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ABSTRACT 

 

Rice cultivation systems in various countries of the world have been 

changing in recent years. These changes have been observed in the Mekong River 

Delta, Vietnam, specifically in An Giang province. The changes in rice cultural 

practices have impacts on remote sensing methods developed for rice monitoring, in 

particular, methods using new generation radar data. The objectives of the study 

were a) to understand the relationship between radar backscatter coefficients and 

selected parameters (e.g. plant age and biomass) of rice crops over an entire growth 

cycle, b) to develop algorithms for mapping rice cropping systems, and c) to develop 

a rice yield prediction model using time-series Envisat (Environmental Satellite) 

Advanced Synthetic Aperture Radar (ASAR) imagery. 

 

Ground data collection and in situ measurement of rice crop parameters were 

conducted at 35 sampling fields in An Giang province, Mekong River Delta, 

Vietnam. The average values of the radar backscattering coefficients that 

corresponded to the sampling fields were extracted from the ASAR Alternative 

Polarisation Precision (APP) images (C band, spatial resolution of 30 m, and swath 

width of 100 km). The temporal rice backscatter behaviour during the cropping 

seasons, including Winter Spring (WS), Summer Autumn (SA), and Autumn Winter 

(AW), were analysed for HH (Horizontal transmit and Horizontal receive), VV 

(Vertical transmit and Vertical receive), and polarisation ratio data. In addition, the 

relationships between rice biomass and backscattering coefficient of HH, VV, and 

polarisation ratio were established. 

 

The methods were examined for rice identification and mapping in the study 

area by using ASAR APP and Wide Swath (WS) imagery. ASAR APP data were 

firstly used to determine the best method with high accuracy for rice delineation. 

Then, the proposed method was applied for ASAR WS data (C band, 150 m spatial 

resolution, and 450 km swath width), covering the entire agricultural region of the 

An Giang province. Based on the discovered relationships between rice parameters 

and radar backscattering, a thresholding method applied for polarisation ratio and 

VV polarisation values of single-date ASAR APP data acquired in the middle of 
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crop season was found to be the best method among various classification methods. 

Another threshold, i.e. the “normalised difference polarisation ratio (NDRa) index”, 

where NDRa = ( 0
HHσ  in dB – 0

VVσ  in dB) / ( 0
HHσ  in dB + 0

VVσ  in dB), was 

formulated in this study for mapping the rice crops using ASAR APP image. The 

classification accuracy was assessed on the basis of the existing land use data and the 

published statistical data. 

 

By using multiple regression analysis (rather than using an agro-

meteorological model found unsuitable for modern rice cultural practices), the 

correlation between backscattering coefficients of multi-date ASAR APP images 

acquired during the crop season and the in situ measured yield was derived. The 

distribution maps of estimated rice yield were then produced based on that 

relationship. Consequently, rice production was finally estimated from these maps. 

 

This study showed that the radar backscattering behaviour was much 

different from that of the traditional rice reported in previous studies, due to changes 

brought by modern cultural practices. HH, VV and HH/VV radar values were not 

significantly related to biomass (maximum r2 = 0.494) due to the effect of water 

management, plant density and structure. Using the polarisation ratio and VV data of 

rice fields during a long period of the rice season, the thresholding method based on 

empirical relationships demonstrated a relatively simple but effective tool to 

accurately derive the rice/non-rice classes. The results using Envisat ASAR APP 

data acquired at a single date have provided the highest accuracy (99%) of provincial 

planted rice areas. To generate map of the rice area planted using three-date or two-

date ASAR WS data, the integrated method (based on the temporal variation of the 

radar response and thresholding) yielded the highest accuracies of 99% and 95%, 

respectively, at the provincial scale. This study developed a method to generate an 

accurate map of rice growing area before the end of crop season using single-date 

ASAR APP image taken in the middle of the rice cropping season. During this 

period, the difference between the HH and VV values is the highest. On the other 

hand, the predictive model based on multiple regression analysis between in situ 

measured yield and polarisation ratios attained good results (97% accuracy) and thus 

proved to be a potential tool for rice yield prediction. 
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This study concluded that time-series Envisat ASAR imagery can generate 

accurate maps of rice planted areas. Since radar backscattering coefficients were 

found uncorrelated with plant biomass in the study area, the use of SAR imagery for 

agro-meteorological (crop growth) modelling for rice yield prediction will be less 

reliable. Conversely, the use of statistical modelling (regression approach) was found 

highly accurate to generate rice production forecasts. Further work is needed to 

examine and validate the rice mapping algorithm and statistical model-based method 

for rice yield estimation at other regions in the Mekong River Delta. 
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Chapter 1 
 

INTRODUCTION 
 
1.1 Introduction 
  

 Rice (Oryza sativa) is one of the world’s major agricultural crops and is the 

staple food for more than half of the world population. In Asia, more than 2,000 

million people obtain 60 to 70 percent of their calories from rice and its products 

(FAO, 2004). Food security has become a key global issue due to the Asian region’s 

rapid population growth, extensive conversion of arable lands, and declining overall 

productivity in some areas because of climate effects (floods, water shortage, low or 

high temperature) and plant diseases. To maintain a close balance between rice 

production and food demand, effective rice monitoring programs are necessary at 

regional, national and global levels. In particular, there is a need to develop spatio-

temporal monitoring system that can accurately assess rice cultivated area, crop 

vigour and health, and can predict crop yield. 

 

 In the past years, many research projects on rice crop monitoring have been 

carried out using remote sensing data (e.g. Le-Toan et al., 1989, Aschbacher et al., 

1995). Among them, space-borne Synthetic Aperture Radar (SAR) data was used as 

main data source. Since the 1990s, a new era of wide-scale availability of radar 

imagery data has emerged, particularly those collected from earth observation 

satellites, such as ERS-1 and 2, JERS-1, and Radarsat-1 (e.g. Kurosu et al., 1995, 

Liew et al., 1998, Rosenqvist, 1999). This trend continued into the new century with 

the most advanced satellite radar systems launched as Envisat in 2002, ALOS in 

2006, Radarsat-2 and TerraSAR in 2007, and RISAT-2 in 2009 (e.g. Stankiewicz, 

2006). 

 

 More sophisticated radar remote sensing systems are scheduled for deployment 

in the near future, for example Sentinel-1. Thus, the field of space-borne radar 
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remote sensing continues to provide technological advances, an expanding range of 

data sources, and new opportunities for research on rice monitoring. 

 

1.2 Statement of the Problem 
  

 As new investments in irrigation, flood control and drainage management 

infrastructure are being developed, the rice cropping systems in many parts of the 

world have been undergoing rapid changes in recent years. Traditionally, estimates 

of rice planting area and productivity are based on ground survey data. While ground 

collection of data has some merits, it is often time-consuming and expensive. In 

addition, the information collected is often imprecise and unreliable, leading to 

inaccurate crop yield forecasts and subsequent difficulties for agriculture planners 

and managers in both regional and national scales. 

 

 Earth observation from space allows regular and timely monitoring of rice 

cultivated areas and can provide accurate information about the status of rice growth. 

Hence, the use of satellite remote sensing data acquired at the appropriate time can 

be expected to help in producing synoptic rice field maps and predicting crop yield. 

Optical remote sensing satellites that have high revisit capability, such as 

NOAA/AVHRR, SPOT/Vegetation or TERRA and AQUA/MODIS, may be 

considered for such purpose (e.g. Sakamoto et al., 2006, Xiao et al., 2006). However, 

their spatial resolutions are regarded as too coarse for accurate estimation of crop 

growth and extent. 

 

 On the other hand, the moderate resolution Landsat and SPOT satellites could  

also be considered (e.g. Oguro et al., 2001). Still, their temporal resolutions (repeat 

cycle) have significant limitation for rice monitoring in the tropical and sub-tropical 

regions. Additionally, a large part of rice crop growing cycle coincides with rainy 

season, resulting in only a limited number of cloud-free images being possible. 

Weather independent systems utilising medium resolution microwave sensor such as 

synthetic aperture radar are therefore potentially best suited for rice field mapping 

and yield estimation in the tropical and sub-tropical areas. 
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 Past studies using SAR data acquired from the ERS-1 and 2 and Radarsat-1 

satellites focused on the use of temporal variation of the backscattering coefficient at 

single polarisation for rice mapping and monitoring (e.g. Le-Toan et al., 1997, 

Takeuchi et al., 1999, Holecz et al., 2000, Lam-Dao et al., 2005). With the launch of 

Envisat and ALOS, the use of multi-dimensional (multi-polarised, multi-incidence 

angle and multi-date) radar imagery is expected to offer new capabilities for 

monitoring rice crops (e.g. Choudhury et al., 2007). Therefore, pioneering studies are 

needed to assess these new generation SAR imagery. 

 

1.3 Research Objectives 
 

One of the primary advantages of microwave remote sensing is its low 

dependence on atmospheric conditions and therefore is best suited for monitoring 

rice crop in the tropical and sub-tropical regions. In addition, previous results on 

mapping rice cropping systems and predicting the crop yield using old generation 

SAR data were demonstrated to have some limitations. Therefore, the goal of the 

study was to evaluate the use of new generation SAR data in monitoring the growth 

and yield of rice crops. The specific objectives of the research were: 

 

• to establish correlations between radar backscatter coefficients and 

selected parameters (e.g. plant age and biomass) of rice crops over an 

entire growth cycle; 

• to develop algorithms for mapping and monitoring rice cropping systems 

for one year cycle using time-series SAR imagery; and 

• to develop a rice yield prediction model over various cropping systems 

using new generation SAR imagery. 

 

This study has the following hypotheses: 

 

• Backscatter coefficients from the new generation SAR data will produce 

high correlations with selected rice plant parameters (e.g. plant age, 

biomass, etc.). 
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• New algorithms or image processing techniques of time-series radar data 

can be developed to accurately (>70%) map and monitor rice cropping 

systems. 

• A functional rice yield prediction model, over various cropping systems, 

can be developed using new generation SAR imagery. 

 

1.4 Significance of the Study 
  

 Previous research studies on rice monitoring were carried out using different 

kinds of SAR data (e.g. ERS-SAR, Radarsat, JERS-SAR, and Envisat-ASAR) in 

different geographical sites particularly in tropical and temperate regions (e.g. 

Aschbacher et al., 1995, Bakar et al., 1997, Le-Toan et al., 1997, Frei et al., 1999, 

Panigrahy et al., 1999, Li et al., 2004, Lam-Dao et al., 2005, Liew et al., 1998). Most 

of these were conducted to understand the temporal change of backscattering 

coefficient, interpret the theoretical model, define the classification method, retrieve 

the rice parameters, and estimate the rice yield. Among them, the research study 

conducted by Liew et al. (1998) reported the use of ERS-SAR images in delineating 

and mapping areas under different rice cropping systems using two methods, 

namely, human visual inspection and semi-automatic hierarchical clustering 

algorithm. 

 

 The new generation SAR instruments, such as the Advanced Synthetic 

Aperture Radar (ASAR) on Envisat and Phased Array type L-band Synthetic 

Aperture Radar (PALSAR) on ALOS, have important new capabilities that may 

provide better results for mapping and monitoring rice crops. These include beam 

steering for acquiring images with different incidence angles, dual polarization, and 

wide swath coverage (ESA, 2007). The mapping of rice cropping systems and crop 

yield estimation from data acquired by these relatively new SAR instruments have 

been rarely reported in the scientific literature. This present study attempts to 

contribute to developing SAR-based monitoring system for rice crops. 
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1.5 Conceptual Framework 
  

 This study was anchored on the premise (as supported by literature in Chapter 

2) that radar backscatter coefficients and selected rice parameters are correlated. 

Consequently, innovative techniques can be developed to map and monitor rice plant 

and rice cropping systems, including the prediction of yield, using new generation 

radar imagery.    

 

 From Envisat ASAR dual polarisation data and in situ rice data, the 

relationships between radar backscatter coefficients and rice parameters (e.g. plant 

age and biomass) of crop over an entire growth cycle were established. This 

constitutes the “analysis of rice backscatter” component. Based on these 

relationships, the rice mapping method (”rice cropping system mapping”) was 

developed. Yield estimation model (“rice yield prediction”) was examined for rice 

cultivated areas and then rice production was computed based on rice growing 

acreage and predicted yield (Figure 1.1). 

 

Figure 1.1 Conceptual framework used in this study. 

 

1.6 Thesis Outline 
  

 Chapter 1 highlights the need to develop a spatio-temporal rice monitoring 

system using radar remote sensing. The goal and specific objectives, research 

hypotheses, and significance of the study are addressed. To achieve the above goal, 

ANALYSIS OF RICE 
BACKSCATTER 

RICE CROPPING 
SYSTEM MAPPING 

RICE YIELD 
PREDICTION 

RICE PRODUCTION 
ESTIMATES 
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chapter 2 reviews the physics of radar backscattering, properties of radar imagery, 

vegetation response to microwave energy, and the results of previous research 

studies on rice crop monitoring using radar remotely sensed data. This highlights the 

knowledge gaps, as well as the potential contribution of this dissertation. In chapter 

3, the selection of the study area, description of rice growing and rice cropping 

system, data acquisition are discussed. 

 

 As mentioned in the first objective, radar backscatter of rice fields is analysed 

in chapter 4. This includes image pre-processing techniques, the analysis of rice 

parameters, effects of plant structure, rice varieties and water management in the 

field, and the relationship between radar backscatter and rice biomass. Chapter 5 

presents the methods and results of rice mapping (second objective). ASAR APP and 

ASAR WS data analysis for rice mapping using thresholding algorithms were 

developed. Classification accuracies assessed from various classifiers was compared. 

 

 The agro-meteorological model-based and statistical model-based methods are 

addressed in chapter 6. The multiple regression analysis between in situ measured 

yield and backscattering coefficients derived from time-series ASAR APP data was 

discussed. The distribution maps of rice yield estimated from these relationships 

were demonstrated. The production of rice area was then estimated (third objective). 

Finally, the findings of the research and further recommendations are summarised in 

chapter 7.  

 



Chapter 2: Literature review 

 7

Chapter 2 
 

LITERATURE REVIEW 
 

 This chapter reviews the existing theory and the results of the previous 

studies in relation with the research topic. The physics of radar backscattering, image 

properties and radar response of vegetation are introduced to give the background 

information. The research problems are discussed on the basis of the previous 

investigations into rice crop monitoring using radar imagery. This chapter highlights 

the knowledge gaps related to the study, as well as the potential contribution of this 

work. 

 

2.1 Physics of Radar Backscattering 
  

 The microwave portion of the electromagnetic spectrum commonly used for 

remote sensing of land surfaces covers the range from approximately 1 cm to 1 m in 

wavelength. Because of their long wavelengths (compared to the visible and infrared 

regions), microwaves have the following special properties that are important for 

remote sensing (FAO/ESA, 1993): 

 

• small dependence on atmospheric conditions, 

• control of the emitted (for active remote sensing) and received 

electromagnetic radiation: power, frequency, polarisation, 

• ability to choose an incidence angle and an azimuth angle to meet the 

objectives of the study, and 

• possibility to obtain information on subsurface features, when low soil 

density and moisture permit. 

 

 These are the primary advantages of radar remote sensing. Moreover, it is also 

important to understand that radar and optical data can be complementary to one 

another as they offer different perspectives of the earth’s surface providing different 

information content. 
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 The sensor transmits a microwave signal towards the target and detects the 

backscattered portion of the signal (Figure 2.1). The power scattered back toward the 

radar antenna is represented by the radar equation (2.1) (Henderson and Lewis, 

1998): 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

43

22
0

4
)(

R
GAPP TR π

λσ  (2.1)

 where 

 PR : the power received, 

 PT : the power transmitted toward the target, 

 G : the gain of the antenna, 

 R : the range distance from the transmitter to the target, 

 σ 0: the radar scattering coefficient, 

            λ : the wavelength of the radar system, 

   A : an area on the ground. 

 

       
Source: CCRS (2007a)   

Figure 2.1. An example of active sensor. 

 

 The radar backscattering coefficient determines the percentage of 

electromagnetic energy reflected back to the radar from within a resolution cell. It 

depends on (FAO/ESA, 1993): 

 

• radar observation parameters (frequency, polarisation and incidence angle 

of the electromagnetic waves emitted); 
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• terrain parameters (surface roughness, geometric shape and dielectric 

properties of the target). 

 

2.1.1 Frequency 
  

 There are several wavelength ranges or frequency bands (Figure 2.2) 

commonly used in radar remote sensing (Henderson and Lewis, 1998): 

 

• Ka (0.75 - 1.18 cm), K (1.18 - 1.67 cm), Ku (1.67 - 2.40 cm) bands; 

• X-band (2.40 - 3.75 cm); 

• C-band (3.75 - 7.5 cm): used on many space-borne systems (ERS-1 and 

2, ASAR onboard Envisat, and Radarsat); 

• S-band (7.5 - 15 cm); 

• L-band (15 - 30 cm): used onboard Japanese JERS-1, ALOS (PALSAR) 

satellites; 

• P-band (77 - 136 cm). 
 

 

Figure 2.2. The microwave portion of the electromagnetic spectrum. 
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 The frequency of the incident radiation determines what would be the major 

scattering mechanism; it has an impact on the penetration depth and the scales of 

roughness of the surfaces. The penetration depth tends to be longer with longer 

wavelengths and is also related to the moisture content of the target. For this study, 

Envisat ASAR data acquired in C-band frequency, i.e. 5.6 cm, was used. This 

frequency band is considered more appropriate for rice crop monitoring (Huadong et 

al., 2006). 

 

2.1.2 Polarisation 
  

Polarisation refers to the orientation of the electric field. Most radars are 

designed to transmit microwave radiation either horizontally polarised (H) or 

vertically polarised (V). Similarly, the antenna receives either the horizontally or 

vertically polarised backscattered energy, while some radars can receive both (Figure 

2.3). These two polarisation states are designated by the letters H for horizontal, and 

V for vertical. Thus, there can be the four combinations of both transmit and receive 

polarisations as follows. 

  

• HH - for horizontal transmit and horizontal receive,  

• VV - for vertical transmit and vertical receive,  

• HV - for horizontal transmit and vertical receive, and  

• VH - for vertical transmit and horizontal receive. 

 

 The first two polarisation combinations are referred to as like-polarised 

because the transmit and receive polarisations are the same. The last two 

combinations are referred to as cross-polarised because the transmit and receive 

polarisations are orthogonal of one another. 
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Source: CCRS (2002) 

Figure 2.3. Horizontal and vertical polarisation.  

 

 In certain cases, polarisation can provide information on different layers of the 

target, for example flooded vegetation. The penetration depth of the radar wave 

varies with the polarisation chosen. Polarisation may provide information on the 

form and the orientation of small scattering elements that compose the surface or 

target. 

 

 The ERS and Radarsat-1 sensors provide radar images with one specific 

polarisation, i.e. VV and HH, respectively. On the other hand, the new Envisat-

ASAR system includes image acquisitions with dual polarisation (HH/VV, HH/HV, 

and VV/VH), which can open up new possibilities in land observations. This 

research study used HH and VV polarisation imagery of ASAR as a main data 

source for rice monitoring in the Mekong River Delta. 

 

2.1.3 Incidence angle 
  

 Incidence angle (Figure 2.4) is the angle between the direction of the incident 

radiation and the perpendicular to the imaged surface, which increases across the 

swath from near to far range. For most natural targets, backscatter coefficient varies 

with the incidence angle (FAO/ESA, 1993). 
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Figure 2.4. Incidence angle (left) and local incidence angle (right). 

 

 In relation to surface geometry and its effect on target interaction and image 

appearance, the local incidence angle is a more appropriate and relevant concept. 

The local incidence angle (Figure 2.4) is the angle between the radar beam and a line 

perpendicular to the slope of the imaged surface at the point of incidence. Thus, local 

incidence angle takes into account the local slope of the terrain in relation to the 

radar beam. With flat terrain, the local incidence angle is the same as the look angle 

of the radar. For terrain with any type of relief, this is not the case. Generally, slopes 

facing towards the radar will have small local incidence angles, causing relatively 

strong backscattering to the sensor, which results in a bright-toned appearance in an 

image. 

 

 ERS-SAR system operates with the incidence angle of 23o at the mid swath. 

The new capability of Envisat-ASAR includes beam steering for acquiring images in 

one of the seven swaths with different incidence angles spanning 15o to 45o. In this 

study, ASAR AP data with IS2 incidence angle (19.2o - 26.7o) and ASAR WS 

imagery with incidence angle range from 15o to 37o were utilised. 

 

2.1.4 Surface roughness characteristics 

  

 The effect of surface roughness on radar backscatter (Figure 2.5) depends on 

wavelength and look angle. According to the Rayleigh criterion, a surface is 

(Henderson and Lewis, 1998): 

• rough if:  
φ

λ
cos8

>rmsh                           (2.2) 
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 where 

 rmsh : average height variations 

 λ: radar wavelength 

 φ : look angle (is defined as the angle between the vertical of the antenna to 

the ground and the transmitted ray at the point of incidence (Henderson and 

Lewis, 1998)). 

 

 
Source: CCRS (2002) 

Figure 2.5. The effect of surface roughness on radar backscatter. 

 

 An example of the effect of surface roughness can be observed in the zones of 

contact between land and water. In the absence of wind, inland water bodies tend to 

be relatively smooth with most energy being reflected away from the radar and only 

slight backscatter towards the radar. On the contrary, surrounding land surfaces tend 

to have a higher roughness and greater backscatter. 

 

2.1.5 Electrical characteristics and moisture content 
  

 The complex dielectric constant is a measure of the electric properties of 

surface materials. It consists of two parts (permittivity and conductivity) that are 

both highly dependent on the moisture content of the material considered 

(FAO/ESA, 1993). At C-band, most natural materials have a permittivity around 3 to 

8 in the dry condition. Water has a high permittivity of approximately 80, at least 10 
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times higher than for dry soil. As a result, a change in moisture content generally 

provokes a significant change in the electric properties of natural materials. The 

electromagnetic wave penetration in an object is an inverse function of water 

content. Increasing moisture is associated with an increased radar reflectivity and 

hence the advantage of using radar for determining moisture content (Figure 2.6). 

 

 
A: Irrigated  B: Non-irrigated 

Figure 2.6. Irrigation / soil moisture influences. 

 

Changes in the electrical properties influence the absorption, transmission, 

and reflection of microwave energy. Thus, the moisture content will influence how 

targets and surfaces reflect energy from radar and how they will appear on an image.  

 

 Moist soils reflect more radar energy than dry soils, which absorb more of the 

radar wave, depending on the dielectric constant of the soil material. Radar images 

may be used to estimate bare ground soil moisture content when the terrain is devoid 

of most other material such as plants and rocks and has uniform surface roughness. If 

the soil has a high surface soil moisture content, then the incident energy will only 

penetrate a few centimetres into the soil and be scattered more at the surface 

producing a stronger, brighter return. In the specific case of vegetation, penetration 

depth into a canopy depends on moisture, density and geometric structure of the 

plants (leaves and branches). In this current study, an analysis on the effects of the 

surface roughness and soil moisture of rice fields for radar response at the beginning 

of crop cycle was discussed in chapter 4. 
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2.1.6 Target interaction  
  

 The look direction or aspect angle of the radar describes the orientation of the 

transmitted radar beam relative to the direction or alignment of linear features on the 

surface. The look direction can significantly influence the appearance of features on 

a radar image, particularly when ground features are organised in a linear structure 

(such as agricultural crops). Look direction is important for enhancing the contrast 

between features in an image. By acquiring imagery from different look directions, it 

may be possible to enhance identification of features with different orientations 

relative to the radar (CCRS, 2007a). 

 

 Features, which have two or more surfaces (usually smooth) at right angles to 

one another, may cause corner reflections (Figure 2.7) to occur if the ‘corner’ faces 

the general direction of the radar antenna. The orientation of the surfaces at right 

angles causes most of the radar energy to be reflected directly back to the antenna 

due to the double bounce reflection. Corner reflectors with complex angular shapes 

are common in urban environments (e.g. buildings and streets, bridges, other man-

made structures). Naturally occurring corner reflectors may include upright 

vegetation standing in water, e.g. rice plants in this research study. In all cases, 

corner reflectors show up as very bright targets in an image (CCRS, 2007a). 

 

 
Source: CCRS (2002) 

Figure 2.7. Volume scattering, surface scattering, and corner reflection. 
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 When a surface is moist or wet, scattering from the topmost portion (surface 

scattering) is the dominant process taking place (Figure 2.7). The type of reflection 

(ranging from specular to diffuse) and the magnitude will depend on how rough the 

material appears to the radar. If the target is very dry (in terms of “free water”) and 

the surface appears smooth to the radar, the radar energy may be able to penetrate 

below. For a given surface, longer wavelengths are able to penetrate further than 

shorter wavelengths (CCRS, 2007a). 

 

 If the radar energy does manage to penetrate through the topmost surface, then 

volume scattering may occur (Figure 2.7). Volume scattering is the scattering of 

radar energy within a volume or medium, and usually consists of multiple bounces 

and reflections from different components within the volume. For example, in a 

forest, scattering may come from the leaf canopy at the tops of the trees, the leaves 

and branches further below, and the tree trunks and soil at the ground level. Volume 

scattering may serve to decrease or increase image brightness, depending on how 

much of the energy is scattered out of the volume and back to the radar (CCRS, 

2007a). 

 

 Scattering mechanism in the case of rice crop during its growth cycle includes 

all of corner reflection, surface scattering, and volume scattering as described above. 

 

2.2 Radar Image Properties 
 

2.2.1 Spatial resolution 
  

 To determine the spatial resolution at any point in a radar image, it is necessary 

to compute the resolution in two dimensions: the range and azimuth resolution. 

 

Range resolution 

  

 The range resolution (in the across-track direction) is proportional to the 

length of the microwave pulse. The shorter the pulse length, the finer the range 
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resolution. The equation for computing the ground range (Figure 2.8) resolution Gr is 

(Henderson and Lewis, 1998): 

φ
τ

sin2
cGr =  (2.3)

 with  

  c: speed of light 

τ: pulse length 

φ : look angle 

 
Hn = flying height    ß = depression angle 

Figure 2.8. Slant range and ground range plane. 

 

Azimuth resolution 

 

 The equation for the optimal azimuth or along-track resolution SA  (Figure 2.9) 

for a point target in a synthetic aperture radar is (Henderson and Lewis, 1998): 

2
lAS =  (2.4)

 where l is antenna length. 
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Source: CCRS, (2007b) 

Figure 2.9. Azimuth resolution. 

 

 The coherent nature of the SAR signal produces speckle in the image. To 

remove the speckle, the image is usually processed using several looks, i.e. an 

averaging takes place. This improves the interpretability of the SAR image data. 

However, the azimuth resolution must be adjusted by the equation (Henderson and 

Lewis, 1998): 

2
)( lNAS =  (2.5)

 where N is number of looks. 

 

 The ASAR AP and WS mode data with 30m and 150m spatial resolution, 

respectively, were collected for this research study. The investigation on these 

imagery for rice monitoring, mapping and yield estimation was conducted to meet 

the research goal. 

 

2.2.2 Speckle 
  

 All radar images appear with some degree of what is termed radar speckle, a 

grainy “salt and pepper” texture in an image (Figure 2.10). This is caused by random 

constructive and destructive interference from the multiple scattering returns that 

will occur within each resolution cell. Speckle degrades the quality of an image and 

may make interpretation (visual or digital) more difficult. Thus, it is generally 

desirable to reduce speckle prior to interpretation and analysis by either multi-look 
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processing or filtering techniques. While multi-looking processing is usually done 

before the delivery of the data product, speckle reduction by temporal and spatial 

filtering is performed on the output image in a digital image analysis environment. 

 

 
Source: CCRS (2002) 

Figure 2.10. Example of speckle in a radar image. 

 

2.2.3 Radar image distortions 
  

 Geometric distortions, such as foreshortening, layover, and shadowing, exist 

in almost all radar imagery. In radar relief displacement, the horizontal displacement 

of an object in the image caused by the object’s elevation is in a direction towards 

the radar antenna. Because the radar image is formed in the range direction, the 

higher the object, the closer it is to the radar antenna, and therefore the sooner (in 

time) it is detected on the radar image. The elevation-induced distortions in the radar 

imagery are referred to as foreshortening and layover. Radar shadow occurs when 

the radar beam is not able to illuminate the ground surface (CCRS, 2007a). Some 
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processing techniques exist that can partly correct or minimise these effects. 

Whereas, in this study area, rice crop are mainly cultivated in the flat plain of An 

Giang province. Therefore, geometric distortions of this area on radar imagery did 

not exist. 

 

2.3 Vegetation Response to Microwave Energy 
  

 Synthetic aperture radar imagery may provide some of the following 

vegetation biophysical parameters (Jensen, 2007): 

 

• canopy water content, 

• vegetation type, 

• biomass by component (foliage, higher-order stems and main stem), 

• canopy structure (including green leaf area index), leaf orientation, main 

stem (trunk) geometry and spatial distribution, stem, branch size, and 

angle distributions. 

 

 Any plant canopy (forest, agriculture, grassland, etc.) may be thought of as a 

seasonally dynamic three-dimensional water-bearing structure consisting of the 

foliage components (leaves) and woody components (stem, trunk, stalks, and 

branches). Active microwave energy can penetrate the canopy to varying depths 

depending upon the frequency, polarisation, and incidence angle of the radar system. 

It is useful to identify the relationship between the canopy components and how they 

influence the radar backscattering (Jensen, 2007). 

 

2.3.1 Scattering mechanism for vegetation 
  

 For wetlands containing shrubs and trees there are three distinct layers to 

consider: a) a canopy layer that consists of small branches and foliage (leaves); b) a 

trunk layer that consists of large branches and trunks or boles; and c) a surface layer, 

that may or may not be covered by water if wetland is present. The backscattering 

coefficient 0
wσ  of a woody vegetation canopy towards the radar system can be 

expressed as (Jensen, 2007): 
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( )00002200
dstmtccw σσσσττσσ +++=  (2.6)

 where 
0
cσ : the backscatter coefficient of the canopy layer of smaller woody 

branches and foliage (i.e., surface scattering), 

cτ : the transmission coefficient of the vegetation canopy, 

tτ : the transmission coefficient of the trunk layer, 

0
mσ : the multiple-path scattering between the ground and canopy layer, 

0
tσ : direct scattering from the tree trunks, 

0
sσ : direct surface backscatter from the ground, 

0
dσ : the double-bounce scattering between the trunks and the ground. 

 

 By eliminating all terms associated with the trunk layer, it is possible to 

determine the total radar backscattering coefficient from terrain with non-woody, 

herbaceous vegetation, 0
hσ  (Jensen, 2007): 

( )00200
smcch σστσσ ++=  (2.7)

  

 The terms in equations are dependent on: a) the type of vegetation present as 

well as the roughness of the ground surface; b) the wavelength and polarisation of 

the incident microwave energy; c) the dielectric constant of the vegetation; and d) 

the dielectric constant of the ground surface. Live vegetation, with a higher water 

content has a higher dielectric constant than drier or dead vegetation. The presence 

of dew or moisture acts to increase the dielectric constant of vegetated surfaces. 

 

 The condition of the ground layer is also very important in microwave 

scattering from vegetated surfaces. There are two properties of this layer that are 

important: a) the micro- and meso-scale surface roughness (relative to the radar 

wavelength); and b) the soil moisture (dielectric constant). In general, a greater 

surface roughness increases the amount of microwave energy backscattered ( 0
sσ ) 

and decreases the amount of energy scattered in the forward direction ( 0
mσ  and 0

dσ ). 

The reflection coefficient is dependent on the dielectric constant of the ground layer. 

Given a constant surface roughness, as the soil dielectric constant increases, so does 
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both amount of backscattered and forward scattered microwave energy (resulting in 

increases in 0
mσ , 0

sσ , and 0
dσ ). 

 

 If there is a layer of water over the ground surface of a vegetated landscape 

such as in rice paddy fields of this study, two things can happen: a) it eliminates any 

surface roughness; and b) it increases the reflection coefficient. In terms of 

microwave scattering, the elimination of any surface roughness means that all the 

energy is forward scattered, eliminating the surface backscattering (σo
s), and the 

increased forward scattering and higher reflection coefficient lead to significant 

increases in the ground-trunk (σo
d) and ground-canopy interaction (σo

m). 

 

2.3.2 Penetration depth and frequency 
  

 The longer the microwave wavelength, the greater the penetration into the 

plant canopy. Surface scattering takes place at the top of the canopy as the energy 

interacts with the leaves and stems. Volume scattering by the leaves, stems, branches 

and trunk takes place throughout the stand, and surface scattering can occur at the 

soil surface. The shorter wavelength X-band energy is more attenuated by the top of 

the canopy (by foliage and small branches). The C-band energy experiences 

scattering at the top of the canopy as well as some volume scattering in the heart of 

the stand. Little energy reaches the ground. L-band microwave energy penetrates 

farther into the canopy, where volume scattering among the leaves, stems, branches, 

and trunk cause the beam to become depolarised. Also, some energy may be 

transmitted to the ground, where surface scattering from the soil-vegetation 

boundary layer may take place. Longer wavelength P-band radar would afford the 

greatest penetration through the vegetation and mainly reflect off large stems and the 

soil surface (Jensen, 2007). 

 

2.3.3 Radar backscatter and biomass 
  

Radar backscatter increases with increasing biomass until it saturates at a 

biomass level that depends on the radar frequency. In the case of forest, generally, 

backscatter at lower frequencies (P- and L-band) is dominated by scattering 
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processes involving the major woody biomass components (trunks and branches), 

while scattering at high frequencies (C- and X-band) is dominated by scattering 

processes in the top crown layer of branches and foliage. Radar canopy 

measurements have also been found to be correlated with leaf-area-index (LAI) 

measurements. Some general observations about SAR vegetation interpretation 

include (Jensen, 2007): 

 

• vertically polarised energy is highly attenuated by the vertically oriented 

canopy components (leaves, stems, branches, and trunk) such as rice 

plants in this research while horizontally polarised energy is not; 

• the brighter the return on like-polarised radar images (HH or VV) in 

comparison to (HV), the greater the contribution from surface scattering. 

• the brighter the return on cross-polarised radar images (HV or VH), the 

greater the contribution from volume (internal canopy) scattering; 

• when the radar wavelength is approximately the same size as the canopy 

components (C- or X-band), substantial canopy surface and volume 

scattering will take place and little energy may reach the ground. 

Consequently, shorter wavelength radars (2 – 6 cm) may be preferred 

when monitoring crop canopies and tree leaves. Longer wavelength 

radars (9 – 30 cm) exhibit substantial volume scattering as incident 

energy interacts with larger trunk and branch components. Considerable 

surface scattering from the underlying soil may also occur which can 

cause confusion; 

• cross-polarised images (HV or VH) are less sensitive to slope variations. 

This suggests vegetation monitoring in mountainous areas may best be 

performed using cross-polarisation techniques. Also, the same row crop 

planted in different directions can produce like-polarised images that are 

difficult to interpret. This ambiguity may be reduced when cross-

polarised images are available in addition to like-polarised images; 

• the more moisture in the vegetation canopies, the greater the dielectric 

constant and the higher the radar backscatter return. Active microwave 

remote sensing is capable of sensing canopy (or leaf) water content in 

certain instances; 
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• radar imagery can provide some information on landscape-ecology patch 

size and canopy gaps that are of value when monitoring ecosystem 

fragmentation and health. 

 

2.4 Rice Crop Monitoring 
 

2.4.1 Rice crop discrimination and monitoring 
  

 Several studies have been carried out on rice mapping and rice monitoring 

since the launch of the first European remote sensing satellite (ERS-1) in 1991, 

driven by earlier successes of using airborne SAR (Le-Toan et al., 1989) and ground-

based scatterometer data. These studies covered sites in Indonesia (Le-Toan et al., 

1997, Ribbes and Le-Toan, 1999a), Japan (Kurosu et al., 1995, Le-Toan et al., 1997, 

Ogawa et al., 1998), Vietnam (Liew et al., 1998, Kajalainen et al., 2000, Lam-Dao et 

al., 2005), China (Li et al., 2003, Ling et al., 2005, Quegan et al., 2005, Bingbai et 

al., 2005), Sri Lanka (Frei et al., 1999), India (Choudhury and Chakraborty, 2006), 

Philippines (Chen and Mcnairn, 2006), and other countries. These studies reported 

results, most of them based on C-band (frequency = 5.3 GHz, wavelength = 5.6 cm) 

SAR data, on various aspects including a) experimental SAR data analysis as a 

function of rice biophysical parameters and their temporal change, b) interpretation 

of the observations by theoretical modelling, c) development and application of 

classification methods, d) retrieval of biophysical parameters, and e) interface with 

rice growth models for crop yield prediction. 

 

 Experimental studies: Kurosu et al. (1995), Le-Toan et al. (1997), (2005), 

Ribbes and Le-Toan (1999a), Shao et al. (2001), (2002), Bingbai et al. (2005), and 

Chen and Mcnairn (2006) related SAR data to crop parameters (height, biomass, and 

age). Similar variations of the radar backscattering coefficients were observed at the 

two different areas when expressed as a function of rice biomass (Le-Toan et al., 

1997). The experimental results have shown that the radar backscattering 

coefficients of rice fields have a characteristic increasing temporal behaviour 

(Bingbai et al., 2005, Chen and Mcnairn, 2006, Le-Toan et al., 1997, Liew et al., 

1998, Ogawa et al., 1998). Most studies were implemented in the areas with 
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traditional rice cultivation system, whereas no previous literature was reported for 

modern cultivated rice fields. 

 

 Interpretation by modelling: Le-Toan et al. (1997) used a coherent cluster 

model, where a good agreement was obtained between the theoretical modelling and 

the ERS-1 measurements. On the other hand, Shao et al. (2002) used a radiative 

transfer microwave backscatter model. They attributed the backscatter signal to the 

multiple interactions between wave-plant-water, and that explained the relationship 

with rice biomass. Based on field measured rice biophysical parameters, rice paddy 

backscatter was simulated by a continuous canopy microwave backscatter model (Li 

et al., 2004). They reported that both ASAR data and model simulation was strongly 

correlated with rice parameters. On the other hand, Chen and Lin (2005) proposed a 

semi-empirical backscattering model. The results showed that the model can be used 

to extract LAI of rice in growing season using ASAR APP data with certain accuracy 

when optical remote sensing data can not be acquired. 

 

 Classifiers: In case of uniform rice cropping system, i.e. same crop calendar 

(China), absolute backscatter can work, but not for non-uniform cropping system 

(Indonesia, Vietnam). In this case, the ratio of temporal backscatter is found more 

relevant in image classification. An algorithm for rice field mapping using the 

temporal change of the radar backscatter as a classifier was implemented by Le-Toan 

et al. (1997).  

 

 Classification method: Classification of the rice cropping systems was based 

on thresholding the change indices (CIs), the thematic categories of rice cropping 

systems, using two methods: human visual inspection and semiautomatic 

hierarchical clustering algorithm (Liew et al., 1998). Le-Toan et al. (1997) developed 

a method of rice/non rice mapping based on the temporal variation of the radar 

response. This method was used in several research works (Ribbes and Le-Toan, 

1998, Liew et al., 1998, Holecz et al., 2000, Chen and Mcnairn, 2006, Lam-Dao et 

al., 2005, Takeuchi et al., 1999). As expected, the maximum likelihood classifier was 

applied for classification in many research studies (Aschbacher et al., 1995, Frei et 

al., 1999, Holecz et al., 2000, Ouchi et al., 2002, Li et al., 2003, Li et al., 2004, 
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Phoompanich et al., 2005, Chen and Mcnairn, 2006, Takeuchi et al., 1999, 

Chakraborty and Panigrahy, 2000, Wooding and Zengyuan, 2000). 

 

 In order to differentiate rice fields from other land cover types, some research 

projects (Chakraborty et al., 1997, Panigrahy et al., 1999, Shao et al., 1999, Wooding 

and Zengyuan, 2000, Chen and Mcnairn, 2006) used a neural network classification. 

Another approach of a decision-rule based classifier has been used to classify a pixel 

as rice or not in several studies (Chakraborty and Panigrahy, 2000, Chakraborty et 

al., 2005, Choudhury and Chakraborty, 2006). An objected-oriented classifier has 

been applied for the studies of Wang et al. (2005) and Ling et al. (2005). Several 

recent studies proposed new algorithms for classification, such as principal 

component analysis (PCA) based method (Quegan et al., 2005) or single-date 

mapping algorithm for ASAR APP data (Bouvet et al., 2005). In the study of 

Kajalainen et al. (2000), the actual rice identification was done using unsupervised 

classification, the so-called ISODATA algorithm. 

 

 In the study of Le-Toan et al. (1997), a synthesis of experimental results at two 

different geographic locations was first conducted, and then followed by the 

development of a theoretical model to interpret the observations. They investigated 

the temporal behaviour of ERS-1 SAR backscatter from rice crops in relation to the 

rice growing conditions for a tropical test site in Indonesia and a temperate site in 

Japan. They observed similar relations between radar backscatter and plant biomass 

for rice plants in these two different areas. The results of theoretical modelling were 

compared with experimental data. Good agreement was obtained between the 

modelling and the observations. 

 

 Le-Toan et al. (1997) determined standard classification to identify rice fields 

was inappropriate. One possibility would be to use the temporal curve of the radar 

backscatter coefficient as the classifier, but the ERS-1 and ERS-2 35-day cycle 

would only enable a few (a maximum of three or four data points) data points that 

could be acquired during a rice crop cycle. They used the temporal change between 

any pair of data acquired during the crop cycle or between the end of one cycle and 

the beginning of the following cycle. Based on this principle, they developed an 
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algorithm for rice/non rice mapping using the temporal change of the radar 

backscatter as classifier. 

 

 Classification of the rice cropping systems based on thresholding the change 

indices using the series of multi-temporal ERS-2 SAR images was done by Liew et 

al. (1998). A two-step approach was employed. First, a visual inspection of the time 

series of radar backscattering coefficient for each change class associated with rice 

cropping was interpreted in relation with known crop calendars and local knowledge 

of the general geographical pattern of the various rice-based cropping systems. 

Second, a semiautomatic, hierarchical clustering algorithm was devised to group the 

change classes based on the similarity of their CI time series. This was based on the 

assumption that change classes with similar change pattern in their backscatter time 

series were likely to represent similar cropping systems. The limitation of this 

method is the use of human interpretation for the radar backscatter time series, 

together with the knowledge of field conditions and crop calendars. 

 

 A study examining the backscatter behaviour of rice as a function of time 

using Radarsat data (Shao et al., 2001) produced a rice-type distribution map 

showing four types of rice with different life spans ranging from 80 days to 120-125 

days. By applying a neural net classifier the accuracy of the rice classification was 

found to be 91% (97% after post-classification filtering). Then, an empirical growth 

model was established and applied to the results of the rice classification, which 

related radar backscatter values to rice life spans. Although different varieties and 

life spans of rice crop generate different backscatter behaviour, the form of the 

relationship is the same, allowing this model to be applied to other types of rice. 

 

 Choudhury and Chakraborty (2006) found that the knowledge-based decision 

rule classifier is an optimum classifier for classification of rice and non-rice areas in 

the case of multi-temporal Radarsat SAR data that has large signature variability. 

The overall accuracy was found to be more than 98% in the case of rice class.  

 

 The above projects reported the use of single polarisation SAR data, e.g. VV 

polarised ERS-SAR data or HH polarised Radarsat data, for rice mapping and 

monitoring. This study emphasized the need of a radar remote sensing system that 
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has a dual polarisation, i.e. HH and VV to enable accurate discrimination between 

different rice-based cropping systems within a one-year growth cycle. 

 

 The use of HH/VV, HH and VV at low incident angle IS2 attained good 

classifiers for rice/non-rice mapping algorithm based on thresholding using Envisat 

ASAR APP (alternating polarisation precision) data acquired at a single date (Bouvet 

et al., 2005). One sample area of about one square kilometre was mapped with a 

DGPS (differential global positioning system) in order to validate and improve the 

mapping algorithms. The results produced an accuracy of approximately 88% for the 

classified rice and non-rice pixels. 

 

 In another research project (Ling et al., 2005), the strategy of rule base 

development using fuzzy sets and fuzzy logic was used for classification. For 

comparison, unsupervised classification and supervised classification were carried 

out with the same Envisat ASAR data. The classification results were aggregated 

into 2 classes, rice and non-rice to simplify the accuracy assessment. The 

classification accuracy at confidence level of 95% and kappa coefficient of the class 

rice was 0.943. 

 

 A principal component analysis based method was used in the research 

(Quegan et al., 2005) to enhance the rice distribution information. PCA is a well-

known tool for image information compression and enhancement of multi-spectral 

data. An experiment was implemented with the HH-VV Envisat ASAR data acquired 

on three dates by selecting two different areas, including and excluding the river. 

Similar results were obtained, both showing strong brightness of rice fields in PC2. 

 

 Le-Toan et al.’s (2005) mid-term report on the first phase of the rice 

monitoring “Dragon” project conducted in China developed a remote sensing 

methodology at selected test areas for rice mapping and retrieving of rice parameters. 

The results obtained using Envisat data in 2004 and 2005 indicated that it is possible 

to: 

 

• map rice field at a single data using two polarisations of ASAR APP; 
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• retrieve rice biomass using the polarisation ratio; 

• map the main rice varieties; 

• achieve regional rice mapping using multi-date ASAR Wide Swath data; 

and 

• detect intermittent drainage. 

 

 These new findings still need to be validated and confirmed. It also showed 

that HH/VV ratio is highly correlated with rice wet biomass. This relationship differs 

according to the growth period: it was observed that there is a linear increase from 

the beginning of tillering to flowering, and then a decrease after flowering. 

 

 Leaf area index is a very important parameter in many model of crop yield 

estimate. Chen and Lin (2005) proposed the semi-empirical backscattering model to 

estimate LAI of the rice using Envisat ASAR data in experimental site. The results 

indicated that ASAR C-band VV and HH polarisation data are useful in estimating 

LAI of rice. When LAI of the rice is less than 2.5, estimated LAI from the model 

using VV and HH data have relatively high correlation. 

 

 These rice mapping and retrieving methods have been widely validated in the 

past ten years. However, in recent years, changes in rice cultural practices have been 

observed in different regions of the world. The changes are caused by the rice 

demand pressure and water shortage, and exacerbated by the progress in technology 

and the decrease of available manpower. This study was intended to develop an 

algorithm for mapping the rice cropping system with modern cultural practices and 

to examine the use of new generation SAR data that has advantages over the 

previous systems, e.g. dual polarisation and different modes of acquisition. None of 

the previous studies have focussed on discriminating between different rice cropping 

systems using new generation of SAR data. 

 

2.4.2 Rice yield prediction models 
  

 Ribbes and Le-Toan (1999a) found that the radar backscattering coefficient 

measured by ERS and Radarsat is related to rice plant age, height and biomass. The 
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rice growth model ORYZA1 (Kropff et al., 1994) was used to simulate rice growth 

with sowing date and biomass values retrieved from ERS and Radarsat SAR data as 

input parameters. The simulated yields were found to lie within 10% of in-situ 

measured yield when ERS data were used and 15% with Radarsat data. The main 

factors determining the growth rate were light, temperature, and the various 

characteristics for phenological and morphological processes. The model calculated 

daily rates of dry matter production of the various plant organs, the rate of leaf area 

development, and the rate of phenological development. By integrating these rates 

over time, using a time step of one day, dry matter production of the crops was 

simulated throughout the growing season. 

 

 Kajalainen et al. (2000) reported the identification of rice fields from ERS-2 

SAR images based on the temporal variation of SAR backscattering. The actual rice 

identification was done using unsupervised classification, implementing the 

ISODATA algorithm. The rice yield estimates were calculated using the 

CROPWATN crop growth model, which used meteorological data from the growing 

season, as well as soil data and information about different rice varieties. 

 

 A model was provided for rice yield estimation based on the relationship 

between the backscatter coefficient of multi-temporal Radarsat data and biomass of 

rice (Li et al., 2003). For the sake of validation, the estimation of errors was carried 

out using global positioning system (GPS) data. This achieved an accuracy of 95% 

for the rice mapping and 94% for the rice yield estimation. The detected rice fields 

need to be classified into nine yield levels through analysis of the relationship 

between the backscatter coefficient and rice biomass in each growing period on the 

ScanSAR narrow band (SNB) images. GPS ground data were used to verify the 

correlation between yield and backscatter coefficient. A multivariate regression 

model based on radar remote sensing was established to reveal the relationship 

between the backscatter coefficient of time-series SNB data and rice yield. 

Distribution maps of rice yields were obtained after the classification of rice fields 

on SNB images. 

 

 Chen and McNairn (2006) compared the results of the four methods for rice 

acreage mapping using Radarsat SAR data: change detection, neural network 
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classification, maximum likelihood classification, and an integrated change detection 

neural network approach. In the integrated method, the neural network training data 

were extracted from the change detection results without the requirement for 

significant ground data to train the network. A minimum mapping accuracy of 96% 

was achieved using this integrated method. This information was then used in a 

neural network-based yield model to predict rice yield on a regional basis. The 

predicted yield from the neural network Net1 is about 6% higher that the government 

statistics. Net2 yield predictions were about 3% lower than the government statistics. 

 

 The application of new generation SAR imagery for crop yield prediction of 

modern cultivated rice areas was not reported in the past research studies. Therefore, 

the potential integration of new generation SAR data with yield forecasting model 

could lead to rapid, objective and accurate production estimates. 

 

2.5 Summary 
 
 Most studies were implemented in the areas with traditional rice cultivation 

system, whereas no previous literature was reported for modern cultivated rice fields. 

These rice mapping and retrieving methods have been widely validated in the past 

ten years. None of the previous studies focussed on discriminating between different 

rice cropping systems using new generation of SAR data. This study was intended a) 

to understand the relationship between radar backscatter coefficients and selected 

parameters (e.g. plant age and biomass) of rice crops over an entire growth cycle; 

and b) to develop an algorithm for mapping the rice cropping system with modern 

cultural practices and to examine the use of new generation SAR data that has 

advantages over the previous systems, e.g. dual polarisation and different modes of 

acquisition (i.e. AP and WS mode). 

 

 There was no report on the study of new generation SAR imagery for crop 

yield prediction of modern cultivated rice areas, on the previous literature materials. 

Therefore, this study was intended to examine new generation SAR data with yield 

forecasting model in order to provide accurate production estimates in the study area.  
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Chapter 3 
 

METHODS 
 
3.1 Overview 
  

 This chapter describes the following components of the research methods 

employed in this study (Figure 3.1): a) study area and reasons for site selection; b) 

rice growing stages and rice cropping systems of the area; c) satellite data and 

relevant data collected and used; and d) rice parameters observed and measured on 

the ground. Although shown in Figure 3.1 below, the following components of the 

methods were presented in other chapters: e) the alternative methods used for 

analysis of rice backscatter (Chapter 4), rice mapping (Chapter 5), and yield 

prediction (Chapter 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Overview of methods for the study. 
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3.2 Study Area 
 

Vietnam is one of the world’s largest rice exporting countries since the mid-

1990s and the fifth producer country in the world with about 5.5% of the global 

production (FAOSTAT, 2007). The fertile Mekong River Delta at the southern tip of 

Vietnam accounts for more than half of the rice production in the country (GSO, 

2007a). In addition, the Vietnamese are among the world top five rice consumers 

(FAO, 2004). This makes the rice growing areas of the Mekong River Delta a good 

example to study the changes from traditional to modern rice cultivation system 

gradually adopted in the last ten years. The changes consist of a) increasing the 

number of crops from 1 or 2,  to 2 or 3 crops per year; b) changing from 

transplanting to direct sowing; c) using water-saving technology; d) using short-

cycle rice varieties (85 to 105 days); and e) using fertilizer and pesticide more 

intensively. These changes in rice practices can have a significant impact on radar 

backscattering behaviour that may have an influence on remote sensing methods. 

 

In the Mekong River Delta of Vietnam, the rainy season usually lasts for seven 

months from May to November, and floods annually occur starting from August. 

Dike system has been built and intensified in recent years to block the floodway into 

the fields during the flood season in order to increase the number of crops during the 

wet season from one crop to two crops of rain-fed rice, named Summer Autumn (SA) 

and Autumn Winter (AW) crops. In the dry season, an irrigated rice crop, Winter 

Spring (WS) has been grown. As a result, two or three rice crops in a year have been 

planted, resulting in an increase in rice production from 12.8 million tons in 1995 to 

19.3 million tons in 2005, i.e. raising 51% in ten years (GSO, 2006). These multiple 

crops are made possible by the availability of short cycle rice varieties. 

 

Besides increasing the number of crops a year, cultural practices have been 

changed in various ways. Rice farmers scarcely practice transplanting as they did 

few years ago, and today the conversion to direct sowing is almost fully achieved. 

Because of economic growth, increased labour demand puts upward pressure on 

wages or reduces the availability of labour for many farm operations. This has 

encouraged farmers to switch from transplanting, which requires 25-50 person-days 
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per hectare, to direct seeding or row seeding (Figure 3.2), which requires at most 

only about 5 person-days per hectare (Dawe, 2005). 

 

 
Figure 3.2. Equipment of row seeding. 

 

 Concerning water management, the rice-based cultivation system is a major 

consumer of the freshwater resource. Saving water in the field is economically 

important for farmers and contributes to environmental protection. Therefore, a new 

water saving technology named alternative wetting and drying (AWD) was 

introduced and disseminated several years ago (Figure 3.3). AWD is also called 

‘intermittent irrigation’ or ‘controlled irrigation’. The number of days of nonflooded 

soil in AWD before irrigation is applied can vary from one day to more than 10 days. 

A practical way to implement AWD is to monitor the depth of the water table on the 

field using a simple perforated ‘field water tube’. After an irrigation application, the 

field water depth will gradually decrease in time. When the water level (as measured 

in the tube) is 15 cm below the surface of the soil, it is time to irrigate and flood the 

soil with a depth of around 5 cm. Around flowering, from one week before to one 

week after the peak of flowering, ponded water should be kept at 5 cm depth to 

avoid any water stress that would result in potentially severe yield loss. The use of 
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AWD technique requires fewer water pumping operations where the crop is not 

continuously flooded. 

 

 
Source: Tuong (2007) 

Figure 3.3. A technology for water saving in rice production. 

 

 The study area is the An Giang province (Figure 3.4), extending from 10o 12’ 

to 10o 57’ N latitude and 104o 46’ to 105o 35’ E longitude and is covered by the 

entire 100 x 100 km Envisat ASAR scene IS2 mode (Figure 3.4a). The province is 

located in the Mekong river plain, South of Vietnam and is surrounded by Kien 

Giang, Can Tho and Dong Thap provinces, and Cambodia. Located about 190 km 

from Ho Chi Minh City, An Giang has an area of 3,536.8 square kilometres, with a 

population of about 2,231,000 people (GSO, 2007b). Population and area of districts 

in the province are presented in Table 3.1. 
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Source: http://www.crisp.nus.edu.sg/ 

(a) 

 
(b) 

Figure 3.4. The An Giang province: Location of the frame of ENVISAT ASAR 

APP scene on the study site (a) and Administrative boundary map of An Giang 

province, with locations (red dots) of the sampling areas (b). 

 

 An Giang is located in a tropical monsoon climate with an average temperature 

of 26 to 28 °C. The temperature is 35 to 36 °C in April and May and 20 to 21 °C in 

December and January. A northerly wind blows from November to April and a south 

westerly wind from May to October. The annual rainfall is around 1,400 – 1,500 
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mm. There is a dry season from December to April and a rainy season from May to 

November with heavy rain in September (AGDPI, 2009). 

 

Table 3.1. Area, population and population density by district of An Giang 

province in 2007. 

District name Area 

(km2) 

Population 

(person) 

Population 

density 

(pers./km2) 

Phu Tan 328.06 243117 741 

Chau Phu 451.01 252066 559 

Tri Ton 600.40 127106 212 

Tinh Bien 355.50 123948 349 

Chau Doc 104.68 118615 1133 

Long Xuyen 115.43 275519 2387 

Thoai Son 468.72 191303 408 

Tan Chau 17045 164548 965 

An Phu 217.78 187767 862 

Cho Moi 369.62 369443 1000 

Chau Thanh 355.11 177630 500 

Province 3536.76 2231062 631 

     Source: AGSO (2008b) 

 

 Thirty-seven kinds of soil are categorised into six main groups: alluvial soil 

(44.5%), alkaline alluvial soil (27.5%), ancient alluvial soil (7.3%), and other soil 

(20.70%). An Giang’s land is mostly flat and suitable for tree cultivation. Land for 

forestry is 21,060 hectares;  of which, mountainous area is 13,092 hectares and plain 

area is 7,968 hectares (AGDPI, 2009). In the provincial acreage, agricultural land 

covers the largest area (280,494 ha or 79.3% provincial acreage); of which is 

dominated (262,649 ha) by rice farms (AGDARD, 2007) (Figure 3.5 and 3.6). 
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Figure 3.5. An example of rice field in the study area. 

 

 
Figure 3.6. Field trip on the Mekong River. 
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3.3 Description of Rice Growing and Rice Cropping Systems 
 

3.3.1 Rice growing stages 
  

 The temporal aspect of rice development is important to the understanding of 

the radar responses of rice fields at different growing stages. The rice plant usually 

takes 3-6 months from germination to maturity, depending on the variety and the 

environment under which it is grown. During this period, rice completes basically 

two distinct sequential growth stages: vegetative and reproductive (Figure 3.7). The 

reproductive stage is subdivided into preheading and postheading periods. The latter 

is better known as the ripening period. Agronomically, it is convenient to regard the 

life history of rice in terms of three growth stages: vegetative, reproductive, and 

ripening (Figure 3.8). A 120-day variety, when planted in a tropical environment, 

spent about 60 days in the vegetative stage, 30 days in the reproductive stage, and 30 

days in the ripening stage  (Yoshida, 1981). 

 

 
Source: Le-Toan et al. (2003) 

Figure 3.7.  Rice growing stages (crop cycle length of 120 days). 
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(a) sowing-transplanting period          (b) Vegetative stage 

 
(c) Reproductive stage    (d) Ripening stage 

Figure 3.8. Photographs of rice growing stages. 

 

 a) Vegetative stage refers to a period from germination to the initiation of 

panicle primordia. 

 

 The sowing-transplanting period: At the onset of the rains or with the arrival of 

irrigation water, the fields are flooded in order to prevent weeds and pests. The water 

depth varies from 2 to 15 cm. The rice plants are sown in nurseries before 

transplantation. After 25 to 35 days depending upon labour availability, the plants 

are transplanted in clusters of one to ten plants and planted in line (approximately 10 

to 20 clusters in a 1 m2). In recent plantation techniques, direct sowing can take 

place: the grains are sown at a high density, directly in flooded soil under 2-5 cm of 

water, or in most cases, in wet soil (Le-Toan et al., 2003). 

 

 The vegetative stage is characterized by active tillering, gradual increase in 

plant height, and leaf emergence at regular intervals. All contributes to the increasing 

of the leaf area that receives sunlight (Yoshida, 1981). Tillering starts about 15 days 
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after sowing and continues until flowering. About 50 to 60 days after transplantation, 

the clusters almost cover the area between plants. From sowing to heading, the plant 

structure remains mostly erectophile. The stems are quasivertical and the leaves have 

a small insertion angle (5-20o) (Le-Toan et al., 2003). 

 

b) Reproductive stage refers to a period from panicle primordia initiation to 

heading. 

 

The reproductive stage is characterized by stem elongation which increases 

plant height, decline in tiller number, emergence of the flag leaf, booting, heading, 

and flowering. Initiation of panicle primordia usually dates back to about 30 days 

before heading. The reproductive growth stage is sometimes called the internode 

elongation stage (Yoshida, 1981). After heading, the growth (height, biomass) stops 

and the leaves change their orientation to be no more erectophile (their insertion 

angles are typically 30-40 o) (Le-Toan et al., 2003). 

 

c) Ripening stage refers to a period from heading to maturity. 

 

The length of ripening is largely affected by temperature that ranges from 

about 30 days in the tropics to 65 days in cool, temperate regions. Ripening follows 

fertilisation; and may be subdivided into milky, dough, yellow-ripe, and maturity 

stages. Ripening is characterized by leaf senescence and grain growth (Yoshida, 

1981), with a decrease of leaf and stem moisture content, and a decrease of the 

number of leaves. In some systems, irrigation is stopped during the latter part of this 

period; in others, water may remain in field up to harvest (Le-Toan et al., 2003). 

 

 After harvest, fields can be either bare and dry at the end of the dry season or 

covered with weeds in wet conditions. In some areas, short cycle secondary crops 

(e.g. vegetable and bean) can take place between two rice crops. 
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3.3.2 Rice cropping systems in the Mekong River Delta 
  

 In general, the wetland rice production can be classified into irrigated rice 

fields and rain-fed rice fields (Le-Toan et al., 1997). For irrigated rice fields, the 

water is supplied artificially from a surface or underground source. One, two, even 

more crops of rice per year can be found depending on the water supply. The rain-

fed rice fields are irrigated by rainfall, sometimes supplemented by localized runoff 

collection. 

 

 The Mekong River Delta has many advantages in climatic conditions, such as 

high solar radiation and favourable and stable high temperature. The Delta has a 

monsoon tropical semi-equatorial climate. Two seasons are distinguishable: the rainy 

season that constitutes approximately 90 percent of the total rainfall; and the dry 

season. The combination of hydrology, rainfall pattern, and availability of irrigation 

determines the variety of rice-based cropping systems practiced in the Mekong River 

Delta (Table 3.2). 

 

Table 3.2. Main rice-based cropping systems in the Mekong River Delta. 

Rice cropping system Rice season 

Single rice crop Traditional rice (rain-fed) 

Summer Autumn – Autumn Winter (rain-fed) 
Double rice crop 

Winter Spring – Summer Autumn (irrigated) 

Triple rice crop Winter Spring – Summer Autumn - Autumn Winter 

 

 Table 3.2 summarises the major rice cropping systems practiced in the Mekong 

River Delta. The double cropping system may be the WS – SA or the SA – AW 

system. As the WS crop grows during the dry season, the WS – SA cropping system 

is practiced in areas that receive irrigation water. The SA – AW system is practiced 

under predominantly rain-fed conditions. The crop calendar varies each year, 

depending on the onset of the rainy season at the start of the Summer Autumn crop. 

The main rice seasons in 2007 in the An Giang province are tabulated below (Table 

3.3). 
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Table 3.3. Main rice seasons in An Giang, Mekong River Delta. 

Rice crop 

English name Local name 
Planting Harvesting 

Winter Spring Dong Xuan Nov/Dec Mar/Apr 

Summer Autumn He Thu Apr/May Jul/Aug 

Autumn Winter Thu Dong Jul/Sep Oct/Dec 
Rainy season 

Traditional rice Mua  Jul/Sep Nov/Jan 

 

 The complicated rice cropping systems in the Mekong River Delta are 

characterised by the following: 

 

• size of rice field ranging from small (0.5 – 1 ha) to large; 

• sowing dates are different from field to field (1 or 2 weeks);  

• cultural practices (sowing, transplanting); 

• rice varieties. 

 

3.4 Data Acquisition 
 
3.4.1 Imagery used 
  

This study used the remote sensing data taken by the Environment Satellite 

(Envisat) ASAR sensor (Figure 3.9). ASAR is one of instruments on board the 

Envisat. Following on from the very successful ERS-1/2 SARs, ASAR is an all-

weather, day-and-night, high resolution instrument that will provide radar 

backscatter measurements indicative of terrain structure, surface roughness, and 

dielectric constant. Important new capabilities of ASAR (Figure 3.10) include beam 

steering for acquiring images with different incidence angle, dual polarisation, and 

wide swath coverage (ESA, 2007). As two of ASAR modes (Table 3.4) were 

available and both can offer potential solutions, the rice monitoring in the Mekong 

River Delta using these modes of data was analysed.  
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Source: ESA (2007) 

Figure 3.9. ASAR antenna. 

 

Table 3.4. Technical summary of Envisat sensors ASAR and MERIS. 

Sensor/Mode 
Geometrical 

resolution (m)
Polarisation Wavelength 

Frequency 

range 

ASAR Image Mode 

(IM) 
30 VV or HH C-band 5.331 GHz 

ASAR Alternating 

Polarisation Mode 

(AP) 

30 

HH/HV 

VV/VH 

HH/VV 

C-band 5.331 GHz 

ASAR Wide Swath 

Mode (WS) 
150 VV or HH C-band 5.331 GHz 

MERIS 300  
Visible, 

Near-IR 

390-1040nm 

(15 bands) 
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Figure 3.10. Envisat sensor coverage. 

 

Table 3.5. List of Envisat ASAR APP data used. 

ASAR mode Observation date Rice crop 

13/01/2007 

17/02/2007 

24/03/2007 

Winter Spring 

2007 

28/04/2007 

02/06/2007 

07/07/2007 

Summer Autumn 

2007 

15/09/2007 

20/10/2007 

24/11/2007 

Autumn Winter 

2007 

ASAR APP 

29/12/2007 

02/02/2008 

Winter Spring 

2008 

 

The Envisat ASAR APP data of C-band (5.3 GHz frequency and 5.6 cm 

wavelength), HH&VV polarisation, IS2 incidence angle (19.2o - 26.7o), and 

ascending mode were available at the following dates during the year 2007 and 

February 2008 (Table 3.5). APP images have a nominal spatial resolution of 30 m x 

30 m and pixel size of 12.5 m x 12.5 m with a swath width of about 100 km. The 
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mosaic of two ASAR APP scenes covers most the study area. The total number of 

ASAR APP images used in this study is 22. Sample images taken at the beginning, 

middle of WS crop and harvest period are presented in Figures 3.11, 3.12, 3.13, 

respectively. Rice areas are showed as magenta pixels in the images. Appendix A 

presented the rest of the images listed in Table 3.5. 

 

 
Figure 3.11. Colour composite ASAR APP image acquired on 13 Jan. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure 3.12. Colour composite ASAR APP image acquired on 17 Feb. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure 3.13. Colour composite ASAR APP image acquired on 24 Mar. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 

 

Another product of ASAR measurement modes used for rice mapping is 

ASAR WS mode data. The product provides greater swath width at reduced spatial 

resolution through the use of the ScanSAR technique. The standard product available 

for WS mode is a 150 m resolution image with the full 405 km swath width. The 

product contains VV or HH polarisation image (Table 3.4). In this case, only HH 

images were collected for the study, because HH polarisation is more sensitive to 

rice backscatter than VV does (Ribbes and Le-Toan, 1999b). 
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Table 3.6. List of Envisat ASAR WS data used. 

ASAR mode 
Observation 

date 

Ascending 

mode 

Descending 

mode 
Rice crop 

05/12/06  D0 

09/01/07  D1a 

16/01/07 A1  

25/01/07  D1b 

13/02/07  D2 

20/02/07 A2  

01/03/07  D3a 

20/03/07  D3b 

27/03/07 A3  

Winter 

Summer 

05/04/07  D4a None 

24/04/07  D4b 

01/05/07 A5  

10/05/07  D5a 

29/05/07  D5b 

05/06/07 A6  

14/06/07  D6 

03/07/07  D7a 

10/07/07 A7  

19/07/07  D7b 

07/08/07  D8a 

Summer 

Autumn 

14/08/07 A8  

23/08/07  D8b 
None 

11/09/07  D9 

18/09/07 A9  

16/10/07  D10 

23/10/07 A10  

01/11/07  D11a 

20/11/07  D11b 

27/11/07 A11  

ASAR WS 

06/12/07  D12 

Rainy 

season 
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This study utilised ten images in ascending mode and twenty images in 

descending mode. They were acquired from December 2006 to December 2007 

covering three rice crops WS, SA and rainy season in the Mekong River Delta 

(Table 3.6). Some of them were utilised for testing of the rice mapping method 

during WS and SA 2007 crop seasons in An Giang province. Sample images were 

presented in Figures 3.14 and 3.15. 

 

 
Figure 3.14. Colour composite ASAR WS image (R=5 Dec. 06, G=20 Feb. 07, 

B=24 Apr. 07), provincial boundary in yellow polyline. 
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Figure 3.15. Colour composite ASAR WS image (R=1 May 07, G=5 Jun. 07, 

B=23 Aug. 07), provincial boundary in yellow polyline. 

 

3.4.2 Ground truth and survey data 
 

 Seven sampling areas which were located in Binh My (BM) village of Chau 

Phu (CP) district, Binh Hoa (BH) and Vinh Binh (VB) village of Chau Thanh (CT) 

district, Vinh Chanh (VC) and Phu Hoa (PH) village of Thoai Son (TS) district, and 

Long Dien B (LDB) and My Hoi Dong (MHD) village of Cho Moi (CM) district 

were selected to meet the research objectives. Locations of these sampling areas 

were presented on the map in Figure 3.4b. The main criteria used for the selection of 

sampling areas were representativeness of rice growing regions in term of 

physiographic stratification, variety of crop type and cultural practices, and 
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accessibility of the area for ground data collection (Le-Toan, 2002). The 

measurements were done on five rice fields in each of the seven sampling areas 

(Table 3.7). The size of fields ranged from 0.2 to 1.7 ha. The parameters (Table 3.8) 

measured for each field include general parameters (rice variety, method of planting, 

sowing/transplanting and harvesting date (Table 3.9), plant phenological stage, water 

layer height, yield), plant parameters (number of plants per square meter, plant 

height, height uniformity, number of stems per plant, wet and dry biomass (see 

photographs of drying the rice plant in Figure 3.16)), leaf parameters (number of 

leaves per stem, leaf length and width) and panicle parameters (number of panicles 

per plant, number of grain per panicle and moist weight of panicle). Each parameter 

of plant, leaf or panicle was estimated over 3 to 5 sampling plots of 0.50 x 0.50 m 

within the fields (according to the field uniformity). The plots selected were not near 

the edge of the fields.  

 

Table 3.7. Size and area of sampling fields. 

Field L (m) W (m) S (m2) Field L (m) W (m) S (m2) 

BM1 85 31 2635 VC1 141 19 2679

BM2 140 77 10780 VC2 139 108 14688

BM3 76 74 5624 VC3 56 35 1960

BM4 132 43 5676 VC4 63 59 3717

BM5 125 47 5875 VC5 139 108 14688

VB1 330 52 17160 PH1 192 59 11328

VB2 321 54 17334 PH2 186 35 6510

VB3 199 51 10149 PH3 221 30 6630

VB4 109 34 3706 PH4 221 30 6630

VB5 89 29 2581 PH5 186 35 6510

BH1 77 40 3080 LDB1 130 24 3120

BH2 169 53 8957 LDB2 143 27 3861

BH3 110 101 11110 LDB3 84 63 5292

BH4 118 72 8496 LDB4 112 89 9968

BH5 286 31 8866 LDB5 50 38 1900

  MHD1 97 22 2134

  MHD2 186 22 4092
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  MHD3 118 49 5782

  MHD4 88 71 6248

  MHD5 69 43 2967

 

Table 3.8. List of rice parameters collected from this study. 

Rice parameters Description Equipment 

Paddy variety Ex.: IR 64  

Method of planting 
direct sowing/ 

transplanting 
 

Sowing date 
date of sowing or number 

of days after sowing 
 

Transplanting date 

date of transplantation or 

the number of days after 

transplantation 

 

Date of harvesting if the rice is harvested  

Plant phenological 

stage 

Seeding, transplanting, 

tillering, heading, 

flowering, ripening, ready 

to harvest 

 

Water level (cm) if fields are flooded stick 

General 

parameters 

Yield (kg/m2) if the rice is harvested  

Planting x bunch 

distance (cm) 

distance between 2 rows 

and between 2 bunches 

within the same row 

tape 

Plant row direction 

(o) 

orientation of the rows 

from the North 
compass 

Number of 

bunch/m2 

make a square of 

0.5x0.5m and count the 

number of bunches  

tape 

Plant height (cm) above water layer tape 

Height uniformity   

Plant 

parameters 

Number of stems 

per bunch 
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Wet weight per 

bunch (g) 

above water biomass 

(moist weight by m2) = 

moist weight/per bunch x 

number of bunch/m2 

cut all plants 

from defined 

areas (min 50 

x 50 cm) 

Dry weight per 

bunch (g) 

objective is to measure 

the bunch water content 

(= Dry weight per bunch / 

Moist weight per bunch * 

100) 

oven (105° 

during 24 

hours) 

Number of leaves 

per stem 
  

Leaf length (cm)   

Leaf 

parameters 

Leaf width (cm)   

Number of  panicles 

per bunch 
  

Number of 

grain/pan. 
  

Panicle 

parameters 

Moist w. of a pan.   

 

Table 3.9. Rice crop calendar in 2007. 

Crop 12 1 2 3 4 5 6 7 8 9 10 11 12 

WS              

SA              

AW              

 Seeding dates 

  Harvesting dates 

 

All field works were accomplished during or near the time of the satellite pass. 

The location of rice fields were identified on the reference map scale of 1:50,000 and 

measured on the ground using hand-held GPS receivers with a location accuracy of 

approximately 10 meters. 
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Figure 3.16. Photographs of drying the rice plant. 

 
3.4.3 Climatic data and maps 
 

The following daily meteorological data at An Giang gauge station were 

collected during the year 2007: temperature (max, min); irradiance; vapour pressure; 

wind speed; precipitation. These parameters were intended to be used to predict the 

rice yield in the agro-meteorological model-based method if there is a good 

correlation between in situ rice biomass and radar backscattering coefficient. 
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Topographic maps with a scale of 1:50.000, published by the Department of 

Survey and Mapping of Ministry of Natural Resource and Environment, and their 

digital maps were used to establish base map GIS data layers, such as water bodies, 

road network, administrative boundaries, etc. 

 

The existing land use map of An Giang province (Figure 3.17) prepared in 

the year 2005 was sourced from the An Giang Department of Natural Resources and 

Environment (AGDONRE, 2005). This map was used for setting up sample areas 

and as reference data for accuracy assessment of rice classified images. 

 

 
Figure 3.17. Land use map in 2005 of An Giang province (rice in yellow colour) 

 

3.4.4 Data processing software 
 

The use of specific software modules, e.g. the ESA software BEST (Basic 

Envisat SAR Toolbox) (ESA/ESRIN, 2009), was explored. This toolbox was used 

for the pre-processing steps implemented on Envisat ASAR AP and WS mode 

imagery as described in the Chapter 4. 
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ENVI (ITT Visual Solutions) digital image processing software and ArcGIS 

(ESRI) available at the USQ laboratory were used for the analysis of imagery and 

maps. ENVI software was used for manipulation and analysis of pre-processing 

images to map rice crop and estimate the rice yield. ArcGIS was used for GIS data 

analysis and management.  
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Chapter 4 
 

ANALYSIS OF RADAR BACKSCATTER OF RICE 
FIELDS 

 
4.1 Introduction 
 

 Results from previous experimental and theoretical research discussed in 

Chapter 2 showed that traditional rice fields presented a large variation in their 

temporal radar response. Therefore, in this study, the temporal variations of radar 

response were thoroughly examined with particular focus on understanding the 

effects of modern cultural practices on rice crop grown in the study site. 

  

 The objective of the study presented in this chapter was to analyse: a) the 

temporal variation of the rice parameters (e.g. plant age and biomass) and of radar 

backscatter of C-band (HH, VV and polarisation ratios) from ASAR APP data at 

different growing stages, b) the relationship between rice parameters and radar 

backscatter, and c) the effect of the cultural practices such as water management, 

plant structure and density, and rice variety on radar response. 

 

 Data previously acquired by different space-borne radar systems provided 

some correlations with rice crop parameters. For instance, the radar backscattering 

coefficient at C band measured by ERS, Radarsat and Envisat ASAR was found to 

be related to rice plant age, height and biomass (an example in Figure 4.1) as 

reported in the literature (Aschbacher et al., 1995, Le-Toan et al., 1997, Ribbes and 

Le-Toan, 1998, Li et al., 2004, Bingbai et al., 2005, Chakraborty et al., 2005, Chen 

et al., 2007). 

 

 These parameters retrieved from SAR data were inputs in the rice growth 

model ORYZA. Two parameters can be derived from SAR imagery: sowing date 

(via the relationship between the backscattering coefficient and plant age) and plant 

biomass. The main factors determining the growth rate on a given day are light, 
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temperature and the variety characteristics for phenological and morphological 

processes (Le-Toan et al., 1997, Ribbes and Le-Toan, 1999a). 

 
  (a) 

 
(b) 

 
(c) 

Figure 4.1. Temporal variation of σo by plant age (a), height (b), and biomass (c) 

(Le-Toan et al., 1997). 
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 The results of the study conducted by Chen et al. (2007) showed that the rice 

parameters (i.e. rice height and biomass) retrieved from HH and HV polarisation 

ASAR data had a relatively high correlation with field measurements, with 

correlation coefficients of 0.83, 0.89, 0.85, and 0.90, respectively. The reason that 

the correlation at HV is a little higher than at HH may be a saturation effect at HH. 

 

4.2 Methods 
 

Common research methods (i.e. study area selection, description of rice 

parameters and cropping system, imagery used, etc.) implemented in this study were 

detailed in Chapter 3. In chapter 4, the following methods were used for the analysis 

of radar backscatter of rice fields (Figure 4.2): a) collection and surveying at the 

sampling fields to measure rice parameters, such as plant age, height and biomass, 

etc.; b) extraction of average backscatter coefficient of sampling fields from pre-

processed ASAR data; c) analysis of temporal variation of rice parameters; d) 

analysis of temporal variation of backscatter coefficient; and e) analysis of the 

relationship of rice biomass and backscatter coefficient. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Methods for the analysis of radar backscatter of rice fields. 

 

In order to understand the relationship between rice parameters measured 

from the study area and their radar backscatters, ground data collection were carried 

Pre-processed data 

σo of sampling fields Ground-truth data 

Temporal variation 
of rice parameters 

Temporal variation 
of backscattering 
coefficients (σo) 

Relationship 
between σo and   
rice parameters 
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out. In this work, 35 sampling fields were selected on the ground in An Giang 

province during the first field trip in November 2006. Data collection and 

measurement were also conducted at the same sampling fields in the year 2007. 

Methodologies and techniques used to collect rice-related data followed the 

“Guidelines for ground data collection for rice monitoring experiments using radar 

data” (Le-Toan, 2002) and described in Section 3.4.2 “Ground truth and survey 

data”. Different rice parameters, such as rice variety, density, plant height, and 

biomass, were analysed and the relationships between plant height, biomass and the 

age of rice were established. 

 

Methods for measuring the plant height, rice biomass and yield, for example, 

are described as follows (Le-Toan, 2002): 

• Plant height: Place a measuring stick vertically near selected plants. Take 

a sufficient number of measurements to obtain a representative height 

value from the ground to the top of the canopy. The ground level is the 

water air interface for flooded fields, and soil air interface for non flooded 

fields. A minimum of five measurements are recommended for relatively 

uniform canopies. This number should be increased as canopy variability 

and/or the area measured increase. 

• Rice biomass: Cut all plants from a pre-defined area. (If plant density is 

known, it is preferable to randomly select a number of individual plants 

for biomass determination). If applicable, separate plants into components 

(stems, leaves, fruits) and place into separate containers (plastic bags, 

etc.). Weigh each component within a few hours. Dry the plants at 70°C 

until constant weight is reached and weigh again. From the two masses 

and the known sampled area, wet and dry biomass can be calculated. 

• Yield: When the rice is harvested, the rice yield information can be 

collected from the farmer. Unit: kg/m2 

 

Concerning the pre-processing of ASAR data, it consisted of a) image 

calibration or conversion to the radar backscattering coefficient sigma nought (σo); 

b) image geo-correction; and c) image spatial filtering. 
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Image calibration consists of correcting SAR images for incidence angle 

effect and for replica pulse power variations to derive physical values. This 

transformed SAR precision images into intensity images expressed in σo. Image geo-

correction was performed to reproject the calibrated images to the selected 

cartographic projection, i.e. UTM, ellipsoid WGS-84. Spatial filtering was then done 

to reduce the speckle effect in the image. In this work, the enhanced Frost spatial 

filter was applied to each image due to its known ability to reduce speckle and 

preserve texture information (Lopes et al., 1990, Shi and Fung, 1994, Li et al., 2003, 

Thiel et al., 2007). The software BEST - Basic Envisat SAR Toolbox (ESA/ESRIN, 

2009) and ENVI (ITT Visual Solutions)  were used for these processing steps. 

 

The value of the radar backscattering coefficient for the sampling field was 

derived from pixels’ average values extracted from the pre-processed ASAR APP 

images. Then, the polarisation ratio (Ra) was computed on the basis of the following 

formula (4.1): 
00
VVHHRa σσ −=  (4.1)

 where:  0
HHσ  is backscattering coefficient of HH data in dB 

  0
VVσ  is backscattering coefficient of VV data in dB. 

 

The temporal rice backscatter behaviour during crop seasons in the year 

2007, such as WS, SA, and AW, were analysed for HH, VV, and polarisation ratio 

data. The effects of water management, rice varieties, plant structure and density 

(which were observed on the ground during the satellite pass) on radar response, 

were taken into account. Finally, the relationships between rice biomass and 

backscattering coefficient of HH, VV, and polarisation ratio were established. 

 

4.3 Results and discussion 
 

4.3.1 Rice parameters 
 

For the WS, SA and AW 2007 crops in the study area, the farmers used 

various rice varieties (e.g. Jasmine, IR 50404, OM 2514, OM 2517, OMTH1, CS 

2000, etc.) of short cycle ranging from 86 to 106 days with the mean of 97 days. In 
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the sampling fields, the dominant varieties grown were Jasmine (34%) and IR 50404 

(21%) (Figure 4.3). Direct seedling method was dominant at about 80% of the 

selected fields. In each sampling area, the sowing/transplanting dates differ between 

the sampling fields from 0 to a maximum of 9 days. 

 

34%

21%

45% Jasmine

IR 50404

Others

 
Figure 4.3. Percentage of rice varieties grown in WS, SA, and AW 2007 crops of 

the sampling fields. 

 

Among the sampling rice fields, five fields grown in WS, 16 in SA, and four in 

AW crop were selected for the analysis of their radar backscatter in the year 2007. 

The other fields were not chosen because: a) the radar response of some fields was 

not homogenous in terms of backscatter; and b) the sampling fields grown in AW 

crop were only in Cho Moi district (i.e. ten fields). 

 

 The height of rice plant was measured at the SAR acquisition date and plotted 

in Figure 4.4a. Two categories were distinguished: fields with standing water 

(indicated as WS, SA and AW), and fields without standing water (indicated as 

WS0, SA0, and AW0). The height was measured from the top of the plant to the 

ground or water level. Since the water layer (when present) ranged from 1 to 9 cm 

thick (with an average of 3.2 cm), the difference between plant height in fields with 

and without water does not seem significant. The plant height increases up to 80 – 
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100 cm, at about 70 days, where it started at 100 days for long cycle rice  (Le-Toan 

et al., 1997). 
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(b) 

Figure 4.4. Temporal variation of plant height (a) and biomass (b). 

 

 There were no readings taken for WS crop during the first 18 days of growth. 

This is because the rice parameters need to be measured as close as possible to each 

imaging date (i.e. in many cases, 1 or 2 days are acceptable) and satellite pass, and to 

acquire an APP image every 35 days. 
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 The plant densities of sampling fields measured at the middle of the season 

have average values of 928, 850, and 750 stems per square meter in WS, SA and 

AW crops, respectively (Figure 4.5). In comparison, the plant density of 200 stems 

per square meter was observed in traditional practiced rice fields at the same stage 

(Le-Toan et al., 1997). Therefore, the average plant density in the study area, where 

direct seeding dominated, was about four times higher than that of traditional 

transplanting rice. 
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Figure 4.5. Average plant density of sampling fields at the middle of the WS, 

SA, AW crop seasons and of traditional practiced rice fields. 

 

 In the SA crop, the rice biomass increased steadily during the growing stage 

(vegetative stage and continue at the reproductive stage) and reached the maximum 

values of about 5000 g/m2 or more at the final stage (harvest). For the WS and AW 

rice crops, a maximum value of 4000 g/m2 was observed (Figure 4.4b). In 

comparison, the plant wet biomass in Akita, Japan (Kurosu et al., 1995) and in 

Semarang, Indonesia  (Le-Toan et al., 1997) showed an increase until the 

reproductive phase. The maximum biomass value obtained by these previous studies 

was around 3500 g/m2, which was lower than that of the fields cultivated by modern 

practices. This could be explained by the higher plant density of the modern 

cultivated rice fields as explained in the above paragraph, the use of fertilizer, and 

the rice varieties of higher yield. 
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The plant height and rice biomass of the two dominant rice varieties, i.e. 

Jasmine and IR 50404, in the same crop season SA were analysed (Figure 4.6). 

While the temporal increase of the height was similar, the rice biomass showed some 

differences between the two varieties. Overall, Jasmine attained more than 5000 

g/m2 while IR 50404 was lower than 5000 g/m2 at the final stage of the SA season. 

 

0

20

40

60

80

100

120

0 20 40 60 80 100

Days after sowing

P
la

nt
 h

ei
gh

t (
cm

)

SA-Jasmine SA-50404
 

(a) 

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

Days after sowing

W
et

 b
io

m
as

s 
(g

/m
2)

SA-Jasmine SA-50404
 

(b) 

Figure 4.6. Temporal variation of plant height (a) and biomass (b) in SA crop of 

Jasmine and IR 50404. 
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4.3.2 Analysis of temporal radar backscatter as a function of rice 
parameters 

 

With the traditional method, the fields are flooded at the onset of the rains or 

with the arrival of irrigation water, in order to prevent weeds and pests. The water 

depth varies from 2 to 15 cm, with an average of 10 cm. The rice plants are sown in 

nurseries before transplantation. After 25 to 35 days depending upon labour 

availability, the plants are transplanted in clusters of one to ten plants and planted in 

line (ten to 20 clusters per m2) (Le-Toan et al., 1997). 

 

 
Figure 4.7. An example of field samples a week after sowing (no-water, very wet 

soil with surface roughness). 

 

With the present technique of direct sowing, the grains were sown at a high 

density directly in wet soil (Figure 4.7). At the early stage of the rice crop cycle, the 

fields in the test area were wet soil. After 10-20 days, the fields were filled with 

water. Table 4.1 showed values of backscatter at HH and VV at the dates around 15-

20 days. For fields not yet irrigated, such as field WS01, the radar backscattering 

coefficient was high, with values ranging from -7 dB to -2 dB in both HH and VV 

polarisation (Figure 4.9). This high backscatter resulted from wet and rough soil 

surface. When the fields were flooded as seen in Figure 4.8 (e.g. fields WS1, WS2, 

WS3), the backscatter decreased significantly, with HH ranging from -7 to -9 dB and 
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VV from -11 to -15 dB. The low backscatter resulted from the backscattering from 

water surface, attenuated by the plant. VV was more attenuated by vertical stem and 

has lower values than HH. 

 

Table 4.1 Effect of water on radar backscattering at early stage in WS 2007 

crop. 

Sample name 
Age 

(day) 

Water height 

(cm) 

σo
HH 

(dB) 

σo
VV 

(dB) 

WS1 19 7.0 -9.1 -14.9 

WS2 19 5.0 -9.1 -13.6 

WS3 19 2.0 -7.2 -11.6 

WS01 16 no-water -3.3 -6.3 

 

 
Figure 4.8. Field sample with standing water at about 20-day after sowing. 

 

Backscatter temporal variations of HH and VV polarisation data for the three 

rice crops WS, SA, and AW in the year 2007 were presented in Figure 4.9 and 

described as follows: 

 

1) At the beginning of the rice season (<20 days after sowing), i.e. the first 

half of the vegetative stage, flooded and non-flooded rice fields had low and high 

backscatter, respectively (with the exception of two data points, most likely due to 

field observation performed before the exact flooding time), 
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2) During the period of 20-70 days, i.e. the second half of the vegetative 

stage and the reproductive stage, flooded and non-flooded fields had similar high 

backscatter response. 

 

It was expected that in flooded fields, the plant-water double bounce 

interaction should be dominant, thus the backscatter of flooded fields should be 

higher than that of drained fields. A possible explanation could be due to the high 

density of the plants (as explained in Section 4.3.1 “Rice parameters”), or the 

contribution of volume scattering and multiple plant–ground scattering become 

important. HH>VV was as expected, linked to attenuation of the waves by the 

vertical plant elements. However, the most surprising feature was the very high value 

of HH (0 to -2 dB), not often seen in natural surfaces. 

 

3) During the period from 0 to 70 days, i.e. from sowing to heading, the plant 

structure remained mostly erectophile. The stems were quasivertical and the leaves 

had a small insertion angle (5-20o) (Le-Toan et al., 2003). The temporal increase of 

SAR backscatter at two consecutive data acquisition dates (e.g. 35 days with 

Envisat) was high if the fields were flooded at both dates, i.e. 18 dB at HH and 11 

dB at VV as the maxima observed, if the fields were flooded and without much 

vegetation at the first date. In contrast, if the field was not flooded at the first date, a 

variable increase was observed at HH (0 to 8 dB), and a variable decrease (0 to 6 dB) 

at VV. Consequently, the backscatter temporal change was not considered a robust 

rice classifier. 

  

4) After the age of 70 days, i.e. the ripening stage, the growth (height and 

biomass) stopped and the leaves changed their orientation to be no more erectophile 

(i.e. their insertion angles were typically 30-40o) (Le-Toan et al., 2003). Most 

backscattering coefficient values of the rice fields without water were slightly lower 

(around 2 dB) in HH and higher (around 2 dB) in VV compared to that of fields with 

standing water (Figure 4.9). 

 

5) The polarisation ratio was presented in Figure 4.10. In general, the ratio 

increased until the period 30-70 days, then decreased until harvest. The most striking 
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observation was the high value of the ratio (4.6 to 7.8 dB for flooded fields). 

However, fields without water at the SAR overpass had large dispersion of the ratio 

values, varying from -1.4 to 6.5 dB.    
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(b) VV 

Figure 4.9. Backscatter temporal variation of HH (a) and VV (b) in WS, SA and 

AW 2007 crops of the fields with water and without water. 
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Figure 4.10. Temporal variation of HH/VV ratio in WS, SA and AW 2007 crops 

of the fields with water and without water. 

 

 In this study, HH, VV and HH/VV radar values were not significantly related 

to modern practiced rice fields with coefficients of determination r2 of 0.229, 0.161, 

and 0.645, respectively. In contrast, previous studies on traditional practiced rice 

fields reported that the backscattering coefficient (analysed as a function of age), 

such as (Ribbes and Le-Toan, 1999b), showed a coefficient of determination of 0.90 

for the case of Radarsat HH data (Figure 4.11a). The maximum backscattering 

coefficient -6 dB of HH data of traditional cultivated rice fields was observed for the 

cases of Radarsat (Ribbes and Le-Toan, 1999b) and Envisat ASAR (Chen et al., 

2006). In contrast, after the age of 20 days, the minimum backscattering coefficient 

of HH data of modern cultivated rice was -6 dB. 
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(a) HH 

 
(b) HH, VV 
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(c) HH/VV 

Figure 4.11. Backscatter temporal variation of HH (a), VV (b), and HH/VV 

ratio (c) of the traditional practiced rice fields (Ribbes and Le-Toan, 1999b, 

Bouvet et al., 2005, Chen et al., 2006). 

 

 The causes of the difference between radar backscatter of traditional practiced 

rice fields and of modern practiced rice fields may be due to flooding condition and 

plant density (as explained in the above paragraphs), plant structure and rice variety 

(as discussed in Section 4.3.3 below). 

 

 In fact, since 2005, the Water-Saving Work Group of the Irrigated Rice 

Research Consortium (IRRC), in collaboration with Vietnam’s Plant Protection 

Department, established activities on water management and water-saving in rice in 

the Mekong River Delta (Mendoza et al., 2007). The farmers have, on average, two 

fewer pumping operations during the season to irrigate their fields than the past 

regular practice of continuous flooding. 
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4.3.3 Effect of plant structure and rice varieties 
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(b) 

Figure 4.12. Temporal variation of HH/VV ratio of Jasmine (a) and IR 50404 

varieties (b) in WS, SA and AW 2007 crops. 

 

Plant structure and different rice varieties can have an impact on radar 

response (CCRS, 2007a). The polarisation ratio can have lower values when the 

plant structure deviates from vertical. For example, for plants affected by wind, the 

decrease could be 2 dB (see Figure 4.12a and 4.12b at the ripening stage). This could 

be due to plants in lodging (rice plants falling over) as recorded in field samples. In 
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fact, nine sampling fields grown from IR 50404 variety in Vinh Chanh and Phu Hoa 

villages were measured with stem inclination of 10o – 45o (28o in average value) at 

the ripening stage (Figure 4.13b). In comparison, stem inclinations ranging from 5o 

to 15o (with mean of 9o) were observed at the same stage from seven other fields 

where Jasmine seed were planted (Figure 4.13a). The radar response of those plants 

decreased in comparison with vertical rice plants in HH (below -4.5 dB), and 

increased in VV polarisation (above -6.0 dB) (see Figure 4.9) because rice stems 

were not vertical at the maturation stage.  

 

 
(a) Jasmine 

 
(b) IR 50404 

Figure 4.13. Sampling fields with plants in quasi-vertical structure (a) and 

lodging (b) at the end of SA crop. 
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The differences in plant structure were also related to rice varieties. As 

plotted in Figure 4.12b, most of IR 50404 rice variety (grown in SA crop only) was 

characterised by a very low HH/VV (0 dB or less) at the end of the rice crop, 

whereas Jasmine species with a quasi-vertical structure had higher ratio (Figure 

4.12a) at the same stage of the rice season. 

 

4.3.4 Radar backscatter and rice biomass 
 

In traditional rice cultivation system, radar backscatter was found to be 

strongly correlated to several rice parameters (Le-Toan et al., 1997), e.g. a 

coefficient of determination r2 of 0.81 between Radarsat HH backscatter and rice 

biomass in Figure 4.14 (Ribbes and Le-Toan, 1999b). Backscatter of rice fields 

increased steadily during the growing stage and then reaches a saturation level. This 

temporal variation of radar response had proved to be effective for rice crop 

monitoring. Radar backscatter can increase by more than 10 dB from the beginning 

of the crop (flooded fields) to the saturation level (Kurosu et al., 1995, Le-Toan et 

al., 1997, Inoue et al., 2002, Choudhury et al., 2007). 

 

 
Figure 4.14. Radar backscattering of Radarsat and ERS data vs. plant wet 

biomass in traditional practiced rice (Ribbes and Le-Toan, 1999b). 

 

In the study of Ribbes and Le-Toan, (1999a), the rice growth model ORYZA1 

was used to simulate rice growth with the sowing date and rice biomass values 

retrieved from ERS and Radarsat SAR data as input parameters. The coupling of 
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SAR data and ORYZA model gave good results for rice yield estimation. Choudhury 

et al., (2007) recently used dual polarisation ASAR data. A linear relation between 

polarisation ratio (HV/HH) and fresh biomass was found in the case of regular 

practice in the Bardhaman, India, even though Envisat data were acquired during 

vegetative stage, rice biomass could be retrieved with less uncertainty as HH alone 

shows saturation before maturity stage.  
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(b) VV 

Figure 4.15. Radar backscattering of HH (a) and VV (b) vs. plant wet biomass 

in WS, SA and AW 2007 crops. 
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For this present study, an analysis of the relationship between radar backscatter 

and rice biomass in the study site of An Giang was carried out. Figure 4.15 showed 

the HH and VV data as a function of biomass with a coefficient of determination of 

0.374 and 0.019, respectively. HH and VV polarisation data increased strongly until 

the plant fresh biomass reached 1000 g/m2 (at 30 days after seeding). However, for 

non-flooded fields, the increase in HH was smaller and VV even decreased.  A 

saturation level of backscatter was reached at around 2000 g/m2 at the middle of crop 

cycle. After saturation level, radar backscatter remains stable and slightly reduced 

for HH and rose for VV until biomass gets to maximum values. 

 

Figure 4.16 shows the polarisation ratio (HH/VV) as a function of rice biomass 

having a coefficient of determination of 0.494. Only the increase of HH/VV at the 

beginning of the season was clearly observed, however, this increase was restricted 

to the first month or a limit of 1000g/m2. After this date, the backscatter of non-

flooded fields had a large dispersion (no correlation) with respect to biomass. Figure 

4.15 and 4.16 showed that HH, VV and HH/VV were not strongly related to plant 

biomass as in the reported traditional rice results (Figure 4.17), and thus retrieving 

rice biomass using HH, VV or HH/VV was not applicable to modern rice practices. 

-4

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000

Wet biomass (g/m2)

H
H

/V
V

 (d
B

)

WS SA AW WS0 SA0 AW0
 

Figure 4.16. Polarisation ratio vs. plant wet biomass in WS, SA and AW 2007 

crops. 
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Figure 4.17. Polarisation ratio vs. plant wet biomass in traditional practiced rice 

(Le-Toan et al., 2005). 

 

4.4 Conclusion 
 

 As a consequence of changes brought by modern cultural practices, such as 

direct seedling, high plant density, short cycle rice varieties, high rice biomass, and 

water management, the radar backscattering behaviour was much different from that 

of the traditional rice plant previously reported in scientific literature. At the early 

stage of the season, direct sowing on fields with rough and wet soil surface provided 

very high backscattered values for both HH and VV data (about -7 to -2 dB). Around 

10 – 20 days after sowing, rice plants attained more or less 20 cm high and field 

flooding decreased dramatically the backscatter to -18 to - 12 dB. The backscatter 

then increased and reached a saturation level (-2 to 1 and -9 to -7 for HH and VV, 

respectively) in the middle of crop cycle. The very high value of HH and the similar 

response of flooded and non-flooded fields were explained by the high plant density. 

At the end of crop season, radar backscattering of the rice fields without water was 

slightly lower in HH and higher in VV when compared to that of fields with standing 

water. 

 

 As a result, methods using the temporal change of HH and VV will not work 

for fields which are not inundated at the beginning of the season. However, the 

polarisation ratio HH/VV was found to be a potentially good rice classifier during 
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the period of 30 days to 60 days after seeding in the study area, i.e. during the second 

half of the vegetative stage and the first half of the reproductive stage for 100-day 

rice variety.  

  

 HH, VV and HH/VV were not strongly related to plant biomass (coefficient 

of determination of 0.374, 0.019, and 0.494, respectively) as in the reported results 

for traditional rice. This is explained by the effect of water management, plant 

density and structure. As a result, retrieving rice biomass using HH, VV or HH/VV 

was not applicable to modern rice growing practices that prevailed in the study area. 

Consequently, the use of agro-meteorological model and SAR data for yield 

prediction will not work in this case.  
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Chapter 5 
 

RICE MAPPING 
 

5.1 Introduction 
 

To identify and map rice fields in traditional cropping system (as reviewed in 

Chapter 2), a method can be adopted that uses the temporal change between any pair 

of data required during the crop cycle or between the end of one cycle and the 

beginning of the following cycle. For modern practiced rice fields in the study area, 

the previous chapter pointed out that the radar backscattering behaviour is much 

different from that of the traditional rice plant. Therefore, the methods previously 

developed for rice mapping may not be adapted to modern rice cropping. 

 

This chapter examined the methods for rice identification and mapping in the 

study area by using ASAR APP and WS datasets. Based on the discovered 

relationships between rice parameters and radar backscattering of ASAR APP data in 

Chapter 4, a thresholding method was applied and compared with the different 

classification methods, such as minimum-distance-to-means, maximum likelihood, 

spectral angle mapping (SAM), ISODATA, and K-means. The classification 

accuracies assessed from these methods were compared in order to select the best 

one for delineating various rice crops in the year 2007 and WS 2008. In addition, the 

method and results of rice mapping using ASAR Wide Swath (WS) imagery were 

also discussed. 

 

 In the study of Chen et al. (2007), the HH and HV polarisation ASAR dataset 

of two dates, i.e. April 4 and July 4, 2006, gave the biggest difference of radar 

backscatter variation between rice and other targets. In these two images, the change 

of backscattering response of rice field ranged from 8 to 13 dB, while other main 

ground types were less than 7 dB. Therefore, the ratio image was segmented by a 

threshold of 7 dB to highlight the rice field. The study showed that the mapping 

results of the three datasets had a promising high accuracy of a) 77% for the HH in 



Chapter 5: Rice mapping 

 82

July and HH in April, b) 81% for the HH in July and HV in April, and c) 80% for the 

HV in July and HV in April dataset. 

 

 Some other recent studies using dual polarisation ASAR data focused on the 

use of polarisation ratio of single-date image for rice mapping (Bouvet et al., 2005). 

To assess quantitatively the mapping algorithm, four values of the HH/VV threshold 

were tested: 1 dB, 1.5 dB, 2 dB, and 2.5 dB. The value of 1.5 dB proved to be the 

best threshold with about 88% well classified pixels. In another study in China, the 

threshold classification method was used (Yang et al., 2008). Validation of 

classification accuracy was implemented by using differential GPS sampling records. 

The rice identification accuracy was found to be about 84%. 

 

5.2 Methods 
  

 Chapter 3 detailed the common research methods implemented in this study. 

For this present chapter, Figure 5.1 presents the methods examined for rice 

identification and mapping in the study area by using two ASAR APP and WS 

datasets. ASAR APP data were firstly used to determine the best method with high 

accuracy for rice delineation. Then, the proposed method was applied for ASAR WS 

data, covering the entire agricultural region of the An Giang province. 
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Figure 5.1. Methods for rice mapping. 

 

 In previous investigations (Ribbes and Le-Toan, 1998, Liew et al., 1998, 

Holecz et al., 2000, Chen and Mcnairn, 2006, Lam-Dao et al., 2005, Takeuchi et al., 

1999, Le-Toan et al., 1997), the temporal change of the SAR signal was estimated by 

dividing the intensity values of each pixel between two dates. In order to maximise 

the intensity ratio (the temporal change), the maximum temporal change (MTC) was 

calculated using the following equation (5.1) (CESBIO/MATRA-SYSTEMS, 1999): 

( )
( )kji

kji
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,,

,,
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 k: number of the image. 

 

 The principle was to threshold the maximum temporal change image to 

identify image pixels that change by more than x dB in order to produce a rice/non-

rice image map. Another approach was to use temporal change behaviour in order to 

produce monthly harvested rice maps. Combinations of these maps based on crop 

calendar was used to map the different rice cropping systems (Lam-Dao et al., 2005). 

 

5.2.1 ASAR APP image classification 

 
5.2.1.1 Thresholding method 

  

In many image processing applications, the grey levels of pixels belonging to 

the object are quite different from the levels belonging to the background. 

Thresholding becomes then a simple but effective tool to separate objects from the 

background. This segmentation tool is being used in many research and operational 

applications (e.g. Bouvet et al., 2005, Yang et al., 2008), so attempts to automate 

thresholding have been a permanent area of interest. However, several difficulties 

impede to achieve the desired results for all situations, thus different techniques will 

have to be tested in order to select those providing the best performance (Javier 

Marcello, 2004). 

 

In the context of SAR image processing for mapping the rice area planted in 

the study site, the thresholding method was applied. The previous results in chapter 4 

had shown that: a) methods using the temporal change of HH and VV will not work 

for fields which are not inundated at the beginning of the season, and b) the ratio 

HH/VV is a good classifier during the middle period of the rice season, i.e. 30 days 

to 60 days after seeding, during a second half of the vegetative stage, and the first 

half of the reproductive stage for 100-day rice variety. 

 

The principle inherent in this method was to threshold the maximum or 

minimum values of the HH, VV, and HH/VV image to identify image pixels that 
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satisfy by more or less than x dB. The following algorithm (5.2) serves as an 

example: 

DNi,j = Rice if σo ≥ x dB else DNi,j = Non-rice (5.2)

where DNi,j is pixel value of output image. 
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(a) WS 2007 crop 
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(b) SA 2007 crop 
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(c) AW 2007 crop 
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(d) WS 2008 crop 

Figure 5.2. Polarisation ratio HH/VV and normalised difference ratio index 

(NDRa) of the sampling rice planted in WS (a), SA (b), AW 2007 (c), and WS 

2008 crops (d) extracted from the images taken in the mid-season. 
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The polarisation ratios of sampling rice fields derived from the images 

acquired in the middle of crop seasons (i.e. Feb, Jun, Oct. 2007, and Feb. 2008 

images for WS, SA, AW 2007, and WS 2008 crops, respectively, see Table 3.5) 

were plotted in a Figure 5.2. In most cases, the ratio values of the fields were over 3 

dB, except for few points. In WS 2007 crop, five sampling fields located at Vinh 

Binh village of Chau Thanh district were early sown at the end of November 2006, 

whereas the image was acquired on 17th Feb. 2007, i.e. more than 70 days after 

seeding. Therefore, their HH/VV ratio values were around 3 dB or lower (see Figure 

5.2a). In contrast, five sampling fields at Long Dien B village of Cho Moi district 

were started at the beginning of May (SA 2007 crop), whereas the image was taken 

on 2nd June 2007. Thus, the image was acquired just one month after seeding and 

four of them consequently obtained the ratio values of 3 dB or less (Figure 5.2b). As 

a result, an optimum threshold value of 3 dB of HH/VV ratio was determined to 

segment the rice and non-rice classes using an ASAR APP image collected in the 

middle of crop season. 

 

Additionally, thresholds from HH and VV polarisation data were analysed. 

Figure 5.3 showed that during the middle period of crop season, most radar 

backscattering coefficients of sampling rice obtained values of -6 dB or less in VV 

polarisation and higher than -7 or -6 dB in HH polarisation (blue dots with symbol 

T2 of 35 sampling fields in WS and SA crops and of ten fields in AW crop). Another 

threshold formulated in this study, i.e. the “normalised difference polarisation ratio 

index” (NDRa), where NDRa = ( 0
HHσ  in dB – 0

VVσ  in dB) / ( 0
HHσ  in dB + 0

VVσ  in 

dB), were also considered. The NDRa value of -0.2 in the middle of crop season 

strongly demonstrated that it was an optimum threshold for most sampling fields 

(see Figure 5.2). 
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(a) WS 2007 crop 
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(b) SA 2007 crop 
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(c) AW 2007 crop 
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(d) WS 2008 crop 

Figure 5.3. Backscattering coefficients of HH and VV data of sampling fields in 

WS (a), SA (b), AW 2007 (c), and WS 2008 crops (d). 
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5.2.1.2 Supervised and unsupervised classification methods 

  

 There are three basic steps involved in a typical supervised classification 

procedure: training stage, classification stage, and output stage (Lillesand et al., 

2004). In the training stage, the analyst identifies representative training areas and 

develops a numerical description of the spectral attributes of each land use type of 

interest in the scene. In the classification stage, each pixel in the image data set is 

categorised into the land cover class it most closely resembles. After the entire data 

set has been categorised, the results are presented in the output stage. 

 

 Unsupervised classifiers do not utilise training data as the basic classification. 

Rather, the classifiers involve algorithms that examine the unknown pixels in an 

image and aggregate them into a number of classes based on the natural groupings or 

clusters present in the image values. The basic premise is that values within a given 

cover type should be close together in the measurement space, whereas data in 

different classes should be comparatively separated. The classes that result from 

unsupervised classification are spectral classes. The analyst must compare the 

classified data with some form of reference data to determine the identity and 

informational value of the spectral classes (Lillesand et al., 2004, Richards and Jia, 

2006). 

 

In this work, a number of supervised and unsupervised classifiers were 

selected for ASAR APP image classification in order to compare their classification 

accuracies with those derived from the thresholding method. In the case of 

supervised classification, one-, two- or three-date image taken during the crop 

growth were used as input data. The principal component (PC) analysis was first 

applied to three-date image, and PC1, PC2, and PC3 data were then selected for 

classification. A set of training data (rice and other non-rice classes, e.g. annual 

plant, perennial plant, forest, rural area, urban area, water bodies) were delineated 

from the images based on the existing land use map. The selected classifiers were 

minimum-distance-to-means, maximum likelihood, and spectral angle mapper. 

Similarly, two clustering algorithms, K-means and ISODATA, were also examined. 

To reduce the processing time, a subset of three districts in An Giang province (Phu 

Tan (PT), Chau Phu (CP) and Chau Doc (CD)) was included. 
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 In the case of the minimum-distance-to-means classifier, first the mean (or 

average) spectral value in each band for each category is determined. Then a pixel of 

unknown identity may be classified by computing the distance between the value of 

the unknown pixel and each of the category means. The minimum-distance-to-means 

strategy is mathematically simple and computationally efficient, but it has certain 

limitations. Most importantly, it is insensitive to different degrees of variance in the 

spectral response data (Lillesand et al., 2004, Campbell, 2007). 

 

 Maximum likelihood classifier quantitatively evaluates both the variance and 

covariance of the category spectral response patterns when classifying an unknown 

pixel. To do this, an assumption is made that the distribution of the cloud of points 

forming the category training data is Gaussian (normally distributed). This 

assumption of normality is generally reasonable for common spectral response 

distributions. Under this assumption, the distribution of a category response pattern 

can be completely described by the mean vector and the covariance matrix. Given 

these parameters, we may compute the statistical probability of a given pixel value 

being a member of a particular land cover class (Lillesand et al., 2004, Jensen, 

1996). 

 

In this work, spectral angle mapping (SAM) was also examined. It is a 

classification approach that examines multispectral or hyperspectral data by 

evaluating the relationships between pixel values projected in multispectral data 

space. Envision a pixel projected into multispectral data space: its position can be 

described by a vector with an angle in relation to the measurement axes. Its position 

relative to another pixel (or perhaps a set of reference or training data) can be 

evaluated by assessing the difference between the angles of the two vectors. Small 

angles indicate a close similarity, large angles indicate lower similarity. SAMs differ 

from the usual classification approaches because they compare each pixel in the 

image with each spectral class, then assign a value between 0 (low resemblance) and 

1 (high resemblance) to each pair (Campbell, 2007). 

 

There are numerous clustering algorithms. The K-means algorithm locates a 

number of clusters in the multidimensional measurement space. Each pixel in the 
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image is then assigned to the cluster whose arbitrary mean vector is closest. After all 

pixels have been classified in this manner, revised mean vectors for each of the 

clusters are computed. The revised means are then used as the basis to reclassify the 

image data. The procedure continues until there is no significant change in the 

location of class mean vectors between successive iterations of the algorithm. A 

widely used variant of the K-means method for unsupervised clustering is the 

ISODATA algorithm. This algorithm permits the number of clusters to change from 

one iteration to the next, by merging, splitting, and deleting clusters (Lillesand et al., 

2004). 

 
5.1.2.3 Classification accuracy assessment 

  

Classified data often manifest a salt-and-pepper appearance due to the 

inherent spectral variability encountered by a classifier when applied on a pixel-by-

pixel basis. In such situations, it is often desirable to smooth the classified output to 

show only the “dominant” classes. The output from an image classification is an 

array of pixel locations containing numbers serving the function of labels, not 

quantities. Therefore, post-classification smoothing algorithms must operate on the 

basis of logical operation, such as majority filter (Lillesand et al., 2004). In the study, 

all classified images from ASAR APP data were smoothed by using the majority 

filter of 5x5 window size, whereas those from ASAR WS imagery, the filter size of 

3x3 were applied before assessing the classification accuracy. 

 

The actual quality of image classification results i.e. rice/non-rice maps 

should be assessed. This work was performed on the basis of the reference data, i.e. 

the statistical data published and existing land use map. 

 

Method based on the published statistical data 

 

In this work, assessing the accuracy was based on the official statistics 

(planted area, yield and production of rice by crop season) provided by the Statistical 

Office of An Giang province (AGSO, 2008a, AGSO, 2008b). Using this set of data, 

the accuracy of classification was calculated as follows: let the true value of a 
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quantity be x and the measured or inferred value x0. Then the relative error (5.3) is 

defined as follows (Weisstein, 2009). 

100 −=
−

=
Δ

=
x
x

x
xx

x
xxδ  (5.3)

where ∆x is the absolute error. The percentage error is 100% times the relative error. 

 

Method based on the existing land use map 

 

This was done by a sampling approach in which a number of pixels were 

selected and both the classification result and the reference data were compared. The 

recommended sampling strategy in the context of rice cropping systems is stratified 

random sampling (McCoy, 2005). The choice of the testing set of pixels for accuracy 

assessment is an important consideration. In practice, one may wish to choose 

between 30 and 60 samples per category (Richards and Jia, 2006). Comparison is 

done by creating an error matrix from which widely used accuracy measures can be 

calculated, such as the overall accuracy and kappa statistics. 

 

The official statistics used were planted area, yield and production of rice by 

crop season. This data has been systematised, readjusted and additionally completed 

from new statistical surveys, of which the data are estimated. Data has been collected 

and calculated in accordance with the methods currently stipulated by Vietnam 

Statistical branch (AGSO, 2008b). The official statistics by season for each district 

were used for accuracy assessment of classified results from Envisat ASAR images. 

On the other hand, the existing land use map was published by the An Giang 

Department of Natural Resources and Environment. This data was prepared in 

accordance with the methods prescribed by Vietnam Ministry of Natural Resources 

and Environment. Because of limited funding, the ground data was only used for 

method development purpose. 

 

5.2.2 ASAR WS image classification 
  

In the context of ASAR WS data used for rice mapping, the integrated 

method of backscatter temporal change and thresholding was applied by using two-

date and three-date image. This is because the collected WS data had single 
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polarisation HH. The thresholds were determined on the basis of the temporal 

variation of radar backscattering from sampling rice fields. Finally, the classification 

accuracy of rice/non-rice maps was evaluated against the published agency statistical 

data. 

 

5.3 Results and discussion 
 
 
5.3.1 Rice mapping from ASAR APP data 
 

5.3.1.1 Thresholding method 

 

From the findings in the previous chapter, the rice classification was 

examined based on HH/VV ratio of the ASAR APP images acquired in the middle of 

crop season, i.e. February, June, October 2007, and February 2008, to map the rice 

planted of the WS, SA, AW 2007, and WS 2008 crops, respectively. The results of 

rice mapping using the optimum threshold of polarisation ratio (i.e. 3 dB) in most 

rice crops were very good, except in AW 2007 crop. The percentage error of the 

classified rice acreage at provincial scale in this crop was 12.7% when compared 

with the information published in the Statistical Yearbook 2007 of An Giang 

province (AGSO, 2008b) (see Table 5.1). Therefore, to reduce the confusion of rice 

with other non-rice classes having high HH/VV ratio values (e.g. reed or marshland 

with vertical structure of the plants, other crops, etc.), some threshold combinations 

of HH, VV and HH/VV data as presented in Table 5.1 were considered. Then, their 

classification accuracies at the provincial scale were assessed and compared. An 

additional criterion was finally determined: 0
VVσ  ≤ -6 dB. In this case, the percentage 

error of the classified rice area at provincial scale in AW 2007 crop was reduced 

from 12.7% to 3.8% when compared with the statistical data. Similarly, threshold 

combinations using NDRa were also examined. The combination of thresholds 

“NDRa ≤ -0.2 and 0
VVσ  ≤ -6 dB and -6 ≤ 0

HHσ  ≤ 2 dB” was found to produce good 

results in most cases. 
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Table 5.1. Percentage errors between planted rice acreage of An Giang province  

in WS, SA, AW 2007 and WS 2008 crops produced by ASAR data and 

statistical data using various threshold combinations. 
Percentage error (%) 

Algorithm 
WS 2007 SA 2007 AW 2007 WS 2008 

Ra ≥ 3 3.4 2.4 12.7 -2.8 

Ra ≥ 3 and 0
VVσ  ≤ -6dB 1.3 -1.6 3.8 -6.6 

Ra ≥ 3 and -7 ≤ 0
HHσ  ≤ 2dB 2.1 0.8 8.1 -4.9 

Ra ≥ 3 and -6 ≤ 0
HHσ  ≤ 2dB 0.0 -0.5 6.6 -6.8 

Ra ≥ 3 and 0
VVσ  ≤ -6dB and -7 ≤ 0

HHσ  ≤ 2dB 0.0 -3.1 -0.7 -8.6 

Ra ≥ 3 and 0
VVσ  ≤ -6dB and -6 ≤ 0

HHσ  ≤ 2dB  -4.5 -2.2 -10.5 

NDRa ≤ -0.2 8.4 10.4    4.9 

NDRa ≤ -0.2 and 0
VVσ  ≤ -6dB 3.4 1.1  6.2 -3.5 

NDRa ≤ -0.2 and -7 ≤ 0
HHσ  ≤ 2dB 7.1     3.4 

NDRa ≤ -0.2 and -6 ≤ 0
HHσ  ≤ 2dB    8.0     

NDRa ≤ -0.2 and 0
VVσ  ≤ -6dB and -7 ≤ 0

HHσ  

≤ 2dB 
2.4 0.2 3.5 -4.7 

NDRa ≤ -0.2 and 0
VVσ  ≤ -6dB and -6 ≤ 

0
HHσ  ≤ 2dB 

0.6 -1.0 2.1 -6.5 

Note: Lowest percentage errors in bold font. 

 

5.3.1.2 Comparison of classification accuracy between different classifiers 

  

As mentioned above, different classification methods were utilised, such as 

minimum-distance-to-means, maximum likelihood, spectral angle mapper, 

ISODATA, and K-means in order to compare the classification accuracy of the rice 

area mapped by these methods with published statistical data (Table 5.2). 
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Table 5.2. Percentage errors between planted rice acreage produced by ASAR 

APP data using different classifiers and statistical data. 

Percentage error (%) 

WS crop SA crop Classifier Data used  

PT CP CD PT CP CD 

Feb or Jun image 

(Ra≥3 and 0
VVσ ≤-6) 

6 6 -2 -2 2 1

Thresholding Feb or Jun image 

(NDRa ≤ -0.2 and 0
VVσ  ≤ -6dB 

and -6 ≤ 0
HHσ  ≤ 2dB) 

4 6 -3 -1 3 2

PC1, PC2, and PC3 6 8 6 8 6 11

Jan+Feb or Apr+Jun images 8 8 7 9 10 10

Feb+Mar or Jun+Jul images 3 7 4 12 9 4

Jan or Apr image 0 -8 -14 -27 -27 -33

Feb or Jun image 9 11 8 13 13 15

Minimum-

distance-to-

means 

Mar or Jul image -32 -36 -41 -11 -15 -54

PC1, PC2, and PC3 -4 -10 -7 -5 -5 -2

Jan+Feb or Apr+Jun images -8 -13 -42 -17 -17 -31

Feb+Mar or Jun+Jul images -11 -9 -18 -30 -41 -76

Jan or Apr image 2 -4 -13 -18 -25 -35

Feb or Jun image 11 10 3 12 13 14

Maximum 

likelihood 

Mar or Jul image -17 -16 -22 -8 -12 -49

PC1, PC2, and PC3 -12 -16 -19 -3 -3 0

Jan+Feb or Apr+Jun images 10 9 7 12 12 11

Feb+Mar or Jun+Jul images 8 10 8 9 7 -1

Jan or Apr image 2 -4 -13 Bad Bad Bad

Feb or Jun image 11 11 8 8 10 11

Spectral angle 

mapper 

Mar or Jul image Bad Bad Bad -5 -7 -43

PC1, PC2, and PC3 (No. of 

classes: 30) 
-4 0 6 -27 -21 -28

PC1, PC2, and PC3 (No. of 

classes: 10) 
-41 -27 -24   ISODATA 

Jan+Feb+Mar or Apr+Jun+Jul 

images  (No. of classes: 30) 
Bad Bad Bad   
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PC1, PC2, and PC3 (No. of 

classes: 30) 
-21 -9 -9 -33 -31 -22

K-means 
Jan+Feb or Apr+Jun images 

(No. of classes: 30) 
-52 -37 -31    

     Note: Lowest percentage errors in bold font. 

 

Apart from thresholding method, the minimum-distance-to-means and SAM 

methods provided good results when the following datasets were used: a) the three 

first principal components of three-date ASAR APP images taken during the crop 

season, b) two consecutive images, and c) single-date image acquired in the middle 

of crop season. In the case of single-date image, the maximum percentage errors 

were observed for the minimum-distance-to-means and SAM classifiers, i.e. 15% 

and 11%, respectively (Table 5.2). 

 

 In relation to the maximum likelihood classifier, the method provided rather 

good results for rice mapping when PC1, PC2, and PC3 of three-date image or single 

image in the mid-season were used. Conversely, two-date image or other single-date 

image yielded rather low accuracies. 

  

 Compared with supervised classification, unsupervised classification 

methods produced low accuracy or bad results (i.e. percentage error more than 50%). 

Therefore, unsupervised classifiers such as ISODATA and K-means could not be 

effective for rice mapping using Envisat ASAR APP images in this case study. 

 

 By comparing the obtained accuracy, the classified results using thresholding 

algorithm provided higher and consistent accuracies between districts and seasons 

(percentage errors ranging from -2 to 6% or -3 to 6% for WS crop and from -2 to 2% 

or -1 to 3% for SA crop in the case of polarisation ratio or normalised difference 

polarisation ratio index used, respectively). Other classification methods did not 

improve classification accuracy despite their sophisticated algorithm basis. 
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5.3.1.3 Accuracy assessment of the thresholding method 

 

As analysed above, the thresholding algorithm using single-date ASAR APP 

image taken in the middle of crop season was considered as an effective tool for rice 

mapping in the study area. Thus, in this section, the accuracy assessment based on 

statistical data and reference data of images classified from the thresholding method 

using polarisation ratio and VV data is discussed. 

 

Accuracy assessment based on the official statistics 

 

 The accuracy assessment results of the classified rice pixels by the 

thresholding method were produced based on the statistical data published by An 

Giang province for the WS, SA, and AW crops planted in 2007 (Tables 5.3, 5.4, and 

5.5) and WS crop planted in 2008 (Table 5.6) (AGSO, 2008a, AGSO, 2008b). 

 

Table 5.3. Percentage errors between planted rice acreage in WS 2007 crop 

produced by ASAR APP data and statistical data. 

District name Statistical data

(Ha) 

Rice from 

ASAR (Ha) 

Percentage 

error (%) 

Phu Tan 23041 24546 6.5 

Chau Phu 34383 36556 6.3 

Tri Ton (*)   

Tinh Bien 14952 14999 0.3 

Chau Doc 7148 6965 -2.6 

Long Xuyen 5591 5244 -6.2 

Thoai Son 36691 39112 6.6 

Tan Chau 11420 10114 -11.4 

An Phu 14443 12377 -14.3 

Cho Moi 17887 17235 -3.6 

Chau Thanh 27686 28702 3.7 

Province 193242 195850 1.3 

    (*) Outside of the SAR image coverage 
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Table 5.4. Percentage errors between planted rice acreage in SA 2007 crop 

produced by ASAR APP data and statistical data. 

District name Statistical data

(Ha) 

Rice from 

ASAR (Ha) 

Percentage 

error (%) 

Phu Tan 22968 22471 -2.2 

Chau Phu 33959 34612 1.9 

Tri Ton (*)       

Tinh Bien 15164 14689 -3.1 

Chau Doc 7123 7220 1.4 

Long Xuyen 5433 5227 -3.8 

Thoai Son 35990 35223 -2.1 

Tan Chau 10908 9687 -11.2 

An Phu 12856 11699 -9.0 

Cho Moi 16324 16827 3.1 

Chau Thanh 27629 27659 0.1 

Province 188354 185314 -1.6 

    (*) Outside of the SAR image coverage 

 

 The difference between rice area planted by district from classified images 

and the government statistics ranged from -14.3 to 6.6% (Table 5.3), -11.2 to 3.1% 

(Table 5.4) and 10.8 to 0.6% (Table 5.6) for WS and SA 2007, and WS 2008 crops, 

respectively. In contrast, the percentage errors of rice area planted in the AW 2007 

crop obtained for several districts (e.g. Long Xuyen, An Phu, and Chau Thanh) were 

quite high, possibly due to small rice acreage planted for that season (Table 5.5). In 

fact, the statistical planted rice area of these three districts in AW 2007 was 100, 143, 

646 Ha, respectively, occupied only 1.34% of provincial rice acreage. The 

differences of provincial rice grown area, however, were 1.8% in WS crop, -1.3% in 

SA crop, 3.8% in AW crop 2007, and -6.6% in WS crop 2008. 
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Table 5.5. Percentage errors between planted rice acreage in AW 2007 crop 

produced by ASAR APP data and statistical data 

District name Statistical data 

(Ha) 

Rice from 

ASAR (Ha) 

Percentage 

error (%) 

Phu Tan 11963 12873 7.6 

Chau Phu 6389 6514 2.0 

Tri Ton (*)     

Tinh Bien 5636 6315 12.1 

Chau Doc 3530 3633 2.9 

Long Xuyen 100 174 73.5 

Thoai Son 15115 15262 1.0 

Tan Chau 6355 5857 -7.8 

An Phu 143 289 101.8 

Cho Moi 13224 13661 3.3 

Chau Thanh 646 917 41.9 

Province 63101 65494 3.8 

    (*) Outside of the SAR image coverage 

 

Table 5.6. Percentage errors between planted rice acreage in WS 2008 crop 

produced by ASAR APP data and statistical data. 

District name Statistical data 

(Ha) 

Rice from 

ASAR (Ha) 

Percentage 

error (%) 

Phu Tan 23041 21306 -7.5 

Chau Phu 34376 33406 -2.8 

Tri Ton (*)       

Tinh Bien 15020 14162 -5.7 

Chau Doc 7063 7103 0.6 

Long Xuyen 5505 5101 -7.3 

Thoai Son 36516 34554 -5.4 

Tan Chau 11253 10313 -8.4 

An Phu 14382 13423 -6.7 

Cho Moi 17364 15625 -10.0 

Chau Thanh 29525 26338 -10.8 

Province 194045 181332 -6.6 

    (*) Outside of the SAR image coverage 
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Accuracy assessment based on the existing land use map 

 

The reference data available in the study area was the land use map prepared 

in 2005 by the Department of Natural Resources and Environment of An Giang 

province. Considering the “rice” class in the map, it implies that this class may be 

the single, double or triple crop rice, although they were not categorised at that level 

as such. 

 

The classification accuracy was determined by randomly selecting a testing 

set of 174 pixels from the rice/non-rice maps and checking their labels against 

classes determined from the reference data. The classification accuracy of the 

resulting maps of WS, SA 2007, and WS 2008 crop seasons were presented in the 

classification error (or confusion) matrices (Tables 5.7, 5.8, and 5.9). The accuracy 

assessment of rice map in AW 2007 crop was not implemented because most rice 

fields in the province have been growing two crops (WS and SA) during a year, and 

only few do triple rice. As mentioned above, the land use map was not presented 

where triple rice was planted. 

 

Table 5.7. A confusion matrix of rice/non-rice map in WS 2007 crop. 

Reference data (Pixels) Classification 

data Rice Non-rice Total 

Rice 120 3 123 

Non-rice 7 44 51 

Total 127 47 174 

 

Producer’s accuracy   User’s accuracy   

Rice        = 120/127 = 94%  Rice        = 120/123 = 98% 

Non-rice = 44/47 = 94%         Non-rice = 44/51 = 86%  

Overall accuracy = 164/174 = 94% 

Kappa coefficient = 0.86 
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The values listed in the confusion matrices represented the number of testing 

pixels, in each case, correctly and incorrectly labelled by the classifier. The overall 

classification accuracies were 94 and 93% for WS crops in 2007 and 2008, 

respectively, whereas 87% for SA 2007 crop season. 

 

Table 5.8. A confusion matrix of rice/non-rice map in SA 2007 crop. 

Reference data (Pixels) Classification 

data Rice Non-rice Total 

Rice 113 8 121 

Non-rice 14 39 53 

Total 127 47 174 

 

Producer’s accuracy   User’s accuracy   

Rice        = 113/127 = 89%  Rice        = 113/121 = 93% 

Non-rice = 39/47 = 83%         Non-rice = 39/53 = 74% 

Overall accuracy = 152/174 = 87% 

Kappa coefficient = 0.69 

 

Table 5.9. A confusion matrix of rice/non-rice map in WS 2008 crop. 

Reference data (Pixels) Classification 

data Rice Non-rice Total 

Rice 116 1 117 

Non-rice 11 46 57 

Total 127 47 174 

 

Producer’s accuracy   User’s accuracy   

Rice        = 116/127 = 91%  Rice        = 116/117 = 99% 

Non-rice = 46/47 = 98%         Non-rice = 46/57 = 81% 

Overall accuracy = 93% (162/174) 

Kappa coefficient = 0.84 

 

It is important to understand that different indications of class accuracies will 

result according to whether the number of correct pixels for a class is divided by the 
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total number of reference pixels for the class (the column sum) or the total number of 

pixels the classifier attributes to the class (the row sum). The former refer to the 

Producer’s accuracy, whereas the latter refer to the User’s accuracy. This 

distinction is important and one believes that the User’s accuracy is the figure that 

should most often be adopted (Richards and Jia, 2006). In the case, the User’s 

accuracies of rice class attained the very high accuracies of 98, 93, and 99% for WS, 

SA 2007, and WS 2008, respectively. 

 

Whereas the overall accuracy only includes the data along the major diagonal 

and excludes the errors of omission and commission, the kappa (KHAT) statistic 

incorporates the nondiagonal elements of the error matrix as a product of the row and 

column marginal (Lillesand et al., 2004). The kappa coefficients of the classified 

rice/non-rice images were 0.86, 0.69, and 0.84 for WS, SA 2007, and WS 2008 crop, 

respectively. 

 

On the basis of the existing land use map for assessing the classification 

accuracy, the overall accuracies obtained were mostly lower than those which were 

assessed based on the statistics. This can be explained by the information content 

provided by the land use map where rice cropping systems were not explicitly 

identified. Therefore, several testing pixels labelled as “rice” in the reference map 

were classified as “non-rice” in the classified maps (7/51, 14/53, and 11/57 pixels in 

WS, SA 2007, and WS 2008 crop, respectively). However, the accuracy results are 

acceptable for practical applications on rice crop inventory. Most classification 

accuracies obtained for various rice crop seasons planted in the 2007 and 2008 in this 

study were higher than those of the previous studies (Li et al., 2003, Yang et al., 

2008, Bouvet et al., 2009). 

 

5.3.1.4 Rice maps from thresholding method 

  

The thresholding algorithm for accurate rice/non-rice mapping across the 

seasons was finally used. Figure 5.4 shows the pixel based mapping results of WS, 

SA, AW 2007, and WS 2008 crops using the optimum thresholds, i.e. Ra ≥ 3 and 
0
VVσ  ≤ -6dB. 
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(a) WS 2007 crop 

 
(b) SA 2007 crop 
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(c) AW 2007 crop 

 
(d) WS 2008 crop 

Figure 5.4. Rice and non-rice maps (rice in green) of WS (a), SA (b), AW 2007 

(c), and WS 2008 crops (d). 
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 The rice cropping system map of An Giang province in 2007 (Figure 5.5) 

were then produced by combining three rice/non-rice maps of WS, SA and AW 2007 

crops. Special attention has been paid to the Cho Moi district, which is located in the 

south-east of the province. With the extensive dyke network established in recent 

years, almost the entire rice area of the district has been growing with triple crop 

rice. 

 

 
Figure 5.5. Rice cropping system map of An Giang province in 2007. 

 

 The colour composite MODIS image (Figure 5.6) was collected on 9th October 

2007, i.e. in the middle of AW2007 rice crop season. The image presented rice fields 

grown in green pixels, except forest and mountainous areas in the western part, 

whereas inundated regions in the flood season in blue pixels. Based from qualitative 

visual interpretation, the rice fields in this image had good agreement with the 

classified rice results from ASAR APP data (Figure 5.4c and Figure 5.5). 
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Source: http://rapidfire.sci.gsfc.nasa.gov/ 

Figure 5.6. A colour composite MODIS image (Red=band 7, Green= band 2, 

and Blue= band 1) acquired on 9 October 2007. 

 

5.3.2 Rice mapping using ASAR WS data 
  

Although the spatial resolution of ASAR WS data is lower than that of the 

ASAR APP products, it may have the advantages for rice monitoring due to its wide 

area coverage. The possibility of ASAR WS data utilisation is not only reducing the 

cost of data acquisition and processing time but also increasing the area coverage 

and repeat pass. Because there is not much literature on rice/non-rice mapping using 

multi-temporal ASAR WS data, a test was done based on the temporal variation of 

radar response (Le-Toan et al., 1997) and thresholding method as analysed in the 

section 5.2 “Methods”. As introduced in section 3.4.1 “Imagery used”, the HH 

polarisation WS images were used in this case of study. 
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5.3.2.1 Image analysis of ASAR WS data in ascending mode 

  

Seven images in ascending mode taken during the WS and SA crop growth 

from January to August 2007 were used for data analysis. A number of represented 

samples of different land use classes in the study site were delineated on the basis of 

the existing land use map in order to analyse their backscatter temporal variation. It 

consisted of annual plant (AP); perennial plant (PP); forest (Fo); rural area (Ru); 

urban area (Ur); water bodies (Wa); and rice paddy (Rice). The temporal change of 

their radar backscattering was then presented in Table 5.10 and plotted in Figure 5.7. 

 

Table 5.10. Backscattering coefficients of land use samples extracted from 

ASAR WS ascending mode data. 

Backscattering coefficient (dB) 

Date of image acquisition 
LU 

code 
16/01/07 20/02/07 27/03/07 01/05/07 05/06/07 10/07/07 14/08/07

AP1 -5.8 -6.5 -6.4 -6.8 -6.5 -5.5 -6.2

AP2 -3.7 -4.7 -4.5 -4.6 -2.8 -3.2 -3.6

PP -5.4 -5.8 -4.5 -4.3 -3.8 -3.3 -3.5

Fo1 -6.8 -8.4 -7.9 -7.8 -7.8 -7.0 -5.9

Fo2 -6.0 -6.7 -6.3 -6.8 -6.8 -6.8 -6.0

Ru1 -3.6 -3.9 -3.0 -3.3 -3.5 -2.5 -2.4

Ru2 -6.1 -6.7 -5.8 -5.8 -4.7 -4.9 -5.8

Ru3 -4.6 -4.9 -4.9 -4.5 -4.6 -4.8 -4.1

Ur1 -1.3 -1.9 -1.2 -1.7 -1.4 -1.5 -1.7

Ur2 1.1 0.0 0.8 -0.4 -0.6 -0.5 0.7

Wa1 -18.5 -17.4 -17.9 -16.5 -16.8 -15.0 -15.0

Wa2 -16.0 -15.9 -14.7 -14.8 -14.0 -14.3 -14.4

Wa3 -18.2 -17.5 -18.2 -16.0 -18.2 -17.2 -16.9

Rice -7.0 -4.1 -7.7 -11.5 -3.5 -5.0 -5.7

 

 As expected, the radar backscattering of water bodies was always very low, 

ranged between -18.5 dB and -14 dB. In contrast, high backscatter (around -2 to 1 

dB) was observed from urban settlement, due to scattering mechanism of their corner 

reflectors. In general, backscatter temporal change of most land use samples was 

quite stable with the exception of the rice backscatters. 
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Figure 5.7. Backscatter temporal variation of the land use samples from ASAR 

WS ascending mode data collected during the period of Jan. - Aug. 2007. 

 

 Backscatter temporal change of rice sampling areas, which were selected on 

the ground for ASAR APP data analysis, was also interpreted for ASAR WS data 

(Figure 5.8). Since the size of rice fields in the area is usually quite small, more or 

less one ha, and the spatial resolution of ASAR WS imagery is more than two ha 

(150 x 150 m2), therefore, the mean value of sigma nought from five sampling fields 

in each sampling area was used (Table 5.11). 

 

Table 5.11. Backscattering coefficients of rice samples extracted from ASAR 

WS ascending mode data. 

Backscattering coefficient (dB) 

Date of image acquisition 
Site 

code 
16/01/07 20/02/07 27/03/07 01/05/07 05/06/07 10/07/07 14/08/07

BM -5.1 -3.9 -6.1 -9.5 -4.1 -5.4 -10.2

VB -4.2 -5.1 -5.9 -9.2 -2.3 -6.1 -9.4

BH -4.8 -4.4 -4.7 -9.5 -3.3 -5.0 -7.5

VC -4.8 -5.2 -7.0 -9.8 -4.7 -6.2 -11.0

PH -4.6 -3.8 -6.1      

LDB -7.0 -4.1 -7.7 -11.5 -3.5 -5.0 -5.7

MHD -6.9 -3.2 -7.5 -7.3 -4.0 -3.8 -8.1

Mean -5.3 -4.2 -6.4 -9.5 -3.6 -5.3 -8.6
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Note: BM: Binh My, VB: Vinh Binh, BH: Binh Hoa, VC: Vinh Chanh, PH: Phu 

Hoa, LDB: Long Dien B, MHD: My Hoi Dong. 

 

Figure 5.8 depicted the backscatter temporal change of rice sampling areas in 

WS and SA 2007 crops. In the middle period of the crop seasons, i.e. February for 

WS and June for SA crop, the high radar response from the rice plants were recorded 

on the images and their backscattering coefficients more than -6 dB were extracted. 

This explanation agreed with the previous analysis on the high resolution ASAR 

APP data (Section 4.3.2). 
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BM VB BH VC PH LDB MHD  
Figure 5.8. Backscatter temporal variation of the rice samples from ASAR WS 

ascending mode data in WS and SA 2007 crops. 

 

In order to map the rice by using multi-temporal ASAR WS data, the 

“integrated method” based on the temporal variation of the radar response and 

thresholding was proposed. In the case of three-date image used, they should be: a) 

first image taken before seeding or at the first period of vegetative stage, b) second 

image acquired in the middle of crop season, and c) third image collected in the 

reproductive stage or after harvest. Two first images were applied in the case of two-

date image used. The threshold of 3 dB was appropriate for backscatter temporal 

change of rice, whereas sigma nought of HH data acquired in the middle of crop 
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season was thresholded using -7 dB (see Table 5.11, Figure 5.8, and Table 5.14, 

Figure 5.12 for a case of descending mode). 

 

In case of WS 2007 crop, two images taken during the crop season (16 Jan 

and 20 Feb) and one image taken after harvest period (1 May) were utilised. The 

pixels were segmented as rice class if they conformed to the following thresholds 

(5.4): 

( ) ( ) ( )dBdBdB AAAAA 733 0
2

0
5

0
2

0
1

0
2 −≥∩≥−∪≥− σσσσσ  (5.4)

where 
0

1Aσ : backscattering coefficient of ASAR WS image taken on 16 Jan. 2007, 
0

2Aσ : backscattering coefficient of ASAR WS image taken on 20 Feb. 2007, 
0

5Aσ : backscattering coefficient of ASAR WS image taken on 1 May. 2007. 

 

 
Figure 5.9. Rice and non-rice map (rice in green) of WS 2007 crop produced by 

using three-date ASAR WS images taken in ascending mode. 
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Afterwards, the classified image of rice/non-rice was created (Figure 5.9). 

The percentage errors between planted rice area produced by ASAR WS data and the 

official statistics were presented in Table 5.12. The classified rice layer was 

underestimated for most districts and consequently the percentage error at the 

provincial scale was of -23.9%. This may be due to: a) the first date image was 

collected about one month after seeding for almost rice fields, thus the radar 

response was quite high at that time and the backscatter temporal change of some of 

rice fields derived from first and second date images was less than 3 dB, b) the one-

month shift in crop calendar took place between various rice fields in the province, 

and c) additionally, no kind of terrain relief was considered, since most areas are flat, 

except those mountainous parts located in Tri Ton and Tinh Bien districts. 

 

Table 5.12. Percentage errors between planted rice acreage in WS crop 

produced by ASAR WS data acquired on 16 Jan., 20 Feb., and 1 May 2007 and 

statistical data. 

District name 
Statistical data 

(ha) 

Rice from 

ASAR (ha) 

Percentage 

error (%) 

Phu Tan 23041 20674 -10.3 

Chau Phu 34382 30066 -12.6 

Tri Ton 37373 17017 -54.5 

Tinh Bien 14952 12505 -16.4 

Chau Doc 7148 5889 -17.6 

Long Xuyen 5591 3368 -39.8 

Thoai Son 36691 32267 -12.1 

Tan Chau 11420 7702 -32.6 

An Phu 14443 8236 -43.0 

Cho Moi 17887 13105 -26.7 

Chau Thanh 27686 24574 -11.2 

Province 230614 175403 -23.9 

 

In the Summer Autumn 2007 crop, three-date image (1 May, 5 June, and 10 

July 2007) collected during the crop season were used for segmentation of the rice 

and non-rice. The colour composite image (May image in Red, June image in Green, 

and July image in Blue) was created (Figure 5.10). The district boundaries of An 
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Giang province were in blue polylines, where most rice pixels in green colour were 

interpreted because high backscatters from rice in the middle of crop season, i.e. 

June 2007 took place. On the other hand, urban settlements of Ho Chi Minh City 

could be easily recognised with the bright pixels in the north western part of the 

image. Furthermore, the algorithm was also tested for the utilisation of two-date 

image taken during the first period of the vegetative stage and in the middle of crop 

season. The thresholds were applied in the case of three-date image (5.5) and two-

date image used (5.6) as follows: 

( ) ( ) ( )dBdBdB AAAAA 733 0
6

0
7

0
6

0
5

0
6 −≥∩≥−∪≥− σσσσσ  (5.5)

( ) ( )dBdB AAA 73 0
6

0
5

0
6 −≥∩≥− σσσ  (5.6)

where 
0

5Aσ : backscattering coefficient of ASAR WS image taken on 1 May. 2007, 

0
6Aσ : backscattering coefficient of ASAR WS image taken on 5 Jun. 2007, 

0
7Aσ : backscattering coefficient of ASAR WS image taken on 10 Jul. 2007. 

 

 
Figure 5.10. ASAR WS colour composite image (Red=May image, Green=June 

image, and Blue=July image) of the Mekong River Delta (District boundaries of 

An Giang province in blue polylines). 
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(a) 

 
(b) 

Figure 5.11. Rice and non-rice maps (rice in green) of SA 2007 crop produced 

by using three-date (a) and two-date (b) ASAR WS image taken in ascending 

mode. 
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In this case, we can estimate the rice acreage planted of each district, as well 

as for the whole province before harvest. While three-date image were used, the 

accuracies of classified rice pixels (Figure 5.11a) for most districts were rather good: 

the percentage errors by district range from -16 to 7%, except for Tri Ton district. 

The error of -3.1% was finally observed for the provincial rice grown acreage in the 

SA 2007 crop season extracted from ASAR WS data when compared to the 

statistical data (Table 5.13) . On the other hand, the percentage error was slightly 

lower in the case of two-date ASAR WS data for rice segmentation (Figure 5.11b), 

i.e. an error of -6.4%. 

 

Table 5.13. Percentage errors between planted rice acreage in SA crop 

produced by ASAR WS data acquired on 1 May, 5 Jun. and 10 Jul. 2007 and 

statistical data. 

Using 3-date images Using 2-date images 
District 

name 

Statistical 

data (ha) Rice (ha) 
Percentage 

error (%) 
Rice (ha) 

Percentage 

error (%) 

Phu Tan 22968 24134 5.1 23380 1.8

Chau Phu 33959 36436 7.3 35019 3.1

Tri Ton 35242 25050 -28.9 24518 -30.4

Tinh Bien 15164 15163 0.0 14774 -2.6

Chau Doc 7123 7549 6.0 7219 1.3

Long Xuyen 5433 4829 -11.1 4772 -12.2

Thoai Son 35990 38024 5.7 36456 1.3

Tan Chau 10908 9119 -16.4 8950 -18.0

An Phu 12856 11075 -13.9 10199 -20.7

Cho Moi 16324 15677 -4.0 15492 -5.1

Chau Thanh 27629 29512 6.8 28618 3.6

Province 223596 216568 -3.1 209397 -6.4
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5.3.2.2 Image analysis of ASAR WS data in descending mode 

  

There were 14 ASAR WS images in descending mode acquired in the 

Mekong River Delta during the period of December 2006 to August 2007, double 

those collected in ascending mode. The backscatter temporal change of sampling rice 

was presented in Table 5.14 and depicted in Figure 5.12. Two rice crops WS and SA 

were separated by low radar backscatter in the April image because the first crop was 

fully harvested in March. A maximum one-month shift in the calendar was observed 

in the plots (Figure 5.8 and 5.12) and agreed with the ground truth data collected. 

 

Table 5.14. Backscattering coefficients of rice samples extracted from ASAR 

WS descending mode data. 
Backscattering coefficient (dB) 

Date of image acquisition 
Site 

code 
5/12 9/1 13/2 1/3 20/3 5/4 24/4 10/5 29/5 14/6 3/7 19/7 7/8 23/8 

BM -11.1 -5.3 -4.9 -6.2 -5.6 -9.0 -9.0 -11.2 -5.3 -4.2 -6.5 -8.8 -7.3 -12.1 

VB -10.6 -5.5 -5.9 -9.1 -8.2 -9.0 -10.4 -5.4 -4.3 -5.0 -8.6 -9.6 -8.0 -12.5 

BH -13.9 -6.3 -6.5 -6.3 -6.0 -8.3 -11.1 -11.1 -5.7 -4.7 -5.4 -7.3 -7.0 -11.6 

VC -11.3 -6.1 -5.7 -8.1 -8.0 -9.8 -9.1 -7.7 -6.1 -5.1 -8.8 -8.0 -9.2 -10.2 

PH -14.8 -9.5 -5.6 -7.0 -6.3 -7.5                 

LDB -6.9 -11.4 -4.3 -5.5 -5.8 -7.5 -11.7 -9.0 -5.4 -4.5 -5.3 -5.7 -8.0 -10.9 

MHD -8.2 -10.3 -4.2 -5.4 -6.5 -6.5 -10.1 -12.2 -8.4 -5.4 -4.4 -6.8 -7.3 -16.4 

Mean -11.0 -7.8 -5.3 -6.8 -6.6 -8.2 -10.2 -9.4 -5.9 -4.8 -6.5 -7.7 -7.8 -12.3 
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Figure 5.12. Backscatter temporal variation of the rice samples from ASAR WS 

descending mode data in WS and SA 2007 crops. 
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 As discussed above, to estimate the rice area planted for the WS crop, the 

following thresholding algorithm (5.7) was proposed by using three-date image 

collected before or during the rice crop growth (5 Dec. 2006, 13 Feb., and 1 Mar. 

2007). The result of classified image (Figure 5.13a) showed relatively good 

percentage errors of planted rice area when compared to the statistical data published 

in the Statistical Yearbook 2007 An Giang province (Table 5.15). In most districts, 

the percentage errors were between -14.3% and 14.7%, except Tri Ton and Tan Chau 

having the error of -23.7 and -20.4% respectively. However, the percentage error of 

the provincial scale was 0.7%. 

( ) ( ) ( )dBdBdB DaDDDD 733 0
2

0
3

0
2

0
0

0
2 −≥∩≥−∪≥− σσσσσ  (5.7)

( ) ( )dBdB DDD 73 0
2

0
0

0
2 −≥∩≥− σσσ  (5.8)

where 
0

0Dσ : backscattering coefficient of ASAR WS image taken on 5 Dec. 2006, 

0
2Dσ : backscattering coefficient of ASAR WS image taken on 13 Feb. 2007, 

0
3aDσ : backscattering coefficient of ASAR WS image taken on 1 Mar. 2007. 

 

 In the case of two-date ASAR WS data utilisation (5.8), the percentage errors 

by district were slightly lower than that of three-date image used. At provincial level, 

the error of the rice classified (Figure 5.13b) was acceptable with an accuracy of 

95%. 
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(a) 

 
(b) 

Figure 5.13. Rice and non-rice maps (rice in green) of WS 2007 crop produced 

by using three-date (a) and two-date (b) ASAR WS image taken in descending 

mode. 
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Table 5.15. Percentage errors between planted rice acreage in WS 2007 crop 

produced by ASAR WS data acquired on 5 Dec. 2006, 13 Feb. and 1 Mar. 2007 

and statistical data. 

Using 3-date images Using 2-date images 
District 

name 

Statistical 

data (ha) Rice (ha) 
Percentage 

error (%) 
Rice (ha) 

Percentage 

error (%) 

Phu Tan 23041 24480 6.2 22828 -0.9

Chau Phu 34382 37238 8.3 35261 2.6

Tri Ton 37373 28534 -23.7 26902 -28.0

Tinh Bien 14952 16312 9.1 15662 4.7

Chau Doc 7148 7398 3.5 6556 -8.3

Long Xuyen 5591 5884 5.2 5510 -1.5

Thoai Son 36691 42100 14.7 40634 10.7

Tan Chau 11420 9093 -20.4 8024 -29.7

An Phu 14443 15342 6.2 13849 -4.1

Cho Moi 17887 15323 -14.3 14411 -19.4

Chau Thanh 27686 30629 10.6 29449 6.4

Province 230614 232333 0.7 219086 -5.0

 

Similarly, the thresholds proposed for SA crop by using three-date (5.9) and 

two-date image (5.10) were as follows: 

( ) ( ) ( )dBdBdB DaDDbDD 733 0
6

0
8

0
6

0
4

0
6 −≥∩≥−∪≥− σσσσσ  (5.9) 

( ) ( )dBdB DbDD 73 0
6

0
4

0
6 −≥∩≥− σσσ  (5.10)

where 
0

4bDσ : backscattering coefficient of ASAR WS image taken on 24 Apr. 2007, 

0
6Dσ : backscattering coefficient of ASAR WS image taken on 14 Jun. 2007, 

0
8aDσ : backscattering coefficient of ASAR WS image taken on 7 Aug. 2007. 
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(a) 

 
(b) 

Figure 5.14. Rice and non-rice maps (rice in green) of SA 2007 crop produced 

by using three-date (a) and two-date (b) ASAR WS image taken in descending 

mode. 
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Again, Tri Ton district obtained a percentage error of -24.1%, lower than that 

of the other districts, when three-date image were utilised. At the provincial scale, 

the classified image (Figure 5.14a) attained a good accuracy with the percentage 

error of -4.5% and -11.3% in the case of three-date and two-date image used, 

respectively, when compared with existing statistical data (Table 5.16, Figure 5.14b).  

 

Table 5.16. Percentage errors between planted rice acreage in SA crop 

produced by ASAR WS data acquired on 24 Apr., 14 Jun., and 7 Aug. 2007 and 

statistical data. 

Using 3-date images Using 2-date images 
District 

name 

Statistical 

data (ha) Rice (ha) 
Percentage 

error (%) 
Rice (ha) 

Percentage 

error (%) 

Phu Tan 22968 24769 7.8 23948 4.3

Chau Phu 33959 35129 3.4 33010 -2.8

Tri Ton 35242 26748 -24.1 25126 -28.7

Tinh Bien 15164 15585 2.8 14623 -3.6

Chau Doc 7123 7315 2.7 6936 -2.6

Long Xuyen 5433 4566 -16.0 4195 -22.8

Thoai Son 35990 34843 -3.2 30151 -16.2

Tan Chau 10908 9383 -14.0 9223 -15.4

An Phu 12856 11295 -12.1 10576 -17.7

Cho Moi 16324 16943 3.8 15686 -3.9

Chau Thanh 27629 26865 -2.8 24826 -10.1

Province 223596 213441 -4.5 198300 -11.3

 

5.3.2.3 Image analysis of ASAR WS data in ascending and descending mode 

 

The temporal backscatter of rice was recorded by 21 ASAR WS images 

collected in ascending and descending modes (Figure 5.15). In this case, only two-

date image were used to segment rice and non-rice by the following thresholds for 

WS (5.11) and SA (5.12) 2007 crop season. One was acquired before seeding and 

the other in the middle of crop season, i.e. 5 Dec. 2006, 20 Feb. 2007, and 5 Apr., 5 

June 2007 for WS and SA crops, respectively. 
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For WS: ( ) ( )dBdB ADA 73 0
2

0
0

0
2 −≥∩≥− σσσ  (5.11)

For SA: ( ) ( )dBdB ADA 73 0
5

0
6

0
5 −≥∩≥− σσσ  (5.12)

where 
0

0Dσ : backscattering coefficient of ASAR WS image taken on 5 Dec. 2007. 

0
2Aσ : backscattering coefficient of ASAR WS image taken on 20 Feb. 2007, 

0
5Aσ : backscattering coefficient of ASAR WS image taken on 1 May. 2007, 

0
6Dσ : backscattering coefficient of ASAR WS image taken on 14 Jun. 2007. 
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Figure 5.15. Backscatter temporal variations of the rice samples from ASAR 

WS ascending and descending mode data in WS and SA 2007 crops. 

 

 By using ascending and descending mode images, Tri Ton district obtained 

better results in both WS and SA crops. But Tinh Bien district had, in contrast, lower 

accuracy with the percentage error of 70% in SA 2007 crop. Considering the 

provincial level, the algorithm yielded a rather low error with a difference of 5.1% 

and 14.4% between planted rice area extracted from two ASAR WS images and that 

from the statistical agency for WS and SA crop, respectively (Tables 5.17 and 5.18). 

The rice and non-rice classes were displayed in the result maps (Figure 5.16). 
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 Table 5.17. Percentage errors between planted rice acreage in WS crop 

produced by ASAR WS data acquired on 5 Dec. 2006, and 20 Feb. 2007 and 

statistical data. 

District name 
Statistical 

data (ha) 

Rice from 

ASAR (ha) 

Percentage 

error (%) 

Phu Tan 23041 23840 3.5 

Chau Phu 34382 38807 12.9 

Tri Ton 37373 33330 -10.8 

Tinh Bien 14952 17961 20.1 

Chau Doc 7148 7379 3.2 

Long Xuyen 5591 6290 12.5 

Thoai Son 36691 43637 18.9 

Tan Chau 11420 9656 -15.4 

An Phu 14443 14827 2.7 

Cho Moi 17887 15404 -13.9 

Chau Thanh 27686 31345 13.2 

Province 230614 242476 5.1 

 

Table 5.18. Percentage errors between planted rice acreage in SA crop 

produced by ASAR WS data acquired on 5 Apr., and 5 Jun. 2007 and statistical 

data. 

District name 
Statistical 

data (ha) 

Rice from 

ASAR (ha) 

Percentage 

error (%) 

Phu Tan 22968 23942 4.2 

Chau Phu 33959 39854 17.4 

Tri Ton 35242 42216 19.8 

Tinh Bien 15164 25774 70.0 

Chau Doc 7123 8770 23.1 

Long Xuyen 5433 6406 17.9 

Thoai Son 35990 34839 -3.2 

Tan Chau 10908 11051 1.3 

An Phu 12856 15543 20.9 

Cho Moi 16324 16316 0.0 

Chau Thanh 27629 31155 12.8 

Province 223596 255866 14.4 
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(a) WS 2007 crop 

 
 (b) SA 2007 crop 

Figure 5.16. Rice and non-rice map (rice in green) of WS (a) and SA 2007 (b) 

crop produced by using two-date ASAR WS image taken in ascending and 

descending modes. 
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In brief, the classified results of rice layer by using HH polarisation WS data 

provided inconsistent accuracies between districts and crop seasons. Several districts 

such as Tri Ton, Tinh Bien, Tan Chau, and An Phu had low accuracies in some cases, 

possibly due to their location in the northwestern part of the province and hence, to 

be influenced by flood season on crop calendar of these districts during the year. 

However, in most cases, the ASAR WS data yielded low relative errors of planted 

rice area at provincial scale when compared to the published statistics, except for the 

case of WS crop season using ascending mode data. 

 

 Comparing ASAR APP and WS datasets used for rice mapping in the study 

area, APP data yielded rice maps with better accuracies at the district level. On the 

other hand, WS imagery with lower resolution proved as an effective data source for 

rice mapping at the provincial scale. 

 

5.4 Conclusion 
 

The following conclusions were reached on the proposed method for rice 

mapping using ASAR APP data: 

 

• Applying a thresholding algorithm for polarisation ratio and VV values of 

single-date ASAR APP data acquired in the middle of crop season, the 

classified images showed only a maximum of 14% difference at the district 

level, with the exception of several districts in AW 2007 crop, when 

compared to the estimates from the agency statistical data. On the basis of the 

existing land use map, the User’s accuracies of rice class assessed were very 

high, i.e. more than 93% for WS, SA 2007, and WS 2008 crops; 

• A thresholding algorithm applied for polarisation ratio and VV data yielded 

higher classification accuracies when compared to that applied for 

polarisation ratio data alone. 

• The supervised classification methods applied to single-date image taken in 

the middle period of crop season gave good accuracies when compared to the 

existing agency data. Thresholding method provided higher accuracy than the 
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others methods such as minimum-distance-to-means, maximum likelihood, 

and SAM; 

• The thresholding algorithm provided consistent accuracies between districts 

(percentage errors ranging from -14 to 7% for WS 2007 crop and from -11 to 

3% for SA 2007 crop) and between seasons across the province (from -7 to 

4% percentage errors). Other classification methods did not improve 

classification accuracy despite their sophisticated algorithm formulation; 

• A threshold formulated in this study, i.e. the “normalised difference 

polarisation ratio index” proved to produce high accuracies of mapping for 

most rice crops, when ASAR APP image acquired in the middle of crop 

season was used. 

• Three acquisition dates of ASAR data are sufficient to accurately determine 

rice acreage planted for triple crop rice during the year, if the rice crop 

calendar is not much different among rice growing areas in the province; 

• Radar backscattering coefficient is physical values (like reflectance in optical 

data). Therefore, methods formulated in this study can be adapted for other 

SAR sensor data. 

• The method for rice crop inventory in the province before harvest was 

developed by using a single-date ASAR APP data taken in the mid-crop 

season. For operational purposes, this rice mapping algorithm needs to be 

further investigated for other crops and at other provinces in the Mekong 

River Delta. 

 

In the case of ASAR WS data used for mapping rice, the following 

conclusions were drawn: 

 

• The classified results of rice/non-rice by using multi-date ASAR WS images 

provided inconsistent accuracies between districts and crop seasons. 

However, it yielded low relative errors of planted rice area at the provincial 

scale when compared to the official statistics, except for the case of WS crop 

season using ascending mode data. 
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• By using two-date image in ascending or descending mode acquired on the 

first half of crop season, the classified images of rice and non-rice yielded 

acceptable accuracies. 

• Overall, the use of ASAR WS data for rice mapping is appropriate at the 

regional level with its low cost and wide-area coverage. 

 

 In this work, a novel method was developed for accurately mapping rice area 

planted using single-date ASAR APP image taken in the middle of the rice cropping 

season. This is briefly described as follows: 

1. An ASAR APP image acquired in the middle of the crop season is selected; 

2. Image pre-processing steps were implemented: a) image calibration or 

conversion to the radar backscattering coefficient sigma nought (σo), b) 

image geo-correction, and c) image spatial filtering; 

3. A polarisation ratio image was created; 

4. Thresholding method was applied to the polarisation ratio and VV images in 

order to segment rice and non-rice classes; 

5. A post-classification step was conducted by using majority filter to the 

classified image; and 

6. A rice and non-rice map was finally produced. 

 

 In the case of changing cultural practices in the future, this method for rice 

mapping can also be used by paying attention to the threshold values of polarisation 

ratio and VV. These values need to be examined before applying the method.  
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Chapter 6 
 

RICE YIELD ESTIMATION 
 

6.1 Introduction 
 

The overall objective of rice monitoring is rice yield estimation. Accurate 

crop production estimates can provide important information for agricultural 

planners and managers in both regional and national scales. This information can be 

computed on the basis of an estimated yield and rice acreage. For this dissertation, 

the latter was conducted in the previous chapter. 

 

 Traditionally, estimates of rice area planted and productivity are based on 

ground survey data. It is often time-consuming and expensive. In the early 1980s, 

much attention was paid to using optical remote sensing for crop yield estimation all 

over the world. Remarkable achievements were obtained after many studies were 

carried out (Li et al., 2003). Nevertheless, because of the limitations of the data 

acquisition for optical remote sensing, it was very difficult to carry out real-time 

monitoring of crop growth and estimate rice yield promptly based on these methods. 

Hence, radar remote sensing is the obvious choice as the most appropriate data 

source for agricultural monitoring and crop yield estimation in large areas in the 

tropical and sub-tropical regions (e.g. Ribbes and Le-Toan, 1999, Li et al., 2003, 

Chen and Mcnairn, 2006). 

 

In previous research, experiments were carried out to show the effectiveness 

of Radarsat ScanSAR data for rice yield estimation in the whole Guangdong, South 

China (Li et al., 2003). A methodology was developed to deal with a series of issues 

in extracting rice information from the ScanSAR data, such as topographic 

influences, levels of agro-management, irregular distribution of paddy fields and 

different rice cropping systems. A model was provided for rice yield estimation 

based on the relationship between the backscatter coefficient of the multi- temporal 

SAR data and the biomass of rice. 
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 Accurate statistics within each rice cycle can be generated by analysing space-

borne earth observation data to determine rice acreage. On the other hand, rice yield, 

production and harvest time are estimated in a predictive way using an approach 

based on agro-meteorological and a statistical model. The agro-meteorological 

model (AMM) (Figure 6.1), which is built around a crop growth model, can 

determine crop yield (ton/ha) based on the parameters for soil characteristics and the 

rice crop variety. This also includes a full series of daily meteorological data (i.e. 

minimum/maximum/average temperature, sun radiation, relative humidity, wind 

speed, sun illumination hours, and precipitation) and the transplanting dates based on 

satellite data. The production estimate is simply calculated by combining yield 

estimation and the acreage. 

 

 
Figure 6.1. Agro-meteorological model of rice yield prediction (ESA/EOMD, 

2006). 

 

 A methodology for rice yield estimation using agro-meteorological model and 

radar data was developed by Ribbes and Le Toan (1999). The approach consisted of 

coupling ERS-SAR data and the ORYZA rice production model (Le-Toan et al., 

1999) in order to simulate plant growth and thus the final yield. Seeding date and 

plant biomass as a function of time were key parameters that could be both retrieved 

from SAR data and were necessary inputs to production models. 

 

 In order to estimate the rice yield of a field, the following operations were 

performed (MATRA-SYSTEMS, 2000): 
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• calculate the radar backscattering coefficient of the selected rice fields within 

the SAR images; 

• retrieve, from SAR data, selected plant variables necessary to parameterise 

the rice growth model; and 

• simulate rice growth using ORYZA model parameterised with input data 

retrieved from SAR data and climatic data. 

 

 In traditional rice cultivation system, radar backscatter was found to be 

strongly correlated to rice parameters, i.e. plant height and biomass (Le-Toan et al., 

1997). Backscatter of rice fields increases steadily during the growing stage and then 

reaches a saturation level. 

 

 In this study, an analysis of the relationship between radar backscatter and 

modern cultivated rice biomass in the study site of An Giang was carried out as 

described in Chapter 4. HH and VV polarisation data increased strongly until the 

plant fresh biomass reaches 1000 g/m2 (about 30 days after seeding). Nevertheless, 

for non-flooded fields, the increase in HH was smaller and VV even decreased.  A 

saturation level of backscatter was reached at around 2000 g/m2 at the middle of crop 

cycle. After saturation level, radar backscatter remains stable and slightly reduced 

for HH and rose for VV until biomass got to maximum values. 

 

 Concerning the polarisation ratio (HH/VV), only the increase of HH/VV at the 

beginning of the season was clearly observed, however, this increase was restricted 

to the first month or a limit of 1000 g/m2. After this date, the backscatter of non-

flooded fields had a large dispersion with respect to biomass. Thus, retrieving rice 

biomass using HH, VV or HH/VV was not applicable to modern rice practices that 

prevailed in the study area. Consequently, the use of agro-meteorological model was 

not pursued due to the poor radar-biomass relationships discovered in the previous 

chapter. Instead, this study implemented the statistical model (ESA/EOMD, 2006). 
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6.2 Methods 
 

6.2.1 Statistical model-based method 
  

 By using multiple regression analysis, the correlation between backscattering 

coefficients σo of multi-date ASAR APP images acquired during the crop season and 

the in situ measured yield was derived. The distribution maps of estimated rice yield 

were then produced on the basis of that relationship. Consequently, rice production 

was finally estimated on the basis of these yield maps and rice/non-rice maps (Figure 

6.2). 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Methods used for rice yield estimation. 

 

 A statistical model-based approach (ESA/EOMD, 2006) for rice yield 

prediction is presented in Figure 6.3. It is followed in order to get a) rice production 

estimates by combining historical yield figures or in situ measurements and acreage 

measurements; and b) harvest date estimates by integrating crop calendar 

information and actual transplanting dates. In situ sample measurements are 

additionally considered to validate, at harvest time, the predicted production figures. 

Rice acreage measurements and transplanting dates are extracted from satellite SAR 

data. 

ASAR APP data 

σo of sampling fields Ground-truth data 

In situ rice yield 
(Chapter 4) 

Regression analysis 
• Regression equation 

Estimated rice yield 
distribution maps 

Estimated rice 
production 

Rice/Non-rice maps 
(Chapter 5) 
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Figure 6.3. Statistical model of rice yield prediction (ESA/EOMD, 2006). 

 

 Previous studies reported their results on rice yield estimation from old 

generation radar imagery (i.e. Radarsat and ERS-SAR data). Some of them used the 

statistical model-based method. In the study site of Guangdong, South China, for 

example, an analysis of the relationship between the backscatter coefficient and rice 

biomass in each growing period on the Radarsat images was implemented (Li et al., 

2003). A multivariate regression model based on radar remote sensing was 

established to reveal the relationship between the backscatter coefficient of time-

series Radarsat data and rice yield. The accuracies of the yield estimation were over 

94%. 

 

 In another study conducted in the Philippines (Chen and Mcnairn, 2006), a 

neural network-based yield model was used for predicting rice yield on a region by 

using multi-temporal Radarsat-1 data. The result was a prediction accuracy of 94% 

when the yields predicted by the neural network were compared with government 

statistics. 

 

 In this present work, rice yield and crop calendar of the sampling fields 

collected on the ground and the new generation dual-polarisation Envisat ASAR data 

were used. Multiple linear and non-linear regression analysis was implemented using 

in situ rice yield and biomass data. There were two villages selected for rice 

parameter collection from each of three districts: Chau Thanh (CT), Thoai Son (TS), 

and Cho Moi (CM), except one village for Chau Phu (CP) district. In each village, 

the measurements were done on five sampling fields.  
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 During the rice crop season with 100-day rice varieties used, three ASAR 

APP images can be, in principle, collected in most cases. However, in the WS 2007 

crop, most sampling fields were collected and measured at only two times, except 

nine sampling fields in Cho Moi district where three data collection times were done. 

Therefore, on the basis of regression analysis, some districts were chosen for 

examining rice yield estimation: a) Cho Moi district in WS 2007 season, and b) Cho 

Moi and Thoai Son districts in SA 2007 season. 

 

 Regression analysis between rice yield and radar backscattering coefficients 

derived from three-date ASAR APP images was performed using the line- and 

curve-fitting functions “LINEST” and “LOGEST” on Microsoft Excel®. A 

description of each function is provided below: 

 

a) LINEST function 

 

• Calculates the statistics for a line by using the “least squares” method to 

calculate a straight line that best fits the data, and returns an array that 

describes the line. 

• The equation for the line is: 

o y = mx + b (Simple linear regression) or 

o y = m1x1 + m2x2 + ... + b (Multiple linear regression if there are 

multiple ranges of x-values) 

where the dependent y-value is a function of the independent x-

values. The m-values are coefficients corresponding to each x-value, 

and b is a constant value. Note that y, x, and m can be vectors. The 

array that LINEST returns is {mn, mn-1,..., m1, b}. LINEST can also 

return additional regression statistics. 

 

b) LOGEST function 

 

• Calculates an exponential curve that fits the data and returns an array of 

values that describes the curve. 
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• The equation for the curve is: 

o y = b*m^x or 

o y = (b*(m1^x1)*(m2^x2)*_) (if there are multiple x-values) 

where the dependent y-value is a function of the independent x-

values. The m-values are bases corresponding to each exponent x-

value, and b is a constant value. Note that y, x, and m can be vectors. 

The array that LOGEST returns is {mn,mn-1,...,m1,b}. LOGEST can 

also return additional regression statistics. 

  

 The additional regression statistics are as follows: 

 

• se1,se2,...,sen: The standard error values for the coefficients m1,m2,...,mn. 

• seb: The standard error value for the constant b (seb = #N/A when const is 

FALSE). 

• r2: The coefficient of determination. Compares estimated and actual y-values, 

and ranges in value from 0 to 1. If it is 1, there is a perfect correlation in the 

sample— there is no difference between the estimated y-value and the actual 

y-value. At the other extreme, if the coefficient of determination is 0, the 

regression equation is not helpful in predicting a y-value. 

• sey: The standard error for the y estimate. 

• F: The F statistic, or the F-observed value. Use the F statistic to determine 

whether the observed relationship between the dependent and independent 

variables occurs by chance. 

• df: The degrees of freedom. Use the degrees of freedom to help finding F-

critical values in a statistical table. Compare the values finding in the table to 

the F statistic returned by LINEST to determine a confidence level for the 

model. 

• ssreg: The regression sum of squares. 

• ssresid: The residual sum of squares. 

 

The rice production by district of each crop season in the study site was then 

estimated based on the relationship between sampling rice yield (y-value) and 

backscattering coefficients (multiple x-values), and rice acreage derived from ASAR 
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APP data as discussed in Chapter 5. The accuracy of the estimated rice production 

was finally assessed against the official statistics published in the Statistical 

Yearbook 2007 An Giang province (AGSO, 2008b). 

 

6.3 Results and discussion 
 

In this section, regression analysis was discussed to understand the 

correlation between rice yield, biomass, and radar backscattering coefficients. The 

rice production was then estimated for several districts where ground data collection 

was carried out during the satellite overpass in the year 2007. 

 

6.3.1. Regression analysis between rice biomass and yield 
  

 As discussed in Section 6.2.1 “Statistical model-based method”, multiple 

linear regression analysis between in situ rice yield and biomass was performed for 

Cho Moi district in WS 2007 crop season (Table 6.1). The coefficient of 

determination between rice yield and dry biomass was 0.913. It proved a very good 

correlation between rice biomass and yield within the samples. 

 

Table 6.1. Correlation between sample rice yield and dry biomass in WS 2007 

crop. 

District 

name 
r2 

CP  

CT  

TS  

CM 

(9 samples)
0.913 

 

In SA 2007 crop, regression analysis was done for most districts and also for 

the province. Correlation between rice yield and biomass was different from district 

to district. The coefficient of determination in the cases of Chau Phu, Chau Thanh, 

and Thoai Son districts ranged from 0.558 to 0.778 for dry biomass. Cho Moi district 
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had a highest correlation of 0.998. This high correlation may be attributed to only 

one-week maximum difference in sowing date between sampling fields observed in 

Cho Moi. In contrast, the correlation at the provincial level (i.e. all sampling fields 

used) was very poor—less than 0.1 (Table 6.2). This can be due to: a) a maximum 

one-month shift in crop calendar took place between areas, b) difference in rice 

varieties used, and c) cultural practices were different from area to area. 

 

Table 6.2. Correlation between sample rice yield and dry biomass in SA 2007 

crop (n=10). 

District 

name 
r2 

CP 0.558 

CT 0.778 

TS 0.732 

CM 0.998 

Province 0.078 

 

 

6.3.2. Regression analysis between HH, VV, HH/VV and sample 
rice yield 
  

 In order to predict the rice production in the study area, a multiple linear 

regression analysis between rice yield with HH, VV backscattering coefficients, and 

polarisation ratios was firstly implemented for the sampling fields in SA 2007 crop. 

This was due to the availability of three-date ASAR APP images during the 2007 

crop season (see appendix B1 “Backscattering coefficient and yield of sampling 

fields, and their regression models - A case of Summer Autumn 2007 crop”). A 

distribution map of estimated rice yield was then produced based on a good 

relationship. Rice production by district was finally estimated. 

 

 The correlation between sample rice yield with HH, VV, and polarisation 

ratio by village (five sampling fields) was analysed (Table 6.3). The coefficients of 

determination r2 attained were very high for most villages. However, a few areas had 
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very low r2 values, such as in the case of HH data of BH (0.044) or VV data of BM 

village (0.345). An explanation may be due to three different varieties (Jasmine, 

2517, and 1490-55) used by farmers for five sampling fields selected in BH village. 

When the coefficient was computed for all of fields (provincial level), it showed that 

the correlation was very low (~0.1). The reason for that can be explained by the 

same explanation provided in Section 6.3.1 “Regression analysis between rice 

biomass and yield”. 

 

Table 6.3. Correlation between sample rice yield and HH, VV, HH/VV by 

village in SA 2007 crop using LINEST function (n=5). 

r2 District 

name 

Village 

name HH VV HH/VV 

CP BM 0.977 0.345 0.976 

VB 0.882 1.000 0.588 
CT 

BH 0.044 0.991 0.689 

VC 0.839 0.659 0.977 
TS 

PH 1.000 0.994 0.767 

LDB 0.934 0.997 0.927 
CM 

MHD 0.830 0.658 0.978 

Province  0.088 0.062 0.145 

 

 In order to derive the relationship for predicting the rice yield by district, a 

multiple linear regression analysis using LINEST function at the district level was 

done. In three districts (i.e. Chau Thanh, Thoai Son and Cho Moi), which had 10 

sampling rice fields in two villages, the coefficients of determination between yield 

and polarisation ratios of Cho Moi and Thoai Son were higher than that of the others 

(i.e. 0.833 and 0.772, respectively) (Table 6.4). This difference can be explained by 

the following factors: a) only one-week maximum difference in seedling date 

between ten sampling fields observed in Cho Moi, and b) nine of the ten sampling 

fields in Thoai Son were planted with the same seed of 50404 variety. Whereas in 

Chau Thanh district, the sampling fields were grown with various rice varieties and 

the area has more than two weeks shift in crop calendar between field to field. 
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Therefore, the rice yield was estimated on the basis of the regression models of Cho 

Moi and Thoai Son cases. 

 

Table 6.4. Correlation between sample rice yield and HH, VV, HH/VV by 

district in SA 2007 crop using LINEST function (n=10). 

r2 District 

name HH VV HH/VV 

CP 0.977 0.375 0.976 

CT 0.096 0.762 0.321 

TS 0.522 0.669 0.772 

CM 0.653 0.328 0.833 

Province 0.088 0.062 0.145 

 

 On the other hand, a non-linear regression analysis using LOGEST function 

was tested for Cho Moi district to compare its relationship with that of the linear 

regression model. The results showed that the coefficients of determination in both 

cases were nearly the same (Tables 6.4 and 6.5).  

 

Table 6.5. Correlation between sample rice yield and HH, VV, HH/VV by 

district in SA 2007 crop using LOGEST function (n=10). 

r2 District 

name HH VV HH/VV 

CP    

CT    

TS    

CM 0.659 0.326 0.834 

Province    

 

 The regression equation between rice yield and polarisation ratios of 

sampling fields at Cho Moi district in SA 2007 crop using LINEST function was 

determined as follows (6.1): 

YRa = 0.072 Ra1 – 0.017 Ra2 – 0.002 Ra3 + 0.503 

r2 = 0.833, sey = 0.11 ton/ha 

(6.1)
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 where 

 YRa : rice yield (kg/m2), 

 Ra1 : polarisation ratio of first date image, 

 Ra2 : polarisation ratio of second date image, 

 Ra3 : polarisation ratio of third date image, 

 r2 : the coefficient of determination, 

 sey : the standard error for the y estimate. 

 

 The values of r2 and sey were 0.833 and 0.11 ton/ha, respectively. It indicates 

that the relationship is positive and can be consequently used to predict the yield for 

all rice fields planted in SA 2007 crop season of the Cho Moi district. 

 

 The regression equation between rice yield and polarisation ratios of 

sampling fields planted in SA 2007 crop at Cho Moi district using LOGEST function 

(6.2) was formulated follows: 

503.0*995.0*965.0*16.1 321 RaRaRa
RaY =  

r2 = 0.834, sey = 0.22 ton/ha  

(6.2)

 where 

 YRa : rice yield (kg/m2), 

 Ra1 : polarisation ratio of first date image, 

 Ra2 : polarisation ratio of second date image, 

 Ra3 : polarisation ratio of third date image, 

 r2 : the coefficient of determination, 

 sey : the standard error for the y estimate. 

 

 Subsequent to Cho Moi district, the regression analysis using LINEST 

function between rice yield and polarisation ratio of sampling fields in SA 2007 crop 

at Thoai Son district was derived as follows: 

YRa = – 0.124 Ra1 – 0.034 Ra2 + 0.114 Ra3 + 0.704 

r2 = 0.772, sey = 0.54 ton/ha 

(6.3)

 where 

 YRa : rice yield (kg/m2), 

 Ra1 : polarisation ratio of first date image, 
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 Ra2 : polarisation ratio of second date image, 

 Ra3 : polarisation ratio of third date image, 

 r2 : the coefficient of determination, 

 sey : the standard error for the y estimate. 

 

 In WS 2007 crop season, multiple linear regression analysis was only 

examined for the case of sampling fields grown at LDB village and Cho Moi district 

(see appendix B2 “Backscattering coefficient and yield of sampling fields, and their 

regression models - A case of Winter Spring 2007 crop”). The relationship between 

rice yield and polarisation ratios was presented in Tables 6.6 and 6.7. 

 

Table 6.6. Correlation between sample rice yield and HH, VV, HH/VV by 

village in WS 2007 crop using LINEST function (n=5). 

r2 Field 

name HH VV HH/VV 

BM    

VB    

BH    

VC    

PH    

LDB 0.935 0.780 0.134 

MHD    

Province    

 

Table 6.7. Correlation between sample rice yield and HH, VV, HH/VV by 

district in WS 2007 crop using LINEST function (n=9). 

r2 District 

name HH VV HH/VV 

CP    

CT    

TS    

CM 0.575 0.661 0.675 

Province    
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 The regression equation between rice yield and polarisation ratio of nine 

sampling fields in WS 2007 crop at Cho Moi district using LINEST function (6.4) 

was formulated as follows: 

YRa = – 0.033 Ra1 + 0.017 Ra2 + 0.019 Ra3 + 0.628 

r2 = 0.675, sey = 0.38 ton/ha 

(6.4)

 where 

 YRa : rice yield (kg/m2), 

 Ra1 : polarisation ratio of first date image, 

 Ra2 : polarisation ratio of second date image, 

 Ra3 : polarisation ratio of third date image, 

 r2 : the coefficient of determination, 

 sey : the standard error for the y estimate. 

 

 The coefficients of determination and the standard errors for the rice yield 

estimated in the cases of Cho Moi in WS 2007 were 0.675 and 0.38, and of Thoai 

Son in SA 2007 crop were 0.772 and 0.54, respectively. The values of 0.833 and 

0.11, respectively, were found for Cho Moi in SA 2007. The two cases of Cho Moi 

in WS 2007 and Thoai Son in SA 2007 crop obtained lower correlation between in 

situ rice yield and polarisation ratio. It maybe due to a) seven various rice varieties 

were grown in ten sampling fields of Cho Moi in WS 2007, and b) in the case of 

Thoai Son in SA 2007 crop, about three-week shift in crop calendar was observed 

from sampling fields between Vinh Binh and Phu Hoa villages. 

 

6.3.3 Distribution map of estimated rice yield 
  

 The detected rice fields was classified into 17 yield levels, ranging from 0.5 

to 10 ton/ha, through analysis of the relationship between rice yield and 

backscattering coefficients of three-date ASAR APP images acquired over the rice 

growing period. 

 

 The yield of rice fields planted in SA 2007 crop at Cho Moi district was 

estimated on the basis of the correlation between in situ rice yield and polarisation 
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ratios (Equation 6.1). The rice fields with estimated yield levels ranging from four to 

six ton per hectare were dominated and occupied 89.8% total of rice area planted in 

this  crop season (Table 6.8), whereas the statistical average yield of rice in SA 2007 

crop at the district was 4.86 ton/ha (AGSO, 2008b). Consequently, there was a good 

agreement between rice production estimated from ASAR APP and the official 

statistics with the difference of 3.2% between them (Table 6.9). This accuracy of 

yield estimation was higher than those reported in the previous studies (e.g. Ribbes 

and Le-Toan, 1999, Li et al., 2003, Chen and Mcnairn, 2006). 

 

Table 6.8. Yield estimation for SA crop in Cho Moi district using three-date 

polarisation ratio and LINEST regression analysis. 

Level 
Rice area 

(Ha) 

Estimated 

yield (Ton/Ha) 

Estimated 

production (Ton) 

Percentage 

(%) 

1 5.4 0.5 2.7 0.0

2 21.1 1.5 31.7 0.0

3 120.8 2.5 302.1 0.4

4 1033.0 3.5 3615.3 4.4

5 2621.6 4.25 11141.7 13.6

6 6476.5 4.75 30763.6 37.6

7 4614.0 5.25 24223.5 29.6

8 1279.9 5.75 7359.3 9.0

9 374.9 6.25 2343.0 2.9

10 132.3 6.75 893.2 1.1

11 58.5 7.25 424.2 0.5

12 28.1 7.75 217.5 0.3

13 15.0 8.25 123.8 0.2

14 10.0 8.75 87.2 0.1

15 6.7 9.25 62.1 0.1

16 4.8 9.75 46.8 0.1

17 18.2 10 182.0 0.2

Sum 16820.8 81819.7 100 
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Table 6.9. Percentage error between rice production in SA 2007 crop at Cho 

Moi district derived from three-date polarisation ratio data using LINEST 

function and statistical data. 

District 

name 

Agency data 

(Ton) 

Estimated 

Production (Ton) 

Percentage 

error (%) 

Cho Moi 79256 81819.7 3.2 

 

 A distribution map of estimated yield of the rice fields planted in SA 2007 

crop at Cho Moi district using three-date polarisation ratios and LINEST regression 

analysis was plotted in Figure 6.4. Most of the rice fields with yield ranging from 

four to six ton /ha was distributed throughout the district. 

 

 
Figure 6.4. A distribution map of estimated rice yield in SA 2007 crop at Cho 

Moi district using three-date polarisation ratio and LINEST regression 

analysis. 
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 Similarly, non-linear regression equation (6.2) was used to estimate the yield 

of the rice fields in SA 2007 crop of Cho Moi district. The total area of rice fields 

which had the estimated yield of four to six ton/ha was 88.9% of rice acreage planted 

in SA 2007 crop at Cho Moi district (Table 6.10). The percentage error between rice 

production estimated from ASAR APP data and that from statistical yearbook 2007 

was 3.4% (Table 6.11). A distribution map of the estimated rice yield of the fields 

grown in SA 2007 crop was presented in Figure 6.5 

 

Table 6.10. Yield estimation for SA 2007 crop at Cho Moi district using three-

date polarisation ratio and LOGEST regression analysis. 

Level 
Rice area 

(Ha) 

Estimated 

yield (Ton/Ha) 

Estimated 

production (Ton) 

Percentage 

(%) 

1 2.1 0.5 1.1 0.0 

2 6.4 1.5 9.6 0.0 

3 68.6 2.5 171.6 0.2 

4 1015.6 3.5 3554.7 4.3 

5 2934.2 4.25 12470.5 15.2 

6 6609.8 4.75 31396.7 38.3 

7 4184.2 5.25 21967.2 26.8 

8 1226.9 5.75 7054.6 8.6 

9 398.2 6.25 2488.6 3.0 

10 161.4 6.75 1089.6 1.3 

11 75.1 7.25 544.2 0.7 

12 42.4 7.75 328.4 0.4 

13 25.2 8.25 208.1 0.3 

14 15.5 8.75 135.9 0.2 

15 10.8 9.25 100.0 0.1 

16 7.3 9.75 70.8 0.1 

17 37.7 10 376.9 0.5 

Sum  16821.5  81968.4 100  
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Table 6.11. Percentage error between rice production in SA 2007 crop at Cho 

Moi district derived from three-date polarisation ratio data using LOGEST 

function and statistical data. 

District 

name 

Agency data 

(Ton) 

Estimated 

Production (Ton) 

Percentage 

error (%) 

Cho Moi 79256 81968.4 3.4 

 

 The results of the above analysis using linear or non-linear regression 

equation proved that the statistical model-based method worked very well in the case 

of SA 2007 crop at Cho Moi district where the relationship between in situ yield 

point data and polarisation ratio data was positive with the high correlation 

coefficient of 0.913. 

 

 
Figure 6.5. A distribution map of estimated rice yield of SA crop in Cho Moi 

district using three-date polarisation ratio and LOGEST regression analysis. 
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 The same method was also applied in order to estimate rice production in WS 

2007 crop at Cho Moi district. The rice yield of the same sampling fields was 

collected for the various crops in the year 2007. Using regression equation (6.4) rice 

production was estimated (Table 6.12). About 80% of total rice area planted had the 

estimated yield from 4.5 to 8 ton/ha, whereas the statistical mean yield of the district 

was 7.36 ton/ha. Consequently, the rice production in WS 2007 crop of Cho Moi 

district was underestimated, i.e. 19.4% lower than the agency statistics (Table 6.13).  

 

Table 6.12. Yield estimation for WS 2007 crop at Cho Moi district using three-

date polarisation ratio and LINEST regression analysis. 

Level 
Rice area 

(Ha) 

Estimated 

yield (Ton/Ha) 

Estimated 

production (Ton) 

Percentage 

(%) 

1 1.8 0.5 0.9 0.0 

2 4.7 1.5 7.1 0.0 

3 25.0 2.5 62.4 0.1 

4 225.8 3.5 790.1 0.7 

5 632.5 4.25 2688.1 2.5 

6 2166.8 4.75 10292.4 9.7 

7 3482.7 5.25 18284.3 17.2 

8 2957.8 5.75 17007.3 16.0 

9 2213.0 6.25 13831.1 13.0 

10 1620.2 6.75 10936.2 10.3 

11 1155.5 7.25 8377.6 7.9 

12 811.8 7.75 6291.8 5.9 

13 573.8 8.25 4734.0 4.5 

14 401.0 8.75 3508.6 3.3 

15 279.1 9.25 2581.9 2.4 

16 194.5 9.75 1896.1 1.8 

17 483.8 10 4838.4 4.6 

Sum 17229.8  106128.2 100 
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Table 6.13. Percentage error between rice production in WS 2007 crop at Cho 

Moi district derived from three-date polarisation ratio data using LINEST 

function and statistical data. 

District 

name 

Agency data 

(Ton) 

Estimated 

Production (Ton) 

Percentage 

error (%) 

Cho Moi 131595 106128.2 -19.4 

 

 Figure 6.6 presented a map of rice yield distribution in WS 2007 crop. The 

rice area planted that had estimated yield from eight ton/ha or more was 16.6% of the 

total. These areas were mostly distributed in the south western parts of the district. 

 
Figure 6.6. A distribution map of estimated rice yield of WS crop in Cho Moi 

district using three-date polarisation ratio and LINEST regression analysis. 

 

 Another district (Thoai Son) was chosen for estimating the rice yield in SA 

2007 crop. The multiple linear regression equation (6.3) was utilised in rice yield 

estimation. In the total rice area planted in SA crop, nearly 90% had the estimated 
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yield from 5 ton/ha or more (Table 6.14), whereas the mean value of statistical yield 

of Thoai Son district was 5.07 ton/ha. Thus, rice production was estimated at about 

30% higher than the statistics (Table 6.15). It means that the accuracies of estimated 

rice production for the cases of Cho Moi in WS 2007 and Thoai Son in SA 2007 

crop were lower than those reported by previous research (Ribbes and Le-Toan, 

1999, Li et al., 2003, Chen and Mcnairn, 2006). 

 

Table 6.14. Yield estimation for SA crop in Thoai Son district using three-date 

polarisation ratio and LINEST regression analysis. 

Level 
Rice area 

(Ha) 

Estimated 

yield (Ton/Ha) 

Estimated 

production (Ton) 

Percentage 

(%) 

1 148.9 0.5 74.4 0.0 

2 315.6 1.5 473.3 0.2 

3 711.8 2.5 1779.4 0.8 

4 1669.6 3.5 5843.7 2.5 

5 1535.9 4.25 6527.5 2.8 

6 2265.9 4.75 10762.9 4.5 

7 3115.3 5.25 16355.5 6.9 

8 3745.5 5.75 21536.8 9.1 

9 3742.1 6.25 23388.0 9.9 

10 3179.2 6.75 21459.7 9.1 

11 2561.6 7.25 18571.9 7.8 

12 2068.8 7.75 16032.8 6.8 

13 1677.4 8.25 13838.9 5.8 

14 1372.4 8.75 12008.7 5.1 

15 1126.2 9.25 10416.9 4.4 

16 925.4 9.75 9022.3 3.8 

17 4870.8 10 48707.5 20.6 

Sum 35032.3  236800.3 100 
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Table 6.15. Percentage error between rice production in SA 2007 crop at Thoai 

Son district derived from three-date polarisation ratio data using LINEST 

function and statistical data. 

District 

name 

Agency data

(Ton) 

Estimated 

Production (Ton) 

Percentage 

error (%) 

Thoai Son 182469 236800.3 29.8 

 

 In order to explain why lower accuracies of rice yield estimation occurred in 

the cases of Cho Moi in WS 2007 and Thoai Son in SA 2007 crop, Table 6.16 

presented the difference between the statistical data (AGSO, 2008b) and the yield 

data collected during the ground campaigns in those districts. The comparison 

demonstrated that in SA crop at Cho Moi district, the mean yield (0.494 kg/m2) 

collected from ten sampling fields was nearly the same with the statistical yield data 

of Cho Moi  (0.486 kg/m2) and the estimated rice production was consequently not 

much different from the statistics (error of 3.2%). In contrast, in two other cases with 

higher percentage errors (errors of -19.4% and 29.8%), it may be due to the rice yield 

of fields investigated on the ground (0.668 and 0.593 kg/m2) was not representative 

of the yield of entire rice area in the district (0.736 and 0.507 kg/m2). Additional 

research should be done to find out the real reasons for these cases. 

 

 Because different districts in the case study had different correlations and 

accuracies, therefore there was a need to design a mapping strategy that will first 

employ a “stratification approach”. It means that mapping should be done by district 

rather than the entire province. Stratification approach should be used to classify rice 

fields in the province separately into areas (by district) with the same cultural 

practices. Subsequently, multiple regression analysis between in situ rice yield and 

polarisation ratios of sampling fields can be examined. A rice yield map can be 

finally produced based on a regression equation. 
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Table 6.16. Difference between ground data and statistical data. 

In situ measured rice yield Sampling field No 

WS07_CM SA07_CM SA07_TS 

S1 0.650 0.520 0.617

S2 0.650 0.520 0.571

S3 0.650 0.500 0.386

S4 0.600 0.480 0.540

S5  0.600 0.500 0.571

S6 0.700 0.500 0.617

S7 0.700 0.500 0.710

S8 0.760 0.500 0.602

S9 0.700 0.460 0.602

S10   0.460 0.710

Average in situ yield 

(kg/m2) 
0.668 0.494 0.593

Statistical yield by district 

(kg/m2) 
0.736 0.486 0.507

Percentage difference in yield 

(%) 
-9.3 1.6 16.9

Estimated production by district 

(ton) 
106128 81820 236800

Statistical production by district 

(ton) 
131595 79256 182469

Percentage error of estimated 

production (%) 
-19.4 3.2 29.8

 

 

6.4 Conclusion 
 

 The agro-meteorological model-based method for rice yield prediction will 

not work in Vietnam’s Mekong Delta because retrieving rice biomass using HH, VV 

or polarisation ratio data was not applicable to modern rice growing practices 

prevailing in the area. 
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 The statistical model-based method worked very well in the case of Cho Moi 

district where there is a strong positive relationship between in situ measured yield 

point data and polarisation ratio data derived from three-date ASAR APP images. 

The sampling rice fields chosen were represented for the entire region. The high 

accuracy of 97% was found when the rice production estimated from ASAR APP 

data was compared to the government statistics. This accuracy result is better than 

that of other previous studies (ranging from 85% to 94%).  

 

 The rice yield estimation model varies from region to region, where the 

cultural practices and crop calendar were significantly different in the study site. 

Therefore, the yield mapping strategy using time series ASAR APP data is proposed 

as follows: 

 

a) Stratification approach should be firstly used in order to separately classify 

rice fields in the province into areas with the same cultural practices in the 

districts; 

b) Multiple regression analysis between polarisation ratio data and in situ rice 

yield is implemented for each district; 

c) Based on this correlation, rice yield map is established; and  

d) Rice production is estimated on the basis of the yield map and rice/non-rice 

map.  

 

 Further research should be done to improve and validate the statistical model-

based method for predicting rice production using dual polarisation ASAR data.  
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Chapter 7 
 

CONCLUSIONS 
 

7.1 Summary of Findings 
 

 This section summarises the results discovered from the research work on: a) 

the relationship between radar backscatter coefficients and the in situ measured 

parameters (e.g. age and biomass) of rice crops over an entire growth cycle, b) 

algorithms for mapping the rice cropping systems for one year cycle, and c) a rice 

yield prediction model using new generation ASAR imagery. 

 

7.1.1 Analysis of rice backscatter 
 

As a consequence of changes brought by modern cultural practices, the radar 

backscattering behaviour was much different from that of the traditional rice plant. 

At the early stage of the season, direct sowing on fields with rough and wet soil 

surface provided very high backscatter values for both HH and VV data (about -7 to 

-2 dB). Around 10 – 20 days after sowing, rice plants attained more or less 20 cm 

high and field flooding decreases dramatically the backscatter to -18 to - 12 dB. The 

backscatter then increases and reaches a saturation level (-2 to 1 and -9 to -7 for HH 

and VV, respectively) in the middle of crop cycle. The very high value of HH and 

the similar response of flooded and non-flooded fields were explained by the high 

plant density. At the end of crop season, radar backscattering of the rice fields 

without water was slightly lower in HH and higher in VV when compared to that of 

fields with standing water. 

  

 HH, VV and HH/VV were not strongly related to plant biomass as in the 

reported results for traditional rice. This is explained by the effect of water 

management, plant density and structure.  
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7.1.2 Rice mapping 
 

The following results were generated when ASAR APP imagery was utilised 

for rice mapping: 

 

• Using a thresholding algorithm for the single-date ASAR APP data acquired 

in the middle of crop season, the classified images showed only a maximum 

of 14% difference at the district level, with the exception of several districts 

in AW 2007 crop, when compared to the estimates from the agency statistical 

data. On the basis of the existing land use map, the User’s accuracies of rice 

class assessed were very high, i.e. more than 93% for WS, SA 2007, and WS 

2008 crops. In this case, the thresholds of polarisation ratio and VV data were 

applied; 

• The classification results using thresholding algorithm provided consistent 

accuracies between districts (percentage errors ranging from -14 to 7% for 

WS 2007 crop and from -11 to 3% for SA 2007 crop) and between seasons 

across the province (percentage errors from -7 to 4%). Other classification 

methods, i.e. minimum-distance-to-means, maximum likelihood, and spectral 

angle mapping did not improve classification accuracy despite their 

sophisticated algorithm formulation; 

• Another threshold, i.e. the “normalised difference polarisation ratio index”, 

was originally developed in this study. When applied, the percentage error of 

the provincial rice area planted between seasons ranged from -6 to 2% when 

compared to the official agency statistics. 

• Radar backscattering coefficient is a physical value (like reflectance in 

optical data). Therefore, similar methods as conducted in this research can be 

used for other SAR sensor data. 

• In this work, a method was developed for accurately mapping rice growing 

area using single-date ASAR APP image taken in the middle of the rice 

cropping season. This is briefly described as follows: 

 

1. An ASAR APP image acquired in the middle of the crop season is 

selected; 
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2. Image pre-processing steps were implemented: a) image calibration or 

conversion to the radar backscattering coefficient sigma nought (σo), b) 

image geo-correction, and c) image spatial filtering; 

3. A polarisation ratio image was created; 

4. Thresholding method was applied to the polarisation ratio and VV images 

in order to segment rice and non-rice classes; 

5. A post-classification step was conducted by using majority filter to the 

classified image; and 

6. A rice and non-rice map was finally produced. 

 

In the case of ASAR WS data used for mapping rice, the following results are 

highlighted: 

 

• The integrated method based on the temporal variation of the radar response 

and thresholding was proposed to map the rice area planted using multi-

temporal ASAR WS data. 

• The classification results of rice/non-rice by using multi-date ASAR WS 

images provided inconsistent accuracies between districts and crop seasons. 

However, the method yielded low relative errors of planted rice area at the 

provincial scale when compared to the official statistics (i.e. ranging from -

4% to 1%, and from -11% to 14% when 3-date and 2-date image used, 

respectively), except for the case of WS crop season using ascending mode 

data. 

 

7.1.3 Yield estimation 
 

 The statistical model-based method worked very well in the case of Cho Moi 

district where the relationship between in situ measured yield point data and 

polarisation ratio data derived from three-date ASAR APP images was very positive 

with a high correlation coefficient (r = 0.913). The sampling rice fields chosen were 

well represented for the entire region in term of rice yield. The accuracy of estimated 

rice production of SA 2007 crop was 97% when compared to the official agency 

statistics. 
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 However, in the case of WS crop in Cho Moi and SA 2007 crop in Thoai Son 

district, the estimated accuracies of rice production were 81 and 70%, respectively. 

This may be due to the significant difference between the in situ measured yields and  

the average yield of the district. 

 

7.2 Conclusions 
 

Based on the results and discussion analysed in the previous chapters and 

above summaries, significant conclusions can be drawn from this research. 

 

The radar backscattering behaviour of rice in the study site is much different 

from that of the traditional rice plant. Therefore, methods using the temporal change 

of HH and VV for rice mapping will not work for fields which are not inundated at 

the beginning of the season. However, the polarisation ratio HH/VV of the single 

ASAR APP image acquired in the middle period of the crop season (i.e. during the 

second half of the vegetative stage and the first half of the reproductive stage) is a 

good rice classifier. 

 

Retrieving rice biomass using radar backscattering coefficient of HH and VV 

data or polarisation ratio data is not applicable to modern rice growing practices that 

prevailed in the study area. 

 

The use of Envisat ASAR data was assessed for rice mapping in An Giang 

province, Mekong River Delta, where the complicated cropping systems have been 

taking place. In the case of ASAR APP mode, it was demonstrated that: 

 

• The supervised classification methods applied to single-date image taken in 

the middle period of crop season gave good accuracies when compared to the 

existing agency data. Thresholding method provided higher accuracy than 

other methods such as minimum-distance-to-means, maximum likelihood, 

and SAM; 
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• A threshold formulated in this study, i.e. the “normalised difference 

polarisation ratio index”, produced high accuracies for rice mapping, when 

ASAR APP image acquired in the middle of crop season was used; 

• Three acquisition dates of dual polarisation ASAR data are sufficient to 

accurately determine rice acreage planted during the year, if the rice crop 

calendar is not much different among rice growing areas in the province; 

• In the case of changing cultural practices in the future, this method for rice 

mapping can also be used by paying attention to the threshold values of 

polarisation ratio and VV. These values need to be examined before applying 

the method. 

 

Concerning the use of multi-temporal ASAR WS data for rice mapping, the 

following conclusions were drawn: 

 

• Using three- or two-date ASAR WS data acquired in ascending, descending, 

or both modes, the integrated method based on the temporal variation of the 

radar response and thresholding was appropriate to map the rice area planted. 

• The classification results of rice and non-rice by using multi-date ASAR WS 

images provided inconsistent accuracies between districts and crop seasons 

when compared to the statistical data published. However, using two-date 

ASAR WS images in ascending or descending mode acquired on the first half 

of crop season, the integrated method yielded the rice/non-rice classification 

images with acceptable accuracies at the provincial scale. As a whole, the use 

of ASAR WS data for rice mapping is appropriate at the regional level with 

its low cost and wide-area coverage. 

 

 The Agro-meteorological model-based method for rice yield prediction could 

not work in the study area, because retrieving rice biomass using HH, VV or HH/VV 

data was not applicable to modern rice growing practices in the Mekong River Delta. 

 

 The statistical model-based method for rice yield estimation worked very 

well in the case of Cho Moi district. The relationship between the in situ measured 

yield and polarisation ratios extracted from the three-date ASAR APP images taken 
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during the crop growth was extracted from the multiple regression analysis. Then, 

pixel-based rice yield was estimated on the basis of this relationship, and the 

production of rice area was finally computed. 

 

 The rice yield estimation model varies from region to region, where the 

cultural practices and crop calendar were significantly different in the study site. 

Therefore, the yield mapping strategy using time series ASAR APP data is proposed 

as follows: a) stratification approach should be firstly used in order to separately 

classify rice fields in the province into areas with the same cultural practices in the 

districts; b) multiple regression analysis between polarisation ratio data and in situ 

rice yield is implemented for each district; c) based on this correlation, rice yield 

map is established; and d) rice production is estimated on the basis of the yield map 

and rice/non-rice map. 

 

7.3 Recommendations 
 

 Based on the results and discussion analysed in the previous chapters and the 

conclusions of the research study, the following are recommended for further 

investigation: 

 

• The method for rice crop inventory in the province before harvest was 

developed by using a single-date ASAR APP data taken in the mid-crop 

season. For operational purposes, this rice mapping algorithm needs to be 

further investigated for other crops and at other provinces in the Mekong 

River Delta, where the cultivation systems may be different. 

• Further research should be conducted to test Envisat ASAR WS data 

utilisation for mapping the rice cropping system of the entire Mekong River 

Delta. The method needs to be improved and the algorithm validated for each 

province, where flood season has been taking place annually and 

consequently prompting changes in the rice crop calendar and practices. 

• Concerning rice production estimation in the study site and the Mekong 

River Delta, the statistical model-based method using multi-temporal dual 

polarisation ASAR data was found appropriate. However, more sampling rice 
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fields represented for various cultivation systems in the region need to be set 

up. Consequently, multiple regression analysis should be further examined to 

improve and validate the model. 

• The ASAR WS imagery is a potential data source for rice crop monitoring in 

the tropical and subtropical regions, because cloud-free products provide 

greater swath width and higher repeat pass. Thus, multi-date ASAR WS data 

should be investigated for rice yield estimation. 
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APPENDICES 
 

A. ASAR APP images used 
 

 
Figure A.1. Colour composite ASAR APP image acquired on 28 Apr. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.2. Colour composite ASAR APP image acquired on 02 Jun. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.3. Colour composite ASAR APP image acquired on 07 Jul. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.4. Colour composite ASAR APP image acquired on 15 Sep. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.5. Colour composite ASAR APP image acquired on 20 Oct. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.6. Colour composite ASAR APP image acquired on 24 Nov. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.7. Colour composite ASAR APP image acquired on 29 Dec. 2007 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 
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Figure A.8. Colour composite ASAR APP image acquired on 02 Feb. 2008 

(R=HH, G=VV, B=HH), provincial boundary in yellow polyline. 



Appendices 

 172

B. Backscattering coefficient and yield of sampling fields, 
and their regression models 

 

B.1 A case of Summer Autumn 2007 crop 
HH  VV  HH/VV Code 

  28/4/07 2/6/07 7/7/07   28/4/07 2/6/07 7/7/07   28/4/07 2/6/07 7/7/07 

YIELD 

(kg/m2) 

BM1 0.431 0.443 0.346  0.454 0.156 0.069 0.951 2.837 5.019 0.432 

BM2 0.720 0.387 0.313  1.188 0.099 0.138 0.606 3.888 2.272 0.525 

BM3 0.337 0.410 0.356  0.363 0.092 0.238 0.927 4.460 1.499 0.432 

BM4 0.708 0.645 0.645  0.537 0.241 0.150 1.319 2.671 4.309 0.417 

BM5 0.294 0.361 0.438   0.376 0.135 0.143  0.783 2.680 3.056 0.540 

VB1 0.149 0.602 0.246  0.109 0.224 0.264 1.365 2.692 0.931 0.617 

VB2 0.089 0.608 0.321  0.094 0.119 0.276 0.952 5.101 1.164 0.617 

VB3 0.056 0.670 0.593  0.043 0.139 0.178 1.311 4.823 3.323 0.586 

VB4 0.165 1.093 0.254  0.082 0.127 0.189 2.013 8.612 1.346 0.556 

VB5 0.035 0.692 0.294   0.044 0.131 0.127  0.795 5.304 2.312 0.540 

BH1 0.438 1.332 0.685  0.451 0.142 0.119 0.970 9.372 5.773 0.586 

BH2 0.110 0.457 0.802  0.151 0.156 0.098 0.728 2.930 8.212 0.540 

BH3 0.409 0.660 0.551  0.533 0.110 0.186 0.768 6.015 2.970 0.556 

BH4 0.293 1.187 0.333  0.254 0.147 0.102 1.155 8.061 3.264 0.556 

BH5 0.211 0.627 0.519   0.395 0.160 0.280  0.533 3.920 1.853 0.617 

VC1 0.048 0.560 0.304  0.094 0.113 0.398 0.516 4.972 0.765 0.617 

VC2 0.031 0.595 0.306  0.024 0.151 0.244 1.296 3.947 1.255 0.571 

VC3 0.091 0.700 0.261  0.171 0.096 0.581 0.533 7.255 0.449 0.386 

VC4 0.109 0.365 0.248  0.113 0.137 0.296 0.964 2.671 0.837 0.540 

VC5 0.044 0.708 0.283   0.067 0.149 0.397  0.660 4.760 0.713 0.571 

PH1 0.452 0.446 0.486  0.776 0.065 0.228 0.582 6.894 2.130 0.617 

PH2 0.423 0.791 0.738  0.497 0.114 0.218 0.852 6.929 3.380 0.710 

PH3 0.393 0.498 0.281  0.566 0.148 0.314 0.694 3.359 0.896 0.602 

PH4 0.602 0.655 0.328  0.562 0.137 0.222 1.072 4.771 1.478 0.602 

PH5 0.326 0.901 0.502   0.462 0.117 0.197  0.704 7.718 2.541 0.710 

LDB1 0.045 0.442 0.581  0.052 0.220 0.077 0.868 2.011 7.559 0.520 

LDB2 0.141 0.333 0.742  0.184 0.222 0.098 0.763 1.498 7.607 0.520 

LDB3 0.047 0.484 0.442  0.114 0.238 0.119 0.408 2.035 3.719 0.500 

LDB4 0.125 0.509 0.364  0.274 0.187 0.184 0.454 2.724 1.977 0.480 

LDB5 0.103 0.364 0.664   0.250 0.347 0.108  0.410 1.049 6.118 0.500 

MHD1 0.384 0.547 0.573  0.366 0.162 0.162 1.050 3.377 3.546 0.500 

MHD2 0.501 0.578 0.304  0.522 0.121 0.181 0.959 4.792 1.677 0.500 

MHD3 0.403 0.443 0.466  0.447 0.141 0.121 0.901 3.143 3.849 0.500 

MHD4 0.345 0.621 0.615  0.391 0.118 0.081 0.882 5.249 7.597 0.460 

MHD5 0.207 0.597 0.649   0.463 0.190 0.127  0.447 3.150 5.101 0.460 

Multiple regression analysis using LINEST function 

-0.003 0.095 -0.017 0.493 -0.009 -0.353 -0.015 0.606 -0.005 0.011 -0.004 0.517 

0.076 0.056 0.065 0.051 0.136 0.273 0.057 0.070 0.006 0.006 0.038 0.047 

0.088 0.073 #N/A #N/A 0.062 0.074 #N/A #N/A 0.145 0.071 #N/A #N/A 

0.968 30.000 #N/A #N/A 0.664 30.000 #N/A #N/A 1.689 30.000 #N/A #N/A 

AG 

0.016 0.161 #N/A #N/A 0.011 0.166 #N/A #N/A 0.026 0.151 #N/A #N/A 
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0.559 -1.127 0.207 0.637 -0.215 -0.479 0.046 0.543 -0.034 -0.075 -0.178 0.990 

0.137 0.185 0.056 0.036 0.855 0.865 0.143 0.257 0.012 0.020 0.040 0.103 

0.977 0.018 #N/A #N/A 0.375 0.092 #N/A #N/A 0.976 0.018 #N/A #N/A 

14.264 1.000 #N/A #N/A 0.200 1.000 #N/A #N/A 13.524 1.000 #N/A #N/A 

BM (CP)

0.013 0.000 #N/A #N/A 0.005 0.009 #N/A #N/A 0.013 0.000 #N/A #N/A 

      

0.084 -0.171 0.604 0.620 0.838 0.227 -0.908 0.444 -0.012 -0.013 0.018 0.648 

0.101 0.068 0.286 0.065 0.004 0.003 0.009 0.001 0.024 0.013 0.060 0.087 

0.882 0.024 #N/A #N/A 1.000 0.000 #N/A #N/A 0.588 0.045 #N/A #N/A 

2.489 1.000 #N/A #N/A 25857.609 1.000 #N/A #N/A 0.475 1.000 #N/A #N/A 

VB 

0.004 0.001 #N/A #N/A 0.005 0.000 #N/A #N/A 0.003 0.002 #N/A #N/A 

      

-0.025 0.004 0.016 0.578 0.076 1.650 0.217 0.246 -0.004 0.010 -0.143 0.643 

0.182 0.109 0.291 0.152 0.054 0.252 0.038 0.043 0.007 0.012 0.130 0.066 

0.044 0.060 #N/A #N/A 0.991 0.006 #N/A #N/A 0.689 0.034 #N/A #N/A 

0.015 1.000 #N/A #N/A 36.335 1.000 #N/A #N/A 0.740 1.000 #N/A #N/A 

BH 

0.000 0.004 #N/A #N/A 0.004 0.000 #N/A #N/A 0.003 0.001 #N/A #N/A 

      

-0.046 -0.036 0.054 0.616 0.345 0.251 0.022 0.473 -0.007 -0.003 -0.011 0.628 

0.070 0.055 0.118 0.051 0.091 0.209 0.035 0.033 0.005 0.005 0.029 0.040 

0.096 0.037 #N/A #N/A 0.762 0.019 #N/A #N/A 0.321 0.032 #N/A #N/A 

0.212 6.000 #N/A #N/A 6.416 6.000 #N/A #N/A 0.946 6.000 #N/A #N/A 

CT 

0.001 0.008 #N/A #N/A 0.007 0.002 #N/A #N/A 0.003 0.006 #N/A #N/A 

      

-1.269 -0.553 -3.610 1.450 -0.327 -1.596 -1.211 0.982 0.492 -0.032 -0.425 0.631 

4.640 0.331 3.871 1.642 0.772 4.625 1.948 0.844 0.107 0.011 0.091 0.095 

0.839 0.071 #N/A #N/A 0.659 0.104 #N/A #N/A 0.977 0.027 #N/A #N/A 

1.735 1.000 #N/A #N/A 0.645 1.000 #N/A #N/A 14.214 1.000 #N/A #N/A 

VC 

0.027 0.005 #N/A #N/A 0.021 0.011 #N/A #N/A 0.031 0.001 #N/A #N/A 

      

0.146 0.156 -0.156 0.546 0.341 -2.396 -0.741 1.270 0.050 0.001 -0.014 0.548 

0.008 0.008 0.013 0.009 0.164 0.313 0.075 0.052 0.060 0.033 0.164 0.196 

1.000 0.002 #N/A #N/A 0.994 0.009 #N/A #N/A 0.767 0.055 #N/A #N/A 

702.792 1.000 #N/A #N/A 54.132 1.000 #N/A #N/A 1.099 1.000 #N/A #N/A 

PH 

0.013 0.000 #N/A #N/A 0.013 0.000 #N/A #N/A 0.010 0.003 #N/A #N/A 

      

0.369 -0.003 0.071 0.439 -0.621 -0.155 0.005 0.802 0.114 -0.034 -0.124 0.704 

0.221 0.184 0.145 0.104 0.234 0.985 0.118 0.197 0.027 0.016 0.093 0.123 

0.522 0.077 #N/A #N/A 0.669 0.065 #N/A #N/A 0.772 0.054 #N/A #N/A 

2.182 6.000 #N/A #N/A 4.033 6.000 #N/A #N/A 6.768 6.000 #N/A #N/A 

TS 

0.039 0.036 #N/A #N/A 0.050 0.025 #N/A #N/A 0.058 0.017 #N/A #N/A 

      

0.387 0.637 0.006 0.016 -0.589 -0.143 0.081 0.594 0.016 0.030 -0.073 0.403 

0.201 0.439 0.163 0.311 0.046 0.022 0.020 0.007 0.024 0.062 0.195 0.131 

0.934 0.009 #N/A #N/A 0.997 0.002 #N/A #N/A 0.927 0.009 #N/A #N/A 

4.734 1.000 #N/A #N/A 112.404 1.000 #N/A #N/A 4.244 1.000 #N/A #N/A 

LD 

0.001 0.000 #N/A #N/A 0.001 0.000 #N/A #N/A 0.001 0.000 #N/A #N/A 
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-0.006 -0.152 0.124 0.526 0.488 -0.261 -0.095 0.498 -0.005 -0.007 0.059 0.483 

0.139 0.137 0.181 0.154 0.373 0.438 0.236 0.119 0.002 0.004 0.017 0.017 

0.830 0.018 #N/A #N/A 0.658 0.026 #N/A #N/A 0.978 0.007 #N/A #N/A 

1.631 1.000 #N/A #N/A 0.642 1.000 #N/A #N/A 14.764 1.000 #N/A #N/A 

MH 

0.002 0.000 #N/A #N/A 0.001 0.001 #N/A #N/A 0.002 0.000 #N/A #N/A 

      

-0.038 -0.204 0.023 0.610 0.095 0.002 -0.085 0.508 -0.002 -0.017 0.072 0.503 

0.040 0.063 0.037 0.041 0.210 0.132 0.062 0.044 0.002 0.003 0.017 0.014 

0.653 0.015 #N/A #N/A 0.328 0.021 #N/A #N/A 0.833 0.011 #N/A #N/A 

3.769 6.000 #N/A #N/A 0.974 6.000 #N/A #N/A 9.972 6.000 #N/A #N/A 

CM 

0.003 0.001 #N/A #N/A 0.001 0.003 #N/A #N/A 0.003 0.001 #N/A #N/A 

      

0.921 0.656 1.049 0.628 1.236 1.009 0.841 0.506 0.995 0.965 1.160 0.503 

0.081 0.129 0.075 0.083 0.431 0.270 0.128 0.090 0.003 0.007 0.035 0.028 

0.659 0.031 #N/A #N/A 0.326 0.044 #N/A #N/A 0.834 0.022 #N/A #N/A 

3.872 6.000 #N/A #N/A 0.966 6.000 #N/A #N/A 10.029 6.000 #N/A #N/A 

CM 

LOGEST

0.011 0.006 #N/A #N/A 0.006 0.011 #N/A #N/A 0.014 0.003 #N/A #N/A 

Note: Numbers in bold font are the coefficients of determination 

 

B.2 A case of Winter Summer 2007 crop 
HH  VV  HH/VV Code 

 13/1/07 17/2/07 24/3/07  13/1/07 17/2/07 24/3/07  13/1/07 17/2/07 24/3/07 

YIELD 
Kg/m2 

BM1 0.394 0.401 0.386   0.146 0.071 0.266   2.698 5.649 1.453 0.907 

BM2 0.367 0.413 0.350   0.141 0.134 0.231   2.608 3.077 1.519 0.740 

BM3 0.536 0.483 0.298   0.125 0.070 0.169   4.293 6.936 1.762 0.771 

BM4 0.452 0.579 0.234   0.218 0.076 0.194   2.070 7.608 1.201 0.733 

BM5 0.411 0.872 0.322   0.101 0.102 0.307   4.068 8.575 1.050 0.848 

VB1 0.693 0.370 0.471  0.221 0.203 0.445  3.143 1.819 1.058 0.849 

VB2 0.543 0.415 0.272  0.146 0.180 0.362  3.709 2.309 0.751 0.802 

VB3 0.659 0.337 0.172  0.111 0.154 0.187  5.917 2.188 0.922 0.802 

VB4 0.587 0.414 0.141  0.120 0.104 0.308  4.910 3.961 0.458 0.772 

VB5 0.556 0.157 0.153   0.104 0.133 0.552   5.359 1.176 0.278 0.772 

BH1 0.605 0.921 0.395  0.289 0.081 0.361  2.096 11.301 1.093 0.787 

BH2 0.633 0.419 0.577  0.079 0.068 0.253  8.034 6.152 2.286 0.802 

BH3 0.519 0.460 0.471  0.170 0.080 0.323  3.057 5.777 1.460 0.725 

BH4 0.402 0.536 0.389  0.191 0.108 0.317  2.107 4.971 1.228 0.848 

BH5 0.352 0.620 0.479   0.216 0.060 0.347   1.630 10.408 1.380 0.787 

VC1 0.364 0.708 0.463   0.191 0.131 0.388   1.910 5.416 1.193 0.772 

VC2 0.397 1.186 0.314   0.243 0.216 0.434   1.632 5.501 0.723 0.756 

VC3 0.428 0.350 0.406   0.177 0.242 0.261   2.411 1.446 1.556 0.787 

VC4 0.420 0.370 0.320   0.164 0.126 0.241   2.557 2.925 1.327 0.787 

VC5 0.399 0.920 0.404   0.238 0.121 0.336   1.677 7.598 1.204 0.756 

PH1 0.268 0.343 0.250   0.242 0.092 0.194   1.108 3.744 1.288 0.787 

PH2 0.343 0.755 0.429   0.065 0.247 0.383   5.259 3.063 1.118 0.880 

PH3 0.291 0.353 0.425   0.194 0.071 0.177   1.506 4.990 2.403 0.772 

PH4 0.240 0.353 0.226   0.178 0.071 0.241   1.349 5.012 0.937 0.772 
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PH5 0.376 0.862 0.295   0.081 0.113 0.305   4.620 7.623 0.970 0.880 

LDB1 0.096 0.540 0.488  0.036 0.247 0.234  2.699 2.190 2.083 0.650 

LDB2 0.068 0.798 0.373  0.032 0.168 0.217  2.133 4.760 1.720 0.650 

LDB3 0.132 0.928 0.361  0.028 0.162 0.111  4.632 5.745 3.265 0.650 

LDB4 0.109 0.775 0.340  0.035 0.181 0.264  3.097 4.283 1.291 0.600 

LDB5 0.114 0.777 0.366   0.042 0.188 0.146   2.711 4.132 2.502 0.600 

MHD1 0.243 0.713 0.288  0.087 0.108 0.115  2.806 6.588 2.509 0.700 

MHD2 0.416 0.962 0.289  0.142 0.120 0.113  2.931 7.991 2.553 0.700 

MHD3 0.199 0.739 0.244  0.102 0.081 0.171  1.950 9.094 1.422 0.760 

MHD4 0.591 0.696 0.349  0.283 0.161 0.188  2.092 4.319 1.855 0.700 

MHD5 0.537 0.776 0.454   0.183 0.132 0.399   2.940 5.871 1.140 0.760 

Multiple regression analysis using LINEST function 

0.840 0.323 -0.559 0.117 -0.119 0.479 -4.922 0.733 0.017 -0.002 -0.004 0.614 

0.234 0.103 0.326 0.158 0.222 0.449 2.729 0.098 0.047 0.023 0.042 0.099 

0.935 0.014 #N/A #N/A 0.780 0.026 #N/A #N/A 0.134 0.051 #N/A #N/A 

4.773 1.000 #N/A #N/A 1.181 1.000 #N/A #N/A 0.051 1.000 #N/A #N/A 

LD 

0.003 0.000 #N/A #N/A 0.002 0.001 #N/A #N/A 0.000 0.003 #N/A #N/A 

            

-0.500 -0.158 0.098 0.940 0.053 -0.710 0.214 0.752 0.019 0.017 -0.033 0.628 

0.267 0.140 0.093 0.178 0.287 0.347 0.172 0.058 0.031 0.006 0.024 0.062 

0.575 0.043 #N/A #N/A 0.661 0.038 #N/A #N/A 0.675 0.038 #N/A #N/A 

2.259 5.000 #N/A #N/A 3.246 5.000 #N/A #N/A 3.463 5.000 #N/A #N/A 

CM 

9 

Samples

0.013 0.009 #N/A #N/A 0.014 0.007 #N/A #N/A 0.015 0.007 #N/A #N/A 

Note: Numbers in bold font are the coefficients of determination 
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