



 
14 

present model agrees well with Model 1 and yields larger values of collision kernel than Model 2, 

Bloom and Heindel's model, and Nguyen and Schulze's model. Note that for small particle and 

bubble inertias (viscous subrange) in a water flow, the spatial variation of turbulence (shear effect) 

is the predominant factor in the collision process. However, for the particles and bubbles with 

larger inertia (inertial subrange) their relative motion to the water becomes important, which 

results in a higher collision kernel. As expected, the present model and Model 1 produce higher 

collision kernel than Model 2 and Nguyen and Schulze's model. 

For heavier particles, 3 35.0×10 kg/mp  , a similar behavior is obtained for small particle sizes 

( 100μmpR  ), however, for larger particles ( 200μmpR  ) the particle acceleration becomes 

larger, the velocity pulsations of particle and bubble are statistically independent and the shear 

effect becomes negligible. Therefore, the present model yields almost the same results as Nguyen 

and Schulze's model. Note that Nguyen and Schulze's model was developed based on 

Abrahamson's model. In their model, the bubble and particle velocity variances are determined 

through the balance for fine bubbles between the inertial subrange acceleration and Allen's drag 

and the balance for fine particles between the dissipative subrange acceleration and Stokes' drag, 

respectively. Figs. 3a and 3b show the bubble-particle collision kernels of the present model with 

and without gravity effect in comparison with those of Model 1 and Nguyen and Schulze (2004)'s 

model for 3 31.3×10 kg/mp   and 3 35.0×10 kg/mp  , respectively. It appears that all the 

models yield higher collision coefficients when the gravity effect is added. 
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 (a) 

 (b) 

Figure 2. Comparison of bubble-particle collision kernel among different models, neglecting the 

gravity effect, for 1.0 mmbR  , 5 W/kg  , (a) 3 31.3×10 kg/mp  , and (b) 3 35.0×10 kg/m . 
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 (a) 

 (b) 

Figure 3. Comparison of bubble-particle collision kernel among different models, with and 

without gravity effect, for 1.0 mmbR  , 5 W/kg  , (a) 3 31.3×10 kg/mp  , and (b) 

3 35.0×10 kg/m . 



 
17 

3.2. Influence of shear, acceleration and gravity effects on collision kernel 

Eq. (39) can be written as 

2 2 2 2 2 2 2

ba pa bpa bs ps bps     W W W W W W W  (50) 

where the subscripts ba, pa, bpa, bs, ps, and bps represent the effects of bubble acceleration, 

particle acceleration, bubble-particle acceleration coupling, bubble shear, particle shear, and 

bubble-particle shear coupling, respectively. 

In order to investigate the effects of shear, acceleration, and gravity on the collision kernel, we 

determine the following collision coefficients based on the combination of different effects. 

1/ 2
1/ 2

2 28
,

3
ba baR

         
W  (51) 

1/ 2
1/ 2

2 2 28
,

3
ba pa ba paR




         
W W  (52) 

1/ 2
1/ 2

2 2 2 28
,

3
ba pa bpa ba pa bpaR


 

          
W W W  (53) 

1/ 2
1/ 2

2 2 2 2 28
,

3
ba pa bpa bs ba pa bpa bsR


  

           
W W W W  (54) 

1/ 2
1/ 2

2 2 2 2 2 28
,

3
ba pa bpa bs ps ba pa bpa bs psR


   

            
W W W W W  (55) 

1/ 2
1/ 2

2 2 2 2 2 2 28
,

3
ba pa bpa bs ps bps ba pa bpa bs ps bpsR


    

             
W W W W W W  (56) 

2 ,ba pa bpa bs ps bps g R       '
W  (57) 

,a ba pa bpa     (58) 

,s ba pa bpa bs ps bps ba pa bpa           (59) 
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,g ba pa bpa bs ps bps g ba pa bpa bs ps bps               (60) 

where the subscripts a, s, and g represent the effects of acceleration, shear, and gravity, 

respectively. 

The variation of the /a g   and /s g   ratios w.r.t. 
pR  is given in Figs. 4a and 4b for 

3 31.3×10 kg/mp   and 3 35.0×10 kg/mp  , respectively. For 3 31.3×10 kg/mp  , the shear 

effect is the dominant factor for the whole range of particle sizes 5μm 250μmpR  . For the 

heavier particles 3 35.0×10 kg/mp  , the shear effect is dominant and larger than the gravity 

effect and the gravity effect is larger than the acceleration effect for 7.32p KR  ; however, for 

7.32p KR   the acceleration effect is dominant and larger than the gravity effect, and the gravity 

effect is larger than the shear effect. 

Figs. 5a and 5b show the effects of bubble acceleration, particle acceleration, bubble-particle 

acceleration coupling, bubble shear, particle shear, bubble-particle shear coupling and gravity on 

the bubble-particle collision kernel for 3 31.3×10 kg/mp   and 3 35.0×10 kg/mp  , respectively. 

For 3 35.0×10 kg/mp  , the obtained results indicate that the shear effect plays an important role 

in small particle sizes while the acceleration effect becomes dominant for large particle sizes. The 

bubble shear effect is much larger than the particle shear effect because the bubble is bigger and 

lighter than the particle. The bubble-particle shear coupling effect is quite small. The bubble-

particle acceleration coupling effect slightly reduces the collision kernel. The gravity effect 

increases the collision kernel for all particle length scales, and the acceleration effect is dominant 

for large particle inertias.  



 
19 

 (a) 

 (b) 

Figure 4. Bubble-particle collision: the ratios of acceleration effect and shear effect to gravity 

effect, for 1.0mmbR  , 5 W/kg  , (a) 3 31.3×10 kg/mp  , and (b) 3 35.0×10 kg/m . 
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 (a) 

 (b) 

Figure 5. Bubble-particle collision: effects of bubble acceleration, particle acceleration, bubble-

particle acceleration coupling, bubble shear, particle shear, bubble-particle shear coupling and 
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gravity on the bubble-particle collision kernel, (a) 3 31.3×10 kg/mp  , and (b) 3 35.0×10 kg/m . 

3.3. Influence of , ,b pR R   and p  on collision kernel and efficiency 

Figs. 6a and 6b present the bubble-particle collision kernel ( ) and efficiency ( cE ) w.r.t. pR  for 

3 32×10 kg/mp  , 5 W/kg   and different values of  0.5,1.0, 2.0 mmbR  , while the 

corresponding results for 3 32×10 kg/mp  , 1mmbR   and different values of  1, 2, 5 W/kg   

are given in Figs. 7a and 7b, respectively. Figs. 8a and 8b provide the bubble-particle collision 

kernel and efficiency w.r.t.   for 3 32×10 kg/mp  , 1mmbR   and different values of 

 50,150, 250 μmpR  . It can be seen that the collision kernel increases with increasing particle 

and bubble sizes, and dissipation rate of turbulent kinetic energy (Figs. 6a, 7a, 8a). It is noted that 

turbulence can significantly enhance the relative motion between the bubble and particles. The 

relative motion can be faster than the relative counter-current motion between the bubble rise and 

particle settling. As a result, 1cE   if 0   and 1cE   if 0  . Fig. 6b indicates that the 

variation in particle size does not affect the collision efficiency significantly for 0.5bR   and 

1.0 mm . For larger bubble size 2.0 mmbR  , the collision efficiency reduces as the particle size 

increases, although the collision kernel increases with increasing particle size as shown in Fig. 6a 

because the gravitational force acting on the bubble is dominant. For a given value of  , cE  tends 

to reduce with increasing pR (Fig. 7b). Fig. 8 shows that the collision kernel and efficiency are 

intensified as the turbulence dissipation rate increases, for all values of pR . Figs. 9a and 9b show 

the bubble-particle collision kernel and efficiency w.r.t. pR  for 1.0 mmbR  , 5 W/kg   and 

different values of   3 31.3, 2.0, 5.0 ×10 kg/mp  . It appears that   and cE  increase with 

increasing p  for large particle sizes ( 150 μmpR  ) while   and cE  are almost unchanged w.r.t. 

p  for small particle sizes ( 150 μmpR  ). 
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 (a) 

 (b) 

Figure 6. (a) Bubble-particle collision kernel and (b) collision efficiency w.r.t. pR  for 

3 32×10 kg/mp  , 5 W/kg   and different values of  0.5,1.0, 2.0 mmbR  . 
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 (a) 

 (b) 

Figure 7. (a) Bubble-particle collision kernel and (b) collision efficiency w.r.t. pR  for 

3 32×10 kg/mp  , 1mmbR   and different values of  1, 2, 5 W/kg  . 
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 (a) 

 (b) 

Figure 8. (a) Bubble-particle collision kernel and (b) collision efficiency w.r.t.   for 

3 32×10 kg/mp  , 1bR mm  and different values of  50,150, 250 μmpR  . 
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 (a) 

 (b) 

Figure 9. (a) Bubble-particle collision kernel and (b) collision efficiency w.r.t. pR  for 

1.0 mmbR  , 5 W/kg   and different values of   3 31.3, 2.0, 5.0 ×10 kg/mp  . 



 
26 

4. CONCLUSIONS 

In this paper, we have developed a theoretical model of bubble-particle collision in the 

homogeneous and isotropic turbulence flow, taking into account the effects of acceleration, shear, 

and gravity of the bubble-particle system. The bubble and particle velocity variances are calculated 

by using Nguyen and Schulze's model, while the bubble-particle velocity covariance is determined 

based on the Basset-Boussinesq-Ossen equation and the correlation method. We use Stokes' law 

with a particle size correction factor to calculate the drag force acting on a particle and Allen's law 

to calculate the drag force acting on a bubble. The present model agrees well with Model 1 for 

small-inertia particles and agrees well with Nguyen and Schulze's model for large-inertia particles. 

For low-density particles ( 3 31.3×10 kg/mp  ), the shear effect is always larger than the 

acceleration effect in the range of 5μm 250μmpR  . However, for heavier particles 

( 3 35.0×10 kg/mp  ), the shear effect is larger than the gravity effect and the gravity effect is 

larger than the acceleration effect for small particle sizes ( 7.32p KR  ). For large particle sizes 

( 7.32p KR  ) the acceleration effect is larger than the gravity effect, and the gravity effect is 

larger than the shear effect, for the case of 1.0 mmbR  , 5 W/kg  , and 3 35.0×10 kg/mp  . 

The particle shear effect is much smaller than the bubble shear effect because the bubble is bigger 

and lighter than the particle. The bubble-particle acceleration coupling effect slightly reduces the 

collision kernel while the bubble-particle shear slightly increases the collision kernel. The bubble-

particle collision kernel increases with increasing bubble and particle sizes, and dissipation rate of 

turbulent kinetic energy. Turbulence intensity enhances the bubble-particle collision kernel and 

frequency. For given values of   and bR , the collision kernel and frequency increase with 

increasing particle density for large particle sizes and remains unchanged for small particle sizes. 

The numerical data show that turbulence can increase the collision efficiency, exceeding the ideal 

rate of collision by gravity and leading to the turbulence collision efficiency greater than unity. 

Therefore, the collision efficiency due to turbulence cannot be ignored in predicting the overall 

bubble-particle collision efficiency in flotation.  
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APPENDIX A: BUBBLE AND PARTICLE VELOCITY VARIANCES AND COVARIANCE 

The turbulent velocities of fluid, bubble and particle are expressed by using the Fourier integral as 

follows: 

         
0

2 cos 2 sin 2i i iV t M Mt M Mt dM    


     (A.1) 

         
0

2 cos 2 sin 2bIi bi biV t M Mt M Mt dM    


     (A.2) 

         
0

2 cos 2 sin 2pIi pi piV t M Mt M Mt dM    


    .  (A.3) 

Substitution of Eqs. (A.1)-(A.3) into Eqs. (19) and (22) gives 

   2

2 2 2 2

1 1
1

b b b

bi i i

b b

b a b

a a

 
  

 

  
   

  
 (A.4) 

   2

2

2 2 2 2

1 1
1

p p

pi i i

p p

b a b

a a

 
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 

  
   

   

 (A.5) 

   2

2 2 2 2

1 1
1

b b b

bi i i

b b

a b b

a a

 
  

 

   
     

    
 (A.6) 

   2

2 2 2 2

1 1
1

p p p

pi i i

p p

a b b

a a

 
  

 

    
      

       

.  (A.7) 

where 2 M  . 

The correlation    bIi pIiV V t    is determined as follows: 

       
1

1

2

T

bIi pIi bIi pIi
T

V V t V V t d
T t

    


  
   (A.8) 

where 1T T . Substituting Eqs. (A.2) and (A.3) into Eq. (A.8), the term    bIi pIiV V   is 

computed as 
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     
0 bpibIi pIi LV V E M dM 


   (A.9) 

         
2

bpiL bi pi bi piE M M M M M
T


       .  (A.10) 

Similarly, we obtain 

   2

0 ii fLV E M dM


   (A.11) 

where 

     
2

2 2

ifL i iE M M M
T


     .  (A.12) 

From Eqs. (A.10) and (A.12), we get 

 
       

   
 2 2bpi i
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i i
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
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
.  (A.13) 

Hinze (1975) derived the following relation 

  2

2 2
4

1

fLi

fLi i

fLi

T
E M V

T



.  (A.14) 

Making use of Eqs. (A.10)-(A.14), Eq. (A.9) becomes 

    2

bIi pIi iV V BV    (A.15) 

where 

     
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  (A.16) 

Simplifying Eq. (A.16) gives 
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     
31 2
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
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   
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where 
fLi fLT T  since the flow field is assumed to be isotropic. The constants are described as 

follows: 

  
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Calculating the integral in Eq. (A.17), we obtain 

     1 11
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.  (A.21) 

Hinze (1975) obtained the following relation between the turbulent intensities of particle and fluid 

2 2

pIi p iV A V  (A.22) 

where 
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Similarly, we obtain 

2 2

bIi b iV A V  (A.24) 

where 
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2

1

b fL b

b

b fL

a T b
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a T


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
.  (A.25) 

Finally, combining Eqs. (A.15), (A.22), and (A.24), we obtain 

2 2

bI bAV V .  (A.26) 

2 2

pI pAV V  (A.27) 

2

bI pI BV V V  (A.28) 
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NOMENCLATURE 

Small alphabet letters 

a  Numerical constant in Eq. (8) 

ba  A factor defined by Eq. (23) 

pa  A factor defined by Eq. (17) 

b  Numerical constant in Eq. (8) 

bb  A factor defined by Eq. (24) 

pb  A factor defined by Eq. (18) 

bd  Bubble diameter 

pd  Particle diameter 

bf  Bubble size correction factor 

pf  Particle size correction factor 

g  Gravitational acceleration 

k  Numerical constant in Eq. (8) 

bn  Bubble number concentration 

pn  Particle number concentration 

t  Time 

2

0u  Mean square intensity of turbulence 

Capitalized alphabet letters 

Ar   Particle Archimedes number 

*Ar   Bubble Archimedes number 

cE   Collision efficiency 

DbF   Drag force acting on a bubble 

DpF   Drag force acting on a particle 

J   Particle flux vector 

LL   Lagrangian integral length scale 

M   Frequency 
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Mo   Morton number 

cN   Rate of bubble-particle collision 

ciN   Ideal rate of bubble-particle collision 

R   The sum of bubble and particle radii 

bR   Bubble radius 

pR   Particle radius 

Reb
  Bubble Reynolds number 

Re p
  Particle Reynolds number 

fLT   Lagrangian integral time scale 

V   Fluid velocity 

bV   Bubble velocity 

pV   Particle velocity 

bzV   Terminal velocity of bubble rising 

pzV   Terminal velocity of particle settling 

KV   Kolmogorov velocity scale 

W   Bubble-particle relative velocity vector 

Greek letters 

  Bubble-particle collision kernel 

  Turbulence dissipation rate 

K  Kolmogorov length scale 

  Dynamic viscosity of a fluid 

  Kinematic viscosity of a fluid 

  Fluid density 

b  Bubble density 

p  Particle density 

  Surface tension of gas-liquid interface 

K   Kolmogorov time scale 

   Angular frequency 
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