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A B S T R A C T   

Effective sleep monitoring from electroencephalogram (EEG) signals is meaningful for the diagnosis of sleep 
disorders, such as sleep Apnea, Insomnia, Snoring, Sleep Hypoventilation, and restless legs syndrome. Hence, 
developing an automatic sleep stage scoring method based on EEGs has attracted extensive research attention in 
recent years. The existing methods of sleep stage classification are insufficient to investigate waveform patterns, 
texture patterns, and temporal transformation of EEG signals, which are most associated with sleep stages 
scoring. To address these issues, we proposed an intelligence model based on multi-channels texture colour 
analysis to automatically classify sleep staging. In the proposed model, a short-time Fourier transform is applied 
to each EEG 30 s segment to convert it into an image form. Then the resulted spectrum image is analysed using 
Multiple channels Information Local Binary Pattern (MILBP). The extracted information using MILBP is then 
deployed to differentiate EEG sleep stages. The extracted features are tested, and the most effective ones are used 
to the represented EEG sleep stages. The selected characteristics are fed to an ensemble classifier integrated with 
a genetic algorithm which is used to select the optimal weight for each classifier, to classify EEG signal into 
designated sleep stages. The experimental results on two benchmark sleep datasets showed that the proposed 
model obtained the best performance compared with several baseline methods, including accuracy of 0.96 and 
0.95, and F1-score of 0.94 and 0.93, thus demonstrating the effectiveness of our proposed model.   

1. Introduction 

Sleep is an essential physiological phenomenon to maintain healthy 
life [1]. Lack of adequate sleep, due to daily life and environmental 
factors, has a profound impact on learning capacity, brain functions, and 
concentration, which can contribute further to sleep issues such as apnea 
and insomnia [2,3]. A normal healthy sleep is clinically defined as a 
good quality, sufficient duration with an appropriate timing, and the 
absence of sleep disturbances [4]. Medical reports have demonstrated 
that up to 70 million people in the US endure chronic sleep disorders 
[5,6] which could impact their daily life and health. Another report 
released by World sleep day origination1 showed that every year around 
71,000 people suffer serious injuries from car accidents due to sleep- 
problems. 

Polysomnogram (PSG) is used as a standard tool for monitoring sleep 
stages. It consists of a bunch of biomedical signals including Electro-
encephalogram (EEG), Electromyogram (EMG), Electrooculogram 
(EOG), ElectrocardiogTram (ECG), and other kinds of bio-signals. Sleep 
staging based on biomedical signals is a fundamental task to understand 
sleep regularity and disorders. According to the American Academy of 
Sleep Medicine (AASM), EEG signals are classified into 30-s intervals, 
and each segment is visually categorised by a sleep expert into one of 
five sleep stages, including Wake (W), non-Rapid Eye Movement 
(NREM) and Rapid Eye Movement (REM) (R) where the NREM is further 
classified into (S1, S2, S3). 

Visual inspection is the standard way of sleep monitoring which is 
used to characterise EEG recordings based on patterns and waveforms 
associated with each sleep stage, such as alpha rhythms in stage W, and 
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K-complexes or sleep spindles in stage S2. However, the use of manual 
inspection to analyse a whole-night sleep is time-consuming and labo-
rious. Therefore, extracting representative features from EEG to classify 
sleep stage automatically has attracted significant research interest in 
recent years. 

Traditional EEG sleep classification methods usually extract repre-
sentative features from EEG signals using transformation models such as 
Fourier Transform (FT) and Wavelet Transform (WT), then those fea-
tures are fed into the Support Vector Machine (SVM) or Hidden Markov 
k-means for sleep staging. For example, Dhok et al., [8] extracted rényi 
entropy and Wigner–Ville distribution to analyse EEG signals. The 
extracted features were used as inputs for a gaussian kernel-based sup-
port vector machine. Taran et al, [12] applied an optimize flexible an-
alytic wavelet transform to classify a single channel EEG signal. Each 
EEG epoch was passed through optimize flexible analytic wavelet 
transform (OFAWT) to extract the desired features for EEG sleep stages. 
Then several classifiers including a decision tree, discriminant analysis, 
ensemble, and k-nearest neighbour classifiers were employed to classify 
EEG features into five sleep stages. Huang et al., [13] combined joint 
quaternion valued singular spectrum with ensemble empirical mode 
decomposition to identify sleep stages. A fast Fourier transform was used 
in that study to decompose EEG signals. A bootstrap aggregating 
classification-based model was designed for classifying the extracted 
features. da Silveira et al.,[14] applied a discrete wavelet transform to 
analyse sleep EEG characteristics. Two statistical features, kurtosis, 
skewness, and variance were extracted from wavelet coefficients, then 
were sent to a random forest classifier. Prerau et al., [15] proposed a 
multitaper spectral analysis approach to analyse EEG sleep stages and 
compared their results with traditional spectral estimation techniques. 

Although feature extraction based on transformation techniques 
could improve the efficiency, some shortcomings are still evident. For 
example, some features may be suitable for a specific dataset, but could 
receive worse performance on other datasets, and using the same fea-
tures set to classify all sleep stages could not be adequate. To obtain a 
higher accuracy of sleep stage classification, a superior method needs 
better generalization and efficiency. 

With the development of deep learning, many researchers focus on 
applying deep neural networks for feature extraction of EEG signals. 
These methods could improve the generalization and accuracy by their 
capacity of learning complicated nonlinear features. Chambon et al. 
[16] used CNN to obtain intra-local feature of each segment, and directly 
sending a feature sequence to the classifier for sleep staging. Supratak 
et al. [17] and Seo et al. [18] suggested intra-local feature vectors pro-
duced by CNN, and then the extracted features were fed into LSTM. 
Xiang et al. [19] introduced a semantic learning based on CNN-LSTM 
structure. Jia et al. [20] designed a graph convolutional network 
model to extract spatial temporal features from EEG signals. Huang et al. 
[21] tested different kernel sizes in CNN to extract multi-scale intra-local 
features. Dong et al. [22] extracted hand-crafted features of spectrum 
from EEG signals and feed them into LSTM for sleep staging. The pro-
posed model was trained with an adversarial concept for sleep staging. 
Ghasemzadeh et al., [7] classified EEG sleep stages based on logistic 
smooth transition autoregressive (LSTAR). A double-density dual-tree 
discrete wavelet transform was applied to decompose EEG segment into 
time–frequency sub-bands. Then, LSTAR was employed to extract a 
features vector from sub-bands. The final set of features was sent into a 
classifier to classify EEG segments into sleep stages. Jadhav et al., [9] 
utilised a convolution neural network model with time frequency image 
to classify EEG sleep stages. Each EEG segment is passed through a 
continuous wavelet transform to obtain a time frequency image and then 
it was used as an input to the convolution neural network model. Sundar 
et al., [10] proposed a deep learning model based on a Bidirectional 
Recurrent Neural to classify EEG sleep stages. EEG signals were pr- 
processed and then each 30 s segment was fed to the proposed model. 
Tang set al., [11] designed an end-to-end deep adaptation model for 
sleep stages classification. ECG signals were used in that study as inputs 

to the proposed model. 
Although the above-mentioned approaches based on deep learning 

approaches achieved an acceptable performance, investigating the 
waveform characters and texture patterns of sleep stages should be 
further investigated and considered. Those methods could not fully 
consider these patterns, which means it needs a model to extract this 
information and fit the actual sleep staging process, improving the ac-
curacy of classification. Understanding the patterns associated with EEG 
sleep stages could help design a suitable model for sleep stage 
classification. 

To overcome the above shortcomings and incorporate the patterns of 
EEG, we propose a novel sleep stages classification model combining 
multiple channels information local binary pattern technique and 
ensemble classifier based on genetic algorithm. The objective of the 
proposed model is to capture and investigate the most representative 
texture features including structural patterns, and multi-channel infor-
mation. Firstly, EEG signals are segmented into 30 s interval, then each 
EEG segment is passed through a short-time Fourier transform. As a 
result, each 30 s segment is converted into an image form. The MILPB is 
applied to extract the desired texture features to differentiate sleep 
stages. The extracted features are sent to an ensemble classifier to 
categorise them into five sleep stages. 

2. Proposed methodology 

In this study, an intelligence model is proposed to classify EEG sleep 
stages. To transfer EEG signal into an image form, A short-time Fourier 
transform is applied to each EEG 30 s segment. The extracted spectro-
gram image is analysed using multiple channels information local binary 
pattern (MILBP) approach. Texture features are pulled out from each 
spectrogram image to represent EEG sleep stages. The extracted texture 
features are investigated to select the most significant ones. The selected 
EEG features are sent into the proposed ensemble classifier based on 
genetic algorithm. The genetic algorithm is utilised to select the optimal 
weights for each classifier to improve the classification accuracy. This 
model is implemented in a desktop computer system with the following 
specifications: Windows 10 Pro operating system, 8 GB RAM, and Intel 
core i7 @ 3.3 GHz. MATLAB Software, image processing toolbox, EEG 
signal processing software are used in the design of the proposed model. 
Fig. 1 shows the schematic diagram of the proposed model for sleep 
stages classification. 

2.1. Transferring EEG signals to logarithmic spectrogram image form 

As EEG signals are high dimensional and non-stationary time series, 
time–frequency domain techniques are considered an efficient tool to 
reveal the important characteristics by representing EEG data in both 
the frequency and time domains [23–25]. In this paper, we adopted the 
logarithmic spectrogram image to analyse EEG sleep stages as it is 
considered one of the efficient techniques time–frequency domain 
techniques [25]. 

According to previous studies, this technique can expose the hidden 
characteristics of signals. It has been employed in many applications to 
identify the abnormal events in brain signals. In this design, we applied a 
short-time Fourier transform (STFT) to each 30 s EEG sleep segment to 
logarithmic spectrogram images using the following formula: 

X[f ] =
∑K− 1

k=0
x[k]zx[k]e

− 2fkπ
K , f = 0, 1,⋯..,K − 1 (1) 

Where, k refers to the discrete time index, f defines as a discrete 
frequency index, z refers to the Hamming window, while (zf =

2fπ,
K ) 

denotes to the frequency in radians. In this study, we adopted a window 
size of 256 datapoints with an overlap of 50 % to transfer EEG epochs to 
spectrogram images from using the following formulae: 
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S(f , j) = |X(f ) | (2)  

IS(f , j) = log(S(f , j)) (3) 

Where IS(f , j) denotes to the obtained spectrogram image. It is rep-
resented by a two-dimension matrix. While f refers to the frequency bin 
falls between 1 and 129, and j refers to the number of time frames. Each 
30 s EEG sleep segment is converted into an image of 2049x43. Then, the 
dimensionality of the obtained image is resized to a 50x50 matrix. This 
reduction is adopted to minimise the execution time of the proposed 
model. Fig. 2 illustrates an example of 30 s sleep stages segment is being 
converted into a spectrogram image form. The axis of image represents 
the frequency and time. The colours scales refer to the amplitude of the 
frequency of produced spectrogram image. In this example, five sleep 
stages are converted into images using STFT. Based on our simulation, it 
is noticed that sleep stages produced different values of the magnitude 
and frequency that could be used to differentiate sleep stages. 

2.2. Multiple channels information local binary pattern (MCILBP) 

To improve the discriminant ability of classic LBP in the sleep stages 
classification, a multiple channels information local binary pattern 
(MILBP) is proposed to analyse EEG signals [26–28]. The proposed 

MILBP method uses the characteristics in a single colour channel and 
integrates it with the correlation information among multiple colour 
channels to extract the most discrimination information from images 
produced from EEG signals. As a colour image consists of three channels 
R, G, B, the proposed model extracts, and investigates the information of 
each channel and the cross-channel feature information. 

The results showed that the cross-channel local information among 
image’s channels provides high discriminative information. As a result, 
LBP is employed to extract EEG sleep stages features from three different 
combinations of channels R-G-B, G-B-R, and B-R-G, respectively. In this 
paper, we adopted the LBP histogram features from each colour channel 
sequence. In addition, the extracted information from each channel is 
investigated individually. Then, the nine histograms of LBP are com-
bined in one set to form the final features vector that represents a colour 
texture of spectrogram image. The main steps of the proposed model are 
described as follow: 

1. When sampling radius R = 3, 18 neighbourhood points are 
considered in each local cub of 3x3x3. The cube is divided into three 
different channels. The centre point of G channel is used as a threshold 
value. Then, the three orthogonal planes of cube are binarized using the 
threshold. We named the orthogonal planes as plane z, plane ×, plane y. 
From each plane, LBP code is obtained. Then, three LBP codes are gained 
to form MILBP descriptor using Eq. (5). The LBP three codes are 

Fig. 1. The proposed model for EEG sleep stages classification.  

Fig. 2. An example of 30 s sleep stages is converted into an image.  
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described as: the LBP of y plane denotes to the local texture feature, 
while the LBP of z, and × represent the multi-channel features Fig. 3(d). 

MCILBPI,R,N(i, j) =
∑N

m=1
δI(rn − rc)

2m− 1
(4)  

δI(u) = {
1, u ≥ 1
0, u < 0 

Where I = 1,2,3, is the index of three channels ×, y, z. For instance, 
the binary number of X is 100001, the equivalent value of LBP is 33 and 
the LBPu2 value is 2. 

3 Then, the MCI_LBP histograms for a spectrogram image of are 
calculated as follows 

histMCILBPI (k) =
∑m

i=1

∑n

j=1
h
(
MCILBPI,R,N(i, j), k

)
(5) 

where MCILBP1,MCILBP2,MCILBP3 are the histograms of plane ×, y, 
and z respectively. MCILBP2 denotes the LBP feature describing the 
texture colour in a single channel, while MCILBP3, and MCILBP1 

represent features cross channels. In this paper, we integrated the fea-
tures of three histograms in one set to create one set represented by 
MCILBPR,G,B

I,R,N for each spectrogram image where 

MCILBPR,G,B
I,R,N = [MCILBP1,MCILBP2,MCILBP3] (5) 

3. The correlation and dependencies between channels sequences are 
considered in this paper. The three colour channels of RGB space are 
shifted to GBR and BRG. As a result, 
we obtained a new set representation called MCILB andhistMCILBP =
[
MCILBPR, G, B

I,R,N, MCILBPG, B,R
I,R,N, MCILBPB, R, G

I,R,N
]
.. The obtained 

three united set of different sequences are normalised to [1, 0]. Then 
they are integrated as histMCILBP to represent each colour image. 

histMCILBP =
[
MCILBPR, G, B

I,R,N , MCILBPG, B,R
I,R,N , MCILBPB, R, G

I,R,N
]

(6)  

2.2.1. MCILBP magnitude 
The colour differences magnitudes of the generated images are also 

investigated and used to extend MCI_LBP to MCI_LBPM to enhance its 
discriminative ability. Previous studies showed that magnitude infor-
mation of an image provides a high discriminative information 
regarding cross channel features. The MCI_LBP contains attributes 
extracted from three planes y, z, and ×, for example, nine colour values 
on plane × is considered and the centre is marked as a reference point. 
Based on Eq. (9), the local absolute differences R′

n(n = 1, 2, 3,⋯r = 8) is 
obtained by subtracting the reference point from the neighbourhood 
points. For a colour image of M × N dimension, (M− 2L) × (N-2L) ref-
erences can be obtained. As a result, we obtained (M− 2L) × (N-2L) × 8 
local absolute references. The average value Av for all the R′

n in the 
entire image is calculated. 

Av =
1

(M − 2L)x(N − 2L)xr

∑M− R

i=r+1

∑N− r

j=r+1

∑P

k=1
R′

n (7) 

Then MCILBPMI,r,P is defined as 

MCILBPMI,r,P(i, j) =
∑P

n=1
δI
(
R′

n − Av
)
2n− 1 (8) 

The extended histograms histMCILBPM is obtained by combining 
histMCILBPM and histMCILBP as 

histMCILBPM = [histMCILBPM , histMCILBP] (9) 

The R, and P parameters produced a total of P (P − 1) + 2 uniform 
codes. However, the other nonuniform codes are considered as one code. 
The LBPu2 is represented as P(P − 1) + 3. In this paper, we chosen the 
sampling range as 8, 12, 16 and 24, and the R is set to 1, 2, and 3, 
respectively. As a result, the feature dimension is 59, 135, 243 and 555. 
Then, we cascaded all the features as one descriptor. 

As colour images comprise of three colour channels, the radius of Z- 
axis can be 1, when the R ˃ 1. In our simulation, we set the value of P as p 
= 8, p = 12, and p = 16 for planes Z, and X. In addition, the R set to R =
1, R = 2, and R = 3, respectively. With the plane Y, P value is set as 8, 16, 
and 24, and the R is set as 1, 2, and 3, respectively. The dimensions of 
MCI_LBP are 531(=59 × 3 × 3), 1539(= (243 + 135 × 2) × 3) and 3123 
(= (555 + 243 × 2) × 3). 

2.3. The proposed ensemble model 

Ensemble algorithms are machine learning models that are built 
using a set of classifiers [29–31]. They assign labels to new cases ac-
cording to the voting decision that is form from their predictions. One of 
the solutions used to make the decision is to perform a voting process 
based on the outputs of different classifiers [32]. In this paper, we 
suggested a design based on threshold algorithms. The new ensemble 
model integrated with the genetic model to identify the best weight 
value for classifiers that made up the ensemble. Fig. 3 shows the pro-
posed classification model. The proposed model consists of three phases.  

• Training phase: In the first phase, the original dataset is partitioned 
into three sets. The first set is used to train the classifiers. The second 
set is utilised for the training the genetic algorithm to obtain the 
weights, while the third set is employed for the validation of the 
proposed model. The training set is employed to train M models that 
are used to form the ensemble based on a matrix cost N. After 
training M classifiers, two matrices named Setopt , Setval are obtained 
with number of rows corresponding to the optimisation and valida-
tion sets, and columns number equal to the number of classifiers.  

• Optimisation phase: In this phase, an optimisation method based on 
Dopt is used to determine the weights for each classifier to deliver the 

Fig. 3. The proposed ensemble classifier.  
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best solution. The optimisation phase searches for the optimal 
weights that is carried out using genetic algorithms.  

• Evaluation phase: In this phase, the predictions achieved in the first 
stage are examined using the validation set Setval. 

We detailed each step. First, we explained the predication matrices 
that are employed as inputs to the genetic algorithm. Then, the classi-
fiers and their parameters are explained. Secondly, optimisation process 
is explained in detail. Finally, we explained the metrics used to evaluate 
the proposed model. 

2.3.1. Training phase 
The data of the genetic algorithm are generated. we used a set of 

classifiers to design the ensemble model. A cost-sensitive function was 
employed using a cost matrix M to produce a model with a low cost. The 
cost matrix moves the classified samples from one class to another. Let 
Ts = {(f1, l1), (f2, l2),⋯⋯.,

(
fn, ln

)}
is an input dataset, where fi is feature 

values, and li is a label. The cost matrix is described as a matrix of N 
elements. The elements of cost matrix N(i, j) represent the predicted 
label j and the real i. 

The dataset is divided into three sets named Settrain, Settval, and Setopt . 
Cost matrix N and Settrain are employed to train the ensemble model. As a 
result, two prediction matrixes are achieved Dopt, Dval as shown in Fig. 3. 

2.3.2. Optimisation phase 
The purpose of designing an ensemble classifier is to improve the 

results of sleep classification produced by individual classifiers. 
Different strategies are used to merge the output of classifiers to form the 
ensemble. Most of ensemble techniques used a weighting vote approach 
by which assigns a specific weight to each classifier. The main issue with 
this approach is how to assign the best weight to each model used to 
from the ensemble. In this paper, the genetic algorithm is used to assign 
the optimal wight to each of the classifiers. The genetic algorithm is 
employed to find the wights for each classifier of the ensemble to classy 
new instances. Five main steps are repeated until the desired criteria is 
reached.  

• Initialisation: In this step, the weight assigned to each classifier is 
represented by chromosome. Positional encoding is used to represent 
genes. Each gene ith represents the weight of ith classifier. Chromo-
some Chro is defined as 

Chro = (ch1, ch2,⋯., chk) (10) 

Where k refers to the number of classifiers used to form the ensemble, 
each member in the genetic algorithm is contained n Chromosomes.  

• Evaluation: The phase is performed using an error function f . The 
error function is calculated according to the cost of the label pre-
dicted for each entity in the dataset. We considered the vote carried 
out with weight associated with each classifier. It is the total sum of 
all costs of each entity in the dataset. The cost matrix N is employed 
to calculate the costs. The following steps are considered to calculate 
the error function. Each classifier’s weight is calculated using chro-
mosome ch, prediction matrix pre, and instance e for the possible 
label in the dataset. 

w(ch, pre, ei, l) =
∑M

j=1
wj
[
prei,j == l

]
=

{
1, if prei,j = l
0, otherwise 

The successful label Li is calculated for each instance ei as follow. 
Li = armaxw(ch,pre, ei, l). Then, the error function is calculated as a 

sum of costs as follow: 

f (ch, pre, datset) =
∑M

i=1
N(liLi) (11) 

Where li is the actual label for the instance ith.  

• Selection: Deterministic approach is used to make a selection by 
which several tournaments are run among few chromosomes that are 
chosen arbitrarily from the population. The number of selected 
chromosomes is called selection pressure and denoted by presselected. 
The selection pressure determined the probability of worse in-
dividuals that were involved in the competition. In each competition, 
it is selected the winning chromosome which obtains the smallest 
error value.  

• Crossover and Reproduction: In this paper, uniform crossover is 
used in this research as it is a powerful method used to find all 
possibilities when parents are re-joined. Each gene has the same 
probability that belong to one or other parent. We refer nth to the 
total number of children produced by two fathers.  

• Mutation: Uniform mutation is utilised in this research. Mutation 
operator mupress is employed in this paper. A gene mutation mupress 
probability is assigned to each member in the new population. 

2.3.3. Evaluation procedure 
Once the optimal weights are collected from the optimisation phase. 

Those obtained weights are passed to the predication matrix to obtain 
predications. This predication is then employed to compute validation 
measures named MZ, and ME. Where MZ is the mean of the total dif-
ferences between the actual set and the predication set, while ME is the 
rate of error of each classifier. 

MZ = 1
n
∑k=n

k=1|yk − yk| (12) 

ME =
1
n

∑k=n

k=1
|yk − yk| = 1 − Acc (13)  

3. Experimental results 

In this section, the performance of the proposed model was evaluated 
on two sleep datasets, and it was compared with several state-of-the art 
EEG sleep stages classification models. The proposed model was 
implemented with MATLAB 2021b using Machine learning toolbox, 
Image processing toolbox. We adopted 10-fold cross validation to obtain 
the average results ensuring the effectiveness of experiments. The ratio 
of training, and test sets was set in accordance with the number of 
subjects. The Hamming window with 1-s window size and 50 % overlap 
was chosen as the STFT function. 

3.1. Experimental EEG dataset 

Two open access EEG sleep datasets were used in this paper to 
evaluate the proposed model. The datasets were collected from Physi-
onet Sleep-EDF, and UCD. 

3.1.1 Dataset-1 (Physionet Sleep-EDF): This dataset contains 197 
whole-night PSG recordings [33]. Each PSG recording contains EEG 
(from Pz-Oz and Fpz-Cz channels), submental chin EMG, EOG and event 
marker. The EEG and EOG signals were sampled at 100 Hz. Dataset also 
contains hypnogram files that have sleep patterns corresponding to the 
PSGs. Each 30 s PSG segment was manually scored by an expert ac-
cording to the Rechtschaffen and Kales (R&K) rules [34]. In addition, 
this dataset has two different data subsets, one was recorded from 
healthy people, the other was collected from the people with mild dif-
ficulty falling asleep. Due to some PSGs have many unknown annota-
tions, only 180 whole-night PSGs with three channels (2 EEG and 1 
EOG) were selected, where 143 PSGs from healthy dataset and 37 PSGs 
from unhealthy dataset. 

3.1.2 Dataset-2 (UCD): This dataset was collected by St. Vincent’s 
University Hospital Sleep Disorders Clinic, which contains 25 full 
overnight PSG recordings [35]. The dataset is free publicly available at 
https://archive.physionet.org/physiobank/database/ucddb/. All PSG 
recordings were collected from adult subjects with suspected sleep 
disordered breathing. Each PSG recording consists of 14 channels, 
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mainly including EEG and ECG at 128 Hz, EMG and EOG at 64 Hz. Each 
30-s segment was scored by a sleep expert sleep based on R&K rules. Six 
channels (2 EEG, 2 EOG, 1 EMG and 1 ECG) of all PSGs were selected in 
this study. To balance the amount of each sleep stage, stage N3 and N4 
were combined into stage N3 according to the AASM standard. The final 
task of classification includes five stages (W, N1, N2, N3, R). the amount 
of EEG segments on two datasets is shown in Fig. 4. 

3.2. Ensemble algorithm settings 

In this experiment, the base classifiers that were used to form the 
ensemble classifiers, were chosen carefully. The parameters for the ge-
netic algorithm were selected to obtain the best classification results. We 
used Weka software to implement the proposed ensemble classifiers. 
Table lists the classifiers model used to construct the ensemble model. As 
mentioned before the genetic algorithm was adopted used to choose the 
optimal weights to improve the weighting vote phase. In this paper, five 
basic steps in genetic algorithms were implemented as mentioned in 
section 2.3.2. All parameters were selected carefully based on the ob-
tained results. As a result, the population size was set 200 to initialise the 
population. In the evaluation phase, the basis of error function was 
employed for each class of the dataset. The voting process was carried 
out based on the weights associated with each individual classifier. In 
the selection phase, the deterministic tournament technique was 
selected in this research. In the final phase, the Uniform crossover was 
applied in the reproduction and crossover. The total number of children 
produced from two parents is two, as shown in Fig. 5. 

3.3. Results 

3.3.1. The performance of the proposed model in different colour spaces 
The effects of the use of different combination of sequences of 

channels with different number of radiuses on sleep stages classification 
were investigated. In this experiment, the three channels of the RGB 
space were arranged in different sequences, namely, G-B-R, R-G-B, and 
B-R-G, respectively. Table 1 reports the average of classification accu-
racy in different channel sequences with different scales. The results 
showed that the proposed model MCILBP improved significantly when 
all planes were considerd and R = 3. As a results, the textures features 
extracted from all the planes of all the channel-sequences were adopted 
in our paper to classify EEG sleep stages. 

3.3.2. The effects of combine magnitude information with MCILBP 
To verify the effects of combined magnitude information with the 

textures features MILBP on EEG sleep stages classification, a new 
experiment was conducted in which the effectiveness of magnitude in-
formation on classification accuracy was investigated. In this experi-
ment, the MILBP features with and without, and magnitude information 
were extracted from each EEG segment, and then sent into the proposed 
ensemble classifier. It can be noticed that the accuracy of sleep stages 
classification was significantly improved when the textures features 
were combined with the magnitude information. In addition, we noticed 
that the best results were obtained in the case of R = 3. However, when 
the cascaded descriptor was adopted the classification performance was 
improved by 3 %. Table 2 reports the classification results based on 
different combination of features. 

The reason was that both stage N2 and stage N3 produced similar 
texture features corresponding to sleep spindles, which made them had 
similar features. This was happened more clearly in UCD dataset, which 
means sleep apnea could make EEG characteristics of stage N2 appears 
in stage N3. It also noticed that the classification of stage N1 was 
degraded in Dataset-1 because some samples were misclassified into 
stage W and N2. 

Based on previous studies stage N1 was usually considered as a 
transitional stage between stage W and N2 [5,26], [50]. It produces 
similar alpha rhythm and low amplitude compared with stage W and N2 
which made the classification of stage N1 more complicated [22]. In 
addition, the number of N1 segments in Dataset-1 (12.1 %) is less than 
UCD dataset (16.4 %), resulting in the weak performance in the latter 
dataset. 

3.3.3. Comparisons with classic machine learning models 
To obtain an accurate detection of sleep disorders, and to understand 

the relationship among sleep stages, we need to classify different cate-
gories of sleep-stages. The differentiation between REM and NREM is 
necessary for sleep experts to identify several sleep disorders such as 
catalepsy. In addition, the evaluation of sleep quality is essential to 
identify any abnormality in AW and sleep-stages. In this paper, we 
formed several combinations sleep stages categories as presented in 
Table 3. This type of experiment delivers a fair performance comparison 
among the suggested model and the state-of-the-art methods designed 
for sleep stages classification. 

The classification performance of the proposed ensemble model was 

Fig. 4. The proposed ensemble classifier.  
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evaluated with several machine learning techniques named SVM, 
ensemble algorithms, and KNN. Each algorithm performance was 
assessed using the 10-folds cross-validation metric. In this experiment, 
the EEG data were randomly separated into 10 groups. At each experi-
ment, one set was involved in the testing and remaining sets were used 
in the training, the process was repeated ten times, and all results were 
recorded. Tables 4–8 report the comparisons of all classification results 
of models. 

In the comparisons, the average of classification accuracy, specificity 
and sensitivity were adopted as performance comparison parameters for 
the classifiers. The comparison results showed that the proposed 
ensemble model based on genetic algorithm provided better results as 
than other classification models. It obtained the highest classification 
rates with all five-sleep stages categories. The highest accuracy of 99.98 
% was gained with 2 sleep stages category. The second highest accuracy 
across the sleep stages categories was recorded by the ensemble boosted 
classifier. However, the KNN and SVM recorded the lowest accuracy 
rates. Based on the results, the proposed model based on genetic algo-
rithm scored a high classification rate for all sleep stages compared with 
the classic ensemble classifier. The results demonstrated that the use of 
genetic algorithm to calculate the weights for the classifiers improved 
the performance of the ensemble. 

4. Discussion 

In the current study, we found that a combination of textures fea-
tures, and magnitude information improve EEG sleep stages classifica-
tion by 4 %. In this section, the main findings are summarised as follow:  

1. The performance of the proposed model was evaluated based on two 
EEG channels Pz-Oz, and Fpz-Cz. Table 9 present the classification 
results in terms of accuracy, sensitivity, specificity, and kappa co-
efficients. The textures features and magnitude features were 
extracted from both channels and then they sent to several classifies. 
It was noticed that the proposed model achieved a high performance 
on two EEG channels. The Kappa values of Pz-Oz, and Fpz-Cz were 
0.93, and 0.95 respectively. The obtained results indicated that the 
agreement between manual scoring and the proposed model was 
excellent.  

2. The performance of the proposed model was evaluated in term of 
leave-one-subject-out (LOSO) cross-validation strategy. In this 
experiment, one subject was utilised for the testing phase, while the 
remaining subjects was employed for the training purposes. Table 10 
reports the classification accuracy based on LOSO metric for two 
datasets. The highest values were highlighted in bold. The proposed 
model obtained an accuracy of 0.93.1 % with Dataset-1 (Physionet 
Sleep-EDF), and 0.93.2 with Dataset-2 (UCD) respectively.To assess 
the effectiveness of the proposed model for EEG sleep stages classi-
fication, comparisons were made with other existing sleep classifi-
cation methods. The results of comparisons were presented in 
Table 11. The comparisons were made based on the most common 
performance metrics for sleep stages classification ACC and kappa 
that were used by previous methods. In addition, five and six sleep 
stages classification classes were reported in this table. We can notice 
that the classification accuracy of previous methods for six and five 
sleep stages dropped in the ranges of 61–96 and 71–94 %. The results 
of comparisons indicate that the proposed model can add a mean-
ingful impact in the field of EEG sleep stages analysis. It can be 
implemented in hardware systems to be used in health care units for 
identifying of sleep-related disorders. 

Fig. 5. Confusion matrix of the proposed model.  

Table 1 
The average of classification accuracy of the proposed model with different 
planes and colour channels sequences.  

Plane Y 

Sequences R = 1 R = 2 R = 3 

R-G-B 67.10 %  69.45 %  72.22 % 
G-B-R 61.12 %  70.51 %  71.51 % 
B-R-G 82.2 %  83.7 %  86.19 % 
Sequences Cascaded 84.48 %  85.14 %  86.11 % 
Plane X and Z 
R-G-B 80.12 %  82.67 %  83.21 % 
G-B-R 78 %65  80.37 %  82.72 % 
B-R-G 84.69 %  86.58 %  87.13 % 
Sequences Cascaded 89.32 %  87.27 %  90.15 % 
All planes (Y, Z,X) 
R-G-B 92.12 %  90.59 %  92.82 % 
G-B-R 90.18 %  91.36 %  91.95 % 
B-R-G 93.43 %  93.66 %  94.24 % 
Sequences Cascaded 93.75 %  93.98 %  94.01 %  

Table 2 
Classification accuracy of the proposed model with and without magnitude 
information.  

Features Radius Accuracy Sensitivity  

Textures features 
1  87.13 %  86.16 % 
2  88.11 %  87.80 % 
3  88.27 %  87.99 % 
Cascaded  89.24 %  88.87 %  

Textures features with magnitude 
information 

1  89.87 %  88.76 % 
2  90.12 %  89.90 % 
3  91.65 %  91.98 % 
Cascaded  94.32 %  94.12 % 

. 

Table 3 
Different categories of sleep stages.  

Classification class Sleep stages 

Six sleep stages AW, N1, N2, N3, N4 and REM 
Five sleep stages AW, N1, N2, SWS (N3, N4) and REM 
Four sleep stages AW, SHS (N1, N2), SWS, and REM 
Three sleep stages AW, NREM, and REM 
Two sleep stages AW, and sleep (N1-N4, REM)  
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Table 4 
Six sleep stages identification results of the proposed model compared with several machine learning models.  

Classifier  R = 1 R = 2 R = 3 

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. 

KNN  67.11 %  66.45 %  66.56 %  69.76 %  69.12 %  68.87 %  60.12 %  60.43 %  69.98 % 
SVM  73.3 %  72.12 %  72.02 %  74.87 %  74.31 %  73.89 %  76.32 %  76.23 %  75.92 % 
Ensemble Bagged  78.31 %  78.20 %  78.01 %  80.38 %  79.87 %  79.69 %  82.22 %  81.98 %  82.01 % 
Ensemble Boosted  80.54 %  80.21 %  80.31 %  83.20 %  82.98 %  82.84 %  84.55 %  84.12 %  84.38 % 
The proposed model  93.75 %  93.26 %  92.79 %  93.98 %  93.22 %  93.10 %  94.01  94.00 %  93.99 %  

Table 5 
Five sleep stages identification results of the proposed model compared with several machine learning models.  

Classifier  R = 1 R = 2 R = 3 

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. 

KNN 68.54 % 68.07 % 68.24 % 69.99 % 69.84 % 69.45 % 70.26 % 70.19 % 70.31 % 
SVM 76.54 % 76.13 % 76.11 % 77.32 % 78.78 % 77.10 % 79.42 % 79.01 % 78.99 % 
Ensemble Bagged 80.74 % 80.35 % 80.11 % 81.99 % 81.21 % 81.01 % 83.73 % 83.12 % 82.51 % 
Ensemble Boosted 84.99 % 84.11 % 84.20 % 85.02 % 84.79 % 84.82 % 85.90 % 85.14 % 85.30 % 

The proposed model 94.12 % 93.97 % 93.90 % 94.87 % 94.01 % 94.24 % 95.32 % 95.15 % 94.96 %  

Table 6 
Three sleep stages identification results of the proposed model compared with several machine learning models.  

Classifier  R = 1 R = 2 R = 3 

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. 

KNN  83.94 %  83.67 %  83.74 %  83.89 %  83.74 %  83.65 %  84.86 %  84.79 %  84.35 % 
SVM  86.04 %  85.93 %  86.90 %  87.82 %  87.28 %  87.14 %  88.41 %  87.71 %  88.59 % 
Ensemble Bagged  88.14 %  88.04 %  88.00 %  89.00 %  88.91 %  88.83 %  90.83 %  90.10 %  90.01 % 
Ensemble Boosted  92.39 %  92.31 %  92.21 %  93.42 %  93.09 %  93.02 %  94.60 %  94.34 %  94.41 % 
The proposed model  96.9 %  96.27 %  96.10 %  97.27 %  97.51 %  97.14 %  98.32 %  98.11 %  98.16 %  

Table 7 
Four sleep stages identification results of the proposed model compared with several machine learning models.  

Classifier  R = 1 R = 2 R = 3 

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. 

KNN  71.24 %  71.00 %  71.04 %  72.19 %  72.30 %  72.10 %  73.93 %  73.59 %  73.50 % 
SVM  79.34 %  78.87 %  78.61 %  80.22 %  80.18 %  80.29 %  82.52 %  82.47 %  82.54 % 
Ensemble Bagged  83.24 %  83.00 %  82.98 %  84.40 %  84.01 %  84.32 %  85.08 %  84.99 %  85.00 % 
Ensemble Boosted  86.10 %  85.41 %  55.83 %  87.43 %  87.00 %  87.12 %  88.30 %  88.10 %  88.00 % 
The proposed model  96.72 %  96.31 %  96.75 %  97.27 %  97.14 %  97.01 %  98.12 %  97.97 %  97.99 %  

Table 8 
Two sleep stages identification results of the proposed model compared with several machine learning models.  

Classifier  R = 1 R = 2 R = 3 

Acc. Sen. Spec. Acc. Sen. Spec. Acc. Sen. Spec. 

KNN  90.17 %  90.01 %  90.14 %  91.12 % 9103 %  90.95 %  92.36 %  92.24 %  92.17 % 
SVM  93.24 %  93.10 %  93.30 %  93.99 % 93.68 %  93.60 %  94.72 %  93.81 %  93.39 % 
Ensemble Bagged  94.79 %  94.15 %  94.21 %  96.89 % 96.93 %  96.51 %  96.12 %  95.89 %  96.00 % 
Ensemble Boosted  97.19 %  97.21 %  97.25 %  97.99 % 97.12 %  97.00 %  97.91 %  97.94 %  75.70 % 
The proposed model  98.92 %  98.97 %  98.30 %  98.17 % 98.21 %  98.04 %  99.92 %  99.85 %  99.96 %  

Table 9 
Six sleep stages identification results accuracy based on different EEG signals.  

Classifier Pz-Oz  Fpz_Cz  

Acc. Sen. Spec. kappa Acc. Sen. Spec. kappa 

KNN  67.11 %  66.45 %  66.56 %  0.65  65.17 %  63.91 %  63.02 %  0.62 
SVM  73.30 %  72.12 %  72.02 %  0.70  72.22 %  72.43 %  72.32 %  0.71 
Ensemble Bagged  78.31 %  78.20 %  78.01 %  0.77  77.32 %  77.71 %  77.61 %  0.77 
Ensemble Boosted  80.54 %  80.21 %  80.31 %  0.79  79.21 %  78.00 %  79.14 %  0.78 
The proposed model  93.75 %  93.26 %  92.79 %  0.93  92.41 %  91.19 %  92.01 %  0.92  
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5. Conclusions 

In order to improve the EEG sleep classification accuracy, the MLBP 
model coupled with an ensemble classifier was suggested to classify EEG 
sleep stages. Two EEG channels named Pz-Oz, and Fpz-Cz were used to 
test the effectiveness of the proposed model. Our findings demonstrated 
that the accuracy of sleep stages classification was significantly 
improved when the textures features was combined with the magnitude 
information. The GA algorithm was adopted to select the optimal weight 
for each classifier. The results showed that the genetic algorithm 
improved the classification performance of the ensemble classifier when 
it was used in the weighting calculation. The proposed method shows 
competitive results for two, three, four, five and six sleep class classifi-
cation. Therefore, the proposed method. The proposed automatic sleep 
stages classification model can be implemented in a portable hardware 
model to perform real-time sleep stages classification. 
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Table 10 
Six sleep stages classification accuracy based on LOSO.  

Classifier Dataset-1  Dataset-2   

Acc. F score Acc. F score 

KNN  66.99 %  0.65  65.86  0.65 
SVM  73.10 %  0.72  73.12  0.73 
Ensemble Boosted  77.45 %  0.76  76.98 %  0.75 
Ensemble Bagged  81.01 %  0.80  80.95 %  0.80 
The proposed model  93.21 %  0.92  92.93 %  0.93 %  

Table 11 
Comparisons among the proposed model with previous methods.  

Authors Approach Channels Classification rates 
R&K AASM 

Doroshenkov 
et al., [36] 

Amplitude 
features based 
HMM classifier 

Fpz-Cz, 
Pz-OZ 

ACC: 61.08 
% 

– 

Ebrahimi et al., 
[37] 

Wavelet 
transform 
coupled with 
ANN 

Fpz-Cz, 
Pz-OZ 

– 7 ACC: 1.93 
% 

Hassan et al.,  
[38] 

TQWT with 
random forest 

Pz-Oz ACC: 93.38 
% 

ACC: 95.42 % 

Hassan et al.,  
[39] 

TQWT based on 
Bagging 

Pz-Oz ACC: 92.43 
% 

ACC: 93.69 % 

Hsu et al., [40] Energy features- 
based approach 
coupled with 
ERNN 

Fpz-Cz, 
Pz-OZ 

– ACC: 83.60 % 
Kapp:0.7452 
% 

Liang et al.,  
[41] 

AR model with 
LDA 

Fpz-Cz ACC:76.70 
%  

Zhu et al., [42] Visibility graph 
based SVM 

Fpz-Cz ACC:87.50 
% 
Kappa:0.81 
%  

Berthomier 
et al., [43] 

Fuzzy logic based 
iterative method 
with fuzzy 
classifier 

Fpz-Cz –  ACC:71.2 %  

Ronzhina et al., 
[44] 

Power spectral 
density with LDA 

Pz-OZ ACC:76.70 
%  

Abdulla et al.,  
[45] 

Correlation 
graph-based 
ensemble 
classifier 

Pz-OZ ACC:93 %  

Diykh et al.,  
[46] 

Weighted 
undirected graph- 
based LS-SVM 

Pz-OZ, 
C3-A2 

ACC:95.5  

Diykh et al.,  
[46] 

Structural graph- 
based k-means 

Pz-OZ ACC:92.1  

The proposed 
model 

STFT based 
MILPB with 
ensemble 
classifier 

Pz-OZ ACC:94 % 
Kappa:94 % 

ACC:93 % 
Kappa:93 %  
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