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Abstract

This PhD project reports a new Dissipative Particle Dynamics (DPD) scheme for

numerically investigating the behaviour of complex fluids at the mesoscale. Its

attractive features include (i) the input parameters are directly determined from

the physical fluid properties: the mass density, water compressibility, time-scale

ratio, viscosity and dynamic response; and (ii) the transport coefficients are also

considered as functions of the wavelengths and frequencies of thermal fluctuations

(i.e. generalised hydrodynamics). With its pre-determined input parameters, the

proposed DPD is shown to possess a consistent scaling of thermal fluctuations

and produce similar behaviours of the flow at different levels of coarse-graining.

With its generalised hydrodynamic regime employed, the proposed DPD method

is shown to have the ability to model a viscoelastic fluid using a single set of

particles, and the ability to take into account size effects caused by suspended

objects. Compressibility is also studied, and a simple approach based on the

time-scale ratio is proposed and shown to be effective. Improved results have

been achieved in the simulation of viscometric and non-viscometric flows of simple

(single phase) and complex (multiphase) fluids.
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Chapter 1

Introduction

1 Overview

Fluids exist around us and we can see many different types of fluid flows.

Most of fluid flow problems cannot be simulated in an analytic/exact manner,

and one should rely on numerical methods to obtain their approximate solutions.

The numerical methods can be classified into three groups corresponding to the

following three groups of length scales: macroscale (continuum media, length scale

bigger than 10´4m), mesoscale (length scale ranging from 10´7m to 10´4m) and

microscale/nanoscale (length scale ranging from 10´8m to 10´6m for microscale

and from 10´9m to 10´7m for nanoscale) [Liu and Liu (2016)].

1.1 Macroscale

The behaviour of a fluid system on macroscale can be mathematically de-

scribed by the Navier-Stokes equations which is a well-known model in partial

differential equations (PDEs). Various numerical methods have been developed

to solve the PDEs. Their common features are (i) to reduce the infinite degrees of

freedom of a continuous system to a finite set; and (ii) to convert the PDEs into

sets of algebraic equations, from which a computer solution to the Navier-Stokes
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equation can be obtained.

Based on the criterion of discretisation, numerical methods can be divided into

two groups: Mesh/grid-based methods and meshless methods.

• Mesh/grid-based methods: Typical mesh/grid-based methods include

the finite difference methods (FDMs), finite element methods (FEMs), finite

volume methods (FVMs), boundary element methods (BEMs) and spectral

methods.

˝ FDM is considered to be the simplest and oldest method for solving

differential equations. The original FDM (in one dimension of space)

was originated probably in 1768 [Alik Ismail-Zadeh (2010), Blazek

(2015)], the time of Leibniz and Euler, and was extended to two-

dimensional space by C. Runge in 1908 [Alik Ismail-Zadeh (2010)].

The principle of FDMs is to approximate the derivatives in differen-

tial equations by linear combinations of function values at grid points.

Over time, FDMs have been developed to deal with complex problems

of science and technology (e.g., Özişik et al. (2017), Guo et al. (2018),

Jamelot et al. (2019), Gu et al. (2019), Wang et al. (2020a), Wang

et al. (2020c), Brachet and Croisille (2021), Lindeberg et al. (2021),

Gregor et al. (2021)). Although high-order finite difference schemes

can achieve high resolution and reasonable accuracy on coarse grids,

one is also interested in a reasonable increase of grid points and com-

putational cost, especially for models relative to three dimensions or

non-linear. Nevertheless, FDMs are less flexible to adapt to awkward

geometries because they use regular elements (e.g., cubes, squares,. . . ).

Moreover, they are prone to numerical instability, most notably the

models involving singularities such as turbulence.

˝ FEM was first found in the 1940s with the publications of Hrennikoff
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(1941) and Courant (1943). At first, it was originated for solving prob-

lems in solid mechanics. Then it has been expanded to areas of compu-

tational physics and engineering including CFD. As time goes on, the

FEM has been developed rapidly with strong developments came from

Argyris and Kelsey (1960), Argyris and Scharpf (1969), Argyris and

Scharpf (1969), Zienkiewicz and Taylor (2000a), Zienkiewicz and Tay-

lor (2000b), Zienkiewicz and Taylor (2000c), Zienkiewicz et al. (2013),

Zienkiewicz et al. (2014).

In contrast to approximate differentials in FDMs, the FEM is based

on the weak form of differential equations, i.e. it investigates the in-

tegral of differential equations. The basic principle of the FEM is to

divide the global domain into individual small patches, called finite

elements, and then locally approximate the weak form of differential

equations within the boundary of each patch; the global solution is

finally obtained by stitching the individual solutions on these patches

back together. The meanings of subdividing the global region are to

(i) accurately represent complex geometry, (ii) include dissimilar prop-

erties, (iii) easily represent the total solution, and (iv) capture local

effects. The advantages featured of FEMs are flexible to adapt to ar-

bitrarily shaped regions, to utilise structured or unstructured meshes,

and deal with a large class of differential equations. Consequently, it

is widely applicable in solving differential equations [e.g., Reddy and

Gartling (2010), Zienkiewicz et al. (2013), Zienkiewicz et al. (2014),

Rao (2018), Gibson et al. (2019),Lu et al. (2020), Schröder and de Mat-

tos Pimenta (2020), Mulligan et al. (2020)].

˝ Spectral methods have been utilized since the late 1960s and early

1970s [Deville et al. (2002)], and proposed for applications in practi-
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cal flow simulations due to their high order of accuracy [Gottlieb and

Orszag (1977), Canuto et al. (1988), Deville et al. (2002), Ma et al.

(2021)]. These methods are global, because the value of a derivative at

a given point in space depends not only on the solution at neighbouring

points, but also on the solution from the entire domain. Their basic

concept is to expand the flow solution as coefficients for ansatz/trial

functions, take the exact derivative of these functions, and then trun-

cate to a finite set of ansatz functions/coefficients. The coefficients

corresponding to ansatz functions are considered as a spectrum of the

solution. Although spectral methods usually have a very high order

of accuracy on ground of their global nature, they are geometrically

less flexible and more complicated than other methods. In addition,

the spectral representation of the solution containing non-smooth gra-

dients (e.g. problems relative to shocks or discontinuities) is tough.

Spectral methods are therefore adapted and efficient for the problems

in simple geometries.

˝ BEM emerged in the late 1970s [Cheng and Cheng (2005)]. The first

conference on BEM at Southampton University in 1978 marked the

birth of BEM [Brebbia (2017)]. It is estimated as a robust technique

with outstanding features versus FEM such as (i) dimensionality re-

duction making coding easier, (ii) dealing with moving boundaries in

the elegant way with better accuracy, and (iii) taking account of infi-

nite domains without the need of artificial boundaries. BEM has been

successfully undertaking since 1978 and reached a real state of ma-

turity until now with resolving large structural problems oriented to-

wards industrial applications [Brebbia et al. (1984),Brebbia and Wro-

bel (1992), Brebbia and Katsikadelis (2006), Brebbia et al. (2007),
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Kirkup (2007), Brebbia and Skerget (2008), Brebbia (2010), Brebbia

and Popov (2011), Brebbia and Poljak (2012), Telles (2012), Gwinner

and Stephan (2018), Beer et al. (2020)].

˝ FVM was first known in the 1970s with works of Rizzi (1976) and

Jameson and Caughey (1977). It is especially proposed for the differ-

ential equations arising from physical conservation laws and principally

used in CFD. The basic concept of the FVM is to subdivide the whole

domain into smaller and simpler mesh elements called control volumes,

then integrate these volume elements. Based on the divergence the-

orem, these volume integrals are converted to surface integrals, and

they are investigated as fluxes at the surfaces of each control volume.

A notable point in FVMs is local conservation because the flux from a

given volume element to its neighbour is identical. Similar to FEMs,

the FVM is also flexible to adapt to arbitrary geometries and use struc-

tured or unstructured meshes. Because of its attractive properties, the

FVM is also widely applicable [e.g., LeVeque (2002), Petrova (2012),

Vázquez-Cendón (2015), Kempe and Hantsch (2017), Liu et al. (2019),

Terekhov and Vassilevski (2019), Kitamura (2020)].

Although these methods have been widely employed to model engineering

problems in complex geometries, they require extensive meshing and com-

plexity in discretization and programming.

• Meshless methods: Meshless methods belong to the class of techniques

for dealing with boundary/initial value partial differential equations where

discretization is principally based on nodes or particles. The meshless

method was marked by the emergence of Smooth-particle Hydrodynamics

(SPH) in 1977. There are several meshless methods such as kernel meth-
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ods, moving least square method, Petrov-Galerkin, Radial Basis Functions

(RBFs), Smooth-particle Hydrodynamics (SPH). The methods featured in

this class are Radial Basis Functions (RBFs), Smooth-particle Hydrody-

namics (SPH). The meshless method is considered a particularly attractive

method by virtue of no numerical integration, no domain or surface dis-

cretization, and ease in programming.

However, it is the fact that the macroscopic methods could not model the statics

and dynamics of the fluid system at length and time scales, where the effect of

Brownian motions takes place, and thus do not have the ability to capture the

microstructure of the complex fluids.

1.2 Microscale/Nanoscale

The behaviour of a fluid system on these length scales can be mathematically

described by Newton’s equations of motion in classical theory. Two groups of

methods developed for solving such systems are Monte Carlo (MC) and Molecular

Dynamics (MD).

• MC method was modified by Metropolis et al. (1953) to simulate the

interaction of individual molecules. MC method utilises a certain stochas-

tic law to track microscopic states, and thus it is inapplicable to dynamic

systems dependent on time, only applicable to thermodynamic equilibrium

phenomena [Satoh (2010)]. As time passes, however, the MC method has

been developed to apply to science and engineering [Binder et al. (1995),

Mordechai (2011), Seco and Verhaegen (2013), Mazhdrakov et al. (2018),

Morin (2019), Bidokhti (2019), Barbu and Zhu (2020), Sowers et al. (2020)].

• MD method was first originated in the late 1950s to study the interactions

of hard spheres with the publications of Alder and Wainwright (1957) and
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Alder and Wainwright (1959). Rahman (1964) marked a major advance of

MD method by utilising a realistic potential in simulating molecular dy-

namics in liquid argon. The first application of MD method to simulate

a realistic system, liquid water, was publicised by Stillinger and Rahman

(1974). And the first protein simulations were done by McCammon et al.

(1977). In contrast to MC methods, the movement of particles in MD sim-

ulations is tracked by Newton’s equations of motion, therefore it is suitable

for both thermodynamic equilibrium and nonequilibrium phenomena. Al-

though MD has evolved and expanded to be broadly applicable to physical

chemistry, biology, geology, condensed matter physics and materials science,

it requires an extremely large number of particles to obtain collective be-

haviour [Hernández (2008), Luckhurst and Veracini (2012), Wang (2012),

Ciccotti et al. (2014), Ganesan et al. (2017), Vakhrushev (2018), Venable

et al. (2019), Bedrov et al. (2019), Kamberaj (2020), Habasaki (2020), De-

ganutti et al. (2020), Galvin et al. (2021), Huang et al. (2021), Separdar

et al. (2021), Kabedev et al. (2021)].

However, when investigating the fluid system at the mesoscopic and macroscopic

length scales, their computational costs increase considerably since a huge number

of time steps are required.

1.3 Mesoscale

There have been several numerical methods developed for simulation of meso-

scopic problems. They include the Dissipative Particle Dynamics (DPD) [e.g.

Hoogerbrugge and Koelman (1992), Koelman and Hoogerbrugge (1993), Español

(1995), Español and Warren (1995)], smoothed Dissipative Particle Dynamics

(SDPD) [e.g. Español and Revenga (2003)] and Lattice Boltzmann method

(LBM) [e.g. McNamara and Zanetti (1988), Higuera and Jiménez (1989), Ladd
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(1994)].

In LBM, the governing equations are derived from the Boltzmann kinetic equa-

tions. The method was originated to solve complex fluid systems, where several

difficulties of macroscopic approaches are overcome. LBM has been applied suc-

cessfully to many important applications such as the flow through porous media

[e.g. Spaid and Phelan (1997), Yamamoto and Takada (2006), Doormaal and

Pharoah (2009), Rong et al. (2011)], boiling dynamics [e.g. Yang et al. (2000)],

dendrite formation [e.g. Ludwig et al. (2014), Sun et al. (2016)], suspensions

[Sivadasan et al. (2019)], etc.

In DPD, one only needs to solve Newton’s equations of motion, which is in con-

trast to continuum methods, where a set of PDEs are considered and to LBM,

where the kinetic equations are considered. It is shown that DPD conserves mass

and momentum. The method satisfies the Navier-Stokes equation in the mean

and can thus be considered as a particle-based simulation scheme for macroscale

fluid problems. An attractive feature of DPD is that the method can be extended

to simulate complex-structure fluids in a straightforward way by constraining

subsets of DPD particles in the system. The Newtonian fluid is made “complex”

(i.e. non-Newtonian) by simply adding extra interactions between the DPD parti-

cles. By modifying the conservative interactions between the DPD particles, one

can easily construct polymers, colloids, amphiphiles, mixtures, etc. For exam-

ple, polymer chains are represented by connecting some fluid particles by some

connector force laws (e.g. the FENE (Finitely Extendable Non-linear Elastic)

dumbbell and the worm-like chain) [Fan et al. (2006)]. This will allow one to

model any particular form of the suspension. There have been many success-

ful applications of DPD, in monodispersed Newtonian suspensions [Boek et al.

(1997),Pan et al. (2010b)], in polymer solutions [Fan et al. (2006)], in immiscible

binary liquid mixtures [Novik and Coveney (1997)]; this list is not meant to be
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exhaustive.

In SDPD, the formulation is derived from the Navier-Stokes equation (continuum

mechanics equation) with the inclusion of thermal fluctuations. It is shown that

SDPD has a consistent scaling of thermal fluctuations. When applied to macro

fluid systems, like traditional methods, it possesses the property of mesh conver-

gence. It can be seen that an SDPD solution to a mesoscopic problem is thus

constructed from the top-down approach. On the other hand, DPD is a bottom-

up approach, where the formulation is derived from Molecular Dynamics (MD).

DPD is the only technique that does not require a-priori constitutive knowledge of

the fluid, The constitutive framework is fully specified in the microstructure that

goes into the description of the DPD model (the relevant constitutive law will

result from the fuid description). This opens a new way to build up constitutive

equations relating stress to rate of strain for complex suspensions, complement-

ing traditional approaches of theories and experiments. DPD is the technique

adopted in this study.

2 Research gap and motivation

An attractive feature of DPD over other mesoscopic simulation methods lies

in its algorithmic simplicity. However, the original DPD suffers some drawbacks

related to (i) equation of state, (ii) no formal way of deriving DPD from an

atomistic system for simple fluids (unbonded atoms), (iii) energy equation, (iv)

issues of thermal fluctuation scaling, and (v) specification of physical properties

of fluids.

While there are many computational fluid dynamics schemes, there are problems

for which existing methods are inadequate. In particular, these include the prob-

lems presented by suspensions of rigid particles in a fluid medium.

The main purposes of this research project we are aiming for are (i) to develop
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a physical version of DPD to address issues of thermal fluctuation scaling and

specification of physical properties of a model fluid, (ii) to extend DPD to its

generalised hydrodynamics, and (iii) to produce improved results in analysis of

complex fluids at the mesoscale.

3 Objectives of the thesis

The main objectives of the research are

• to express the original DPD input parameters as functions of the macro-

scopic properties of a model fluid,

• to examine the effect of the coarse-graining level on the behaviour of the

single-phase and multi-phase systems,

• to examine the scaling of thermal fluctuations,

• to propose a new mechanism of promoting incompressibility,

• to express the transport coefficients as functions of the wavelengths and

frequencies of thermal fluctuations (generalised hydrodynamics),

• to build up a mesoscopic computational model for multiphase fluids, where

the suspending fluid phase and suspended solids are all represented by

means of particles with appropriate interactions,

• to explore the possibility of using a single set of DPD particles to model a

linear viscoelastic fluid,

• to study particulate suspensions in the generalised hydrodynamic regime,

and the effect of the suspended object’s size and the repulsion force’s strength

on the suspension viscosity.
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4 Outline of the thesis

The thesis is made up of six chapters.

In Chapter 2, a review of the modelling of complex-structure materials such as

particulate suspensions, and a review of the standard DPD formulation and its

applications to complex fluids are given.

In Chapter 3, a physical version of DPD is presented. In this version, the in-

put parameters are directly determined from the (physical) fluid properties such

as mass density, compressibility and viscosity. It is shown that the method can

achieve a consistent scaling of thermal fluctuations and produce similar flow be-

haviours at different coarse-graining levels.

In Chapter 4, DPD is developed to work on its generalised hydrodynamics. The

transport properties are considered as functions of length and time scales. It is

shown that a single set of DPD particles can be used to model a linear viscoelastic

fluid. The effect of the length scale is studied by employing transverse current

auto-correlation functions (TCAF) and the effect of the time scale is studied by

using analytic expressions of the shear stress in a simple small amplitude oscilla-

tory shear flow.

In Chapter 5, the proposed method is applied to simulate particulate suspensions.

The spring model is utilised to model suspended spheres in 3D and cylinders in

2D. The viscosity estimation of the suspending/solvent phase is conducted taking

into account size effects due to the presence of suspended objects. The effect of

repulsive forces on the suspension viscosity is also studied.

In Chapter 6, conclusion remarks and future work are given.
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Chapter 2

DPD for Particulate Suspensions

1 Particulate suspensions

1.1 Introduction

Suspensions, which are formed by rigid particles, droplets or gaseous bubbles

suspended in a liquid, occur widely in nature and man-made products [Met-

zner (1985),Mewis and Wagner (2012),Phan-Thien and Mai-Duy (2017),Tanner

(2000)]. Typical examples include foodstuffs, paints, blood, fluidised beds and

bubble columns. The size of the suspended particles is an important consid-

eration; when the particles are sufficiently small (typically À 10µmq, they will

undergo their Brownian motions, and one speaks of a colloidal suspension - oth-

erwise, one has a non-colloidal suspension. In modelling suspensions, one usually

starts with a Newtonian suspension of uniformly-sized suspended particles – a

monodispersed Newtonian suspension; otherwise, one has a polydispersed sus-

pension. In this project, by suspension, we restrict our focus to a suspension

of rigid particles. Droplet and bubble suspensions will not be considered. The

suspending liquid is Newtonian; the suspended particles are of spherical shape

in 3 dimensions and of cylindrical shape in 2 dimensions. In flows, suspensions
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behave in a non-Newtonian manner by virtue of their evolving microstructure

(spatial arrangement of rigid particles, which is flow dependent). Typically, sus-

pensions are characterised by the following properties [Phan-Thien and Mai-Duy

(2017),Tanner (2000)]:

• a shear-rate dependent and highly concentration-dependent viscosity;

• non-zero normal stress differences - Investigations suggest that while the

second normal stress difference, N2, is negative at all shear rates, the first

normal stress difference, N1, is positive at low shear rates and high con-

centrations, and negative at high shear rates [Foss and Brady (2000)], and

they are highly dependent on the nature of the solvent [Mall-Gleissle et al.

(2002)];

• migration of particles from high to low shear region in an inhomogeneous

shear flow.

The understanding of these issues is vital in the design and control of industrial

particulate-flow processes. They have been extensively investigated theoretically,

experimentally and numerically.

1.2 Numerical modelling of particulate suspensions

Computer simulations have emerged as a powerful tool to provide insight into

the dynamics of suspensions, which complement experiments and analytical the-

ories. Numerical techniques used can be classiffied into two groups. In the first

group, hydrodynamic interactions are governed by the linearised Navier-Stokes

equations in the limit of zero particles inertia. Analytic solutions of the Stokes

flow around one and two interacting spheres are available; one can construct a

grand resistance matrix, which relates the force/torque exerted by the fluid on

the particles to the particle velocities. The simulation methods are known as
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Stokesian Dynamics (SD) [Bossis and Brady (1984)]. An accelerated version of

SD required only OpNlogNq operations, where N is the number of spheres. On

the other hand, SD methods encounter difficulties to model particles of arbitrary

shape, non-zero particle Reynolds number, non-Newtonian suspending liquid,

non-periodic boundary conditions, etc. In the second group, the suspending liq-

uid is modelled explicitly. Hydrodynamic interactions are taken into account by

solving the full set of hydrodynamic equations, and thus some of the difficulties

associated with SD are eliminated. This group includes grid/mesh-based meth-

ods: the boundary-fitted mesh methods [Hu (1996)], fictitious domain methods

[Glowinski et al. (2001)], etc., and particle-based methods: the smoothed parti-

cle hydrodynamics (SPH) [Ellero and Tanner (2005)], lattice Boltzmann methods

[Ladd (1994)], dissipative particles dynamics (DPD) [Hoogerbrugge and Koelman

(1992),Marsh (1998)], smooth dissipative particles dynamics (SDPD) [Español

and Revenga (2003)], etc. For the former, there are grids/meshes involved and

the resultant algebraic equations need be solved simultaneously. For the latter,

the positions and velocities of the particles can be advanced individually, which

facilitates large-scale simulations. DPD is the only technique that does not require

a-priori constitutive knowledge of the fluid, and there have been many success-

ful applications of DPD, in monodispersed Newtonian suspensions [Boek et al.

(1997),Pan et al. (2010b)], in polymer solutions [Fan et al. (2006)], in immiscible

binary liquid mixtures [Novik and Coveney (1997)]; this list is not meant to be

exhaustive. DPD is the technique adopted in this study.
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2 Review of DPD

2.1 Brief introduction

Dissipative Particle Dynamics (DPD), originally proposed by Hoogerbrugge

and Koelman (1992) as a mesoscopic simulation technique for complex fluid sys-

tems, has received considerable attention in the last two decades. It is con-

sidered as an improvement over conventional Molecular Dynamics (MD) [Allen

and Tildesley (1987), Rapaport (2004), Satoh (2010)] and Lattice-Gas Automata

(LGA) [Frisch et al. (1986)]. Although MD method can be utilised to simulate

some interesting physical phenomena [Dzwinel et al. (1995), Herrmann (1999)],

it requires an extremely large number of particles to obtain collective behaviour.

Another popular particle-based method is Brownian Dynamics Simulation (BDS)

(e.g., Fan et al. (1999)). However, BDS conserves particles (mass), but not mo-

mentum. In DPD, each particle represents a group of fluid molecules. DPD

particles interact through a soft potential and thus the simulation can be carried

out on length and time scales far beyond those of Molecular Dynamics. Hydrody-

namic interactions are accounted for by employing velocity-dependent dissipative

forces. DPD particles are not supposed to represent faithfully the original fluid

volume; rather, they are a model of the fluid behaviour (viscous, or otherwise

dictated by the specification of the microstructure connectivity).

It should be pointed out that ensemble-average quantities formed from the DPD

particle configurations and velocities satisfy the conservation of mass and momen-

tum [Español and Warren (1995), Phan-Thien and Mai-Duy (2017)], and thus the

method is qualified as a particle-based method for solving continuum problems.

Objects suspended in the fluid can also be represented by DPD particles with

appropriate forms of interactions. These features make the DPD method (and

its variants) very attractive in the modelling of complex fluid systems. On the
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other hand, a DPD fluid is compressible in nature and has a slow dynamic re-

sponse. The employment of small masses of particles was proposed to achieve low

Reynolds numbers, higher sonic speeds (more incompressible) and higher Schmidt

numbers (faster response) [Mai-Duy et al. (2013)]. This comes at the expense of

solving stiff stochastic differential equations. DPD and its variants have been

utilised successfully in the simulation of various classes of complex fluids, for ex-

amples, fluid mixtures [Novik and Coveney (1997), Laradji and Hore (2004), Liu

et al. (2007)], flexible filament in biology [Anand et al. (2017)], polymer [Kong

et al. (1997), Jiang et al. (2007), Nikunen et al. (2007), Litvinov et al. (2008),

Zhou et al. (2017), Kobayashi and Arai (2018), Minkara et al. (2019), Zhang et al.

(2020), Sengupta and Lyulin (2020)], red blood cell modelling [Pan et al. (2010a),

Ye et al. (2013)], colloidal suspensions [Koelman and Hoogerbrugge (1993), Boek

et al. (1997), Chen et al. (2006), Pan et al. (2010b), Bian et al. (2012), Phan-

Thien et al. (2014a), Jamali et al. (2015), Wang et al. (2020b)], electric field

[Deng et al. (2016), Gavrilov et al. (2016), Tran et al. (2019), Vaiwala et al.

(2019), Waheed et al. (2020), Gavrilov (2020)], RDX decomposition [Ĺısal et al.

(2019)], drug delivery applications [Yu et al. (2018), Catala (2019), Feng et al.

(2020)], colloidal gels [Jamali et al. (2017), Boromand et al. (2017), Chen and

Yong (2018), Song et al. (2018), Jamali et al. (2019), Palkar et al. (2020), Wang

et al. (2020d), Lenzi et al. (2020)], surfactant systems [Panoukidou et al. (2019),

Lavagnini et al. (2020)], etc.
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2.2 Formulation

2.2.1 DPD equation

In the dissipative particle dynamics (DPD) [Marsh (1998)], the fluid is mod-

elled by a system of particles undergoing their Newton 2nd law motions

mi:ri “ mi 9vi “
N
ÿ

j“1,j‰i

pFij,C ` Fij,D ` Fij,Rq ` Fi,e, (2.1)

where mi, ri and vi represent respectively the mass, position and velocity vectors

of a particle i, i “ 1, N ; N is the total number of particles, the superposed

dot denotes a time derivative, and Fi,e is an external force on particle i. An

example of the external force is gravity (body force), which is used to simulate

the effect of a pressure gradient. The first three forces on the right side represent

the conservative (subscript C), the dissipative (subscript D) and the random

(subscript R) forces

Fij,C “ aijwCeij, (2.2)

Fij,D “ ´γwD peij ¨ vijq eij, (2.3)

Fij,R “ σwRθijeij, (2.4)

in which aij, γ and σ are the amplitudes; wC , wD and wR the weighting functions,

with eij “ rij{rij the unit vector from particle j to particle i (rij “ ri ´ rj,

rij “ |rij|), vij “ vi ´ vj the relative velocity vector and a Gaussian white noise

θijptq “ θjiptq with stochastic properties as follows

xθijptqy “ 0 , xθikptqθjlpt
1
qy “ pδijδkl ` δilδjkqδpt´ t

1
q , i ‰ k , j ‰ l.

The three interaction forces are pairwise, center-to-center, and zero outside a cut-

off radius. The conservative force derived from a soft potential is used to model
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local thermodynamics (i.e., equation of state). The dissipative/drag/friction force

depending on the velocity difference between particles depicts the viscous resis-

tance in the real fluids. The random/stochastic force describes the Brownian-like,

fluctuating character of molecules, helps to maintain the temperature of the sys-

tem and implements a viscous effect. Besides, the combination of dissipative and

random forces assumes two main tasks: (1) to create a DPD thermostat in order

for the system to reach a certain equilibrium, (2) to enable transport properties

(e.g., velocity) to be adjusted without changing the equilibrium thermodynamics.

The random force cannot be chosen independently to the dissipative force if the

specified energy of the system (Boltzmann temperature kBT ) is to be maintained,

which is the essence of the fluctuation-dissipation theorem. According to the

fluctuation-dissipation theorem for the method [Español and Warren (1995)], the

detailed balance constraint is as follows

wR “
?
wD, σ “

a

2γkBT . (2.5)

In the usual way [Groot and Warren (1997), Fan et al. (2006), Phan-Thien and

Mai-Duy (2017)], the weighting functions are of the form

wCprijq “ 1´
rij
rc
, (2.6)

wDprijq “

ˆ

1´
rij
rc

˙s

, (2.7)

where s is a positive value (s “ 2 for standard value and s “ 1{2 for modified

value) and rc the force cut-off radius beyond which the weighting function van-

ishes.

In general, any modification of the input DPD parameters can result in a change

in the physical properties (e.g. viscosity) of the model fluid. In particular, by

changing n while keeping all the other variables unchanged, the resultant DPD
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systems represent different fluids, which makes the characteristic study of DPD

(e.g. the scaling of the thermal fluctuations) difficult.

It is noted that for a particle, apart from the velocities, its diffusivity and its

exclusion zone are also important properties. Below are formulas that can be

used to measure the size and average travel distance of a DPD particle.

The effective size of the solvent particles (and also for the suspended particles)

can be estimated using the radial distribution function (RDF) defined as Reichl

(2016),

gprq “
1

N{A

s

2πr∆r
(for 2D) , (2.8)

gprq “
1

N{V

s

4πr2∆r
(for 3D) , (2.9)

where A{V is the area/volume of the domain containing N particles, s is the num-

ber of particles in a circular/spherical shell of width pr´∆rq Ñ r at a distance r

from the centre of the particle. The function states that there is no neighbouring

particle at the distance r if gprq “ 0 and vice-versa. It is expected that (i) function

gprq approaches zero as the distance q is reduced, and (ii) the value of r, where

gprq approaches zero, for the colloidal particle is larger than that for the solvent

particle. The RDF has a direct physical interpretation for spherical particles only.

Remarks: (i) cut-off radius of conservative force and dissipative force can be

different; (ii) weighting function of conservative and dissipative forces also can be

different.
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2.2.2 Conservative properties

Based on the system state (positions and velocities of DPD particles), one can

define the local fluid density as follows

ρpr, tq “

C

ÿ

i

mδpr´ riq

G

“ mnpr, tq ,

where npr, tq is the number density, x...y is an ensemble average.

The local linear momentum are calculated by

ρpr, tqupr, tq “

C

ÿ

j

mvjδpr´ rjq

G

.

These quantities have been shown to satisfy conservation laws (Español (1995),

Marsh et al. (1997), Phan-Thien and Mai-Duy (2017))

B

Bt
ρpr, tq `∇ ¨ pρpr, tqupr, tqq “ 0 , ∇ “

B

Br
, (2.10)

and

B

Bt
pρuq `∇ ¨ pρuuq “ ∇ ¨ S . (2.11)

Hence, DPD can be considered as a particle-based method for solving contin-

uum flow problems (2.10)-(2.11), a bottom up approach to solve Navier-Stokes

equations..

2.2.3 Calculation of stress tensor

The flow domain is divided into grids and local data are collected in each bin.

The flow properties (e.g. number density, fluid density and linear momentum)

are calculated by averaging over all sampled data in each bin. The stress tensor

is calculated according to the expression of Irving and Kirkwood (1950) [Phan-
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Thien and Mai-Duy (2017)]

S “ ´
1

V

«

ÿ

i

mViVi `
1

2

ÿ

i

ÿ

j‰i

rijFij

ff

“ ´n

ˆ

xmVVy `
1

2
xrFy

˙

, (2.12)

where Vi “ vi ´ uprq is the peculiar velocity of particle i (i.e. the fluctuation

velocity of particle i with respect to the mean field velocity), V is the volume of

bin. The first term on the right side of (2.12) denotes the contribution to the

stress from the momentum (kinetic) transfer of DPD particles and the second

term from the interparticle forces.

The constitutive pressure is determined from the trace of the stress tensor

p “ ´
1

3
trS . (2.13)

2.2.4 Time scales

There are three time scales in the stochastic differential equation (2.1) [Phan-

Thien and Mai-Duy (2017)]:

• a fluctuation time scale τR of the random force, which is arbitrarily small,

• an inertia time scale τI “ O pmγ´1q,

• and a relaxation time scale τ “ O pγH´1q, where H is the stiffness of the

system, H “ Op|BrFC |q “ O paijr
´1
c q.

2.2.5 Input parameters for the original DPD

According to the virial theorem [Irving and Kirkwood (1950)], the pressure is

computed as

p “
ρ

m
kBT `

1

2d

´ ρ

m

¯2
ż

rFC
ij prqgprq dr “ nkBT `

n2

2d

ż

rFC
ij prqgprq dr , (2.14)
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where gprq is RDF, ρ “ mn mass density, m mass of a DPD particle, n number

density, d the flow dimensionality. For simplicity, we take gprq “ 1 corresponding

to an infinite number of DPD particles.

For case of 2D,

p “ nkBT `
π

2
aijn

2

ż

r2wCprq dr . (2.15)

For case of 3D,

p “ nkBT `
2π

3
aijn

2

ż

r3wCprq dr . (2.16)

Based on the Weeks-Chandler-Anderson perturbation theory of liquids, the isother-

mal compressibility can be represented through the dimensionless parameter as

follows

κ´1
“

1

nkBTκT
“

1

kBT

ˆ

Bp

Bn

˙

T

, (2.17)

where κT is the usual isothermal compressibility.

For water at room temperature (300K), the value of the dimensionless compress-

ibility is κ´1 « 15.9835. With wC is given as (2.6), from (2.15) and (2.17) yields

aij «
57.23kBT

nr3
c

for 2D , (2.18)

and

aij «
72kBT

nr4
c

for 3D . (2.19)

For 3D, Groot and Warren (1997) recommended

aij «
75kBT

nr4
c

. (2.20)

In simulation, the DPD input parameters include s, aij, σ, kBT , m, rc and the

particle density n. A standard choice for σ is 3, i.e. γ “ 4.5.

In practice, equations of motion (2.1) are solved with their quantities in reduced

units; one can take, for example, m “ 1, rc “ 1 and kBT “ 1. In this way,
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equations of motion (2.1) are dimensionless.

2.2.6 Block diagram for the DPD simulation

Procedure of a standard DPD simulation is detailed in Fig.2.1, where ”Ther-

modynamic equilibrium” is process for the system to reach equilibrium before

collecting data, and ”Flow simulation” is period of collecting data.

Figure 2.1: Computational processing of a DPD simulation.

2.3 Numerical modelling of particulate suspensions

In the context of DPD, a suspended particle can be modeled in three ways:

frozen DPD particles[Koelman and Hoogerbrugge (1993), Boek et al. (1997),

Martys (2005), Chen et al. (2006)], single DPD particle [Dzwinel and Yuen (2000),

Pryamitsyn and Ganesan (2005), Pan et al. (2008), Pan et al. (2010b), Whittle

and Travis (2010), Groot (2012), Mai-Duy et al. (2013)], or spring model [Phan-

Thien et al. (2014a)]. Each scheme has particular disadvantages and advantages.
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2.3.1 Frozen DPD particles based model

The concept of the frozen-particle model is to represent a suspended particle

by a subset of the same DPD particles, but they remain at a fixed relative posi-

tion and interact with other particles. The velocity and position of a suspended

particle is derived from the sums of forces and torques acting on it. The featured

strength of this model resides in the capacity to model an arbitrary shape and

size suspended particle. Nevertheless, due to the frozen characteristic of the con-

stituent particles, the dissipative forces between themselves vanish, and it is tough

to sustain a specified constant temperature (specific kinetic energy) throughout

the simulation domain. In addition, it requires a significant number (a few hun-

dreds) of basic DPD particles to model a spherical particle [Martys (2005), Chen

et al. (2006)], and thus the computational effort increases considerably and the

difference in mass density between solvent and suspended phases is too large.

2.3.2 Single-paricle based model

The single-particle model is more simple than the frozen-particle because it

uses a single DPD particle to represent a suspended particle, and thus updating

velocity and position is based on its DPD equations and the computational ex-

pense do not increase considerably. However, the model has drawbacks such as

(i) the interaction between particles is classified into three types: solvent-solvent

(S-S), solvent-colloidal (S-C), and colloidal-colloidal (C-C); (ii) it requires more

effort in adjusting parameters between the forms of interactions; (iii) the model

is restricted to spherical (3D) and circular (2D) suspended particles; and (iv) it

is tough to model the mass density of suspended phase in physics.
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2.3.3 Spring model for suspended particles in DPD

For the spring model, only a few basic DPD particles are utilised to construct a

suspended particle. It is propsed to retrict the shortcomings of the frozen particle

models (e.g. large systems, tough in maintaining the temperature of system), and

the single particle models (e.g. complex interactions, spherical/circular shape

limitations). Moreover, it has the ability to address issues related to number

density and volume fraction.

Consider the kth suspended particle represented by a few basic DPD particles,

associated with the reference sites (on that colloidal particle) by linear springs of

very large stiffness (e.g., Fig. 2.2). The suspended particles move as a rigid body

Figure 2.2: A solid particle can be modeled by four constituent particles which
are basic DPD particles. The reference sites are supposed to move as a solid
body.

motion according to their Newton-Euler equations, using data from the previous

time step,

Mk
c

dVk
c

dt
“ Fk

ptq , (2.21)

Ik
dωk

dt
“ Tk

ptq ` ωk ˆ Lk (2.22)
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where Mk
c , Vk

c , Ik, Lk and ωk are the total mass, centre-of-mass velocity, mo-

ment of inertia tensor, angular momentum and angular velocity of the kth sus-

pended particle, respectively. The total mass of the kth suspended particle

Mk
c “

ncp
ÿ

i“1

`

mk
i ` m̄

k
i

˘

, in which mk
i is the mass of constituent particle i, m̄k

i the

mass of reference site i.

The net force Fk and torque Tk (also moment or moment of force) on the kth

colloidal particle are expressed as

Fk
ptq “

ncp
ÿ

i“1

N
ÿ

j“1,j‰i

“

Fk
ij,Cptq ` Fk

ij,Dptq ` Fk
ij,Rptq

‰

, (2.23)

Tk
ptq “

ncp
ÿ

i“1

`

rki ptq ´Rk
c ptq

˘

ˆ

N
ÿ

j“1,j‰i

“

Fk
ij,Cptq ` Fk

ij,Dptq ` Fk
ij,Rptq

‰

, (2.24)

where ncp is the number of constituent particles of the kth colloidal particle;

N “ N s ` N c is the total number of DPD particles, including the number of

solvent particles N s and constituent particles N c; Rk
c is the center of mass of the

kth colloidal particle

Rk
c “

1

Mk
c

ncp
ÿ

i“1

`

mk
i r
k
i ` m̄

k
i r̄
k
i

˘

. (2.25)

The reference sites are advanced according to

dr̄ki
dt
“ Vk

c ` ω
k
ˆ
`

r̄ki ´Rk
c

˘

, i “ 1, ncp . (2.26)

Updating the information for the constituent particles is performed similarly to

the solvent particles, where the total force on the constituent particle is

Fk
i ptq “

N
ÿ

j“1,j‰i

“

Fk
ij,Cptq ` Fk

ij,Dptq ` Fk
ij,Rptq

‰

` Fk
i,Sptq , (2.27)

with Fk
i,Sptq “ ´H

“

rki ptq ´ r̄ki ptq
‰

being the spring force, H is the stiffness of the

spring.
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Remark: (i) conditions for a spherical suspended particle include the require-

ment that reference sites should be located regularly, (ii) number density of sol-

vent is kept unchanged as the colloidal particles are added.

2.4 Summary and implication for DPDs

There are still many challenges for the DPD, which include (i) equation of

state, (ii) no formal way of deriving DPD from an atomistic system for simple

fluids (unbonded atoms), (iii) energy equation, (iv) issues of thermal fluctuation

scaling, (v) specification of physical properties of fluids, and (vi) boundary con-

ditions.

In this project we have attempted to address the issues related to thermal fluc-

tuation scaling and specification of physical properties of a model fluid. Apart

from those, we have extended DPD to its generalised hydrodynamics, and im-

proved numerical results for the investigation of complex fluids, in particular the

prediction of viscosities of particulate suspensions.
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Chapter 3

Proposed DPD method in the

hydrodynamic limit

In this chapter, a Dissipative Particle Dynamics (DPD) method is employed

with its input parameters directly determined from the (physical) fluid properties

such as the mass density, water compressibility and viscosity. The investigation

of thermal fluctuation scaling requires the fluid properties be constant, and the

physical input version of DPD is shown to meet this requirement. Its numerical

verifications in simple or complex fluids and in viscometric or non-viscometric

flows indicate respectively that (i) the level of thermal fluctuations in the DPD

model for both types of fluids is consistently reduced with increasing coarse-

graining level; and (ii) viscometric or non-viscometric flows of a model fluid at

different coarse-graining levels have a similar behaviour. Furthermore, to reduce

the compressibility effects of the DPD fluid in simulating incompressible flows, a

new simple treatment is presented and shown to be very effective.
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1 Introduction

Dissipative particle dynamics (DPD) is a simulation technique designed for

modelling complex fluids, primarily in the mesoscale domains [Hoogerbrugge and

Koelman (1992), Español and Warren (1995), Español (1995), Marsh (1998)]. In

this scheme, the system is thermally equilibrated through a thermostat formed by

the dissipative and random forces. DPD conserves momentum locally and there-

fore preserves hydrodynamics. The method has been used to simulate various

fluid systems, for example, particulate suspensions [Pan et al. (2010b), Panchenko

et al. (2018), Nie et al. (2019)], microfluidic systems [Li et al. (2013)], red blood

cells [Ye et al. (2014)], thixotropic materials [Le-Cao et al. (2017)], polymer solu-

tions [Kong et al. (1997)], etc. In DPD, the solvent phase is simply modelled by

a set of particles (called DPD particles) under their Newton second law motions,

while the suspended phases (e.g., solid particles, droplets, bubbles and polymer

chains) can all be constructed from the DPD particles through appropriate con-

straints. With its simplicity, there are several issues in the DPD method related

to (i) a fixed equation of state; (ii) no formal way of deriving DPD from an atom-

istic system for simple fluids (unbonded atoms); (iii) energy equation; (iv) issues

of thermal fluctuation scaling; and (v) fluid properties specification [Liu et al.

(2015),Español and Warren (2017),Ellero and Español (2018)]. There have been

many attempts made to improve the standard DPD formulation. For example,

the many-body DPD was introduced in Pagonabarraga and Frenkel [Pagonabar-

raga and Frenkel (2001)] to produce an arbitrary equation of state. To deal with

non-isothermal problems, the energy conserving DPD was developed by Bonet

Avalos and Mackie [Avalos and Mackie (1997)] and Español [Español (1997)] in-

dependently. Mai-Duy et al. [Mai-Duy et al. (2017b),Mai-Duy et al. (2017a)]

made use of analytic expressions from the kinetic theory due to [Marsh (1998)]

(see also [Phan-Thien and Mai-Duy (2017)]) to derive good estimates for the fluid
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viscosity, its compressibility, its time-scale ratio and its dynamic response – these

physical fluid properties can now be specified as input parameters to the DPD

fluid. Note that the viscosity and mass density here are defined in terms of DPD

units which are the mass of a single DPD particle (m), force cut-off radius (rc)

and thermal energy (kBT ).

As a particle-based method, DPD may suffer from the effect of compressibility.

The compressibility of a DPD fluid was investigated in several works. For exam-

ple, in [Kim and Phillips (2004)], it was observed that, due to the compressibility

effect, the DPD prediction of the drag force acting on a sphere is no longer ac-

curate when the Reynolds number is greater than 100. In [van de Meent et al.

(2008)], the coherent structures of the transition to turbulence in compressible

shear flows with DPD was investigated, where the speed of sound in a DPD fluid

is obtained by measuring the speed of propagation of a density pulse. In [Pan

et al. (2013)], two test models were proposed, where both the density and the di-

vergence of the velocity field are considered. It was reported that the condition of

constant density and divergence-free of velocity can be approximately achieved at

large values of the repulsion parameter. In [Phan-Thien et al. (2014b)], reducing

the particles’ mass was shown to be an effective way to induce an incompress-

ible slow viscous flow in a DPD fluid and simultaneously enhance its dynamic

response.

DPD is a coarse-graining technique for the simulation of fluids at the mesoscale,

where hydrodynamics and thermos fluctuations have a role. There was concern

that the process of coarse-graining in DPD has its upper limit that would prevent

the method from widespread use. By taking into account the dependence of the

parameters in the model on the level of coarse-graining, the DPD and the many-

body DPD were shown to be truly mesocopic methods in [Füchslin et al. (2009)]

and [Arienti et al. (2011)], respectively. With the scaling schemes presented in
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[Füchslin et al. (2009),Arienti et al. (2011)], the DPD methods can be applied to

any desired length scale, where different physical systems can share some physical

properties such as compressibility (but not viscosity, to be discussed later).

It should be pointed out that the DPD can be employed in its generalised hy-

drodynamic regime, where the transport coefficients are dependent on the wave-

lengths and frequencies of thermal fluctuations and through which finite-size ef-

fects can be taken into account [Ripoll et al. (2001),Phan-Thien et al. (2018),Mai-

Duy et al. (2020)].

In this chapter, we will examine numerically the “physical input” version of

DPD, and focus on its coarse graining and scaling, and its compressibility. In

the study of thermal fluctuation scaling, the fluid properties (e.g., mass density,

compressibility and viscosity) should remain invariant with respect to the coarse-

graining level. We will show that this requirement can be met by scaling the

original DPD inputs in a way that can make the pre-determined input values

unchanged. It is observed that the thermal fluctuations reduce in magnitude

with higher coarse-graining levels, and the flows of a model fluid at different

coarse-graining levels are demonstrated to have similar behaviours. In our study,

compressibility of the model fluid is also matched to that of water. To reduce

unwanted compressibility effects, a simple way based on the time-scale ratio is

proposed and shown to be very effective.

The remainder of the chapter is organised as follows. A brief review of DPDs

with classical and explicit input parameters is given in Section 2. In section 3,

the coarse graining process is shown to achieve a consistent thermal fluctuation

scaling. Its flow behaviour and some means of reducing unwanted compressibil-

ity effects of the DPD fluid are presented and discussed in sections 4 and 5,

respectively. Section 6 gives some concluding remarks.
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2 DPD with explicit input parameters

One main drawback of the classical DPD formulation is that there is no direct

link between the DPD input parameters and the macroscopic properties of the

fluid. In the DPD adopted here, the fluid viscosity, compressibility, dynamics

response and time-scale ratio can be specified in advance, as discussed in [Mai-

Duy et al. (2017b),Mai-Duy et al. (2017a)]. Expressions for the conservative and

dissipative forces are designed to have two free parameters. For the conservative

force, the two parameters are used to match the time-scale ratio and compress-

ibility. For the dissipative force, they are used to match the fluid density and

dynamic response. When the physical fluid properties can be demonstrated to

remain constant, we can investigate the effects of the number density, thermal

energy and cut-off radius on the flow behaviour.

The weighting functions for the conservative force are chosen as wC “ p1 ´

r{rcq
s̄. From the virial theorem, the equation of state relating the pressure with

the particle number density can be derived as [Mai-Duy et al. (2017a)]

p “ nkBT `
4πaijn

2r4
c

ps̄` 1qps̄` 2qps̄` 3qps̄` 4q
, for 3D space, (3.1)

p “ nkBT `
πaijn

2r3
c

ps̄` 1qps̄` 2qps̄` 3q
, for 2D space. (3.2)

The two free parameters, aij and s̄ in function wC , are designed to satisfy given

values of the time-scale ratio α [Mai-Duy et al. (2017a)] and the isothermal com-

pressibility κ [Groot and Warren (1997),Groot and Rabone (2001),Füchslin et al.

(2009)], according to

α “
τ

τI
“
γ2rc
maij

, (3.3)

κ´1
“

1

kBT

Bp

Bn
, (3.4)
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In (3.3), τ and τI are the relaxation time and inertia time scales of the stochastic

differential equation (2.1), respectively: τ “ O pγH´1q “ O
`

γrca
´1
ij

˘

and τI “

O pmγ´1q, in which H is the stiffness defined as H “ Op|BrFC |q “ O paijr
´1
c q. The

time-scale ratio α can be utilised to keep the dissipative and conservative forces

balanced; its values can be acquired from some numerical experiments in simple

flows, and the best α, according to numerical studies published in Mai-Duy et al.

(2017a), is in the range of 10´1 to 10`1. In (3.4), p is the pressure, n “ nphys{ν

(nphys: the molecular number density and ν: the number of molecules per DPD

particle/the coarse-graining level) and κ “ 1{15.98 for water. The system, (3.3)

and (3.4), can be solved analytically for the two variables aij and s̄, given α and

κ, where

aij “
1

α

γ2rc
m

, (3.5)

and

s̄ “

a

5` 4
?
C ` 1´ 5

2
, C “

8πaijnr
4
c

pκ´1 ´ 1qkBT
, (3.6)

for 3D space,

s̄ “
1

3B
`B ´ 2, B “

˜

C

2
`

c

C2

4
´

1
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, C “
2πaijnr

3
c

pκ´1 ´ 1qkBT
, (3.7)

for 2D space. It is noted that Bp{Bn in (3.4) is explicitly expressed in terms of the

cut-off radius, resulting in C as a function of rc, and an appropriate choice of rc

can allow the DPD model to be applied at any high coarse-graining level (scale-

free property/truly mesoscopic method) [Füchslin et al. (2009)]. For (3.6) and

(3.7) to have a physical value (s̄ ą 0), we require C ą 24 and C ą 6, respectively,

which can be easily satisfied.

The weighting functions for the dissipative force are chosen as wD “ p1 ´

r{rcq
1{2. From the kinetic theory, there are two contributions to the viscosity, the

kinetic part (gaseous contribution) and the dissipative part (liquid contribution).
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Here, we are interested in the case where the dissipative contribution is dominant

(liquid-like behaviour). The input/specified viscosity, namely η, of the DPD

system is imposed by enforcing the following constraint

ηD “
γn2rR2wDsR

2dpd` 2q
“ η, (3.8)

in which ηD is the dissipative viscosity predicted by the kinetic theory, d is the

dimension number (2 or 3) and rR2wDsR ”
ş

dRR2wDpRq (“ 1024πr5
c{3465 for

3D space and 64πr4
c{315 for 2D space). This equation can be solved for the

variable γ:

γ “
51975η

512πn2r5
c

, 3D, (3.9)

γ “
315η

4πn2r4
c

, 2D. (3.10)

If the Schmidt number/speed of sound is taken as an additional input to the

DPD equation (2.1), the weighting functions for the dissipative force are employed

in the form of p1 ´ r{rcq
s. One can then use two parameters s and γ to match

the viscosity and dynamic response

ηD “ η, (3.11)

η

ρD
“ Sc, D “

2ηK
ρ
, η » ηD, (3.12)

where Sc is the Schmidt number, and ηK and η “ ηK`ηD are the kinetic viscosity

and the viscosity predicted by the kinetic theory. In 3D space, the parameters s

and γ take the form

s “
´9`

?
1` 4C

2
, C “

6ScmkBTn
2r2
c

5η2
, (3.13)

γ “
5ηps` 1qps` 2qps` 3qps` 4qps` 5q

16πn2r5
c

. (3.14)
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Since s ą 0, it requires

η ă

c

3ScmkBTn2r2
c

50
for a given Sc, (3.15)

Sc ą
50η2

3mkBTn2r2
c

for a given η. (3.16)

In 2D, the two parameters are

s “
´7`

?
1` 4C

2
, C “

3ScmkBTn
2r2
c

4η2
, (3.17)

γ “
4ηps` 1qps` 2qps` 3qps` 4q

3πn2r4
c

. (3.18)

Since s ą 0, it requires

η ă

c

ScmkBTn2r2
c

16
for a given Sc, (3.19)

Sc ą
16η2

mkBTn2r2
c

for a given η. (3.20)

New features of the proposed DPD lie in converting the original input parameters

(e.g. the strengths of the repulsion, dissipative and random forces) into the input

parameters that have physical meanings (e.g. fluid compressibility, viscosity and

Schmidt number). The computational part of the proposed DPD is the same as

that of conventional DPDs. Since analytic expressions for the conversion for the

input parameters are derived, there is not much difference in computational cost

between the proposed and conventional DPDs.

3 Coarse graining and scaling

In Füchslin et al. [Füchslin et al. (2009)], a physical system represented by

Nphys molecular particles is to be scaled (coarse-grained) at different levels ν so
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that one deals with a smaller number of particles

N “
Nphys

ν
, (3.21)

in which ν “ Nphys{N is referred to as the coarse-graining level. Two different

coarse-graining levels are considered, ν and ν 1 (modelled by tN, kBT, n,m, rc, a, γu

and tN 1, kBT
1, n1,m1, r1c, a

1, γ1u, respectively). It is noted that the upper-case N is

used to denote the number of particles in the flow domain, while the lower-case n

is used to denote the number particle density. Their relations in three dimensions

are established as (φ “ ν 1{ν is the scaling)

N 1 “ φ´1N, kBT
1 “ φkBT, n1 “ φ´1n,

m1 “ φm, r1c “ φ1{3rc, τ 1 “ φ1{3τ,

a1 “ φ2{3a, γ1 “ φ2{3γ, σ1 “ φ5{6σ,

(3.22)

where τ and τ 1 are time scales. With these scalings, it can be shown that DPD

is a scale-free (truly mesoscopic) method. In the DPD, one typically employs

the mass of a single DPD particle, the force cut-off radius and thermal energy as

the basic units. The time, mass, length and viscosity of the system are thus not

defined explicitly but in terms of these DPD units. We use the superposed bar

to denote a dimensional quantity and define the unit of mass, length and energy

as m{βm, rc{βr and kBT {βT , respectively, where βm, βr and βT are values of

the cut-off radius, mass and thermal energy to be employed in the dimensionless

system. If βm “ βr “ βT “ 1, one has a standard reduced unit system. When

going from one coarse-graining level to the other, βm, βr and βT will stay the

same. One may rewrite the dimensionless stochastic equation (2.1) without the
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external force in the following dimensional differential form

∆ri “ vi∆t, (3.23)

m∆vi “
ÿ

j

aijwC prijq eij∆t´
ÿ

j

γwD prijq peij ¨ vijq eij∆t

`
ÿ

j

σwR prijq θijeij
a

∆t.

Let’s scale length by rc{βr, mass by m{βm, and time by τ (which later chosen as

prc{βrq
b

pmq{βmq{pkBT {βT q) and define dimensionless variables:

m “
m

m{βm
“ βm, r “

r

rc{βr
, t “

t

τ
,
d

dt
“

d

τdt
, v “

τ

rc{βr
v. (3.24)

Dimensional equations of motion (3.23) then reduce to

∆ri “ vi∆t, (3.25)

βm∆vi “
ÿ

j

aijτ
2

pm{βmqprc{βrq
wC prijq eij∆t´

ÿ

j

γ τ

pm{βmq
wD prijq peij ¨ vijq eij∆t

`
ÿ

j

σ τ 3{2

pm{βmqprc{βrq
wR prijq θijeij

?
∆t.

By defining new dimensionless parameters as

aij “
aijτ

2

pm{βmqprc{βrq
, γ “

γ τ

pm{βmq
, σ “

σ τ 3{2

pm{βmqprc{βrq
, (3.26)

the dimensionless equations of motion become

∆ri “ vi∆t, (3.27)

βm∆vi “
ÿ

j

aijwC prijq eij∆t´
ÿ

j

γwD prijq peij ¨ vijq eij∆t

`
ÿ

j

σwR prijq θijeij
?

∆t.
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with the thermal equilibrium requiring

2kBT γ “ σ2,

or

2kBTγ
pm{βmq

τ
“ σ2 pm{βmq

2prc{βrq
2

τ 3 .

Thus the scaling

τ “ prc{βrq

d

pm{βmq

pkBT {βT q
(3.28)

will guarantee the thermal equilibrium of the DPD system (3.27):

2βTγ “ σ2 or 2kBTγ “ σ2. (3.29)

It can be seen that every system with the same values of

aij “
aijprc{βrq

pkBT {βT q
, γ “

γprc{βrq
`

pm{βmqpkBT {βT q
˘1{2

, σ2
“

σ2prc{βrq

pm{βmq1{2pkBT {βT q3{2

(3.30)

will have the same state space. Making use of (3.22), the three dimensionless

parameters scale as

a1ij pr
1
c{βrq

pkBT 1{βT q
“ φ2{3`1{3´1aij prc{βrq

pkBT {βT q
“
aij prc{βrq

pkBT {βT q
, (3.31)

γ1 pr1c{βrq

ppm1{βmq pkBT 1{βT qq
1{2
“ φ2{3`1{3´1{2´1{2 γ prc{βrq

ppm{βmq pkBT {βT qq
1{2
“

γ prc{βrq

ppm{βmq pkBT {βT qq
1{2
,

(3.32)

σ12 pr1c{βrq

pm1{βmq
1{2
pkBT 1{βT q

3{2
“ φ5{3`1{3´1{2´3{2 σ2 prc{βrq

pm{βmq
1{2
pkBT {βT q

3{2
“

σ2 prc{βrq

pm{βmq
1{2
pkBT {βT q

3{2
,

(3.33)

indicating that the two coarse-graining systems are stochastically equivalent. Us-

ing (3.22), let’s examine the relations for the mass density, compressibility and
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viscosity, respectively,

ρ1 “ pm1
{βmqn

1
“ φ1´1

pm{βmqn “ ρ pinvariantq (3.34)

a1n1 pr1c{βrq
4

pkBT 1{βT q
“ φ2{3´1`4{3´1an prc{βrq

4

pkBT {βT q
“
an prc{βrq

4

pkBT {βT q
pinvariantq (3.35)

γ1n12 pr1c{βrq
5
“ φ2{3´2`5{3γn2

prc{βrq
5
“ φ1{3γn2

prc{βrq
5
pnot invariantq (3.36)

With this scaling scheme, different coarse-graining levels will have the same mass

density and compressibility but different viscosities.

In the present DPD formulation, there are two additional parameters, s̄ and

s, which make the relations for the parameters between two coarse-graining levels

generally more complicated than those in (3.22). When the particle number is

reduced (n1 “ φ´1n, φ ą 1), we also take (m1 “ φm), increase the cut-off radius

(r1c ą rc), but keep not only the water compressibility but also the viscosity and

the Schmidt number (where appropriate) constant. Values of (aij, s̄, γ, s) and

(a1ij, s̄
1, γ1, s1) are derived from expressions (3.5), (3.6), (3.9), (3.13) and (3.14) in

three dimensions and (3.5), (3.7), (3.10), (3.17) and (3.18) in two dimensions for

given sets of pkBT, α, η, pScqq and pkBT
1, α1 “ α, η1 “ η, pS 1c “ Scqq, respectively.

These scalings can be easily obtained numerically. Note that (i) s̄ is a function

of pκ, aij, n, rc, kBT q, s a function of pSc, η, m, n, rc, kBT q, aij a function of

pα, rc, m, γq, and γ a function of pη, s, n, rc); and (ii) If Sc is not a specified

value, the parameter s is taken to be 1/2.

The thermal fluctuations in the present scaling scheme are studied for both simple

and complex fluid systems. A consistent scaling of thermal fluctuations means

that their magnitude becomes smaller with larger particle volumes [Vázquez-

Quesada et al. (2009)].
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3.1 Simple fluids

We consider some Newtonian fluid modelled by α “ 1, η “ 30, kBT “ 1,

water-like compressibility and constant mass density (ρ “ mn “ 8). Three

coarse-graining levels employed with n “ t8, 6, 4u, m “ t1, 4{3, 2u and rc “

t1, 1.1006, 1.2599u are taken to represent the model fluid. Here, βm, βr and βT

are chosen to be 1. In this case, the length unit is a force cut-off radius prcq, the

mass unit is the mass of a DPD particle pmq, and the energy unit is the thermal

energy pkBT q resulting in the time unit τ “ rc

b

m{kBT . The domain is chosen

as 15 ˆ 15 ˆ 15 (in DPD units). For rc, the scaling factor used is the same as
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Figure 3.1: Simple fluid with water-like compressibility, α “ 1, η “ 30 and
ρ “ mn “ 8; Lx ˆ Ly ˆ Lz “ 15 ˆ 15 ˆ 15; s “ 0.5; kBT “ 1; and ∆t “
0.001: Probability density function (PDF) of vx of a DPD particle at 3 different
coarse-graining levels (n “ t8, 6, 4u; rc “ t1, 1.1006, 1.2599u;m “ t1, 4{3, 2u).
Thermal fluctuations are reduced (variance: 1.0272, 0.7546, 0.5054) with larger
particle size.

that in (3.22), i.e. φ1{3. The volume of particles can be regarded as Vi „ 1{n.
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The results on the distribution of the velocity component of a DPD particle are

shown in Figure 3.1. It can be seen that the thermal fluctuations are reduced

with lower number densities (larger particle sizes). Note that from the kinetic

theory, the Schmidt number is estimated as 290 for n “ 8, 319 for n “ 6 and 365

for n “ 4.

3.2 Particulate suspensions

We consider the suspension of a single rigid particle in a Newtonian fluid. The

solvent phase is modelled with α “ 1, η “ 30, ρ “ mn “ 8, kBT “ 1 and water

compressibility, and the colloidal particle is constructed using the spring model

[Phan-Thien et al. (2014a)]. The domain is chosen as 15ˆ15ˆ15 (in DPD units).

In the first test, we employ 3 different coarse-graining levels with n “ t8, 6, 4u,

rc “ t1, 1.1006, 1.2599u and m “ t1, 4{3, 2u for the solvent and keep the vol-

ume fraction of the suspended phase constant. For the spring model, the volume

fraction is also the particle fraction because the standard/basic DPD particles

are used to represent both the constituent and solvent particles. Let N0
C be the

number of basic DPD particles used to represent the colloidal phase and NS be

the number of basic particles used for the solvent phase, the volume fraction is

computed as φ “ N0
C{pN

0
C `NSq.

In the present problem (one colloidal particle), by taking the number of con-

stituent particles per colloid as the (solvent) particle number density, the volume

fraction remains invariant: φ “ 1ˆn{p1ˆn`V nq “ 1{p1`V q “ 2.96ˆ10´4 (V :

the box volume) for any value of n. Using the radial distribution function (RDF)

to measure the exclusion of the colloidal particle at three coarse-graining levels,

they all lead to similar results - the size of the exclusion zone is about 0.475 in

DPD units. As in Section 3.1, the standard reduced unit system is employed

here, i.e. βm “ βr “ βT “ 1. The results are displayed in Figure 3.2, showing the
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Figure 3.2: Suspension with water-like compressibility, α “ 1, η “ 30 and ρ “ 8
for the solvent phase; constant volume fraction for the suspended phase; Lx ˆ
Ly ˆ Lz “ 15ˆ 15ˆ 15; kBT “ 1; and ∆t “ 0.001: Probability density function
(PDF) of vx of a single colloidal particle in the solvent employed at 3 different
coarse-graining levels (n “ t8, 6, 4u; rc “ t1, 1.1006, 1.2599u; m “ t1, 4{3, 2u).
Its computed variances are similar (0.1318, 0.1247, 0.1321).

change of n (solvent particle’s size) does not affect the level of thermal fluctua-

tions of the colloidal particle.

In the second test, we employ n “ 8, rc “ 1, m “ 1 and Sc “ 600 for the solvent

and the colloid of three different sizes, i.e. 6, 12 and 20 DPD particles per colloid

(by means of RDF, sizes of exclusion zones are measured as 0.30, 0.36 and 0.51

in DPD units, respectively). The results are displayed in Figure 3.3, indicating

that the thermal fluctuations of the colloid are reduced with its larger size.

For the standard DPD method, the exponents of the weighting functions in the

dissipative and repulsive forces are fixed. For the present DPD method, these

exponents are variables and they are functions of the viscosity, Schmidt num-
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Figure 3.3: Suspension with the solvent phase: water-like compressibility, α “ 1,
η “ 30, ρ “ mn “ 8 and Sc “ 600; Lx ˆ Ly ˆ Lz “ 15 ˆ 15 ˆ 15; kBT “ 1;
and ∆t “ 0.001: Probability density function (PDF) of vx of a single colloidal
particle employed with 3 different sizes at the same solvent coarse graining level
(n “ 8, rc “ 1, m “ 1). Thermal fluctuations of the colloid are reduced (variance:
0.1790, 0.1109, 0.0912) with its larger size.

ber, fluid compressibility and time-scale ratio. For the test in Section 3.1 (sim-

ple fluids) and the first test in Section 3.2 (particulate suspensions), different

coarse-graining levels are considered. When going from one coarse-graining level

to the other, one has different fluids for the standard DPD and the same fluid

for the present DPD. The standard DPD is thus not directly applicable to the

study of thermal fluctuation scaling for these tests. For the second test, only one

coarse-graining level for the solvent is considered. The exponents of the weighting

functions in the dissipative and repulsive forces all stay the same when changing

the size of the colloid particle. In this regard, the present DPD can be considered

as the standard DPD and these two versions are expected to produce similar
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results.

Figure 3.4 shows a comparison of thermal fluctuations between the standard
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Figure 3.4: Probability density function (PDF) of vx of a single colloidal particle
employed with 3 different sizes at the same solvent coarse graining level by the
standard (top) and present (bottom) DPDs. It can be seen that the two methods
produce similar behaviours. When the size of the colloidal particle is increased,
thermal fluctuations of the colloid are reduced (variance: 0.1643, 0.0867 and
0.0493 for the standard DPD and 0.1661, 0.0812, 0.0492 for the present DPD).
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DPD and the present DPD. The former is employed with n “ 4, rc “ 1.5,m “

1, kBT “ 1, s̄ “ 1, s “ 1{2, σ “ 3 and aij “ 3.5320, which lead to, by means of

kinetic theory, α “ 8.5997, η “ 16.9721 and Sc “ 1.6452ˆ 102. The latter is em-

ployed with n “ 4, rc “ 1.5,m “ 1, kBT “ 1, α “ 8.5997, η “ 16.9721 and Sc “

1.6452ˆ 102. Similar behaviours are obtained, and when the size of the colloidal

particle is increased, thermal fluctuations of the colloid are reduced (variance:

0.1643, 0.0867 and 0.0493 for the standard DPD and 0.1661, 0.0812, 0.0492 for

the present DPD).

These tests demonstrate that the present DPD method has a proper scaling with

respect to its thermal fluctuations.

4 Flows of the model fluid at different coarse-

graining levels

For the viscosity approximation taken in the form of (3.8), its error depends

on the two quantities n and rc. Using the kinetic theory as a guide, the total

viscosity η̄ of the DPD system is computed as

η̄ “
3

5

ρkBTnr
2
c

ηps` 4qps` 5q
` η, (3.37)

where η is the input viscosity and ρ is the fluid density. In (3.37), the first

term on RHS is the kinetic viscosity, which should be designed to be negligible.

As a result, for a given set of η, ρ and kBT , one needs to reduce rc if there is

an increase in n (smaller mean distance between particles). In our numerical

experiments conducted in Sections 4.1 and 4.2, the product of n and rc as well

as kBT are kept constant. For rc, between two coarse-graining levels, the scaling
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factor is chosen as φ. For kBT , the scaling factor is chosen as φ3{2 according to

kBT
1
“ kBT, (3.38)

or

m1 r
12
c

τ 12
“ m

r2
c

τ 2
, (3.39)

or

τ 1

τ
“
r1c
rc

c

m1

m
“ φφ1{2

“ φ3{2. (3.40)

4.1 Double Poiseuille flows

This flow is simulated in two dimensions. By dividing the domain of analysis

into two equal regions by the line y “ 0 and then assigning an acceleration

g “ pFe{m, 0q “ p1, 0q to each particle in the upper region (y ą 0) and g “ p´1, 0q

to each particle in the lower region (y ă 0), a periodic Poiseuille flow is produced

with the theoretical values of the velocity and shear stress: ux “ ρgxypLy{2 ´

yq{p2ηq and τxy “ ρgxpLy{2´ 2yq{2, where 0 ď y ď Ly{2. The simulation results

for the double Poiseuille flows are shown in Figure 3.5, where three different sets

of tn, rc,mu are employed as {8, 1, 1}, {6, 4/3, 4/3} and {4, 2, 2} corresponding

to 3200, 2400 and 1600 particles, respectively, over the flow domain. Other input

parameters are η “ 30, α “ 1, kBT “ 1, ∆t “ 0.001 and 300000 time steps.

Here, the standard reduced unit system is employed, i.e. βm “ βr “ βT “ 1. The

domain is chosen as 20ˆ 20 (in DPD units). It can be seen from Figure 3.5 that

both velocities and shear stresses at the three coarse-graining levels have similar

behaviours and they are in a good agreement with the theoretical values.
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Figure 3.5: Poiseuille flow: Some typical results by the present DPD at n “
t8, 6, 4u. Theoretical values for velocity and shear stress are also included.
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4.2 Flow past a periodic square array of fixed cylinders

For this type of flow, the analysis can be carried out in two dimensions. Be-

cause of its periodicity, one can replace the infinite domain with a cell volume

containing one cylinder. Assume that the motion of a fluid is driven by a pres-

sure drop in the x direction. Consider some Newtonian fluid defined by η “ 100,

ρ “ nm “ 4, nrc “ 16, kBT “ 1 and α “ 1. Three coarse-graining levels using

relatively small values of the number density (n “ t10, 8, 6u) are employed to

represent the model fluid. Here, βm, βr and βT are chosen to be 0.4, 1.6 and 1,

respectively. In this case, the mass unit is the mass of a DPD particle divided

by βm, i.e. m{0.4, the length unit is a force cut-off radius divided by βr, i.e.

rc{1.6, and the energy unit is the thermal energy kBT resulting in the time unit

τ “ prc{1.6q
b

pm{0.4q{kBT . A cell is chosen as LxˆLy “ 10ˆ10 (in DPD units).

A cylinder is constructed with the spring model [Phan-Thien et al. (2014a)]. For

n “ 8, as shown in Figure 3.6, the number of constituent particles used to model

a cylinder are chosen as 19 and they are located at the cylinder’s centre and at

the distances r1 “ 0.1p1{nx ` 1{nyq{2 “ 0.1p1{2 ` 1{4q{2 “ 0.0375 (nxny “ n)

and r2 “ 2r1, in which p1{nx ` 1{nyq{2 is regarded as the mean distance be-

tween the solvent particles, and the factor 0.1 is introduced to prevent the fluid

particles from penetrating the cylinder. For other values of n, cylinders are also

constructed in a similar manner, except that the constituent particles are chosen

in a way that the ratio of the number of constituent particles to the total number

of particles in the system (particle fraction) is kept constant, i.e. 0.0232.

Fluid-fluid and fluid-cylinder radial distribution functions (RDFs) at no-flow con-

ditions for three values of the number density are displayed in Figure 3.7.

If the exclusion zone is defined as an area where the value of RDF is less than

0.01, then the cylinders are of similar sizes (about 0.47) and the sizes of the fluid

particles can be negligible. The small (negligible) size of the fluid particle is
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Figure 3.6: Modelling of the fixed cylinder with the surrounding fluid defined
by tη “ 100, n “ 8, rc “ 2, m “ 0.5, kBT “ 1, α “ 1u: Reference sites
of constituent particles of the cylinder (top), its repulsion force field in the
radial direction (middle) and fluid-cylinder radial distribution function at no-
flow conditions (bottom). Note that, for both constituent and fluid particles,
Fij,C “ 23.96p1´ r{rcq

6.67.
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Figure 3.7: Flows past a periodic array of fixed cylinders: Fluid-fluid (left) and
fluid-cylinder (right) radial distribution functions for different number densities
at no-flow conditions: By defining the exclusion zone as an area where the RDF
values are less than 0.01, the cylinders for different resolutions are of similar sizes
(about 0.47), and the fluid particle sizes can be negligible.

mainly due to the use of large rc (greater than 1) as discussed in [Mai-Duy et al.

(2015)].

We impose a wide range of the body force (Fe “ t0.01, 0.02, ¨ ¨ ¨ , 0.10, 0.12, ¨ ¨ ¨ , 0.30u)

on the fluid particles in the x direction to drive the fluid motion. The flows here

are slow flows with their Reynolds numbers pRe “ ρUL{ηq being less than 0.2

(L and U : the distance between the cylinders and mean velocity in the x di-

rection), the diffusion time scale t “ ρL2{η “ 4 and the convection time scale

t “ L{U » 20 (for the maximum value of U). For these flows (Re ă 0.2), one

can have a wide choice of the size ratio of the cylinder to the solvent particle in

the simulation without causing spurious behaviour, and the diffusion time scale

is important as the Peclet number, which measures the ratio of the convection
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and the diffusion terms, is small, i.e. Pe “ ρLU{η » 0.2.

Figure 3.8 show the effects of the imposed body force on the cylinder’s size and

the fluid particle’s size. It can be seen that the sizes of the cylinder and fluid

particles are not much affected by the change in the imposed fore.

Radius

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
D

F

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
e
=0.00-0.10

F
e
=0.12-0.20

F
e
=0.22-0.30

Figure 3.8: Flows past a periodic array of cylinders, n “ 8: Fluid-fluid (left)
and fluid-cylinder (right) radial distribution functions for different imposed body
forces Fe “ p0, 0.01, 0.02, ¨ ¨ ¨ , 0.10, 0.12, ¨ ¨ ¨ , 0.30q. Their sizes are generally
well maintained over the range of the body force applied.

Figure 3.9 displays the obtained drag forces on the there coarse-graining levels. It

can be seen that their behaviours are similar in trend and their values are in good

agreement at low values of the mean flow velocity. As the imposed body force

is increased, the compressibility effect of the DPD fluid may be significant and

special attention is needed (Figure 3.10). It will be further discussed in Section

5. The analytic results obtained by Hashimoto [Hasimoto (1959)] using Fourier

series are also included for comparison purposes. It appears that lower coarse-
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graining levels or higher values of n (higher speeds of sound - see equation (3.42),

lower Mach numbers) produce better predictions of the drag force as the imposed

body force (the mean flow velocity) is reduced.
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Figure 3.9: Flows past a periodic array of cylinders: Drag forces against the
mean flow velocity U for three coarse-graining levels with the body forces im-
posed as Fe “ p0.01, 0.02, ¨ ¨ ¨ , 0.10, 0.12, ¨ ¨ ¨ , 0.30q. The three cases have similar
behaviours in trend and their values are in better agreement as U is reduced.
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Figure 3.10: Flows past a periodic array of cylinders, n “ 10: Distribution of the
number density in a cell for 3 typical values of the imposed body force (Fe “ 0
top; Fe “ 0.1 middle, and Fe “ 0.3 bottom). Attention is needed with increasing
Fe due the effects of compressibility of the model fluid.
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5 Reducing unwanted compressibility effects

Like any fluid that is modeled by a set of particles, a DPD fluid is compressible.

Special attention is thus needed when simulating incompressible flows. In [Groot

and Warren (1997),Phan-Thien et al. (2014b)], water compressibility was enforced

in the DPD system. In [Phan-Thien et al. (2014b)], in addition, the particles’

mass was proposed to reduce in order to increase the speed of sound. In the

present context (DPD with physical inputs), compressibility of the DPD fluid is

matched to water. We investigate the effects of using lower mass and also propose

a new means that can further reduce unwanted compressibility effects.

We measure compressibility of the DPD fluid by the density residual defined as

∆n “

d

řNb

i“1 pni ´ nq
2

Nb

, (3.41)

where Nb is the number of bins, ni the number density of the ith bin and n the

reference number density.

5.1 The mass approach

Expression for the speed of sound of the DPD fluid is given by [Marsh (1998)]

c2
s “

kBT

m
`

π

15

anr4
c

m
(3.42)

If the particle’s mass is reduced, it leads to a higher speed of sound as well as

a lower Reynolds number and a smaller diffusion time scale. When the Mach

number (M “ U{cs, U is a flow characteristic velocity) is less than 0.3, the

flow may be regarded as an incompressible flow. On the other hand, one has

to deal with overdamped (stiff) systems, for which much smaller time steps are

required for a proper simulation. This can be alleviated by means of the stochastic

54



exponential time differencing (SETD) scheme [Phan-Thien et al. (2014b)]. For a

given number density, reducing m leads to fluids of different mass densities.

5.2 The time-scale ratio approach

The time-scale ratio pα “ τ{τIq relates to the conservative and dissipative

forces. This dimensionless quantity can thus be used to control the quantitative

relation between the two forces. It will be demonstrated that varying α can lead

to a significant improvement in the distribution of the number density over the

flow domain. Unlike the use of low mass, the mass density of the model fluid will

not be affected by the change in α.

First, we examine the performance of the SETD scheme. Consider a Couette

Table 3.1: Couette flows, U “ 1, η “ 100, n “ 10, rc “ 1.6, kBT “ 1, α “

10, Lx ˆ Ly “ 10ˆ 10, 100 bins per unit area and 106 time steps: Comparison of
the mean thermal energy of the velocity-Verlet and SETD schemes for m “ 0.01.
The former fails to converge at ∆t ě 2.5ˆ 10´4.

Velocity-Verlet SETD

∆t kBT Error(%) kBT Error(%)
5.0ˆ 10´4 - - 0.4928 50.7
2.5ˆ 10´4 - - 0.7717 22.8
1.0ˆ 10´4 0.8917 10.82 0.9525 4.74
7.5ˆ 10´5 0.9164 8.36 0.9723 2.76
5.0ˆ 10´5 0.9422 5.78 0.9871 1.28
2.5ˆ 10´5 0.9696 3.03 0.9959 0.41
1.0ˆ 10´5 0.9872 1.28 0.9984 0.15

flow with the imposed shear rate 9γ “ 0.2. The two plates move with the same

velocity U but in opposite direction. The mass is specified as m “ βm “ 0.01

and some other input parameters are η “ 100, n “ 10, kBT “ βT “ 1, α “

10, rc “ βr “ 1.6 and 100 bins per a unit area. Note that the mass unit is the
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mass of a DPD particle divided by βm, i.e. m{0.01, the length unit is the force

cut-off radius divided by βr, i.e. rc{1.6. The simulations are carried out on the

domain LxˆLy “ 10ˆ10 (in DPD units) with 106 time steps. Table 3.1 displays

computed values of the mean thermal energy by the velocity-Verlet and SETD

schemes for different times steps, which show that larger time steps and better

accuracy are acquired with the latter.

The obtained results concerning the number density by the mass and time-scale

approaches are displayed in Figure 3.11 for simple flows and in Figure 3.12 for

complex flows. Here, Couette flow is chosen as an example for simple flows.
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Figure 3.11: Couette flows, η “ 100, n “ 10, ∆t “ 0.0001, Lx ˆ Ly “ 10 ˆ 10,
U “ 1, rc “ 1.6, kBT “ 1, 100 bins per unit area and 106 time steps: Density
residual against time-scale ratio for 3 typical values of m. Values of α used are
(10´2, 5 ˆ 10´2, 10´1, 5 ˆ 10´1, ¨ ¨ ¨ , 102). Results with the standard repulsion
are also included. Changing the value of α can lead to a significant improvement
in the distribution of number density over the flow domain.

The density residual is observed to reduce with a decreasing mass (1.3568 for
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Figure 3.12: Flows past a periodic square of cylinders, η “ 100, n “ 10, ∆t “
0.0001, Lx ˆ Ly “ 10 ˆ 10, Fe “ 0.3, rc “ 1.6, kBT “ 1, 100 bins per unit area
and 106 time steps: Density residual against time-scale ratio for 3 typical values
of m. Values of α used are (10´2, 5 ˆ 10´2, 10´1, 5 ˆ 10´1, ¨ ¨ ¨ , 102). Results
with the standard repulsion are also included. Changing the value of α can lead
to a significant improvement in the distribution of number density over the flow
domain.

m “ 1, 1.2833 for m “ 0.1 and 1.2687 for m “ 0.01). Taking U “ 1 and L “ 5

( 9γ “ 0.2), the Reynolds number is 0.5 for m “ 1, 0.05 for m “ 0.1 and 0.005

for m “ 0.01. For a given m, by changing the value of α, it can be seen that a

significant improvement in the number density distribution is achieved without

affecting the fluid mass density. Also, varying α for m “ 1 yields better results

than the case of low mass m “ 0.01 with standard repulsion. As expected, the

optimal value of α “ τ{τI increases as the mass is reduced (smaller inertia time).

For any mass employed here, a simple selection of α “ 1 is still able to lead to

reasonable results when compared to the case of standard repulsion. Turning to
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complex flows: flow past an array of fixed cylinders, similar remarks can be made

here. The Reynolds number is approximately 0.2 for m “ 1, 0.02 for m “ 0.1

and 0.002 for m “ 0.01. It appears that varying α is more effective and efficient

than reducing the particles’ mass.

Figure 3.13 shows that the variations of α for simple and complex flows have

similar behaviours. It can be seen that their minimum density residuals all occur

in the range α “ 0.01 ´ 1. A simple mechanism to find the optimal value of α

can thus be suggested. For a given set of DPD input parameters, the simulation

is first conducted on some simple flows (e.g. Couette flow) and the obtained best

value of α can then be utilised in the simulation of the flow of interest.
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Figure 3.13: Density residual against time-scale ratio for Couette flows (U “ 1)
and flows past a periodic square array of cylinders (Fe “ 0.3) with η “ 100,
n “ 10, ∆t “ 0.0001, LxˆLy “ 10ˆ10, rc “ 1.6, kBT “ 1, 100 bins per unit area
and 106 time steps. Values of α used are (10´2, 5ˆ10´2, 10´1, 5ˆ10´1, ¨ ¨ ¨ , 102).
The two flows have similar optimal values of α.
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6 Concluding remarks

In this chapter, the DPD simulations are conducted with the viscosity, com-

pressibility, dynamic response (where appropriate) and time-scale ratio being

specified as input parameters, from which a consistent scaling of thermal fluctu-

ations and similar behaviours of the flow at different coarse-graining levels have

been demonstrated. The issue of compressibility is also studied. Reducing the

particles’ mass and/or varying the time-scale ratio can reduce unwanted com-

pressibility effects. The advantages of the time-scale ratio approach over the low

mass approach are (i) one still has the same model fluid (constant viscosity, water

compressibility and mass density) without the need to change other input param-

eters; and (ii) a much improved result for the number density distribution can

be achieved. Attractive features from the use of physical input parameters are

expected to allow an effective DPD scheme to simulate (nearly) incompressible

multiphase flows to be developed.
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Chapter 4

Proposed DPD method in

generalised hydrodynamics

In this chapter, we show that a Dissipative Particle Dynamics (DPD) model

of a viscous Newtonian fluid may actually produce a linear viscoelastic fluid. We

demonstrate that a single set of DPD particles can be used to model a linear

viscoelastic fluid with its physical parameters, namely the dynamical viscosity

and the relaxation time in its memory kernel, determined from the DPD system

at equilibrium. The emphasis of this study is placed on (i) the estimation of the

linear viscoelastic effect from the standard parameter choice; and (ii) the inves-

tigation of the dependence of the DPD transport properties on the length and

time scales, which are introduced from the physical phenomenon under examina-

tion. Transverse-current auto-correlation functions (TCAF) in Fourier space are

employed to study the effects of the length scale, while analytic expressions of

the shear stress in a simple small amplitude oscillatory shear flow are utilised to

study the effects of the time scale. A direct mechanism for imposing the particle

diffusion time and fluid viscosity in the hydrodynamic limit on the DPD system

is also proposed.
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1 Introduction

As already shown in section 2.2, for preceding standard descriptions of the

DPD interaction parameters, the DPD system is actually a Newtonian fluid on

a long-time average [Marsh (1998)]. In this chapter, we explore the generalised

hydrodynamics regime of the DPD fluid that is defined by equations (2.1)-(2.7),

where typical length scales include the interaction range rc and the dynamic

correlation length l0 defined as l0 “ v0t0 in which v0 and t0 are, respectively, the

thermal velocity and collision time (or kinetic time) [Marsh (1998)]

v0 “

c

kBT

m
, (4.1)

t0 “
1

ω0

, ω0 “
1

3
n rwDs γ, rwDs “ 4πr3

c

„

1

1` s
´

2

2` s
`

1

3` s



. (4.2)

The classification of dynamic regimes in DPD can be based on the two length

scales, rc and l0: “particle” regime when rc ă l0 and “collective” regime when

rc ą l0. In our study, the focus is on a collective regime. Note that if one takes

n “ t3, 4u, rc “ 1, m “ 1, σ “ 3 and kBT “ 1 (commonly used input values),

then the above estimates yield l0 “ t0.5305, 0.3979u for s “ 2 (standard DPD

fluids) and l0 “ t0.1161, 0.087u for s “ 1{2 (modified DPD fluids), all less than

rc “ 1.

Let λ be the wavelength (k “ 2π{λ is the wave number) of a perturbation in the

hydrodynamics, which can be regarded as the length scale on which the physical

phenomena under examination occur. On the other hand, the correlation length

l0 forms a scale on which the DPD transport coefficients are defined. As k Ñ 0

and the observation time scale is large, the system behaves like a continuum (the

NS equations/hydrodynamics limit). At finite k, the system can be described by

a linearised form of the NS equations, where local deviations of the macroscopic

variables (the number density and momentum density) from their average values
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are assumed to be small. As discussed in [Ripoll et al. (2001)], a standard hydro-

dynamic regime occurs on the range l0 ă rc ă λ while a mesoscopic hydrodynamic

regime on l0 ă λ ă rc. In addition, there is a smooth transition between these

two hydrodynamic regimes, which occurs at about kc “ 2π{rc. The generalised

hydrodynamics cover both the standard and the mesoscopic hydrodynamics and

thus can be probed by considering linearised NS equations induced by pertur-

bations. The transport coefficients are now functions of k, and their values at

k “ 0 can be estimated through extrapolation. In practice, an effective way to

predict the DPD transport coefficients over a wide range of k is to employ the

transverse-current autocorrelation functions (TCAF) in Fourier space.

Let ω be a characteristic frequency (T “ 1{ω is a characteristic time). Assume

that our (non-Newtonian) fluid in question has a characteristic time scale λt. If

T " λt, the observation time scale is large and the material responds like a fluid;

otherwise, one may have a solid-like response. For a linear viscoelastic fluid, the

stress at the current time is dependent not only on the current strain rate but

also the past strain rate; in 1D,

Sptq “

ż γptq

γp´8q

Gpt´ t1qdγpt1q “

ż t

´8

Gpt´ t1q 9γdt1, (4.3)

where 9γ is the shear rate (γ is the shear strain) and G is a decreasing function

of time, the relaxation modulus. In the case of a simple shear flow, the stress

analysis can be done in an exact manner. One can utilise its analytic solution to

examine the effects of the frequency on the DPD transport properties.

The above discussions on the dependence of DPD transport coefficients on the

wavelength and frequency are general. In our study, we restrict our attention to

the standard version of DPD (equations (2.1)-(2.7)) in its generalised hydrody-

namics.

One particular concern here is how to make a direct link between the fluid physi-
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cal parameters and the (input) DPD parameters. We attempt to derive, by means

of kinetic theory [Marsh (1998)] and by using generalised forms of the dissipative

weighting function, the relation between the particle diffusion time and the vis-

cosity of the fluid (at the hydrodynamic limit), and the DPD parameters. The

resultant analytic expressions allow one to specify these two physical parameters

as the input parameters.

The remainder of this chapter is organised as follows. In Sections 2 and 3, brief

reviews of TCAF and analytic expressions of the shear stress in a simple small

amplitude oscillatory shear flow are respectively given. In Section 4, we inves-

tigate the dependence of the DPD transport properties on the length scale and

time scale on which the physical phenomena occur. In Section 5, we discuss how

to impose the particle diffusion time and the viscosity in the hydrodynamic limit

on the DPD system, and quantify the linear viscoelastic effect from the standard

parameter choice. Numerical experiments are presented in Section 6. Section 7

provides some concluding remarks.

2 Transverse current autocorrelation functions

(TCAFs)

The current density is given by

jpr, tq “
N
ÿ

j“1

vjδpr´ rjptqq, (4.4)

where N is the number of particles and subscripts j denote particle number.

Since there is no overall motion, xjpr, tqy “ 0 (ă ¨ ą denoted the average oper-

ation). Note that jpr, tq is the macroscopic (hydrodynamic) variable and v the
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microscopic variable. The Fourier transformation of (4.4) is

Jpk, tq “

ż

dr exppik ¨ rqjpr, tq “
ÿ

j

vjptq exppik ¨ rjptqq. (4.5)

The spatial correlation function is defined as [Boon and Yip (1991),Hansen and

McDonald (2006)]

Cαβpk, tq “
k2

N
xJαp´k, 0qJβpk, tqy, (4.6)

where α and β denote Cartesian indices.

For an isotropic fluid, the correlation function (4.6) depends only on the magni-

tude of k and one can decompose it into the longitudinal (‖) and transverse (K)

components relative to k as

Cαβpk, tq “
kαkβ
k2

C‖pk, tq `

ˆ

δαβ ´
kαkβ
k2

˙

CKpk, tq, (4.7)

where δαβ is the Kronecker delta, and

CKpk, tq “
k2

N
xJKp´k, 0qJKpk, tqy, (4.8)

C‖pk, tq “
k2

N
xJ‖p´k, 0qJ‖pk, tqy. (4.9)

In the case of Newtonian fluids, one has the following relation

CKpk, tq

CKpk, 0q
“ exp

„

´
ηkk

2t

ρ



, (4.10)

from which the viscosity in the Fourier-transformed space can be estimated from

equilibrium correlation function data.
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3 Analytic solutions for simple shear flows of

linear viscoelastic fluids

Here we recall some terminologies by considering a small amplitude oscillatory

shear flow of a viscoelastic fluid. The flow is generated between two parallel plates

separated by a distance h. The bottom plate is fixed while the top plate is sinu-

soidally displaced by δ sinpωtq with δ ! h being the small amplitude displacement

in the x direction. The top plate velocity is

Uptq “ δω cosωt. (4.11)

The shear rate and the shear strain experienced by the fluid are, respectively,

9γptq “
δ

h
ω cosωt “ 9γ0 cosωt, (4.12)

γptq “
δ

h
sinωt “ γ0 sinωt, γ0 “

δ

h
! 1, 9γ0 “ ωγ0. (4.13)

For a linear viscoelastic fluid at any arbitrary amplitude δ, or for any viscoelastic

fluid at a small enough amplitude δ, the only non-zero component of the stress

is the shear stress

τxy “

ż t

´8

Gpt´ t1q
Buxpy, t

1q

By
dt1 “

ż t

´8

Gpt´ t1q 9γ0 cosωt1dt1,

“

ż 8

0

9γ0Gpsq cosωpt´ sqds,

“

ż 8

0

9γ0Gpsqrcosωt cosωs` sinωt sinωssds,

“ G1pωqγ0 sinωt` η1pωq 9γ0 cosωt,

“ G1pωqγ ` η1pωq 9γ “ elastic part + viscous part, (4.14)
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where G1pωq is the storage modulus and η1pωq is dynamic viscosity; they are

related to the relaxation modulus Gptq by

G1pωq “

ż 8

0

ωGpsq sinpωsqds, (4.15)

η1pωq “

ż 8

0

Gpsq cospωsqds. (4.16)

By rewriting (4.14) as

τxy “ G1pωqγ0 sinωt` η1pωq 9γ0 sinp
π

2
` ωtq, (4.17)

the shear stress is shown to have the same phase as the applied strain for the

elastic part, but π{2) out of phase from the applied strain for the viscous part. All

of the foregoing are familiar results in continuum mechanics (e.g. [Phan-Thien

and Mai-Duy (2017)]).

4 Generalised DPD transport coefficients

The conservation laws for the mass density ρpr, tq and momentum density

mupr, tq in the continuum description read

Bρpr, tq

Bt
`∇ ¨ pρpr, tqupr, tqq “ 0, (4.18)

B

Bt
ρpr, tqupr, tq ` upr, tq ¨∇ pρpr, tqupr, tqq `∇ ¨ Spr, tq “ 0, (4.19)

where S is a stress tensor.
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4.1 Newtonian fluids

In this case, the stress tensor is given by

Sαβpr, tq “ δαβppr, tq ´ η

ˆ

Buαpr, tq

Brβ
`
Buβpr, tq

Brα

˙

´ δαβ∇ ¨ upr, tq
ˆ

ηB ´
2

3
η

˙

,

(4.20)

where p is the local pressure, η the shear viscosity and ηB the bulk viscosity.

Without applied external forces, one has xupr, tqy “ 0. Assume that local de-

viations of the hydrodynamic variables from their average values are small, the

variables in (4.18), (4.19) and (4.20) can be expressed as [Boon and Yip (1991),

Hansen and McDonald (2006)]

npr, tq “ n` δnpr, tq « n, (4.21)

upr, tq “ xupr, tqy ` δupr, tq “ δupr, tq, (4.22)

ρupr, tq “ mpn` δnpr, tqq pxupr, tqy ` δupr, tqq « mnδupr, tq “ mnupr, tq “ ρjpr, tq,

(4.23)

where high-order terms have been ignored and n is the equilibrium number density

of the system. At equilibrium, the variables ă δnpr, tq ą and ă δupr, tq ą

disappear.

Making use of (4.20) and (4.21)-(4.23), the conservation equations (4.18) and

(4.19) reduce to the following linear form of the Navier-Stokes equation

Bδρpr, tq

Bt
`∇ ¨ ρjpr, tq “ 0, (4.24)

Bjpr, tq

Bt
`

1

ρ
∇ppr, tq ´ η

ρ
∇2jpr, tq ´

1

ρ

ˆ

ηB `
1

3
η

˙

∇∇ ¨ jpr, tq “ 0. (4.25)
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In Fourier space, they become

Bδρpk, tq

Bt
` ik ¨ ρJpk, tq “ 0, (4.26)

BJpk, tq

Bt
` ic2ρpk, tqk`

ηkk
2

ρ
Jpk, tq `

1

ρ

ˆ

4ηk
3
` ηB

˙

kk ¨ Jpk, tq “ 0, (4.27)

where c is the isothermal sound speed, and the viscosity becomes a function of

the wave number, denoted by ηk.

For the shear viscosity, one only needs to consider the transverse component of

the current density. Equation (4.27) reduces to

BJKpk, tq

Bt
`
ηkk

2

ρ
JKpk, tq “ 0. (4.28)

Note that equations (4.24)-(4.27) and (4.28) are valid for slow variations of the

hydrodynamic dynamic variables only.

Multiplying both sides of (4.28) with JKp´k, tq and then averaging,

B

Bt
CKpk, tq `

ηkk
2

ρ
CKpk, tq “ 0, (4.29)

whose solution is

CKpk, tq

CKpk, 0q
“ exp

„

´
ηkk

2t

ρ



, (4.30)

from which the viscosity in the Fourier-transformed space can be estimated from

equilibrium correlation function data. With this approximation, the observation

time scale is assumed to be large. The stress approximations, which involve an

additional characteristic time scale, are discussed in next section.
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4.2 Linear viscoelastic fluids

The stress tensor for a linear viscoelastic fluid takes the form

Sαβpr, tq “

ż t

´8

dt1Gpt´ t1q

ˆ

Buαpr, t
1q

Brβ
`
Buβpr, t

1q

Brα

˙

, (4.31)

where Gptq is the relaxation modulus, a decreasing function of time. The stress at

the current time is thus dependent on both the current and past strain rates. It

can be seen that, (i) the contribution of a strain rate at the distant past is weighted

by the memory relaxation modulus and is less than that of a more recent strain

rate (i.e. the concept of fading memory); and (ii) when the memory function is

chosen as a Dirac delta function (i.e. Gpt´ t1q “ ηδpt´ t1q), a Newtonian fluid is

recovered.

Here, we consider a simple relaxation modulus (the Maxwell relaxation modulus)

Gpt´ t1q “
η

τ
exp

ˆ

´
t´ t1

τ

˙

, (4.32)

where τ is a Maxwell relaxation time/decay constant. A fit to the equilibrium

normalised CKpk, tq data is now described as a function of not only the viscos-

ity η but also the decay constant of the memory function, τ . From continuum

mechanics, a plane wave given by u “ pu0 cos ky, 0, 0q will decay according to

Buxpy, tq

Bt
“

η

τρ

ż t

0

dt1 exp

ˆ

´
t´ t1

τ

˙

B2uxpy, t
1q

By2
, (4.33)

which can be derived from the NS equations. An exact solution to (4.33) is

uxpy, tq “ u0 expp´
t

2τ
q

ˆ

cosh
Ωt

2τ
`

1

Ω
sinh

Ωt

2τ

˙

cos ky, (4.34)
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where

Ω “

d

1´ 4
τηk2

ρ
. (4.35)

On the other hand, from a DPD point of view and without an initial plane

wave applied, thermal fluctuations still occur in a system at a given temperature.

Since the response of the system to internal fluctuations is the same as to external

perturbations, one can link the TCAF to (4.34), resulting in [Hess (2002)]

CKpk, tq

CKpk, 0q
“ expp´

t

2τk
q

ˆ

cosh
Ωkt

2τk
`

1

Ωk

sinh
Ωkt

2τk

˙

, (4.36)

where τk “ τpkq and Ωk is defined as in (4.35) with τ “ τk and η “ ηk. This model

involves two fitting parameters, namely the decay time τk and the dynamical vis-

cosity ηk. Alternatively, as discussed in [Vogelsang and Hoheisel (1987)], the two

fitting parameters can be chosen as the decay times of the memory function (τk)

and TCAF (τ˚k ), and the fitting model is also shown to be in the form of (4.36)

with Ωk being defined as Ω2
k “ p1{2τkq

2 ´ p1{τkτ
˚
k q

2 and the relation between the

viscosity and the decay time of TCAF as ηk “ ρ{k2τ˚k .

For each value of k, we fit the model (4.36) to the equilibrium correlation func-

tion data. To examine the dependence of the DPD transport properties on the

frequency ω, we now utilise analytical expressions of the shear stress in a simple

oscillatory flow with a small applied strain. Using (4.15) and (4.16), the coeffi-

cients in the strain, G1pωq, the storage modulus, and in the strain rate, η1pωq, the

dynamic viscosity are computed as

G1pωq “

ż 8

0

ωGpsq sinpωsqds “

ż 8

0

ω
ηk
τk

exp

ˆ

´
s

τk

˙

sinpωsqds “
ηkω

2τk
ω2τ 2

k ` 1
,

(4.37)

η1pωq “

ż 8

0

Gpsq cospωsqds “

ż 8

0

ηk
τk

exp

ˆ

´
s

τk

˙

cospωsqds “
ηk

τ 2
kω

2 ` 1
, (4.38)
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where s “ t´ t1. With the storage modulus and shear viscosity being functions of

the frequency, one now has an effective mechanism for investigating the response

of the DPD system: purely viscous (ω Ñ 0), purely elastic (ω Ñ 8) and vis-

coelastic (intermediate values of ω).

It can be seen from (4.37) and (4.38) that

G1pωq Ñ 0 and η1pωq Ñ ηk as ω Ñ 0, (4.39)

G1pωq Ñ
ηk
τk

and η1pωq Ñ 0 as ω Ñ 8. (4.40)

5 Imposition of fluid properties

One main drawback of the classical DPD formulation is that there is no direct

link between the DPD input parameters and the macroscopic properties of the

fluid. Here, we show that it is possible to directly impose the particle diffusion

time and the viscosity of the fluid in the hydrodynamic limit on the DPD system

with the dissipative weighting function of a generalised form, i.e. wD “ p1´r{rcq
s.

The viscosity of the fluid, η, can be specified as an input parameter by enforcing

the following constraint [Mai-Duy et al. (2017b), Mai-Duy et al. (2017a)]

η “
γn2rR2wDsR

30
“
γn2

30

96πr5
c

ps` 1qps` 2qps` 3qps` 4qps` 5q
, (4.41)

where right hand is the dissipative part of the total viscosity by the kinetic theory

[Marsh (1998)]. This equation can be solved for the DPD parameter γ,

γ “
5ηps` 1qps` 2qps` 3qps` 4qps` 5q

16πn2r5
c

, (4.42)

which is equation (4.39) in [Mai-Duy et al. (2017a)].

The particle diffusion time can be defined as the time taken by the particle

to diffuse a distance equal to its radius (the time to restore the equilibrium
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configuration)

τP “
R2

D
, (4.43)

where R is the radius and D the self-diffusion coefficient of a particle.

Consider a tagged particle in a sea of other particles. Its radius can be estimated

by the Stokes-Einstein relation

R “
kBT

6πDη
. (4.44)

Substitution of (4.44) into (4.43) yields

τP “
pkBT q

2

36π2D3η2
. (4.45)

By means of kinetic theory, an analytic expression for the diffusivity can be

derived as

D “
3mkBT

γmnrwDsR
“

3mkBT

γmn

ps` 1qps` 2qps` 3q

8πr3
c

, (4.46)

(i.e. equation (36) in [9]) and expression (4.45) becomes

τP “
pkBT q

2

36π2η2

ˆ

8πr3
cγn

3kBT ps` 1qps` 2qps` 3q

˙3

. (4.47)

Substitution of (4.42) into (4.47) yields the following quadratic equation

s2
` 9s` 20´ E “ 0, E “

6kBTnr
2
c

5η
3

d

36π2η2τP
kBT 2

, (4.48)

which always has two real solutions and we are interested in the positive one

s “
´9`

?
1` 4E

2
, E ą 20. (4.49)
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The requirement E ą 20 leads to

τP ą
31250

243π2

η

kBTn3r6
c

for a given η, (4.50)

η ă
243π2

31250
kBTn

3r6
cτP for a given τP . (4.51)

For given values of τP and η, satisfying the conditions (4.50) and (4.51), values of

s and γ can then be computed from (4.49) and (4.42), respectively. According to

the kinetic theory, the two physical parameters τP and η will take the specified

values for the values of rc, kBT , n and m employed.

The DPD without energy conservation describes an isothermal fluid that can be

characterised through the mass density ρ “ mn, viscosity η and Schmidt number

Sc “ η{ρD. It is convenient to rewrite the particle diffusion time (4.45) in the

form

τP “
1

36π2

ρ3S3
c pkBT q

2

η5
. (4.52)

In investigating the effects of τP , we keep values of ρ, η and Sc constant. In DPD,

kBT is simply a specific kinetic energy; by changing kBT , one can vary the input

τP . Here, we are interested the relation between the particle diffusion time and

the relaxation time of the memory kernel (4.32) - it will be studied numerically

in next section.

6 Numerical results

From the DPD equilibrium state space (time-varying positions and velocities

of particles), the viscosity can be extracted for different wave numbers. For each

wave number, several sets of values of CKpk, tq{CKpk, 0q can be calculated from

the DPD simulation data; these can be employed for fitting and back tracking the

physical parameters. We use the fitting model (4.30) and (4.36) for Newtonian
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and viscoelastic fluids, respectively.

Consider a DPD system defined on a domain of 15ˆ15ˆ15 with periodic boundary

conditions, and (aij “ 3.5328, n “ 4, rc “ 1.5, kBT “ 1, m “ 1, ∆t “ 0.001).

Its physical input parameters (fluid properties) chosen to be imposed are η “ 30

and Sc “ 500, which correspond to the original input parameters: γ “ 6.97

and s “ 0.42 [Mai-Duy et al. (2017a)]. It can be seen that the value of s used

here is close to 0.5 (the modified DPD fluid), and the corresponding dynamical

correlation length (l0 “ 0.0149) is less than rc “ 1.5. We apply the modified

velocity-Verlet algorithm [Groot and Warren (1997)] to solve the DPD equations

of motion. Here, the wave number is chosen in the range of 0.4189 to 7.1209

(i.e. 17 values) and their associated results are obtained from a single run. A

run of 5ˆ 105, 1.5ˆ 106, 2ˆ 106 time steps produces, respectively, 15, 46 and 62

data sets. For each data set, TCAFs are obtained by averaging 500 overlapping

samples in which measurements are made every 5 time steps and there are 1025

measurements per sample. It is observed that using a larger number of data sets

make the solution behaviour with respect to the wave number more stable. In

the following sections, the obtained results from 62 data sets are presented. Both

Newtonian and viscoelastic fitting models are applied to the same TCAF data

(i.e. CKpk, tq{CKpk, 0q). Their resultant curve fits are observed to be graphically

the same; only those for the Newtonian case are displayed. For a time step,

the elapsed CPU time of computing TCAF is insignificant compared to that of

solving the DPD equations of motion.

6.1 Newtonian fluids

Some typical variations of TCAF are displayed in Figures 4.1. Since the finite

size, defined through wavelength, is taken into account, the Newtonian viscosity

estimated from TCAF is a function of the wave number. The obtained results
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Figure 4.1: Newtonian fluids: Calculated values of TCAF and their curve fits
(solid lines) by using (4.30) for the four smallest k values.

are shown in Figures 4.2 and 4.3. One has a wave number-dependent viscosity

with the observation time scale being assumed to be large. To obtain the viscosity

at k “ 0 (a continuum), some extrapolation is needed. As discussed in [Palmer

(1994)], ηk must be an even function of k and thus may be approximated as

ηk “ η0 ` ak
2, (4.53)

where η0 and a are two fitting parameters. Assuming that values of k used

for the fitting are sufficiently small, η0 can be regarded as the viscosity at the

hydrodynamic limit. Using the first 4 smallest values of k (i.e. 0.4189, 0.8378,

1.2566 and 1.6755), this leads to η0 “ 29.0214. On the other hand, from the

kinetic theory [Marsh (1998)], the viscosity is estimated as η “ 30. The advantage

of the TCAF approach is that it can provide information about the size effect on

the transport properties. In addition, one can estimate the transport coefficients
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Figure 4.2: Newtonian fluids: Several data sets are used for obtaining the vis-
cosity. Its deviation is generally reduced with increasing k value (i.e. top to
bottom).

0 1 2 3 4 5 6 7 8

k

0

5

10

15

20

25

30

v
is

c
o
s
it
y

Figure 4.3: Newtonian fluids: Viscosity as a function of the wave number.
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at the hydrodynamic limit through extrapolation.

6.2 Linear viscoelastic fluids

6.2.1 Wavelength- and frequency-dependent transport coefficients

The stress approximations involve two parameters, the viscosity and relax-

ation time, which are wavelength- and frequency-dependent. Figure 4.4 shows

plots of the viscosity and the decay constant of the memory function against the

wave number k. When k decreases, the decay constant τk is seen to increase

quickly and is expected to reach its maximum in the hydrodynamic limit. For

the shear viscosity ηk, the change is observed to be slow as k Ñ 0. The obtained

values of ηk here are similar to those in the Newtonian case. Figure 4.5 displays

the storage modulus and viscosity against the frequency ω, according to (4.37)

and (4.38), for the first (smallest) value of k (i.e. k “ k1 “ 0.4189). At small

values of the frequency (i.e. large observation time scale), the system responses

like a fluid and at large values of the frequency, one has a solid-like response. The

storage modulus provides a convenient means of quantifying the level of elasticity

of the fluid.

Figure 4.6 displays the shear viscosity against the frequency ω for the first four

values of k (i.e. 0.4189, 0.8378, 1.2566 and 1.6755). It can be seen that η1 Ñ ηk

as ω Ñ 0 and η1 Ñ 0 as ω Ñ 8.

Figure 4.7 displays the storage modulus against the frequency ω for the first four

values of k (i.e. 0.4189, 0.8378, 1.2566 and 1.6755). It can be seen that G1 Ñ 0 as

ω Ñ 0 and G1 Ñ ηk{τk (i.e. 1.4175ˆ 103, 1.5283ˆ 104, 5.0473ˆ 104, 6.6011ˆ 104)

as ω Ñ 8.
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Figure 4.4: Viscoelastic fluids: The decay constant of the relaxation modulus and
the viscosity as functions of the wave number. When k decreases, the decay con-
stant has the tendency to increase quickly and is expected to reach its maximum
in the hydrodynamic limit. For the shear viscosity ηk, the change is seen to be
slow as k Ñ 0.
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Figure 4.5: Viscoelastic fluids: Storage modulus and viscosity as functions of the
frequency for the smallest wave number (i.e. k “ k1 “ 0.4189). The system
responses like a fluid at small values of the frequency (i.e. large observation time
scale) and like a solid at large values of the frequency. The storage modulus
provides a convenient means of quantifying the level of elasticity of the fluid.
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Figure 4.6: Viscoelastic fluids: Viscosity as a function of the frequency for the
first four values of k (i.e. 0.4189, 0.8378, 1.2566 and 1.6755). It can be seen that
η1 Ñ ηk (i.e. 28.8930, 28.3227, 26.8364, 25.0198) as ω Ñ 0 and η1 Ñ 0 as ω Ñ 8.
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Figure 4.7: Viscoelastic fluids: Storage modulus as a function of the frequency
for the first four values of k (i.e. 0.4189, 0.8378, 1.2566 and 1.6755). It can
be seen that G1 Ñ 0 as ω Ñ 0 and G1 Ñ ηk{τk (i.e. 1.4175 ˆ 103, 1.5283 ˆ
104, 5.0473 ˆ 104, 6.6011 ˆ 104) as ω Ñ 8. In computing these limit values,
the corresponding Maxwell relaxation times are τk “ p2.0383 ˆ 10´2, 1.8532 ˆ
10´3, 5.3170ˆ 10´4, 3.7902ˆ 10´4q.

6.2.2 Linear viscoelastic effect

As shown above, a DPD model using a single set of particles can result in a

linear viscoelastic fluid for k ě 0. A concern here is how to quantify the linear

viscoelastic effect. Some typical scenarios are studied below and some comments

are given at the end of this section. Table 4.1 displays values of the original DPD

parameters γ and s that correspond to the input viscosities and Schmidt numbers

imposed here.

Same fluid at different imposed kBT Five values of kBT , (1, 1.1, 1.2,

1.3, 1.4), are employed in conjunction with (ρ “ 4, Sc “ 500 and η “ 30).

They lead to τP “ p0.93, 1.12, 1.33, 1.57, 1.82q, respectively, according to (4.52).

The obtained results concerning the effects of the particle diffusion time τP on

the relaxation time of the memory kernel, τk, over a wide range of k are shown
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Table 4.1: Values of the input viscosity and Schmidt number, and the correspond-
ing original DPD parameters for pm “ 1, n “ 4, kBT “ 1, rc “ 1.5q.

Physical inputs Original DPD parameters
η Sc γ s
30 500 6.9710 0.4244
28 500 11.7110 0.7727
26 500 19.6042 1.1747
24 500 32.9714 1.6441
30 600 15.0263 0.8898
30 700 27.4087 1.3181
30 800 44.9254 1.7169

in Figure 4.8. The figure indicates that as the wave number k is reduced, the

relaxation times τk corresponding to different values of the particle diffusion time

τP apparently converge. At finite k, the obtained results indicate that an increase

in τP results in a decrease in τk. It can also be seen that a change in τP can affect

the estimated viscosity at the hydrodynamic limit.

Fluids of different viscosities Four values of η, (30, 28, 26, 24), are em-

ployed in conjunction with (ρ “ 4, Sc “ 500 and kBT “ 1). Figure 4.9 presents

the effects of the imposed viscosity η on the relaxation time τk over a wide range

of k. It shows that as the wave number k is reduced, the relaxation times τk

corresponding to different values of the imposed (limit) viscosity η apparently

converge. At finite k, the obtained results indicate that a decrease in η results in

a decrease in τk.

Fluids of different Schmidt numbers Four values of Sc, (500, 600, 700,

800), are employed in conjunction with (ρ “ 4, η “ 30 and kBT “ 1). Figure

4.10 shows the effects of the imposed limit Schmidt number Sc on the relaxation

time τk over a wide range of k. It indicates that as the wave number k is reduced,

the relaxation times τk corresponding to different values of the imposed (limit)
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Figure 4.8: Viscoelastic fluids: As the wave number k is reduced, the relaxation
times τk corresponding to different values of the particle diffusion time τP appar-
ently converge. At finite k, the obtained results indicate that an increase in τP
results in a decrease in τk. It can also be seen that a change in τP can affect the
estimated viscosity at the hydrodynamic limit. All cases take ρ “ 4, Sc “ 500
and η “ 30.
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Figure 4.9: Viscoelastic fluids: As the wave number k is reduced, the relaxation
times τk corresponding to different values of the imposed (limit) viscosity η ap-
parently converge. At finite k, the obtained results indicate that a decrease in η
results in a decrease in τk. All cases take ρ “ 4, Sc “ 500 and kBT “ 1.
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Figure 4.10: Viscoelastic fluids: As the wave number k is reduced, the relaxation
times τk corresponding to different values of the imposed (limit) Schmidt number
Sc apparently converge. At finite k, the obtained results indicate that an increase
in Sc results in a decrease in τk. It can also be seen that a change in Sc can affect
the estimated viscosity at the hydrodynamic limit. All cases take ρ “ 4, η “ 30
and kBT “ 1.
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Schmidt number Sc apparently converge. At finite k, the obtained results indicate

that an increase in Sc results in a decrease in τk. It can also be seen that a change

in Sc can affect the estimated viscosity at the hydrodynamic limit.

From the three figures, it can be seen that the relaxation time, corresponding to

different values of τP , η or Sc, apparently converges as k is reduced, and one would

expect that an extrapolation will lead to a similar value for the relaxation time

in the limit k Ñ 0. At finite k, the obtained results suggest that the relaxation

time can be strongly affected by the particle diffusion time, viscosity or Schmidt

number. An increase in τP , a decrease in η or an increase in Sc results in a

decrease in τk. Differences of τk at small k are thus much smaller than those at

large k. It can also been seen that a change in Sc or τP can affect the estimated

viscosity at the hydrodynamic limit.

7 Concluding remarks

In this chapter, DPD in its generalised hydrodynamic regime is considered.

For a Newtonian fluid, the stresses are obtained through a large-time averag-

ing process; they involve one fitting parameter, namely the viscosity, which

is wavelength-dependent. For a linear viscoelastic fluids, the stresses involve

two fitting parameters, namely the viscosity and the relaxation time, which are

wavelength- and frequency-dependent. The wavelength dependency of the trans-

port coefficients is obtained numerically while their frequency dependency can

be computed analytically, which allow the effects of the length and time scales

introduced by physical phenomena to be determined. The DPD input param-

eters can be determined from the viscosity, mass density, Schmidt number and

diffusion time. Numerical experiments indicate that (i) a fluid modelled from

a single set of particles may not be Newtonian, but linear viscoelastic, and any

time dependent effects must be carefully looked at, and (ii) the relaxation time
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measuring the linear viscoelastic effect can be adjusted by means of the input

diffusion time, viscosity or Schmidt number at finite wave numbers.
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Chapter 5

Application of the proposed DPD

to particulate suspensions

In the DPD simulation of particulate suspensions, the viscosity of the solvent

phase is typically estimated by a non-equilibrium approach, where the fluid is

subjected to a flow process (a shear flow), and the local stress and shear rate

tensors are calculated; the obtained values (shear stress/shear rate) are then

used in calculating the particulate fluid rheology, for example the ratio of the

suspension to the matrix viscosity (reduced/relative viscosity) for a given volume

fraction of the suspended phase. However, when suspended particles are added,

an additional length scale is introduced into the solvent system and this may affect

the solvent macroscopic properties. In this chapter, a particulate suspension is

simulated using the spring model, and the solvent viscosity is estimated taking

into account the finite-size effect (i.e. in the generalised hydrodynamic regime, as

a hydrodynamics of integrable system) to produce improved results. Furthermore,

it is observed that the simulation results are also affected by the repulsion strength

and an appropriate high value of this coefficient, where the actual solvent viscosity

in the hydrodynamic limit is still kept close to the input viscosity, can lead to

a further improvement. New results are presented and compared with existing
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data.

1 Introduction

Particulate suspensions are widely encountered in natural and industrial pro-

cesses. They have been intensively investigated, both computationally and ex-

perimentally. Particulate suspensions can be characterised by the dependence

of their reduced viscosity on the volume fraction and shear rate, their non-zero

normal stress differences which are functions of the Peclet number, and their mi-

gration of solid particles from high to low shear rate regions [Phan-Thien and

Mai-Duy (2017)].

Generalised hydrodynamics is developed for simple fluids, as a formulation of

integrable system [Boon and Yip (1991),Hansen and McDonald (2006)]. Their

transport coefficients are no longer constant but are functions that can vary in

space and time - they are dependent on wavelengths and frequencies of thermal

fluctuations occurring at finite temperature. For fluctuations with long wave-

lengths and low frequencies, the fluid behaves like a continuum (original hydro-

dynamics). For fluctuations with small wavelengths (molecular scale), the fluid

is described by a system of interacting particles (molecular dynamics). From the

momenta and coordinates of particles in the system at equilibrium, the depen-

dence of its viscosity on the wavelength can be found, and extrapolation is then

carried out to obtain the viscosity in the hydrodynamic limit. With the gener-

alised hydrodynamics theory, finite-size effects are taken into account.

Dissipative Particle Dynamics (DPD) is a popular numerical technique for prob-

ing the behaviour of complex-structure fluids [Marsh (1998)]. In DPD, each DPD

particle is supposed to represent a group of molecules, and forces acting on a DPD

particle include the conservative, dissipative and random forces. The last two

forces form a thermostat to keep the mean specific kinetic energy of the system
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constant. DPD conserves momentum locally and thus preserves hydrodynamics.

In the simulation of suspensions, a solid particle can be modelled by a set of frozen

particles [Koelman and Hoogerbrugge (1993)], a single DPD particle [Pan et al.

(2010b)] or a few constrained basic DPD particles (spring model) [Phan-Thien

et al. (2014a)]. In computing the reduced viscosity, the viscosities of the solvent

and the suspension are typically calculated by considering a simple shearing flow

of the solvent and the suspension separately, respectively, and the reduced vis-

cosity (suspension viscosity/solvent viscosity) is found. However, for the former,

when solid particles are introduced, the solvent viscosity can vary according to

the generalised hydrodynamics theory. In this regard (to take into account the

size effect due to the presence of solid particles), we attempt to employ DPD in its

generalised hydrodynamic regime [Ripoll et al. (2001),Phan-Thien et al. (2018)]

to compute the solvent viscosity for a given volume fraction of the suspended

phase. A mechanism to approximately estimate the finite size effects (in the con-

text of the spring model) is proposed. Basically, there are two systems of the

same base particles, namely a free system and a system with spring constraints

as a model for suspension, to be considered. They are all described by the same

linear continuum hydrodynamic equations. Due to the spring constraints, the

effective length scale of the solvent phase becomes smaller (less than the side of

the simulation box), and the viscosity of the constrained system is thus expected

to be smaller than that of the free system at a given wavelength/wave number.

Based on the difference in the hydrodynamic limit (defined as the limit when

the wave number approaches zero), a new length scale of the solvent can be esti-

mated. For the viscosity of the suspension, we are only interested in its values in

the hydrodynamic limit, and a non-equilibrium approach (simple shearing) can

thus be applied for an efficient estimation.

We also discuss the effect of repulsive forces on the suspension results. In DPD,
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a repulsive force is introduced partly to prevent particle overlap, and partly to

provide a means to control the compressibility of the model fluid independently

of the number density, the cut-off radius and the equilibrium temperature (mean

specific kinetic energy). It will be shown that an appropriate high value of the

repulsion strength can lead to an improvement in the simulation results compared

to the usual case of when water compressibility is enforced.

The remainder of this chapter is organised as follows. Section 2 presents partic-

ulate suspensions with the focus on the estimate of the solvent viscosity and the

effect of the repulsion strength. Section 3 gives some concluding remarks.

2 Particulate suspensions

The solvent phase is modelled with η “ 30 and Sc “ 500. Its DPD parameters

used are n “ 4 and

aij “ 3.53, m “ 1,

s “ 0.42, kBT “ 1,

γ “ 6.97, rc “ 1.5.

(5.1)

Here, the units of mass, length and energy are respectively chosen as the mass of

a single DPD particle (m), the force cut-off radius divided by 1.5 (rc{1.5), and the

kinetic energy (kBT ), where the superposed bar is used to denote a dimensional

quantity. The repulsion aij in (5.1) is obtained for a liquid with a water-like

compressibility [Groot and Warren (1997)]. Figure 5.1 shows the dependence

of the solvent viscosity on the wave number k (k “ 2π{λ, λ: the wavelength).

Components of k are chosen as the product of an integer and 2π{L for periodic

boundaries over a cubic region LˆLˆL. The present simulation periodic domain

is taken as 15ˆ 15ˆ 15 (in DPD units).
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Figure 5.1: Solvent phase (aij “ 3.53 pwater compressibilityq, n “ 4,m “

1, kBT “ 1, rc “ 1.5, η “ 30, Sc “ 500): the viscosity is a decreasing function
of the wave number k (or an increasing function of the wavelength λ “ 2π{k).

2.1 Spring model for suspended particles

The multiphase nature of the suspensions may be modelled by using more than

one DPD species. In the spring model [Phan-Thien et al. (2014a)], a suspended

particle is represented by a set of p basic DPD particles (p is small) that are

connected, through stiff springs, to some reference sites collectively moving as a

rigid body. For example, a spherical particle can be modelled using 6 or 8 basic

DPD particles with their reference sites at the vertices of either an octahedron

or a cube, respectively. The shape and size of a suspended particle are actually

defined by the repulsive force field generated by the constituent particles of a

suspended particle (not by their locations).
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The forces on constituent particles of the kth suspended particle are

Fk
i ptq “

N
ÿ

j“1,j‰i

“

Fk
ij,Cptq ` Fk

ij,Dptq ` Fk
ij,Rptq

‰

` Fk
i,Sptq, i “ p1, 2, ¨ ¨ ¨ , pq, (5.2)

where Fk
i,Sptq “ ´H

“

rki ptq ´ rki ptq
‰

is the spring force with H being the stiffness

of the spring and rki ptq the position of the reference site.

It should be pointed out that the sum of the spring forces on the constituent

particles of the suspended particle has a zero mean. The reference sites are

calculated through their Newton-Euler equations, using data from the previous

time step, while the velocities of their associated DPD particles are found by

solving the DPD equations at the current time step.

2.2 Finding a length scale introduced into the solvent sys-

tem due to the presence of suspended particles

Three approaches are presented. In the first two, the mean distance between

the suspended particles is taken as a new length scale to the solvent system.

In the third approach, transverse-current autocorrelation functions (TCAFs) are

used to estimate a new length scale.

2.2.1 Approach 1

A length scale that is introduced into the solvent system can be regarded as

the mean distance between the suspended particles; a convenient distance is an

estimate of a side of the cube of a particle,

λ “
1

n
1{3
c

, (5.3)

where nc is the number density of the colloidal (particulate) phase.
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2.2.2 Approach 2

The mean inter-colloid distance is estimated as the radius of the sphere of the

volume per particle (the Wigner-Seitz radius [Girifalco (2000)])

λ “

ˆ

3

4πnc

˙1{3

. (5.4)

2.2.3 Approach 3: TCAF

Here, we propose a scheme, based on TCAFs, to estimate a length scale in-

troduced into the solvent system from the spring constraints. For a given volume

fraction of the suspended phase, two corresponding systems, containing all the

solvent particles and the constituent particles of the suspended phase, are con-

sidered. Note that the solvent and the constituent particles are all subjected to

the same DPD parameters, i.e. those defined in (5.1). In the first system, all the

particles are acted on by DPD forces and are not under any other constraints. In

the second system, some of the particles (constituent particles) are constrained

by the springs to form suspended particles. The two systems are assumed to

represent some simple fluids. Results concerning the dependence of the viscosity

on the wave number (wavelength) by the TCAF approach for the two systems

are shown Figure 5.2. Extrapolations are then conducted to obtain the viscosities

in the hydrodynamic limit (k Ñ 0). Due to the presence of springs, an effective

length scale of the constrained system is less than the side of the simulation box,

and its viscosity is seen to be lower. The constrained system in the hydrodynamic

limit can thus be considered as the free system at the wave number (wavelength)

that corresponds to the hydrodynamic-limit viscosity of the constrained system.

This wavelength is taken as a new length scale in the solvent phase.
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Figure 5.2: Process of finding a new length scale that is introduced into the
solvent system due to the presence of suspended particles. For a given volume
fraction, two corresponding systems (one without any spring constraints and the
other with some spring constraints as a model for suspension) are considered;
they have the same total numbers of the base particles and employ the same
associated DPD parameters. The two systems are assumed to represent simple
fluids; through the TCAF approach, their viscosities are shown to depend on the
wave numbers (wavelengths). Extrapolations are then conducted to obtain the
viscosities in the hydrodynamic limit (k Ñ 0). With springs, the effective length
scale of the constrained system is less than the system size L, and its viscosity
is seen to be lower. The constrained system in the hydrodynamic limit can be
considered as the free system at the wave number (wavelength) that corresponds
to the hydrodynamic-limit viscosity of the constrained system. This wavelength
is taken as a new length scale in the solvent phase.

Table 5.1 displays the effective wavelength of the solvent phase against the volume

fraction of the suspended phase by the three approaches, while Table 5.2 details

the corresponding effective wave numbers and effective viscosities in the TCAF

case. Note that compressibility of the solvent is matched to that of water, i.e.

aij “ 3.53, and the simulation box is taken as 15ˆ 15ˆ 15 (in DPD units).
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Table 5.1: Effective wavelength of the solvent phase against volume fraction of
the suspended phase by the three approaches. Compressibility of the solvent is
matched to that of water, i.e. aij “ 3.53, and the simulation box is taken as
15ˆ 15ˆ 15 (in DPD units).

Effective wavelengths
φ Sphere-based mean distance Cube-based mean distance TCAF

0.0119 3.1018 5.0000 12.8671
0.0277 2.3263 3.7500 9.4465
0.0526 1.8611 3.0000 5.3996
0.0876 1.5509 2.5000 4.7463
0.1323 1.3293 2.1429 3.8475
0.1854 1.1632 1.8750 3.2045
0.2447 1.0339 1.6667 2.7583
0.3077 0.9305 1.5000 2.4303
0.3717 0.8459 1.3636 2.1586
0.4344 0.7754 1.2500 1.9544
0.4940 0.7158 1.1538 1.7431

Table 5.2: Effective wave number, wavelength and viscosity of the solvent phase
against volume fraction of the suspended phase by the TCAF approach. Com-
pressibility of the solvent is matched to that of water, i.e. aij “ 3.53, and the
simulation box is taken as 15ˆ 15ˆ 15 (in DPD units).

φ Effective k Effective λ Effective η
0.0119 0.4883 12.8671 28.9109
0.0277 0.6651 9.4465 28.7144
0.0526 1.1636 5.3996 27.2179
0.0876 1.3238 4.7463 26.5560
0.1323 1.6331 3.8475 25.2043
0.1854 1.9608 3.2045 23.8032
0.2447 2.2779 2.7583 22.3348
0.3077 2.5853 2.4303 20.7466
0.3717 2.9108 2.1586 18.9952
0.4344 3.2149 1.9544 17.4017
0.4940 3.6047 1.7431 15.5091
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2.3 Effect of the repulsion coefficient

It will be shown that the input repulsion strength can affect the system vis-

cosity. In the present study, the input viscosity of the solvent phase is specified as

30. Water-compressibility matching leads to aij “ 3.53. By simulating Couette

flow (a non-equilibrium approach), the solvent viscosity is estimated as 29.08,

close to the input value. Increasing aij, the solvent viscosity is observed to have

a larger value, e.g. p29.66, 30.22, 30.66q for aij “ p6.50, 9.50, 18.50q, which cor-

respond to a positive change of 1.99%, 3.92% and 5.45%, respectively. Increasing

aij produces a less compressible fluid and is more effective in preventing particle

overlap. However, at large values, the conservative force can be dominant and

the DPD system has a solid-like behaviour (particles do not move, just oscillate

about their positions). Here, we limit our attention to the change within about
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Figure 5.3: Diffusion coefficient against time for several values of the repulsion.
For aij “ p3.53, 6.50q, the diffusion coefficients are observed to stay constant at
large times. For larger aij, there is some reduction in the coefficient and no
significant diffusion at aij “ 500.
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2 %, where the diffusion coefficient is observed to stay constant at large times as

shown in Figure 5.3.

2.4 Numerical results

The suspension viscosity is now calculated by the non-equilibrium approach

(simple shearing) at a small shear rate of 0.01, while the solvent viscosity is

estimated taking into account the finite-size effect due to the presence of the sus-

pended particles. Two solvent fluids with aij “ 3.53 (water compressibility) and

aij “ 6.50 (a fluid less compressible than water) are considered. The relationship

between reduced viscosity of the suspension and volume fraction of the suspended

phase can be divided in 3 regimes: dilute (φ À 0.02, linear dependence), semi-

dilute (φ À 0.25, visible higher-order effects) and concentrated (φ Á 0.25, rapid

growth). The obtained DPD results are shown in Figure 5.4 for aij “ 3.53 and in

Figure 5.5 for aij “ 6.50. Theoretical results in the dilute regime (Einstein, 1906)

and empirical results (Quemada, 1977), which have found widespread application,

are also included for comparison purposes. It can be seen that (i) the original hy-

drodynamic DPD produces improved reduced viscosities against volume fraction

with increasing aij (with respect to improved agreement with Eistein’s relation

at the dilute limit); (ii) the generalised hydrodynamic DPD (TCAF) yields a

better behaviour than the original hydrodynamic DPD in all three regimes for

both fluids considered (with respect to agreement with Quemada’s); (iii) the gen-

eralised hydrodynamic DPD based on sphere/cube mean distance overestimates

the reduced viscosity in every case studied.
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Figure 5.4: Reduced viscosity by original and generalised hydrodynamic DPD
using the same repulsion aij “ 3.53 (water compressibility). The latter (TCAF)
is seen to have a better performance than the former in the dilute (φ À 0.02, linear
dependence), semi-dilute (φ À 0.25, visible higher-order effects) and concentrated
(φ Á 0.25, rapid growth) regimes. It appears that the generalised hydrodynamic
DPD based on sphere/cube mean distance overestimates the reduced viscosity
in every regime. Theoretical results in the dilute regime (Einstein, 1906) and
empirical results (Quemada, 1977), which have found widespread application,
are also included for comparison purposes.
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Figure 5.5: Reduced viscosity by original and generalised hydrodynamic DPD
using the same repulsion aij “ 6.50 (a fluid is less compressible than water).
The latter (TCAF) is seen to have a better performance than the former in
the dilute (φ À 0.02, linear dependence), semi-dilute (φ À 0.25, visible higher-
order effects) and concentrated (φ Á 0.25, rapid growth) regimes. It appears
that the generalised hydrodynamic DPD based on sphere/cube mean distance
overestimates the reduced viscosity in every regime. Theoretical results in the
dilute regime (Einstein, 1906) and empirical results (Quemada, 1977), which have
found widespread application, are also included for comparison purposes.
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3 Concluding remarks

In this chapter, particulate suspensions are simulated with the dissipative

particle dynamics (DPD) method, in which the spring model is used to model

suspended particles. In estimating the solvent viscosity, DPD is employed in its

generalised hydrodynamic regime to take into account the finite size effect due

to the presence of suspended particles. The effective sizes (wavelengths) are pre-

dicted by several approaches, and the transerse current autocorrelation functions

(TCAFs) approach is shown to yield the most reasonable results. Improved re-

duced viscosities of the suspension are clearly observed in the dilute (φ À 0.02,

linear dependence), semi-dilute (φ À 0.25, visible higher-order effects) and con-

centrated (φ Á 0.25, rapid growth) regimes, compared to the theoretical dilute

limit, and the best know empirical results at non-dilute regime. Further improve-

ment can also be acquired by increasing the repulsion to an appropriate value,

where the actual solvent viscosity in the hydrodynamic limit is still kept close to

the input viscosity and the diffusion coefficient of the solvent still stays constant

at large times.
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Chapter 6

Conclusion and future work

Conclusion

In this thesis, a new version of DPD for investigating complex fluids at the

mesoscale has been developed successfully. Key developments include

• Providing a mapping between the DPD space (repulsion parameter, noise

level, weighted functions) and the physical space (fluid properties). The

mapping is based on the utilisation of the virial theorem and the kinetic

theory in junction with the employment of new forms of the weighting func-

tions. The inputs to the DPD system are now the viscosity, the Schmidt

number, the mass density, the time-scale ratio and the water-like compress-

ibility.

• Expanding the working range of the DPD. This expansion is based on the

use of transverse current auto-correlation functions (TCAFs) to express the

transport coefficients as functions of wavelengths and frequencies of thermal

fluctuations. The proposed DPD method can now be applied to investigate

the model fluid in both regimes: the hydrodynamic limit and the generalised

hydrodynamics.
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• Developing a simple treatment based on the time-scale ratio to reduce the

compressibility effects of the DPD fluid in simulating incompressible flows.

The proposed method has been successfully applied to simulate various fluid

systems. Typical applications presented include

• Modelling of a single phase system (e.g. flows of a simple fluid between two

parallel plates, flows of a simple fluid past through a periodic array of fixed

cylinders, and equilibrium systems), where a consistent scaling of thermal

fluctuations is demonstrated, similar behaviours of the flow at different

coarse-graining levels are observed, a single set of particles is shown to have

the ability to model some linear viscoelastic fluids, and a new scheme of

promoting incompressibility to the flow is shown to be effective.

• Modelling of multi-phase systems (e.g. the suspension of spherical particles

in a fluid), where a consistent scaling of thermal fluctuations is also demon-

strated, and similar behaviours of the flow at different coarse-graining levels

are observed.

• Modelling of particulate suspensions, where improved results of viscosities

are obtained when compared to those by the original spring model.

Limitations of this research and Future work

The proposed DPD scheme is currently verified on benchmark test problems

only. Complex/extension flows are still not considered yet, and the effect of

Schmidt number on the solution accuracy is still not studied in detail.

In future work, we aim to address these limitations. In addition, the proposed

DPD scheme can be further developed to model other forms of particulate sus-
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pensions such as monodispersed suspensions of very high concentration, non-

Newtonian suspensions and polydispersed suspensions. For high concentration

suspensions, the level of hardness of the suspended particles can be improved by

increasing the number density of the solvent phase. For non-Newtonian suspen-

sions, the suspending phase can be modelled by two sets or more of DPD particles

or by a single set of DPD particles in the generalised hydrodynamics. For poly-

dispersed suspensions, the spring model can be modified to represent suspended

particles of different sizes and different shapes.
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