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ABSTRACT 

Crown rot is a stubble-borne disease of significant economic importance to the 

wheat industry, with no rapid detection method and human scoring only 

possible late in disease development after visual symptoms appear. This 

research aimed to develop non-destructive plant sensing tools to improve crown 

rot screening and accelerate development of resistant and tolerant germplasm.  

Machine learning models were developed for the discrimination and 

quantification of Fusarium pseudograminearum induced crown rot from 

contact near-infrared sensor data (900–1700 nm) in three glasshouse and two 

field trials, and near-infrared camera data (900–1700 nm) in one glasshouse 

trial. Contact sensor data was modeled with principal component analysis 

(PCA) and the discrete wavelet transform (DWT), and the impact of sensing 

location (i.e. plant part), timing of sensing and different training splits were 

compared. Specific models were generated by grouping sensor data into weekly 

intervals for each trial. Generalised models were generated by combining data 

across multiple trial sites and temporal windows (weekly, three-weekly and 

whole-season). 

DWT achieved higher crown rot detection accuracy than PCA in 67% of test 

cases for contact sensing when training on 20% of the disease data for specific 

models, with maximum average accuracies of 70.5%. Both DWT and PCA 

performed best in 50% of test cases when trained on the 80-20% split, with 

maximum accuracies of 75.7% for DWT and 76.9% for PCA. PCA was more 

accurate than DWT in a majority of individual test cases across both data splits 

for generalised models, with maximum accuracies of 69.8%. PCA utilised 

fewer overall features successfully in both specific and generalised models on 

both training splits. 

Significant differences in accuracy between sensing dates, sensing locations and 

interaction were determined. The differences were examined using DWT and 

six machine learning methods for generalised models, with an 80-20% train-

test split.  Individual readings and combinations of tiller, centre and flag leaf 

were evaluated. The highest performing combination of measurements 
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achieved an average of 77.9% accuracy across all five trials using the contact 

sensor. 

Phenotyping capability was examined using a multilayer perceptron 

preprocessed with DWT and PCA to develop models to quantify disease 

severity. Six severity scales based on human scoring of visual symptoms were 

developed and tested on contact sensor data from glasshouse and field trials. 

Both PCA and DWT performed similarly with individual models obtaining 

mean model accuracy ranging from 32% to 96%. Models performed best in 

field environments. 

Near-infrared image data was collected in a glasshouse trial across four weeks 

of early crown rot infection, using narrow bandpass filters centered at five 

wavebands identified using the contact sensor. Single and multi-input 

convolutional neural networks were created for discrimination and 

quantification of crown rot infection. The discrimination model achieved 

average accuracies of 53–100%, with highest average accuracies obtained in 

weeks 2–4. The quantification model achieved average accuracies of 73% when 

trained on combined data across all weeks. Developed models were successfully 

ported onto a mobile development board for real-time detection applications. 

It is concluded that successful detection and quantification of crown rot was 

achieved using both contact and camera-based near-infrared sensing. These 

findings are the initial steps in developing a high-throughput phenotyping 

system to provide wheat breeders with new tools and methods for crown rot 

resistance breeding. Further work should evaluate developed models on a wide 

range of germplasm and extend to real-time model execution. 
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CHAPTER 1: INTRODUCTION TO CROWN ROT 

 

Crown rot (CR), caused by Fusarium spp. is an economically important crop disease 

in winter cereals, both in Australia and worldwide (Klein et al. 1991; Backhouse & 

Burgess 2002; Smiley et al. 2005; Alahmad et al. 2018). Increasing adoption of 

conservation agriculture has increased CR prevalence, due to inoculum preservation 

in trash from previous seasons (Simpfendorfer et al. 2019). CR is difficult to detect, 

with assessment relying on correlations with visible symptoms such as whiteheads and 

stem browning which indicate disease prevalence (Klein et al. 1991). Machine vision 

systems have advanced rapidly in recent years and have potential to detect and quantify 

crop stress both early and accurately. Recent literature has shown rapid development 

in technologies around biotic and abiotic crop stress detection, crop monitoring and 

weed detection (Long et al. 2016; Pinto et al. 2016; Thomas et al. 2017; Elvanidi et al. 

2018; Lottes et al. 2018). New advancements in sensor technology have succeeded in 

reducing sensor size and cost while increasing sensitivity and resolution (Mahlein et 

al. 2012; Mahlein 2016; Bogue 2017). Traditional and novel data analysis techniques 

have been reported, with various approaches in machine learning and techniques 

adapted from robotics and engineering. Successful applications of these techniques 

have shown high stress detection accuracy is possible with varying spectral 

resolutions, showing promise for multi-resolution disease detection. This introduction 

gives an overview of Fusarium spp., cereal CR and leads into a literature review 

examining existing machine vision applications in precision agriculture and detailing 

potential for technology adaptation and adoption for use in CR detection and 

quantification. 

1.1 FUSARIUM CROWN ROT 

CR is a stubble-borne, fungal disease of cereals caused by a related group of Fusarium 

spp. primarily, F. pseudograminearum (Fp) and F. culmorum (Fc) with minor 

occurrence of F. graminearum (Fg) in Australia, (Parry et al. 1994). CR has been 

reported in all wheat growing regions in Australia and internationally, predominantly 

caused by Fp in arid and semi-arid climates, with Fc also capable of infection in 

temperate environments (Leslie & Summerell 2006; Alahmad et al. 2018). Severe CR 

infection of wheat can lead to greater than 50% yield loss under conditions suitable for 

disease development in Australia (Klein et al. 1991), and has been reported to limit 
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grain production in North America, Africa, the middle east and China (Smiley et al. 

2005; Lamprecht et al. 2006; Saremi et al. 2011; Alahmad et al. 2018). In Australian 

cropping systems, all three above species occur (Fig. 1) with Fp being more common 

than Fc and generally more aggressive than the closely related Fg (Burgess et al. 1996; 

Chakraborty et al. 2010).  

 

Fig. 1: Distribution of recorded (О) CR incidence and suitable locations (+) in a 0.5° 

by 0.5° grid for (a) F. graminearum, (b) F. pseudograminearum and (c) F. culmorum 

Adapted from: (Backhouse & Burgess 2002). 

1.1.1 ECONOMIC IMPACT 

Wheat disease costs Australia $913 million in lost revenue annually or $76.64 per ha, 

and was last reported to be responsible for an average loss of 19.5% of the total value 

of the crop (Murray & Brennan 2009). CR ranks fourth for current wheat yield loss 

associated with disease impact in Australia, behind yellow spot (Pyrenophora tritici-

repentis), stripe rust (Puccinia striiformis f.sp. tritici) and Septoria nodorum 

(Parastagonospora nodorum (syn. Stagonospora nodorum)) (Murray & Brennan 

2009). The greatest yield losses from CR have been reported in durum wheat (Triticum 

turgidum var. durum), followed by bread wheat (Triticum aestivum) and lastly, barley 



CHAPTER 1. INTRODUCTION 

3 

 

(Hordeum vulgare) (Hollaway et al. 2013), with other grains crops not being as 

significant in commodity size or reported losses.  

The Australian Grains Research and Development Corporation (GRDC) invests in and 

manages research in the Australian grains industry including the management of CR, 

and divides the country into three primary growing regions; the Northern region, the 

Southern region and the Western region (Fig. 2). Estimated potential yield loss from 

CR has increased over time in Australia, from 3.0% in 1998 to 22.2% in 2008, across 

the Northern region, 0.4 to 10.5%, across the Southern region and 0.1 to 1.5% across 

the Western region (Simpfendorfer et al. 2019). CR is estimated to cost the Australian 

wheat sector $79 million per year ($6.63 / ha) in lost revenue and has potential to cost 

as much as $434 million ($36.44 / ha) (Murray & Brennan 2009). Potential cost is 

estimated as the combination of yield (1) and quality (2) losses. Potential yield loss is 

calculated as: 

Lp = Y0(100 – Kp)/100   (1) 

where Y0 is the disease-free yield, Lp is the potential yield loss in tonnes / hectare 

without control and Kp is the percentage potential loss from the disease (Murray & 

Brennan 2009). 

Potential quality loss is calculated as: 

Qp = DpYp    (2) 

where Qp is the value of current quality losses and Dp is the price discount in dollars 

per tonne (Murray & Brennan 2009). These estimations assume no interaction between 

diseases. 

Losses in barley were calculated from the equations above and were reported at 9.5, 

2.5 and 2.6% of yield in the Northern, Southern and Western regions, respectively 

from Fp (Murray & Brennan 2010). However, potential losses are as high as 34.3, 10.8 

and 13.8% of total yield in years when disease develops (Murray & Brennan 2010). 

The overall yield impact of CR induced by each of the pathogens Fc and Fp is similar 

on a per-plant basis (Hollaway et al. 2013). 
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Fig. 2: Australian grains growing regions (GRDC). 

1.1.2 DISEASE CYCLE 

Understanding the CR disease cycle is necessary to identify potential opportunities for 

novel automated sensor detection. Fp infections in wheat are monocyclic during the 

growing season, motivating the classification of CR as a polyetic disease, a disease 

influenced directly by incidence in the preceding season (Backhouse 2006). The 

primary inoculation source for CR infection in wheat is fungal hyphae fragments in 

grass or cereal debris that come into contact with the sub-crown internode, crown, 

roots or stem (Burgess et al. 1993). After contact, the fungus begins to colonise the 

plant tissue from the local area of infection, moving to the stem, leaf sheaths and crown 

tissue (Klein et al. 1988). CR infection can occur at any stage in plant development, 

dependent upon moisture and contact with host debris. However, as CR is progressive, 

early infections often result in greater disease development in conducive seasons. This 

is an important consideration for machine-vision system development, as it indicates 

that early detection is preferable if possible. The lifecycle of Fc is not fully understood. 
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However, CR disease caused by Fc has been reported to progress in a similar way to 

disease caused by Fp (Knight et al. 2017). In wheat an ABC transporter protein is 

required for development of disease from Fc which may be important to consider when 

envisioning possible novel CR detection systems, as it is hypothesised that this protein 

plays a role in conveying resistance to a potential antifungal compound that wheat 

synthesises in response to infection by removing the compound from infected cells 

(Skov et al. 2004). This molecular response could potentially be used to detect CR 

before visible symptoms become apparent using spectral responses indicative of 

molecular changes brought upon by infection with a Fusarium pathogen. Molecular 

changes have been previously reported to be distinguishable between healthy and 

Fusarium damaged wheat kernels using near-infrared spectroscopy (Peiris et al. 2009). 

While there is no documented role of asexual macroconidia or sexual ascospores as a 

source of primary inoculum, or otherwise, macroconidia can be used to quickly 

determine whether the source of infection is Fc, as its macroconidia are generally less 

elongate than those of Fg or Fp (Leslie & Summerell 2006; Alahmad et al. 2018). 

However, Fg and Fp are morphologically identical and, as such, are often confused 

(Fig. 3) (Leslie & Summerell 2006). 

 

 

Fig. 3: Macroconidia. (a) F. graminearum, (b) F. pseudograminearum and (c) F. 

culmorum. Scale bar = 25 µm.  Adapted from: (Backhouse & Burgess 2002). 
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1.1.3 IDENTIFICATION OF SIGNS AND SYMPTOMS 

In seedlings, severe early CR infection can result in pre-emergence necrosis or 

seedling blight (Percy et al. 2012). Seedlings begin to form necrotic lesions basally, 

with lesions appearing on the coleoptile, subcrown internode and basal leaf sheaths 

(Purss 1969). 

Traditionally, CR is identified between flowering and maturity by the presence of stem 

browning and the appearance of whiteheads, dead grain heads caused by early 

senescing culms which can be identified by the premature loss of colour of 

inflorescence (Klein et al. 1991; Hollaway et al. 2013; Knight et al. 2017; Knight et 

al. 2020). CR lesions can be identified by their honey-brown colour, often in 

association with whiteheads, with reports out of Victoria, Australia of 2–3% of heads 

affected on average (Hollaway & Exell 2010).  

Disease predictive modeling has been used to facilitate CR management options. 

Backhouse reported on a study of long-term trials in Moree, NSW and Billa Billa, 

QLD, Australia, that CR infection rates were positively correlated to yield and rainfall 

in the previous season and negatively correlated to rainfall in the summer fallows 

(2006). Backhouse noted that the negative correlation in the summer fallows may be 

due to increased decomposition brought on by the increased rainfall, effectively 

removing inoculum from the system. Using this approach, a CR forecasting model was 

developed (Backhouse 2006). It has been reported more recently with a twelve year 

survey of 957 wheat crops in western Victoria, Australia that disease severity of CR 

induced by Fc and Fp was negatively associated with rainfall (Hollaway & Exell 

2010). However, this was only reported across two regions, Western District and 

Wimmera. As CR is residue-borne, spatiotemporal modeling of disease dispersal and 

advancement may be possible, particularly in no-till farming systems, while other 

dispersal methods (i.e. ascospores, conidia) may be important for modeling movement 

in low incidence scenarios (Backhouse 2014). 

Incorporating the results of quantitative fungal DNA soil tests like PREDICTA® B 

(Ophel-Keller et al. 2008) into predictive models may be beneficial in making 

decisions that impact the effectiveness of any disease control measures considered. 

However, this technology is most effectively used to measure pathogen levels in the 
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soil prior to planting and further benefit may come from developing machine vision 

solutions for quantification in-season. 

1.1.4 CONTROLLING THE DISEASE 

Rotating into a non-host crop has been shown repeatedly to be effective at reducing 

CR incidence (Burgess et al. 1996; Lamprecht et al. 2006; Evans et al. 2010). 

However, several years are required in a non-host crop to effectively eliminate the 

pathogen (Wildermuth et al. 1997). Where prolonged rotation with a non-host crop is 

not feasible, stubble burning and soil solarisation have been demonstrated to reduce 

inoculum levels. (Summerell et al. 1989; Burgess et al. 1996; Saremi et al. 2011).  

Another promising option for managing CR inoculum levels in the paddock is inter-

row sowing. As CR develops through infection with Fusarium spp. that requires close 

contact between the host crop and previous stubble remains, inter-row sowing can 

reduce paddock CR build up by providing a buffer between the inoculum from the 

previous crop and a new crop (Simpfendorfer et al. 2012). However, inter-row sowing 

is only feasible in the short term and if CR is allowed to develop, few control options 

currently exist. 

In-season CR control is currently not commercially available, however targeted 

fungicide approaches have shown potential for yield benefits. Improvements of 5–15% 

in retained yield were reported across 22 sites when fungicide was applied at the base 

of plant tillers. This was achieved using inter-row droppers with angled nozzles to 

target the pathogen more effectively than foliar applications (Simpfendorfer, cited in. 

Simpfendorfer et al. 2019). This approach is likely not widely adopted due to the cost 

to benefit risks involved for a minor (5–15%) yield improvement. As new fungicide 

modes of action are developed, in-season treatment may become more beneficial and 

cost-effective. A novel treatment for the reduction of CR inoculum levels is the use of 

microwave radiation (Petronaitis et al. 2018). Success in reducing inoculum recovery 

to 0% was established in the laboratory, however this method has not been established 

for use in the field and the practicality of such a method has not been determined. 

Incorporating real-time machine vision solutions into current and emerging integrated 

CR control strategies could potentially reduce the cost of treatment application by 

targeting control to only affected areas of the paddock, increasing the cost-

effectiveness of treatments. 
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With current control options focused on pre-season management, the development of 

resistance and tolerance in high yielding germplasm is important to reduce the impact 

of CR as it becomes more prevalent in Australia and international cereal growing 

regions. Currently, breeding programs need to screen high volumes of germplasm at 

maturity in order to obtain yield data for tolerance measures (Kelly et al. 2016; 

Forknall et al. 2019). A machine-vision high-throughput phenotyping (HTP) platform 

could increase germplasm development efficiency over traditional methods and will 

be discussed in depth in the following section. 

1.1.5 DEVELOPING RESISTANCE AND TOLERANCE 

Breeding programs must effectively and efficiently screen for new material that is both 

resistant and tolerant to CR. Tolerance is the ability of a plant to limit yield loss while 

under disease pressure, whereas resistance is the ability of a plant to limit the infection 

of the pathogen causing the disease (Forknall et al. 2019). Both resistance and 

tolerance are important in breeding programs, as the final goal is not only to limit 

infection but to maximise yield, in the presence of disease.  

Several recent developments have increased efficiency of CR resistance and tolerance 

breeding. Novel screening bioassays have been developed to select lines with 

resistance to CR more rapidly than in field programs (Wallwork et al. 2004; Mitter et 

al. 2006). Further developments have been made to optimise CR scoring between 

genotypes, with a study by Percy et al. (2012) examining CR scoring versus fungal 

colonisation indicating that visible symptoms are closely correlated to the spread of 

the fungus. This study further demonstrated that differences between genotypes could 

be more accurately assessed using the most recently expanded leaf sheaths, as the 

fungus appears to colonise these tissues both vertically and laterally (Percy et al. 2012). 

This research has been extended to improve sampling strategies in the selection of 

resistance in the field (Macdonald et al. 2016). 

However, screening for resistance and tolerance to CR remains time and capital 

consuming as well as labour intensive, as germplasm must be grown to maturity before 

being harvested, stored, sampled, cleaned and then examined by trained assessors. 

Further, human plant disease assessment has been reported to be significantly variable, 

both between assessors and between plant material scored by individual assessors, as 

such, tools to increase effectiveness and decrease variability should be examined 
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(Nutter Jr et al. 1993; Newton & Hackett 1994; Nutter 1997). One such approach is 

the use of machine-vision and machine-learning technologies in the development of 

an HTP methodology to assist breeders in effective germplasm delivery. 

The development of a machine-vision based HTP methodology for resistance and 

tolerance would allow for only germplasm with the most effective defense 

mechanisms against or tolerance of CR to move forward in breeding programs. This 

would free capital and resources for investment into additional material, increasing 

breeding productivity and delivering effective lines to growers quickly. 

Improvements in screening have been beneficial in producing new germplasm more 

quickly than ever before (Wallwork et al. 2004; Mitter et al. 2006; Percy et al. 2012; 

Macdonald et al. 2016). Incorporating machine sensing technologies into these 

pipelines could assist breeders in further increasing productivity while reducing costs.  

Machine vision developments for crop disease detection are detailed in the literature 

review in Chapter 2. 

2.1 FORMAT OF THESIS 

The following chapters enclosed in this thesis are presented as a series of papers 

evolving in complexity of analysis of wheat CR detection and quantification. This 

presentation was selected as papers are intended for submission. Due to this formatting 

decision some sections may be repeated to differing degrees across chapters, including 

experimental design, materials and methods. A glossary containing domain specific 

terms is presented in Appendix A. 

2.2 THESIS OUTLINE 

Chapter 1 introduces CR and provides an overview of CR biology, impact and issues. 

CR control measures are discussed. The format of the thesis and the thesis outline is 

provided. 

Chapter 2 provides a literature review around existing spectral sensing technologies 

and data analysis algorithms. An emphasis is placed on plant disease detection, 

specifically around early disease detection and machine learning-based analysis 

approaches. 

Chapter 3 outlines the development of specific models for CR detection from 

individual datasets. Datasets incorporated three glasshouse and two field trials, 
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spanning two years. An overview of the trials used for each chapter is included in 

Appendix B. The impact of traditional 80-20% train-test splits and the relatively 

smaller 20-80% train-test splits for machine learning training was evaluated to 

determine if benefit could be derived from smaller splits. Additional tables and figures 

for Chapters 3, 4 and 6 are included in Appendix C. An overview of the developed 

code for Chapters 3–8 is provided in Appendix D. Code files are available upon 

request. 

Chapter 4 outlines the development of general models for CR detection from 

combined data (i.e. data from multiple locations and timepoints). Datasets 

incorporated three glasshouse and two field trials, spanning two years. The impact of 

traditional 80-20% train-test splits and small 20-80% train-test splits was evaluated to 

determine if benefit could be derived from smaller splits when developing generalised 

models. 

Chapter 5 evaluates the impact of plant feature location (i.e. tiller, centre, flag, head) 

in relation to the sensor on CR detection. Temporal impacts on CR detection were also 

evaluated. 

Chapter 6 outlines the development of models for CR quantification. A multilayer 

perceptron artificial neural network is trained on six rating systems to evaluate the 

potential for CR quantification for use in high-throughput phenotyping of CR. Datasets 

incorporated three glasshouse and two field trials, spanning two years. 

Chapter 7 outlines the development of camera-based models for CR detection. Multi-

input convolutional neural networks were developed for the detection of CR using five 

bands in the near-infrared spectrum. A glasshouse trial in 2019 was used to develop 

the models. 

Chapter 8 outlines the development of camera-based models for CR quantification. 

Multi-input convolutional neural networks were developed for the quantification of 

CR using combinations of five bands in the near-infrared spectrum to enable image-

based high-throughput phenotyping of CR.  A glasshouse trial in 2019 was used to 

develop the models. 
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Chapter 9 provides a discussion of the conclusions drawn from each of the previous 

chapters. Chapter 9 also presents a discussion around the opportunities for future 

research in this domain.
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CHAPTER 2: LITERATURE REVIEW 

Historically, plant disease identification has been the responsibility of human 

assessors. Yet, human data collection is known to show variability, particularly 

between assessors, and therefore, accuracy can vary significantly (Nutter Jr et al. 1993; 

Newton & Hackett 1994). The inter-assessor variation commonly seen in agriculture 

is likely due to imperfect scoring systems that leave ratings open to interpretation. This 

makes it highly unlikely that two assessors will score a plant identically with high 

repeatability. However, there are indications for the use of multiple sensor arrays to 

distinguish disease. If used in combination with novel processing algorithms, machine 

vision has the potential to improve upon and assist traditional human visual 

assessment. 

This literature review aims to review the state of current technologies available not 

only to detect and discriminate crop disease, but to phenotype disease impact by 

successfully quantifying crop disease. Further, this review aims to expand the focus 

on foliar disease detection and quantification, to examine how previous research across 

crop disease domains can inform a disease detection and quantification methodology 

for visibly asymptomatic or low-symptomatic crop disease evaluation, such diseases 

including soil and stubble-borne fungal pathogens. Specifically, the review will outline 

current sensing technologies using both reflected and emitted waves in the 

electromagnetic spectrum. It will cover available sensors and tested approaches for 

disease discrimination and phenotyping, as well as, compare and evaluate the literature 

around traditional and machine-learning based data analysis approaches for evaluating 

crop disease data obtained from these sensors. Data analysis techniques for both 

multispectral and hyperspectral data will be discussed. Ultimately, this review aims to 

provide considerations for the development and deployment of a successful machine-

vision system for the detection and quantification of visibly asymptomatic plant 

disease. Such a system should ideally provide early, accurate, repeatable disease 

detection while remaining cost effective. 

Remote sensing is “the use of reflected and emitted energy to measure the physical 

properties of distant objects and their surroundings” (Moore 1979). Remote sensing 

began before World War I, with the advent of photography and has evolved to include 

what today are considered machine vision systems (Moore 1979). Since that time, 
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remote sensing has evolved to encompass the visible, red, green and blue (RGB) 

wavelengths to the ultraviolet, near-infrared, shortwave-infrared and thermal 

wavelengths, with sensor technologies evolving into multispectral and hyperspectral 

systems.  

In the following sections, the reflectance-based techniques available in the traditional 

visible spectrum, the near-infrared (encompassing the shortwave-infrared), ultraviolet, 

and the thermal infrared spectrum will be discussed in relation to potential use in the 

detection of CR disease caused by Fusarium spp. Additionally, the use of 

combinations of wavebands from these portions of the spectrum will be discussed in 

relation to hyperspectral and multispectral sensing technologies. Traditional and 

wavelet analysis techniques for feature extraction, data compression and the general 

utilisation of spectral data will be evaluated. Finally, the significance of this study will 

be discussed, and the aims and objectives of the project stated. 

1.1 ELECTROMAGNETIC SENSING 

Ultraviolet, visible, near-infrared, shortwave infrared and thermal portions of the 

electromagnetic spectrum have been reported to be related to plant health and 

physiology. Healthy plant canopies have been reported to have a low reflectance in the 

visible spectrum, due to radiation absorption by photosynthetic molecules. This 

reflectance increases dramatically in the near-infrared range, caused by light scattering 

at the air-cell barrier of the internal tissue. When reflectance in the shortwave infrared 

range is observed, values decrease, primarily due to absorption by water and organic 

molecules (Woolley 1971; Jacquemoud & Ustin 2001). 

1.1.1 RGB SENSING 

The most rudimentary remote sensing techniques rely on traditional grayscale or red-

green-blue photography (RGB), and have shown promise for detection of visible plant 

disease symptoms in conjunction with increasingly robust analytical platforms 

(Camargo & Smith 2009). These combinations of complementary technologies and 

techniques have been shown to be useful in a variety of potentially commercial 

applications, from outperforming experts in lesion estimation and counting to 

calculating necrotic/chlorotic leaf area (Bock et al. 2008). Further, RGB sensors are 

cost effective. Additional applications include selecting weeds for automatic spot 

spraying applications, using colour thresholding and texture analysis (Rees et al. 2009) 
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and distinguishing diseased tissue from cell-phone images, through extraction of 

texture-based features and gradient magnitude patterns (Neumann et al. 2014). Using 

RGB sensors in concert can expand potential applications. Utilising data fusion 

techniques, incorporating two 5 megapixel RGB cameras and a daylight artificial 

illumination source, tulip bulbs infected with Tulip Breaking Virus have been sorted 

automatically, with high accuracy (Polder et al. 2014). Although RGB sensing has 

been successfully applied to various agricultural applications, it is unlikely to be 

suitable for visibly asymptomatic or pre-symptomatic disease detection as applications 

in disease discrimination rely on changes in pigment levels, changes synonymous with 

visible disease symptoms. Additionally, many soil and stubble-borne diseases can 

exhibit symptoms that are difficult to detect through the crop canopy, often requiring 

removal from the soil for assessment. 

1.1.2 ULTRAVIOLET 

Ultraviolet (UV) light waves are shorter than visible light waves, with wavelengths 

below 400 nm. Plants have varying ability to utilise UV light, usually correlated to 

their natural environment, with plants at higher altitudes often utilising UV light 

differently, having evolved to survive with less atmospheric protection. One constant 

is that higher the carotenoid/chlorophyll-a ratio of the plant tissue, the lower the UV 

reflectance and the higher the absorption of that tissue (Filella & Peñuelas 1999). It 

has been hypothesised that the hyperspectral carotenoid/chlorophyll-a ratio could be a 

viable indicator of nutritional value of tall fescue (Festuca arundinacea) (Yang et al. 

2010). As chlorophyll-a is detectable in the visible spectrum, plant disease with few 

or without visible symptoms may be more difficult to detect using any technique 

incorporating visible light. This could provide a barrier to early detection. 

While it has previously been reported that leaf reflectance in the UV spectrum is low 

and generally uniform (Knipling, 1970), it has more recently been demonstrated that 

glaucous (waxy) leaf surface waxes are very effective reflectors of both UV and longer 

wavelength light and exhibit significantly higher reflectance when compared to hairy 

and hairless leaves (Holmes & Keiller 2002). This waxy epidermis has also been 

reported to be positively correlated with increased exposure to UV light (Kakani et al. 

2003, Steinmüller & Tevini, 1985). As most UV photons are intercepted by the leaf 

epidermis (Rundel, 1983), and the epidermis is a likely entry-point for disease, UV 

reflectance may be a viable indicator of plant disease. 
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However, the impact of disease on these pigments, measured in the UV spectrum, has 

not been deeply investigated, so the impact upon UV reflectance should be considered 

in future disease discrimination and quantification work. 

1.1.3 THERMAL INFRARED 

New advances in machine sensing and analysis have allowed thermal imaging to be 

used in agricultural industries. One such application is the visualisation of stomatal 

closure, an indicator of drought, using infrared thermography (IRT) (Jones et al. 2002). 

Drought phenotyping using thermal infrared as an indicator for water stress has been 

reported (Buitrago et al. 2016, Jones et al. 2009). Thermal infrared spectroscopy has 

also been reported as an important indicator of plant transpiration (Hou et al. 2019, 

Tian et al. 2014). However, most current data indicates that IRT, alone, is not enough 

to distinguish a localised rise in temperature and associate it with a stressor at the 

canopy level (Oerke et al. 2006; Lenthe et al. 2007). However, on a microscopic scale, 

Oerke was able to detect an increase in the maximum temperature difference (MTD) 

in leaves infected with apple scab, allowing for disease quantification, indicating 

potential for use in the early stages of resistance breeding pipelines. Oerke (2011) also 

reported differences in scab intensities as the disease progressed but indicated that 

infrared thermography must be used in conjunction with other data, if disease 

identification is desired. Nevertheless, MTD may show potential for early screening 

of resistant cultivars. 

It has been reported that thermal infrared sensing can be used to discriminate between 

a variety of leaf chemical components both in deciduous tree and agricultural plant 

species (Riberro da Luz & Crowley, 2007). A thermal infrared sensor with a range of 

2,500–15,380 nm was used to successfully discriminate differences between natural 

background and leaves and to identify cellulose, cutic, silica, xylan and oleanolic acid, 

important leaf chemical components. It was suggested that for successful identification 

at this scale a thermal infrared sensor needs to have a high signal-to-noise ratio and a 

small instantaneous field of view. 

1.1.4 CHLOROPHYLL FLUORESCENCE IMAGING 

A novel machine vision approach is chlorophyll fluorescence imaging (Ch-FI) which 

has been shown to reveal cell death, with greater contrast and earlier than other systems 

(Chaerle et al. 2004; Chaerle et al. 2007) and to correctly identify resistance to downy 
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mildew (Bremia lactucae) in lettuce cultivars (Bauriegel & Herppich 2014). However, 

the high energy source required to excite the tissue indicates this technique is unlikely 

to be practically successful in field or airborne applications. 

An emerging approach in Ch-FI is passive solar induced chlorophyll fluorescence 

imaging (SIF). SIF is an indicator of the photosynthetic process itself and not of a 

chlorophyll response (Meroni et al. 2009) and does not require the high energy source 

of traditional Ch-FI. This could be useful in crop disease detection as a fluorescence 

response could potentially be measured before a visible stress indicator presents itself 

(e.g. chlorophyll reduction) enabling earlier stress detection than reflectance alone 

(Entcheva et al. 2008). It has been reported that fluorescence is positively correlated 

(declines) with photosynthesis in high stress conditions (Van der Tol et al. 2009). 

The fluorescence (F) signal can be interpreted using either radiance or reflectance-

based measurements (Meroni et al. 2009). Radiance measurements can be recorded in 

either physical or auxiliary units and exploit Fraunhofer lines (Meroni et al. 2009). 

Fraunhofer lines are narrow dark lines of the solar and atmospheric spectrum where 

irradiance is strongly reduced. The three main Fraunhofer lines exploited for use in 

SIF are the hydrogen (H) absorption line, centered at 656.4 nm and two oxygen (O2) 

absorption lines, centered at 687.0 and 760.4 nm (Meroni et al. 2009). Reflectance-

based approaches for measuring SIF use reflectance indices related to F but cannot 

report physical or auxiliary units. These indices use relationships focusing on the effect 

of F on the red-edge area of the spectrum (650–800 nm). Most of these indices require 

2–3 narrow channels to develop a relationship to F, instead of exploiting Fraunhofer 

lines (Meroni et al. 2009). 

Very little work has been reported in successful detection of crop disease using SIF. 

However, several parties have reported success in water stress detection using both 

ground-based (Stellmes et al. 2007, Evain et al. 2002, Mcfarlane et al. 1980) and 

airborne systems (Zarco-Tejada et al. 2009). Further, success has been reported in 

ground-based detection of herbicide stress (Carter et al. 2004, 1996) and airborne 

nitrogen (N) stress (Corp et al. 2006). When using a fusion of SIF and reflectance 

spectroscopy for the detection of wheat stripe rust, a correlation of determination of 

0.89 was reported (Jing & Bai 2019). Many of the studies using SIF for stress detection 

are in the early stages and are often limited to the capability of a particular method or 

sensor (Meroni et al. 2009). 
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1.1.5 MULTISPECTRAL 

Multispectral imaging takes an array of readings of light at multiple bands of 

wavelengths across the electromagnetic spectrum. Typically, these sensors record 

reflected light at the pixel level in 3 to 15 separate bands. Multispectral sensors show 

promise in distinguishing stressors by analysing differences in reflectance patterns at 

multiple wavelengths. Several research parties have observed unique reflectance 

patterns in different model systems (Steddom et al. 2005; Franke & Menz 2007; Polder 

et al. 2014). However, Carter and Knapp (2001) reported that relying on chlorophyll 

concentrations alone to screen between plant stresses would be difficult and unlikely 

to be plausible. Though, they did notice significant changes in reflectance in the 548–

599 nm and 701–723 nm ranges, when observing leaf optical chlorophyll stress 

responses in five plant species (sweetgum (Liquidambar styraciflua L.), red maple 

(Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), switchcane (Arundinaria 

gigantea (Walter) Muhl.), and longleaf pine (Pinus palustris Miller)) and stress 

responses simulated in vitro by adding chlorophyll a + b solutions of sequentially 

decreasing concentrations to fiberglass filter pads, indicating these ranges may be 

closely related to senescence responses in plant physiological systems.  

In 2005, Steddom observed that when individual wavebands and vegetative indices 

calculated from those wavebands, obtained from a multispectral radiometer were 

compared with visual disease estimates from human assessors, precision was improved 

for all indices and wavebands, versus human discrimination, when assessing the 

severity of Cercospora beticola (leaf spot) on sugar beet. Steddom reports the 

improvement is likely due to visual estimates of disease severity often being 

overestimated when infections are small, in addition to the learning curve required for 

human assessment of crop disease to become repeatably accurate (Sherwood et al. 

1983; Nutter 1997; Steddom et al. 2005). Additional success of multispectral systems 

has been reported in the classification of Tulip Breaking Virus, using multiple bands 

in the visible spectrum, with results reported to be comparable to human experts 

(Polder et al. 2014).  

There is evidence for potential in-field applications utilising multispectral sensors 

derived from hyperspectral sensing systems (Bravo et al. 2003; Huang et al. 2007). 

Bravo evaluated yellow rust (Puccinia striiformis) of wheat at boom-height (~1 m), in 

the field, using hyperspectral data in the visible spectrum and reported that 
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classification error was as low as 4%, down from 12%, when sensing was combined 

with irradiance normalisation and a spatially moving average. Using quadratic 

discrimination based on the Bayesian decision rule where an object is classified 

dependent on which class maximises the posterior probability  to select bands, the 

group was able to replace the spectrum with four selected bands, with no loss of 

performance (Bravo et al. 2003). This derivation of bands was replicated in 2011 

where it was indicated that detection of powdery mildew (Blumeria graminis f. sp. 

hordei) in wheat was possible using 13 extracted bands (Mewes et al. 2011). Retaining 

disease detection and quantification assessment accuracy, while reducing the total 

number of features examined allows for decreased processing time and lower sensor 

cost as hyperspectral bands of interest can be replicated in a multispectral system, 

using spaced bands at specific wavelengths. This derivation of important hyperspectral 

features from diseased crops for the use in low-cost multispectral sensors for disease 

detection and quantification will begin to be evaluated in this PhD thesis and should 

be further developed in future studies. 

Further to ground and airborne-based sensing approaches, multispectral imaging lends 

itself to space-based approaches due to the limited number of bands needed for 

sensing. Fewer bands equate to fewer required sensors, allowing smaller imaging 

devices. Smaller devices are important in space-based systems due to cost limitations 

with sending larger payloads into space. Space-based multispectral imaging was 

included in some of the earliest space-based imaging platforms, such as the Landsat 

program (Williams et al. 2006). However, like most evolving technologies, there are 

challenges when using these technologies at this scale. One study used QuickBird, a 

now decommissioned imaging satellite, and calculated the normalised difference 

vegetation index (NDVI) to detect early infections of powdery mildew (Blumeria 

graminis) and leaf rust (Puccinia recondita) in winter wheat (Franke & Menz 2007). 

However, the researchers were only able to determine moderate suitability for the early 

detection of crop disease using this satellite system, as the images captured had a low 

spatial resolution of approximately 2.4 m. Garcia-Ruiz found that diseased versus 

healthy plant classification accuracy was greater in high-resolution, drone data (5.45 

cm/pix), in comparison to lower resolution, aircraft data (0.5 m/pix) (Garcia-Ruiz et 

al. 2013). Therefore, to readily detect early crop disease infestations, the spatial 

resolution likely must be closer to the individual plant level. Further, attempting to 
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discriminate between plant stressors at low resolution would be considerably difficult 

using vegetation indices as they are seldom stress specific. 

1.1.6 HYPERSPECTRAL 

Hyperspectral imaging aims to resolve the fine spectral variations that may be 

indicative of stress (i.e. disease detection). These variations may not be resolved when 

using fewer, broad bands, as with multispectral imaging. To accomplish this 

hyperspectral sensors obtain hundreds of largely contiguous wavebands, while 

multispectral sensors record fewer spaced bands; this distinction often means 

hyperspectral system data has significantly higher volume than multispectral sensing 

system data (Hagen & Kudenov 2013). The amount of data generated by hyperspectral 

systems can cause post-processing to be a computational challenge. Hyperspectral 

systems typically employ visible to near-infrared (VIS-NIR) spectral bands, therefore 

hyperspectral literature primarily comprises visible and NIR sensing. Visible and near-

infrared hyperspectral applications and computational considerations will be examined 

in this review.  

The near-infrared (NIR) spectrum (roughly 750–2500 nm) includes wavelengths 

outside of the range visible to the human eye. Reflectance in the NIR spectrum has 

been reported to correlate to plant starches, proteins and water content, among other 

molecules (Kumar et al. 2002). This correlation makes the NIR spectrum a good 

candidate for the detection and discrimination of plant stresses, particularly early in 

the disease cycle, before visible symptoms begin to appear or in cases where the 

stresses exhibit few visible symptoms, are altogether visibly asymptomatic or are 

difficult to detect through the crop canopy. It was demonstrated in 2017 that disease 

symptoms of powdery mildew (Blumeria graminis f. sp. hordei) on barley could be 

detected two days before symptoms appeared visually, using VIS-NIR reflectance 

wavelengths recorded with a hyperspectral sensor (Thomas et al. 2017). Pre-

symptomatic detection may be important in developing detection mechanisms for soil 

or stubble-borne diseases, such as CR, which oftentimes exhibit few visual symptoms. 

Additionally, this relationship between NIR reflectance and molecular composition 

allows for applications such as nutrient measurement and plant tissue quality analysis, 

such as cotton fibre quality assessment to be performed using spectroscopy, 

complementing genetic techniques (Chen et al. 2002; Sui et al. 2008). 
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Hyperspectral line scanners have allowed for accurate leaf transmittance, reflectance 

and disease mapping. However, the high cost associated with these sensors has 

prohibited adoption (Bergsträsser et al. 2015). Recent research comparing a 

hyperspectral line scanner to a novel multispectral camera has determined that 

narrowband LEDs and silicon complementary metal-oxide semiconductor (C-MOS) 

imaging detectors could be used for disease detection of powdery mildew (Blumeria 

graminis f. sp. hordei) in barley and Cercospora leaf spot (Cercospora beticola) in 

sugar beet, in place of line scanners, cutting the prohibitive costs associated with these 

devices (Grieve et al. 2015). However, in addition to requiring close proximity (1–2 

m), the authors report a scan time for the new system of “typically…less than a minute 

for a 3 component SVI” (spectral vegetation index), which would require significant 

post-processing to achieve sufficient overlay of individual LED cycles in the field. 

Moreover, each additional SVI component would increase full-cycle time. While cost-

effective, these novel sensing systems need to be further developed to replace current 

field devices. 

Disease detection with hyperspectral sensors has been successful in laboratory, 

glasshouse and field systems. In 2007 it was reported that the use of multiple narrow 

bands at close proximity, in the NIR-SWIR range (1350–1750 nm and 2200–2500 nm), 

were capable of the discrimination of infection of apple scab (Venturia inaequalis) 

from healthy leaves, immediately after infection (c-values > 0.8) (Delalieux et al. 

2007). Bands in the VIS spectrum (650–700 nm) became more important after 

infection was fully established at three weeks (c-values > 0.8), indicating the 

importance of temporal patterning in crop disease detection (Delalieux et al. 2007). In 

addition, Mahlein et al. (2010; 2013) were able to detect symptoms of three different 

diseases, Cercospora leaf spot (Cercospora beticola), powdery mildew (Erysiphe 

betae) and rust (Uromyces betae) on sugar beet, with results suggesting potential to 

differentiate between diseases by using combinations of two or more spectral 

vegetation indices.  

Fewer studies have been completed using airborne hyperspectral data. However, 

potential exists for the use of spectral vegetation indices in airborne applications. 

Huang saw potential in using the PRI (photochemical reflectance index) on airborne 

hyperspectral data in order to discriminate wheat infected with yellow rust (Biotroph 

Puccinia striiformis) under field conditions (Huang et al. 2007). In 2011, the influence 
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of resolution on hyperspectral data was evaluated. Images of an infection of powdery 

mildew (Blumeria graminis) in wheat were obtained using an aerial hyperspectral 

sensor, the Integrated Spectronics, HyMap™ (450–2500 nm, 5 m resolution). 

Hyperspectral data was processed using Spectral Angle Mapper (SAM) and Support 

Vector Machine (SVM) classifiers. It was concluded that adequate fungal detection 

was possible using 13 of 109 possible wavebands, showing potential for the detection 

of crop disease using models incorporating few wavebands (Mewes et al. 2011). The 

large amount of data acquired, and the cost associated with many of these sensors may 

be prohibitory for widespread technology adoption. To reduce the burden of 

processing hyperspectral data, transformation techniques should be investigated. 

2.1 DISEASE DISCRIMINATION – DATA TRANSFORMATIONS 

Successful machine vision systems rely on more than high resolution optics. The 

analysis of data, particularly regarding feature and model selection can impact the 

discriminatory capability of a system. For instance, hyperspectral imaging is likely 

important for the resolution it provides for crop disease detection. However, data 

processing is often burdensome. Data transformation techniques such as the discrete 

wavelet transform (DWT) and principal component analysis (PCA) may enable the 

practical use of hyperspectral data. In the following sections several data 

transformation techniques will be reviewed with a focus on detection system 

optimisation, evaluating feature selection and data reduction methods, including 

spectral vegetation indices, principal component analysis and wavelet transformations. 

2.1.1 SPECTRAL VEGETATION INDICES  

Post-processing algorithms for multispectral and hyperspectral data analysis greatly 

affect the way data are viewed and interpreted. Some of the most commonly used are 

spectral vegetation indices (SVIs). The use of SVIs may enable the resolution of crop 

disease features that cannot be detected at the resolution available from individual 

bands. SVIs can provide additional information to what is seen using individual bands 

by determining relationships between bands. Further, SVIs may enable the use of 

satellite data for stress detection. Widely used SVIs are NDVI (normalised difference 

vegetation index), ARVI (atmospherically resistant vegetation index), SAVI (soil-

adjusted vegetation index), and VARI (visible atmospherically resistant index) with 

new indices consistently being developed and older indices improved (Gitelson et al. 

2002) (Table 1). Different SVIs are developed to discriminate different materials, such 
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as, soil from foliage or water stressed foliage from hydrated foliage. This 

discrimination is achieved using large differences in specific spectral bands between 

materials. These differences are used to create indices which can be used to quantify 

the variation between the materials. 

Table 1: Spectral Vegetation Indices 

Index Equation Reference 

Anthocyanin Reflectance Index 𝐴𝑅𝐼 = (
1

𝑅550
) − (

1

𝑅700
) (Gitelson et al. 2001) 

Atmospherically Resistant 

Vegetation Index 
𝐴𝑅𝑉𝐼 =  (−0.18 + 1.17) 𝑁𝐷𝑉𝐼 

(Kaufman & Tanre 

1992) 

Normalised Difference Vegetation 

Index 
𝑁𝐷𝑉𝐼 =  

𝑅800 − 𝑅670

𝑅800 + 𝑅670
 (Rouse Jr et al. 1974) 

Physiological Reflectance Index 𝑃𝑅𝐼 =  
𝑝531 − 𝑝570

𝑝531 + 𝑝570
 (Gamon et al. 1992) 

Soil-Adjusted Vegetation Index 𝑆𝐴𝑉𝐼 =  
(1 + 𝐿)(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)
 (Huete 1988) 

Structure Independent Pigment 

Index 
𝑆𝐼𝑃𝐼 =  

(𝑅800 − 𝑅445)

(𝑅800 + 𝑅680)
 (Penuelas et al. 1995) 

Visible Atmospherically Resistant 

Index 
𝑉𝐴𝑅𝐼 =  

𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒
 (Gitelson et al. 2002) 

 

Mahlein (2013) developed specific spectral indices from three bands, one disease 

specific band and two bands used to create a normalised reflectance difference, which 

can detect and classify leaf spot (Cercospora beticola), beet rust (Uromyces betae) and 

powdery mildew (Erysiphe betae), in sugar beet. However, more work is needed to 

determine the potential for using such a system to determine differences between 

diseases with unknown indices. It is likely that utilising combinations of input data 

will allow for stronger discrimination and classification of stresses. Mahlein also 

investigated disease discrimination using combinations of indices (2010). She found 

that it is possible to use scatter matrices of multiple spectral vegetation indices, to 

determine unique cluster orientations within a matrix, indicative of unique disease 

signatures, but commented that the potential may be better realised when 

differentiating between abiotic and biotic stresses, versus exclusively biotic stresses. 
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2.1.2 PRINCIPAL COMPONENT ANALYSIS  

Principal component analysis (PCA) is an adaptive data reduction technique used to 

reduce the data dimensionality of large datasets, while minimising information loss. 

PCA creates a series of new uncorrelated features, or principal components, that 

maximise variance contained in fewer features than the original dataset (Jolliffe & 

Cadima 2016). Several research groups have shown accurate discrimination of both 

weeds in crop stands and crop disease, using PCA in combination with machine 

learning methods (López‐Granados et al. 2008; Suzuki et al. 2008; Liu et al. 2010). It 

has been presented that PCA used in conjunction with linear discriminant analysis 

(LDA) or neural networks (NNs) outperforms equivalent models using raw spectral 

data (Suzuki et al. 2008). Further, PCA has been reported to increase the classification 

accuracy of decision tree classifiers when used as a data reduction technique in 

preprocessing (Nasution et al. 2018). PCA has also been shown to be useful in further 

reducing spectral features derived from the discrete wavelet transform (DWT) for the 

detection of visible crop fungal infections in an RGB image set (2616 images) (Pujari 

et al. 2013a). However, PCA has no regard for data labels as it creates new independent 

variables, which may impact patterns potentially important for classification 

(Behmann et al. 2015). 

2.1.3 WAVELET ANALYSIS  

The DWT (discrete wavelet transform) is a signal processing technique which allows 

for unique signal features to be identified at both local and global scales. The DWT is 

important for crop disease detection in relation to reflectance signal processing as it 

allows the resolution of crop disease features and plant responses at multiple scales. 

Further, this technique does not require additional signal smoothing as traditional 

techniques like PCA do. DWT analysis has been shown to outperform traditional data 

analysis techniques when evaluating hyperspectral data (Bruce & Li 2001; Bruce et al. 

2002; Koger et al. 2003; Ge & Thomasson 2006; Ge et al. 2007). Further, the DWT 

has been reported to provide several advantages over traditional feature selection 

techniques, including increased computational efficiency, multi-resolution capability 

and superior signal smoothing capability (Bruce et al. 2002; Ge & Thomasson 2006; 

Ge et al. 2007). The wavelet approach (1) allows feature scaling to determine the 

amount of input data that is included in each feature:  

𝜔sƒ(λ) =  ƒ(λ) ∗  ψs (λ) =  ƒ(λ)  ∗  
1

𝑠
 ψ (

λ

𝑠
)  (1) 
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           (Bruce & Li 2001) 

where ƒ(𝜆) is the hyperspectral signature, s is the scale and 𝜓𝑠 (𝜆) is the scaled wavelet 

function. This presents an advantage over traditional methods which require an 

operator derived from the smoothing operation (Bruce et al. 2002). The DWT can 

systematically vary the operator or waveband scale.  

When using the DWT in conjunction with the dyadic filter bank algorithm (Burrus et 

al. 1998), the DWT has been reported to be more computationally efficient than 

traditional data feature selection methods, which require a separate smoothing 

operation (Bruce et al. 2002; Ge et al. 2007). Further, the DWT has been reported to 

exhibit superior signal smoothing capability over both Savitzky-Golay and Fourier 

filtering (Ge & Thomasson 2006). The DWT has also been reported to use less 

regressors, or features, than traditional techniques (Ge & Thomasson 2006; Ge et al. 

2007). 

Bruce (2002) reported that often larger scale operators were more useful in 

classification than smaller operators derived from high resolution data. Therefore, 

potential exists for the development of disease specific remote sensors using wider 

wavebands determined by the DWT, for in-field disease discrimination. 

One important consideration when developing a wavelet-based feature selection 

methodology is the mother wavelet employed. As the Ricker (Ricker 1943), 

Daubechies (Daubechies 1988) and Morlet (Grossmann et al. 1990) families of 

wavelets are closer in shape to the Gaussian signal shape observed in spectral 

reflectance curves than the widely used Haar (Haar 1909) wavelet, they should be 

considered for use in crop disease detection methodologies (Ge et al. 2007). Further, 

the use of Daubechies mother wavelets has been reported to increase the classification 

accuracy of hyperspectral reflectance signatures in agricultural systems (Bruce et al. 

2002; Koger et al. 2003). 

The DWT has been reported to outperform classifiers incorporating full original 

reflectance signatures or features derived from original signatures, selected by 

traditional feature selection techniques (Bruce et al. 2002; Kempeneers et al. 2005; 

West et al. 2007). The DWT was reported to outperform the fast-Fourier transform 

(FFT) and the discrete cosine transform (DCT) by approximately 20% when 

classifying vegetation (Bruce et al. 2002).  
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Additional successful implementations of the DWT in agriculture include fungal and 

nitrogen stress detection (Kempeneers et al. 2005; West et al. 2007; Pujari et al. 2013a; 

Shi et al. 2017; Shi et al. 2018). Kempeneers et al. (2005) used reflectance values from 

420–2467 nm and DWT analysis to detect fungal and nitrogen related fruit tree stress. 

Sequential floating forward selection (SFFS) was used to extract features from wavelet 

transformed hyperspectral data. The team found that features extracted from wavelet 

transformed data performed better than features extracted from original reflectance 

features alone. However, the large original dataset required may limit the potential for 

this approach to be used in commercial sensors. West et al. (2007) utilised the DWT 

as a pre-processing step for a data fusion system. The goal was to explore the 

possibility of feature extraction and dimensionality reduction of soybean rust disease 

detection over a two-week period using a multiclassifier system. The system was 

derived from multiple wavelet decompositions at different scales. As training data are 

generally not available in quantities sufficient for all possible true features at full scale, 

the DWT was seen as an ideal candidate for reducing dimensionality.  

Further, West found that data from combined dates had less discriminatory power than 

when dates were analysed individually. It was found that as time progressed the 

accuracy increased as the disease became more widespread. This is likely to be 

consistent in other disease systems where diseases exhibit clear visible symptoms. The 

multiclassifier system performed with 89–90% accuracy, while LDA produced an 

accuracy range from 60–90%. The potential for wavelet analysis to reduce disease 

discrimination error is exhibited.  

Recently research has indicated that wavelet-based feature selection can be used to 

successfully discriminate other fungal diseases including yellow rust (Puccinia 

striiformis) and powdery mildew (Blumeria graminis) in winter wheat (Shi et al. 2017; 

Shi et al. 2018). Additionally, wavelets have been used to successfully discriminate 

and extract fungal disease regions from images of multiple crops for successful 

implementation in neural network classification, with accuracies of 86.48% (Pujari et 

al. 2013a). 

However, the DWT carries disadvantages as well. The DWT is not shift-invariant, 

meaning a shift in the input signal is not directly equal to a shift in the output wavelet 

coefficients (Bradley 2003, Bruce et al. 2002). In this instance, a shift in wavelength 

in the input signal (e.g. from 700 to 720 nm) does not necessarily equate to the same 
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magnitude of shift (e.g. 20 nm) in the output coefficients. To overcome this weakness, 

a continuous or redundant wavelet transform could be used (Ge et al. 2007). However, 

this would result in the loss of the computational efficiency provided by the DWT. 

Overall, the advantages in spectral band selection, number of features, computational 

efficiency and original curve representation outweigh the limitations of shift-variance. 

The DWT is a strong candidate for use in preprocessing hyperspectral data for crop 

disease detection and quantification and should be considered for the development of 

a wheat CR discrimination methodology.  

2.2 DISEASE DISCRIMINATION – MACHINE LEARNING 

Machine learning algorithms are a set of statistical computer algorithms that can 

interpret data through experience with the data, or without being specifically 

programmed (Mitchell 1997). In the following sections, multiple machine learning 

approaches that have been successfully applied in agriculture will be examined, with 

an emphasis on crop disease discrimination. 

2.2.1 NEURAL NETWORKS 

Neural networks (NNs) consist of layers of interconnected nodes which are inspired 

by the neural pathways that make up an animal’s biological nervous system. Each node 

acts as an individual neuron that can both transmit and receive signals from other nodes 

(Fig. 1). These machine learning methods interpret patterns from training data without 

being specifically programmed. NNs are constructed from three types of layers; an 

input layer, hidden layers and an output layer. The input layer consists of the initial 

data provided to the NN. Hidden layers are the intermediate layers of a NN, where the 

patterns are discovered. The output layer of a NN is the layer that returns the result for 

the given inputs. For each node an activation function is defined. The activation 

function determines if the node should be turned ‘on’ or ‘off’. NNs have been reported 

to be useful in plant discrimination, weed detection and plant disease identification 

(Moshou et al. 2002; Moshou et al. 2004; Burks et al. 2005; Moshou et al. 2005; 

Karimi et al. 2006; López‐Granados et al. 2008; Suzuki et al. 2008; Wang et al. 2008; 

Wu et al. 2008; Arribas et al. 2011).  
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Fig. 1: A simple neural network (Behmann et al. 2015). 

Several studies have reported success in detecting crop disease using NNs (Moshou et 

al. 2004; Moshou et al. 2005; Wang et al. 2008; Wu et al. 2008; Liu et al. 2010; 

Moshou et al. 2011). Fungal disease of rice (Oryza sativa L.) was discriminated in a 

laboratory setting using hyperspectral data (350–2500 nm) processed with PCA and a 

NN, with 91.6–100% accuracy (Liu et al. 2010). Additionally, both late blight 

(Phytophthora infestans) of tomato and fruit grey mold (Botrytis cinereas) of eggplant 

have been discriminated successfully using backpropagating NNs (BP-NN) (Wang et 

al. 2008; Wu et al. 2008). Further, in 2004 Moshou reported being able to detect yellow 

rust (Puccinia striiformis f.sp. Tritici) of wheat using a NN, from spray boom height, 

with 95–99% accuracy. Moshou again reported yellow rust detection capability in 

2005, with 94.5% accuracy, using data fusion and a self-organising neural network, 

reducing discrimination error from 16.5% to 1% and showing real-time detection 

capability. This work was translated into an equipment-based sensing system that 

allowed real-time detection of yellow rust, combining GPS, hyperspectral and 

multispectral data inputs with a NN (Moshou et al. 2011). This outcome implies 

potential for disease specific sensors to be developed for other diseases (i.e. CR). 
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2.2.2 LOGISTIC REGRESSION 

Logistic regression utilises a logistic function to model a binary dependent variable 

(0/1) (Fig. 2).  

 

Fig. 2: Logistic regression model and linear probability comparison (Liu 2018). 

Multinomial logistic regression analysis has been used to predict yellow mosaic virus 

(Geminiviridae spp.) in black gram (Vigna mungo) with 68.75% accuracy (Prabhakar 

et al. 2013). Additional work comparing k-nearest neighbors, support vector machines, 

naïve-Bayes and logistic regression for texture-based detection of three foliar diseases 

(powdery mildew, leaf spot, rust) on sunflower has been undertaken (Pinto et al. 2016). 

It was reported that logistic regression outperformed the other machine learning 

methods used with an average accuracy across diseases of 92.57%. However, logistic 

regression has not been investigated extensively for use in crop disease detection. 

Although, some use has been reported in developing disease forecast models based on 

weather patterns (Henderson et al. 2007). 

2.2.3 DECISION TREE CLASSIFIER 

Decision tree classifiers (DTCs) create models that predict target outputs from several 

input variables. Each tree “branch” or unique pathway through the classifier, 

represents a combination of features that lead to a specific target outcome class, 

conventionally called a “leaf”” (Fig. 3).  
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Fig. 3: Example of a decision tree classifier with branches representing feature 

combinations and leaves representing possible outcome classes (Sá et al. 2016). 

 

DTCs are capable of disease detection and forecasting, discrimination of weeds from 

crop stands and recognition of nitrogen (N) status (Goel et al. 2003; Yang et al. 2003; 

Yang et al. 2004; Franke & Menz 2007; Cintra et al. 2011). DTCs have been used in 

conjunction with mixture tuned matched filtering (MTMF) and NDVI to detect fungal 

infections of powdery mildew (Blumeria graminis) and leaf rust (Puccinia recondita) 

in winter wheat from aerial hyperspectral sensors, with accuracies varying temporally 

from 56.8–88.6% (Franke & Menz 2007). Novel uses of DTC in agriculture include 

residue level estimation, tillage application prediction and disease forecasting (Yang 

et al. 2003; Cintra et al. 2011).  

2.2.4 RANDOM FOREST CLASSIFIER 

Random forest classifiers (RFCs) consist of an ensemble of decision tree classifiers 

where each individual tree returns a class prediction and the class with the majority 

vote becomes the predicted output. RFCs have been used to detect both gray leaf spot 

(Cercospora spp.) and Phaeosphaeria leaf spot (Phaeosphaeria maydis) in maize 

(Adam et al. 2017; Dhau et al. 2018).  

  



CHAPTER 2. LITERATURE REVIEW 

 

30 

 

2.2.5 SUPPORT VECTOR MACHINE 

Support vector machines (SVM) are primarily a supervised learning approach which 

constructs a single or a set of hyper-planes in a high or infinite dimensional space. 

Separation between classes is based upon the division of the data by the plane (Fig. 4). 

SVM accommodates non-linear boundary definition by the use of the “kernel-trick”, 

to resolve hyperplanes by increasing the dimensionality (Hofmann, 2006). 

 

Fig. 4: Support vector machine, associated hyper-planes and classes (García-Gonzalo 

et al. 2016) 

Several research parties have reported success in using SVMs to detect various crop 

stresses, from N deficiency to weed detection to pre-symptomatic crop disease 

identification (Karimi et al. 2006; Rumpf et al. 2010; Ahmed et al. 2012; Rumpf et al. 

2012). Rumpf (2010) reported that by using multiple SVIs as inputs for a SVM, three 

sugar beet diseases could be discriminated (Cercospora leaf spot (Cercospora 

beticola), sugar beet rust (Uromyces betae), powdery mildew (Erysiphe betae)), with 

accuracies up to 97%. Of interest when detecting low-level or visibly asymptomatic 

disease, they reported the ability to detect pre-symptomatic disease with 65–90% 

accuracy, dependent upon timepoint. This suggests that temporal features and pre-

symptomatic signatures should be considered when developing a crop disease 

detection framework. 
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2.2.6 K-NEAREST NEIGHBOR 

K-nearest neighbor (KNN) classification is a non-generalised machine learning 

method. No internal model is created, but rather the method assigns classification 

based on a majority vote of the nearest points (Fig. 5).  

 

Fig. 5: Example k-nearest neighbor classifier, separating classes (‘+’ and ‘-’) for two 

unknown samples (Cheng et al. 2014). 

KNNs have been used to discriminate plant diseases with visible foliar symptoms 

(Pujari et al. 2013b; Zhang et al. 2015; Joshi & Jadhav 2016; Pinto et al. 2016; Prasad 

et al. 2016). Additionally, KNN classification has been shown to be beneficial in 

disease severity classification, with various fungal infections classified into normal (no 

disease), partial, and severe classes in mango, pomegranate and grape (Pujari et al. 

2013b). Reported accuracies achieved were greater than 94%, indicating potential for 

not only disease detection and identification, but additionally disease quantification, 

suggesting phenotyping potential. The ability to accurately quantify disease severity is 

important in developing sensing technologies to aid plant breeders in developing 

resistant germplasm. However, more work should be conducted to determine use in 

discriminating non-visible spectral features.  

2.3 DISEASE DISCRIMINATION – OVERFITTING 

A system with high accuracy and high spectral resolution, may perform differently in 

differing environments, for example, a glasshouse versus a field environment. This is 

often due to data overfitting. Overfitting occurs when modeling approaches are more 

complex than required to solve a general problem, such as using a non-linear approach 
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like an artificial neural network (ANN) with a dataset that is linear, or including 

gratuitous features which can lead to over specificity (Hawkins 2004). However, there 

are many techniques for crop disease discrimination, ranging from basic waveband 

ratios, to more complex machine learning algorithms to provide optimal disease 

detection capability for a given disease problem while minimising overfitting errors. 

3 CONCLUSIONS 

Many successful machine-vision disease detection platforms have been developed in 

glasshouse and laboratory environments (West et al. 2007; Wu et al. 2008; Mahlein et 

al. 2010; Mahlein et al. 2013; Thomas et al. 2017). However, when transferring these 

systems into field environments, additional considerations must be in place. These 

considerations include determining the optimal balance between adequate resolution 

and the ability to scale the system for detection at an operational level (Franke & Menz 

2007; Garcia-Ruiz et al. 2013). Additionally, energy requirements must be considered. 

Certain technologies are better suited to a controlled laboratory or glasshouse 

environment, such as, chlorophyll-fluorescence imaging, which takes a large amount 

of energy to operate (Chaerle et al. 2004; Chaerle et al. 2007; Bauriegel & Herppich 

2014). Another consideration is the amount of data processing required for the 

application. Field experiments and commercial applications often introduce more data 

than glasshouse or laboratory experiments. This can affect the choice in processing 

algorithms, often dependent on whether real-time detection or quantification is 

desirable or plausible. 

A majority of successful crop disease detection systems rely on bands within the VIS-

NIR range. Bands within the NIR spectrum have been reported to correlate to plant 

structural and functional molecules (starches, proteins, water, etc.) (Kumar et al. 

2002). These correlations make these wavebands good candidates for the detection and 

quantification of visibly asymptomatic plant diseases or plant diseases with few 

symptoms or where detection is desired early in the disease cycle. Visibly 

asymptomatic detection capability has been reported in barley, with powdery mildew 

(Blumeria graminis f. sp. hordei) detection occurring two days before visible 

symptoms appeared (Thomas et al. 2017). The thermal infrared spectrum has also been 

investigated for crop disease detection potential, but was reported to not be viable 

without additional sensors (e.g. multispectral, hyperspectral) (Oerke et al. 2006; 

Lenthe et al. 2007). Another potential spectrum of interest in disease detection and 
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quantification is the ultraviolet spectrum. Literature indicates that a relationship 

between bands in the UV spectrum relating to carotenoid levels and chlorophyll in the 

visible spectrum could potentially be used for disease detection (Penuelas et al. 1995; 

Yang et al. 2010). However, as this relationship relies on bands within the visible 

spectrum, it is likely not ideal for detection of many soil and stubble-borne pathogens, 

which may exhibit few visible symptoms or where visible symptoms are difficult to 

detect. 

By reducing the number of wavebands required for disease discrimination, processing 

time can be improved while also reducing overfitting errors (Bravo et al. 2003; 

Hawkins 2004; Mewes et al. 2011). Successful multispectral systems have been 

developed from hyperspectral feature derivation (Bravo et al. 2003; Mewes et al. 

2011). Further to the reduction of processing time and overfitting errors, fewer features 

equates to less expensive multispectral systems.  

While hyperspectral imaging is likely important for crop disease detection, data 

processing is often burdensome. Data transformation techniques such as the DWT and 

PCA have the potential to enable the practical use of hyperspectral data. Both PCA 

and DWTs have been reported to be successful in feature selection and data reduction 

for crop sensing systems (Bruce & Li 2001; Bruce et al. 2002; Koger et al. 2003; Ge 

& Thomasson 2006; Ge et al. 2007; Suzuki et al. 2008). The principal components in 

PCA are uncorrelated, maximising variance between components or features (Jolliffe 

& Cadima 2016). However, PCA also has no regard for data labels, which may make 

it miss important feature patterns (Behmann et al. 2015). DWTs are advantageous in 

the regard that they can produce features at both local and global scales (Bruce & Li 

2001). These larger features can be used to reduce the impact of noise across 

environments, particularly in field data. Further, DWTs have been reported to 

repeatedly outperform traditional data reduction techniques (Bruce & Li 2001; Bruce 

et al. 2002; Koger et al. 2003; Ge & Thomasson 2006; Ge et al. 2007). The ability to 

scale machine vision systems to the operation and task required is important for 

precision agriculture. Advances in and novel uses of pre-processing techniques, such 

as DWTs show potential for accurate scaling of vision systems to various agriculture 

applications (West et al. 2007; Sui et al. 2008). Feature selection and data reduction is 

only the first step in successful algorithm development. 
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Many successful crop disease detection systems rely on SVIs. However, these indices 

are often not stress or disease specific. While it has been reported that combinations of 

SVIs can be used to represent unique disease signatures, literature suggests that this 

approach is likely to be more successful in differentiating between biotic and abiotic 

stresses (Mahlein et al. 2010). However, success has been reported in creating disease 

specific SVIs (Mahlein et al. 2013). Further, the use of SVIs in successful airborne 

field applications has been reported (Huang et al. 2007). While developing specific 

SVIs for visibly asymptomatic disease is promising, disease signatures that are non-

linear may be better explained with other processing algorithms. 

Machine learning is beginning to move to the forefront of crop disease literature (Wang 

et al. 2008; Wu et al. 2008; Liu et al. 2010; Moshou et al. 2011; Heim et al. 2018; 

Heim et al. 2019). Additionally, artificial neural networks have been reported to 

improve disease detection capability when used in conjunction with PCA (Liu et al. 

2010). ANNs have been used to successfully develop a real-time, in-field disease 

detection platform for monitoring yellow rust in wheat (Moshou et al. 2011). However, 

logistic regression, support vector machines, decision tree, random forest and k-nearest 

neighbor classifiers have also all been reported to have potential in crop disease 

discrimination (Franke & Menz 2007; Rumpf et al. 2010; Prabhakar et al. 2013; Pujari 

et al. 2013a; Pujari et al. 2013b; Pinto et al. 2016; Adam et al. 2017; Dhau et al. 2018). 

Tree-based classifiers must be considered carefully, however, as they can easily fall to 

the problem of overfitting (Hawkins 2004).  

In order to develop a successful CR detection and quantification framework that can 

be further refined into a high throughput phenotyping (HTP) methodology, several 

points should be considered. Firstly, the system must be able to accurately detect low-

symptomatic stubble-borne pathogens. With correlation to plant molecular structure, 

the NIR spectrum seems the ideal candidate to examine any low-symptomatic crop 

disease. Secondly, the devised system should be able to detect infection early, in order 

to give breeding companies as much time as possible to focus breeding efforts on 

promising lines. Thirdly, the system should be able to discriminate disease, whether or 

not the relationship between disease and reflectance is linear, as such, non-linear 

methods should be investigated. Finally, developed algorithms should be as efficient 

as possible, meaning both PCA and DWT approaches should be evaluated for overall 

system accuracy and number of derived features. The fewer features needed to retain 
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accuracy, the lower the cost of developed multispectral system, potentially enabling 

real-time sensing applications. 

Rapid and effective crop stress assessment is vital for making informed decisions in 

commercial farming operations and plant breeding programs. Inexpensive high-

resolution, machine vision systems have the potential to enable precision stress 

management both at the individual plant and paddock levels. Multispectral and 

hyperspectral imaging systems in conjunction with DWT-based feature selection and 

machine learning techniques may contribute to plant breeding programs through high-

throughput phenotyping, early disease detection and management and quality 

monitoring. The DWT presents advantages over traditional hyperspectral 

preprocessing techniques including improvements in  spectral band selection, number 

of features, computational efficiency and original curve representation which 

outweigh any limitations introduced by shift-variance.  

4.1 FOCUS AND AIMS OF THE THESIS  

4.1.1 PROJECT AIM  

The primary aim of this thesis is to discover the feasibility of using a DWT analysis 

approach to detect and discriminate CR in wheat and phenotype variety resistance in 

the near infrared spectrum (900–1700 nm). Specifically, using the multi-resolution 

capability of DWT models, the goal is the discrimination of stresses within a scale that 

can be generalised to diagnose crop stress conditions from a multispectral imaging 

sensor utilising machine learning techniques. Additionally, the goal is to provide 

evidence that differentiation can be determined with similar accuracy and fewer 

features than traditional analysis techniques (PCA). The use of fewer features 

potentially allows for the model to have benefits in multiple environments by reducing 

overfitting of models to spectral features not directly associated with wheat CR.  

4.1.2 RESEARCH QUESTION  

Can a combination of wavelet analysis and machine learning techniques be used to 

analyse signatures in the near-infrared spectrum to develop a sensor-based framework 

for rapid CR disease discrimination or phenotyping in wheat?  
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4.1.3 RESEARCH OBJECTIVES  

1. Investigate available wavelet-based techniques for discriminating crop disease in 

the literature. 

2. Determine if a DWT model can outperform traditional analysis techniques (PCA) 

in the discrimination of CR of wheat in the near-infrared spectrum (900–1700 nm).  

3. Develop models to identify whether bandwidths corresponding to available 

commercial near-infrared filter sizes can discriminate and phenotype CR of wheat.  

4. Use commercially available filters on an imaging sensor to determine if the 

developed models can be utilised in an imaging system. 
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CHAPTER 3  

MACHINE LEARNING FOR THE DETECTION OF CROWN 

ROT, FUSARIUM PSEUDOGRAMINEARUM, PART A: PCA 

AND DISCRETE WAVELET APPROACHES 

In this study, principal component analysis (PCA) and the discrete wavelet transform 

(DWT) were compared for ability to increase machine learning model disease 

prediction accuracy across six machine learning methods (logistic regression, k-

nearest neighbors, decision trees, extreme random forests, support vector machines, 

artificial neural networks), for the detection of Fusarium pseudograminearum induced 

crown rot. ANOVA F-values were used to select the optimal wavelet features. Two 

train-test data splits were evaluated for effectiveness in model development, 80-20% 

and 20-80%. Models were evaluated in three-week groupings, in addition to weekly 

glasshouse, field and combined groupings. 

  

Humpal J., McCarthy C., Percy C., & Thomasson AJ. (2020a). Machine learning for 

the detection of crown rot, Fusarium pseudograminearum, Part A: PCA and discrete 

wavelet approaches. This chapter was prepared according to the instructions to authors 

given by Computers and Electronics in Agriculture.  
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Abstract- In this paper, the discrete wavelet transform (DWT) and traditional principal 

component analysis (PCA) are compared for use in crop disease model development 

from near-infrared hyperspectral data. The unique scaling ability of the discrete 

wavelet transform is discussed and applied to hyperspectral data obtained from five 

crown rot (CR) (Fusarium pseudograminearum) resistance trials, in bread wheat 

(Triticum aestivum). Data features are extracted using six supervised learning 

techniques and are scored using 5-fold cross-validation and F-scores. The results are 

compared to PCA evaluation on artificially derived wavebands of the same bandwidths 

as those obtained through the DWT. Prediction accuracy is evaluated using both a 20-

80% train-test split and an 80-20% train-test split. The results show promise for 

automated classification of disease with poor visible markers, using both wavelet and 

PCA-derived models. The wavelet-based classification system outperforms the PCA-

based system in 67% of 36 test cases when training on 20% of the disease data with 

both systems performing best in 50% of the 36 test cases on the 80-20% data split. 

PCA-based classification utilised fewer overall features in both training sets. 

 

Keywords- crop disease, crown rot, machine-learning, PCA, wavelet 
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I. INTRODUCTION 

CR occurs across the globe in many arid and semi-arid cropping regions (Kazan & 

Gardiner 2018). CR infection occurs when F. pseudograminearum hyphae fragments 

from grass and cereal residues in close contact with a host receive sufficient moisture 

for activation. The fungus colonises the local area of infection and proceeds to progress 

through the crown tissues, including leaf sheaths, sub crown internodes and stems (Fig. 

1) (Percy et al. 2012; Alahmad et al. 2018). Severe CR can lead to necrosis of the stem, 

significantly limiting grain production. F. pseudograminearum can be responsible for 

a 50% or greater yield reduction in bread wheat (Triticum aestivum) grown under 

conducive conditions in Australia (Klein et al. 1991). The lack of readily discernible 

visible symptoms until late in the season with the extension of stem browning up the 

tillers and the appearance of white heads causes delays in production decision making. 

Improvements in productivity, specifically disease identification and decision making, 

will help growers remain profitable and operations sustainable.  

Historically, plant disease identification and quantification have been left to human 

assessors. Human data collection is known to show variability, particularly between 

multiple raters (Nutter Jr et al. 1993; Newton & Hackett 1994). The inter-rater 

variation commonly seen in crop disease quantification is thought to be due to 

imperfect scoring systems that leave ratings open to interpretation (Nutter 1997), 

reducing the likelihood that two raters will score a plant identically with high 

repeatability. Traditional CR assessment involves removing the plant from the field, 

stripping the plant of the leaf sheaths around the lower internodes and scoring 

symptoms based on colour variation of the stem. This reliance on human visual colour 

assessment creates difficulties in CR quantification particularly in inter-rater 

consistency similar to the difficulties seen in other systems (Nutter Jr et al. 1993; 

Newton & Hackett 1994; Nutter 1997). Further, these human-based scoring systems 

are labour intensive. The use of sensors in combination with machine learning systems 

to distinguish disease offers opportunity to improve the assessment of CR. Machine 

vision has the potential to alleviate many of the difficulties of CR visual assessment, 

including accuracy, precision and efficiency around assigning germplasm resistance 

rankings. In this paper, non-visual host responses, indicative of molecular changes in 

the near-infrared spectrum are evaluated for potential to provide an automated sensing 

technology and reduce the reliance on manual scoring methods. 
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Fig. 1. The lifecycle of F. pseudograminearum including the growing season and off-

season phases. 

Spectral reflectance imaging refers to the "acquisition of a series of digital images at a 

number of different, well-defined optical wavelengths” (Klein et al. 2008), such that a 

contiguous spectral signal is obtained for each pixel within the image series.  The light 

waves associated with the point on the electromagnetic spectrum vary in wavelength 

and are referred to as separate wavebands. Reflectance imaging has been reported to 

be useful in differentiating plant stressors in laboratory settings (Oerke et al. 2011; 

Mahlein et al. 2013; Grieve et al. 2015; Thomas et al. 2017), in addition to the 

identification of stresses in agricultural environments (Franke & Menz 2007; Huang 

et al. 2007; Garcia-Ruiz et al. 2013; Polder et al. 2014). A currently popular reflectance 

imaging approach is the use of hyperspectral sensors (Bergsträsser et al. 2015; Thomas 

et al. 2017; Heim et al. 2018). Hyperspectral sensors obtain hundreds of contiguous 

wavebands; however, the high-resolution data obtained from these sensors can impede 

interpretation accuracy by increasing the potential for over-fitting of developed models 

(Hawkins 2004). Traditional data analysis techniques cause derived disease models to 

be less robust across trials, due to the resolution of the data used in the creation of these 

models (Sankaran et al. 2010).  
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The discrete wavelet transform (DWT) is advantageous in respect to signal space-

scale, as the DWT allows for recognition of features at both local and global spectral 

scales (Kempeneers et al. 2005; West et al. 2007).  Therefore, a wavelet analysis 

approach would allow for multiple data resolutions to be used when creating models 

from the determined regressors, or independent variables, that can be used for the 

prediction of features within the data (Bruce et al. 2002). The multiple data resolutions 

generated using a wavelet analysis approach provide potential for novel application of 

the DWT to the detection of CR. Multiple resolution models would permit improved 

multispectral crop sensor development, as the determined features allow for in-field 

systems targeting specific wavebands to be developed (Kempeneers et al. 2005; West 

et al. 2007). 

This paper is Part A of a series of papers that describe the development of disease 

detection models for the identification and quantification of CR in wheat. Part A 

investigates model development and compares the use of PCA and DWT approaches 

for preprocessing of spectral data before processing with machine learning algorithms 

on a weekly basis, with each week of each experiment treated as an independent 

dataset. The paper will further evaluate the effect of different train-test sizes, as smaller 

training sizes may be desirable to reduce computation costs but may limit the accuracy 

of the developed models. Part B compares performance of models developed on 

combined datasets to introduce increased variation into the models with the goal of 

increasing model robustness, while Part C investigates temporal and spatial 

considerations in developing disease models. 

II. MATERIALS AND METHODS 

A. Glasshouse and field sites, plant cultivation and experimental design 

Glasshouse trials were established at the Leslie Research Centre, Rockville, QLD in 

2018 and at USQ’s Centre for Crop Health, Darling Heights, QLD in 2019, in 

collaboration with researchers from the Centre for Crop Health. In the initial 

glasshouse trial conducted at the Leslie Research Centre, four wheat genotypes with 

varying resistances to CR (referred to as standards) were observed with positive or null 

inoculation with F. pseudograminearum. Twelve replicates for a total of 96 plants 

were observed using a near-infrared point sensor. The second glasshouse trial at the 

Leslie Research Centre consisted of the original four genotypes with the addition of 
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one standard genotype, for a total of five genotypes replicated six times, totaling 60 

plants in this trial. The third glasshouse trial was conducted at the Centre for Crop 

Health glasshouses in 2019 and replicated the second glasshouse trial. All pots in each 

glasshouse trial were arranged in randomised block designs with plants watered to 

field capacity once per week, and temperature being maintained at 20–25° C to ensure 

minimal outside discrepancies between pots. F. pseudograminearum  colonised wheat 

grain inoculum (Percy et al. 2012) was applied to individual coleoptiles of plants at 

the two-leaf stage. Plants were harvested and rated for disease at maturity. 

An initial field trial was planted at the Tosari research station (-27.859964, 

151.452766), south of Toowoomba, Queensland, in June of 2018. Inoculated and non-

inoculated paired plots were replicated 3 times in a randomised strip plot design. Six 

plants from each plot were chosen at random in each of the five genotypes 

corresponding to the glasshouse trials. A replication of the Tosari field trial from 2018 

was conducted in 2019. F. pseudograminearum colonised millet inoculum was applied 

in the furrow above the seed at planting to inoculated plots in both field trials. The 

observed plants were pulled at maturity and scored manually for the presence and 

severity of CR at the Centre for Crop Health. Trained assessors scored all of the 

material after harvest and did not report the presence of additional diseases or natural 

infection of crown rot in the non-inoculated plants. All glasshouse and field trials were 

statistically designed in collaboration with biostatisticians at Queensland Department 

of Agriculture and Fisheries (QDAF). 

B. Hyperspectral reflectance measurements 

Near-infrared measurements of components of the crop canopy were recorded in the 

900–1700 nm range using the handheld DLP® NIRscan™ Nano, hyperspectral sensor 

(Texas Instruments, USA), for plants inoculated with F. pseudograminearum and 

those left as null pots/plots in all trials. The Nano is a point-based hyperspectral sensor 

with an Indium Gallium Arsenide (InGaAs) detector with a shape of 854×480, pixel 

pitch of 5.4 µm and a 10 nm spectral resolution. This module uses two tungsten lamps 

as an integrated light source and produces a signal to noise ratio of 6000:1. 

Measurements were taken once a week throughout the growing season from Zadoks 

(Z) 13, 21 (Zadoks et al. 1974), for nine weeks. Week 8 in the glasshouse 2 trial is 

missing due to technical issues at collection. The maximum distance between all other 

measurement dates was 8 days. Readings were collected on contact from the center of 
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the leaf of the newest emerged tiller, the centre-most leaf and the newest flag leaf. The 

spectral signatures were recorded and output from the device as CSV files. Calibration 

references were collected from 10% grey, 60% grey and 99% white reference 

Spectralon® panels. Measurements were corrected as described below:  

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

(Labsphere 1998) 

C. Data grouping 

Data was grouped into twelve distinct groups, six for each of the 20-80% and 80-20%, 

train-test splits. Data was analysed per each week for both exclusively glasshouse and 

field data, denoted as ‘Weekly Glasshouse’ and ‘Weekly Field’, as well as, combined 

weekly data from all trials, ‘Weekly – Overall’. Data from all trials combined was also 

split into three, tri-weekly groups, from the identification of Z 13, 21. These groups 

are denoted as ‘Weeks 1–3’, ‘Weeks 4–6’ and ‘Weeks 7–9’. Data was grouped by site 

to allow comparison of weekly models developed using data from only field sites or 

only glasshouse sites. The ‘Weekly – Overall’ grouping allowed the comparison of 

these weekly models to models using combined data for each week. The separation of 

data into tri-weekly groups was used to examine the impact of time-window on the 

detection capability of the models. 

D. Data analysis 

All data analysis was conducted in the Python computing environment (Python version 

3.6.8, Python Software Foundation 2019) primarily using the SciPy ecosystem (Jones 

et al. 2001) and the Scikit-learn library (Pedregosa et al. 2011). Additional libraries 

and packages have been cited where relevant in the following sections. 

D.1 PCA approach 

Raw spectra of adjacent wavebands were averaged to approximate the wider 

bandwidths produced in the wavelet approach. These spectra were standardised and 

scaled to 0–1 using the preprocessing package in the Python SciPy library, version 

0.19.1 (Jones et al. 2001). Spectra were smoothed using the Savitzky-Golay filter 

(Savitzky & Golay 1964) with a window size of 5 bands and a second order 
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polynomial, using the savgol_filter in the Python library, SciPy (Jones et al. 2001). 

Principal component analysis (PCA) was performed on the transformed signals and 

constrained to 1 to 10 principal components using the decomposition package in the 

Python SciPy library (Jones et al. 2001). These principal components were used to 

determine the features of maximum importance within the input signal set. The PCA 

transformed dataset was used in the machine learning algorithms. 

D.2 Wavelet approach 

The wavelet approach (1) uses a scaled operator to determine regressors at multiple 

resolutions:  

𝜔sƒ(λ) =  ƒ(λ) ∗  ψs (λ) =  ƒ(λ)  ∗  
1

𝑠
 ψ (

λ

𝑠
)   (1) 

   (Bruce & Li 2001) 

 

where ƒ(𝜆) is the hyperspectral signature, s is the scale and 𝜓𝑠 (𝜆) is the scaled wavelet 

function. This presents an advantage over traditional methods which require an 

operator derived from the smoothing operation (Bruce et al. 2002). Raw spectra were 

inspected for outliers (z score > 3) and transformed using the discrete wavelet 

transform (DWT) with a Daubechies 2 wavelet from the PyWavelets library, version 

1.0.3 (Lee et al. 2019). The Daubechies 2 wavelet is part of the Daubechies family of 

wavelets (Daubechies 1988) and is asymmetric and biorthogonal (Fig. 2).  

 

 

 

Fig. 2. The Daubechies 2 wavelet (Daubechies, 1988). 
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Resulting derived spectral bandwidths were 7.02, 14.04, 27.59, 53.33, 100.00, 200.00, 

400.00 and 800.00 nm. Spectra were standardised and scaled to 0–1 using the 

preprocessing package in the Python SciPy library version 0.19.1 (Jones et al. 2001). 

D.3 Feature selection 

Wavebands with bandwidths less than 25 nm were discarded before feature selection 

in this study for both glasshouse and field trials, for the intended purpose of increasing 

model robustness across environments. Features of maximum importance represent 

key wavelengths in the hyperspectral signature that are highly correlated to differences 

between the signatures of inoculated and non-inoculated plants. Features for the PCA 

approach were selected based on the top 1–10 features of most importance in 

determining the principal components. Wavelet feature selection was determined 

using the SelectKBest function from the feature_selection package of the Python 

Scikit-learn library with a selection classifier of f_classif which selects features based 

upon computed k highest ANOVA F-values (Pedregosa et al. 2011). Models were built 

using the top k, 1–10 features selected based upon this function. 

D.4 Machine learning techniques 

Six machine learning techniques were evaluated for effectiveness in discriminating F. 

pseudograminearum induced CR: logistic regression classification, k-nearest 

neighbors, decision trees, extreme random forests, support vector machines and 

artificial neural networks, based on the original algorithms presented in Verhulst 

(1838), Fix (1951), Breiman et al. (1984), Geurts et al. (2006), Вапник and 

Червонекис (Vapnik and Chervonekis) (1964) and McCulloch and Pitts (1943). These 

methods are described in the following paragraphs. 

Logistic regression is a statistical modelling approach that uses a logistic function to 

model a binary dependent variable, a common example being, pass/fail. 

Mathematically, a binary logistic model has a dependent variable with two possible 

values which are represented by a variable labeled as "0" or "1". 

K-nearest neighbors classification is an instance-based or non-generalised learning 

method, meaning this method does not construct an internal model, but instead stores 

instances of the training data. Classification is assigned based on a majority vote of the 

nearest neighbors of each point. 
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Decision trees create a model that predicts the value of a target variable based on 

several input variables. In these models each branch represents combinations of 

features that lead to an outcome or class label, the leaves of the tree. An extension of 

decision tree classification systems are random forests and extreme random forests. 

Random forests are an ensemble of individual decision trees. In extreme random 

forests each individual tree is trained using the whole training dataset and the feature 

splits are randomised. Instead of computing the optimal decision point for each feature, 

a random point is selected. The decision point that yields the highest accuracy in 

predicting the class label is chosen to split the branch. 

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or 

infinite dimensional space, which can be used for classification or regression. 

Separation is achieved by the hyper-plane that has the largest distance to the nearest 

training data points. 

Artificial neural networks (ANN) are classification systems that are inspired by neural 

networks that constitute animal brains. Specifically, the neurons in a biological 

nervous system. Each “neuron” can transmit to and receive signals from other neurons. 

ANNs “learn” to perform tasks by analysing training data without being programmed 

with specific rules. These networks automatically discover unique characteristics from 

the input training dataset. 

D.5 Model evaluation and validation 

Data for each of three glasshouse and two field trials was evaluated using the PCA and 

wavelet methods. Each of the resulting datasets were split into training and test sets of 

20-80% and 80-20% respective splits. These splits were random independent 

validation splits performed using the train_test_split function in Scikit-learn 

(Pedregosa et al. 2011). The input feature sets were trained for each combination of 

hyperparameters (Appendix E.1) determined using the GridSearchCV function from 

Scikit-learn’s model_selection package (Pedregosa et al. 2011). The GridSearchCV 

function performs an exhaustive search over specified parameter values for an 

estimator, optimised by 5-fold cross-validation. The resulting models were scored on 

accuracy and F1/F-score. Additionally, the number of features included in the top 

performing models was considered. The equations used for accuracy, precision, recall 

and F1 are reported below (2,3,4,5): 
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 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖)   (2) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
        (3) 

Where 𝑡𝑝 is number of true positive values and 𝑓𝑝 is number of false 

positive values 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
        (4) 

Where 𝑡𝑝 is number of true positive values and 𝑓𝑛 is number of false 

negative values 

𝐹1  =  2 ·
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
       (5) 

 

III.  RESULTS 

A. Binary classification into inoculated and non-inoculated plants: accuracy 

Data is presented in both tables and figures throughout the results to clearly show 

minimum-maximum value ranges in addition to highlighting differences between the 

datasets. The wavelet-based models returned higher maximum and minimum 

accuracies than PCA analysis in all scenarios under the 20-80% data split, while PCA-

based models returned higher maximum accuracies across all scenarios under the 80-

20% data split, although DWT-models retained higher minimums. From Table 1, 

wavelet models returned maximum accuracies of 59.10% to 70.48% under the 20-80% 

split, while PCA returned accuracies of 56.88% to 68.33%. Under the 80-20% data 

split, PCA returned higher maximum accuracies of 64.49% to 76.88%, with wavelet 

model maximums from 63.23% to 75.68% (Table 1). Wavelet models returned higher 

minimum accuracies across all scenarios under the 80-20% split (Table 1, Fig. 3, 4). 

In the 20% training, 80% testing dataset, PCA analysis outperformed wavelet analysis 

in extreme random forest classification in all groupings. DWT analysis performed 

better than PCA in 100% of artificial neural network classification, support vector 

classification, logistic regression classification and k-nearest neighbor classification 

cases across all groupings (Fig. 3, Table 2). In the 80% training, 20% testing dataset, 

DWT analysis outperformed PCA analysis in all groupings in support vector 
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classification and k-nearest neighbor classification. PCA outperformed wavelet 

analysis in the tree-based classification methods, decision tree classification and 

extreme random forest classification, across all groupings (Fig. 4, Table 2). The 

highest average accuracy achieved was 76.88% using an extreme random forest 

classifier with the PCA approach on an 80-20% split of weekly glasshouse data, while 

the lowest average accuracy achieved was 50.31%, also using the PCA approach. The 

minimum accuracy was attained using the ‘Weeks 7–9’ temporal grouping on a 20-

80% train-test split with a support vector classifier (Table 1, Fig. 3, 4). 

Table 1: Minimum and maximum ranges of average classification accuracies (%) of 

CR detection of machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% or 80-

20% train-test split. 

   DWT PCA 

Data split Temporal grouping Minimum Maximum Minimum Maximum 

20-80 

Weeks 1–3 (n=1512) 56.19 66.80 54.60 64.86 
Weeks 4–6 (n=1512) 57.11 66.95 51.75 64.27 
Weeks 7–9 (n=1452) 53.07 63.12 50.31 61.79 

Weekly Glasshouse 
(n=1884) 

56.79 70.48 52.75 68.33 

Weekly Field (n=2592) 53.57 59.10 51.35 56.88 

Weekly – Overall (n=4476) 55.48 65.82 52.18 63.51 

80-20 

Weeks 1–3 (n=1512) 62.69 72.66 58.09 72.81 

Weeks 4–6 (n=1512) 60.08 71.85 56.18 73.39 

Weeks 7–9 (n=1452) 56.41 66.78 51.48 69.23 
Weekly Glasshouse 
(n=1884) 62.55 75.68 58.38 76.88 

Weekly Field (n=2592) 55.80 63.23 50.51 64.49 
Weekly – Overall (n=4476) 59.79 70.59 55.16 71.81 
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Fig. 3: Average classification accuracies (%) of CR detection of machine learning 

models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on a 20-80% train-test split.  
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Fig. 4: Average classification accuracies (%) of CR detection of machine learning 

models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on an 80-20% train-test split.  
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Table 2: Percentage of instances in which each system (DWT or PCA) outperformed 

the others in CR detection based upon accuracy percentage for both a 20-80% and an 

80-20% train-test split.  

 

 MLP SVC 
Logistic 

Regression Decision Tree 
Extreme 

Random Forest K-Nearest 

Data split Temporal grouping DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

20-80 

Weeks 1–3 (n=1512) 80.00 20.00 80.00 20.00 100.00 0.00 40.00 60.00 0.00 100.00 100.00 0.00 

Weeks 4–6 (n=1512) 80.00 20.00 80.00 20.00 80.00 20.00 20.00 80.00 20.00 80.00 100.00 0.00 

Weeks 7–9 (n=1452) 100.00 0.00 80.00 20.00 80.00 20.00 0.00 100.00 0.00 100.00 100.00 0.00 

Weekly Glasshouse 
(n=1884) 

69.23 30.77 73.08 26.92 73.08 26.92 23.08 76.92 23.08 76.92 92.31 7.69 

Weekly Field 
(n=2592) 

77.78 22.22 77.78 22.22 72.22 27.78 50.00 50.00 44.44 55.56 88.89 11.11 

Weekly – Overall 
(n=4476) 

72.73 27.27 75.00 25.00 72.73 27.27 36.36 63.64 31.82 68.18 90.91 9.09 

80-20 

Weeks 1–3 (n=1512) 80.00 20.00 80.00 20.00 60.00 40.00 40.00 60.00 0.00 100.00 100.00 0.00 

Weeks 4–6 (n=1512) 20.00 80.00 60.00 40.00 40.00 60.00 0.00 100.00 20.00 80.00 80.00 20.00 

Weeks 7–9 (n=1452) 40.00 60.00 100.00 0.00 60.00 40.00 20.00 80.00 20.00 80.00 100.00 0.00 

Weekly Glasshouse 
(n=1884) 

44.00 56.00 65.38 34.62 42.31 57.69 26.92 73.08 3.85 96.15 84.00 16.00 

Weekly Field 
(n=2592) 

61.11 38.89 83.33 16.67 55.56 44.44 44.44 55.56 44.44 55.56 94.44 5.56 

Weekly – Overall 
(n=4476) 

50.00 47.73 72.73 27.27 47.73 52.27 34.09 65.91 20.45 79.55 88.64 11.36 

 

B. Binary classification into healthy and diseased plants: precision and recall 

Wavelet-based models returned higher maximum F1 scores than PCA analysis in all 

scenarios under the 20-80% data split (Table 3). DWT-based models returned higher 

minimum scores across all data splits and datasets, with the exception of the ‘Weeks 

7–9’ grouping in the 20-80% data split. From Table 3, DWT models returned 

maximum F1 scores of 0.6190 to 0.7276 under the 20-80% split, while PCA returned 

F1 scores of 0.5646 to 0.6854. Under the 80-20% data split, PCA returned higher 

maximum F1 scores of 0.6318 to 0.7606, with wavelet model maximums from 0.6689 

to 0.7514 (Table 3). PCA-based models had a larger range between minimum and 

maximum F1 scores across all scenarios and both data splits, with the exception of the 

‘Weeks 7–9’ grouping in the 20–80% data split (Table 3, Fig. 5, 6). The highest 

average F1 of 0.7606 was achieved using an extreme random forest classifier with the 

PCA approach on an 80-20% split of weekly glasshouse data, while the lowest average 

F1 observed of 0.2809 also used the PCA approach. This is consistent with maximum 

and minimum average accuracies. The minimum F1 score was achieved using weekly 

field data on a 20-80% train-test split with a support vector classifier (Table 3, Fig. 5, 

6). 
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Table 3: Minimum and maximum ranges of average classification F1* scores of CR 

detection of machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% or 80-

20% train-test split. The models utilised were a multilayer perceptron (MLP), a support 

vector classifier (SVC), a logistic regression classifier, a decision tree classifier, an 

extreme forest classifier and a k-nearest neighbor classifier. 

*F1 - the harmonic mean of precision and recall 

    DWT PCA 

Data split Temporal grouping Minimum Maximum Minimum Maximum 

20-80 

Weeks 1–3 (n=1512) 0.5463 0.6917 0.3222 0.6473 

Weeks 4–6 (n=1512) 0.5239 0.6971 0.3372 0.6406 

Weeks 7–9 (n=1452) 0.3445 0.6632 0.4132 0.6253 

Weekly Glasshouse 
(n=1884) 

0.5082 0.7276 0.3976 0.6854 

Weekly Field 
(n=2592) 

0.4069 0.6190 0.2809 0.5646 

Weekly – Overall 
(n=4476) 

0.4667 0.6832 0.3498 0.6314 

80-20 

Weeks 1–3 (n=1512) 0.5386 0.7320 0.4454 0.7166 

Weeks 4–6 (n=1512) 0.5698 0.7195 0.4911 0.7270 

Weeks 7–9 (n=1452) 0.5748 0.7009 0.4194 0.6904 

Weekly Glasshouse 
(n=1884) 

0.5535 0.7514 0.4467 0.7606 

Weekly Field 
(n=2592) 

0.5614 0.6689 0.4573 0.6318 

Weekly – Overall 
(n=4476) 

0.5573 0.7177 0.4510 0.7079 
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Fig. 5: Average F1* scores of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on a 20-80% train-test split.  

*F1 - the harmonic mean of precision and recall 
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Fig. 6: Average F1* scores of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on an 80-20% train-test split.  

*F1 - the harmonic mean of precision and recall 

C. Binary classification into healthy and diseased plants: feature number 

The number of features in the models with the highest classification accuracies were 

recorded. In the 20% training, 80% testing dataset, PCA analysis returned fewer 

features than wavelet analysis in 67% of test cases, with feature numbers ranging from 

5–7. PCA outperformed wavelet analysis in artificial neural network classification, 

logistic regression classification, decision tree classification and extreme random 

forest classification, while wavelet analysis performed better in k-nearest neighbor 

classification. Both techniques performed equally in support vector classification 

(Table 4). In the 80% training, 20% testing dataset, PCA analysis returned fewer 

features in optimal models than wavelet analysis in 100% of test cases across all 

machine learning approaches tested, with total number of features ranging from 4–5 

(Table 4). 
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Table 4. Average number of features chosen, with standard error, between 1 and 10, 

of CR classification detection of machine learning models pre-processed with the 

discrete wavelet transform (DWT) or principal component analysis (PCA), on a 20-

80% or 80-20% train-test split. Accuracies are reported as the best accuracy score on 

any given week from Zadoks (Z) 13, 21.  

 

  MLP SVC 
Logistic 

Regression Decision Tree 
Extreme Random 

Forest K-Nearest 

Data split DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

20-80 7 ± 0.41 5 ± 0.48 6 ± 0.44 6 ± 0.39 6 ± 0.49 5 ± 0.42 6 ± 0.45 5 ± 0.43 6 ± 0.50 5 ± 0.38 4 ± 0.48 7 ± 0.35 

80-20 6 ± 0.40 5 ± 0.46 6 ± 0.44 4 ± 0.40 6 ± 0.44 5 ± 0.43 7 ± 0.38 5 ± 0.41 6 ± 0.42 4 ± 0.38 6 ± 0.41 5 ± 0.43 

 

D. Temporal effects 

Average CR detection accuracy and F1 scores were calculated for each week, from 

three weeks post-inoculation, across all trials to determine whether a temporal 

patterning effect appeared as the season progressed. Accuracies and F1 scores dropped 

between the 3rd and 4th week of measurement and again between the 7th and 8th week 

of measurement when trained on the 20-80% and the 80-20% data splits, with the 80-

20% split drop in detection capability more pronounced than in the smaller training 

dataset (Table 5). From Table 5, in the 20-80% data split accuracies and F1 scores 

dropped from 61.08 ± 1.411% (0.5778 ± 0.0262) in week 4 to 57.58% ± 1.012% 

(0.5218 ± 0.0261) in week 6. In the 80-20% data split accuracies and F1 scores dropped 

from 68.85 ± 1.865% (0.6567 ± 0.0270) to 61.43% ± 1.563% (0.5833 ± 0.0225). 
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Table 5. Average accuracies and F1, with standard errors of CR classification detection 

and corresponding growth stages (Zadoks et al. 1974), across all trial sites, machine 

learning models and pre-processing techniques for a 20-80% or 80-20% train-test split. 

Data Split 
Approximate 
Growth Stage 

Weeks From Zadoks 
(Z) 13, 21 Accuracy F1 

20-80 

Tillering 

1 59.78 ± 2.042 0.6103 ± 0.0235 

2 61.08 ± 1.411 0.5778 ± 0.0262 

3 59.34 ± 1.280 0.5241 ± 0.0273 

4 57.58 ± 1.012 0.5218 ± 0.0261 

5 60.73 ± 0.936 0.5878 ± 0.0203 

Stem Extension 

6 58.25 ± 1.203 0.5565 ± 0.0238 

7 56.23 ± 1.125 0.5302 ± 0.0200 

8 55.02 ± 0.756 0.5240 ± 0.0182 

Boot 9 58.24 ± 1.126 0.5167 ± 0.0253 

80-20 

Tillering 

1 64.06 ± 2.381 0.6134 ± 0.0300 

2 68.85 ± 1.865 0.6567 ± 0.0270 

3 63.87 ± 1.449 0.5901 ± 0.0235 

4 61.43 ± 1.563 0.5833 ± 0.0225 

5 67.64 ± 1.282 0.6746 ± 0.0165 

Stem Extension 

6 64.46 ± 1.473 0.6128 ± 0.0219 

7 62.12 ± 1.666 0.6166 ± 0.0229 

8 58.00 ± 1.013 0.5686 ± 0.0185 

Boot 9 62.22 ± 1.447 0.5786 ± 0.0221 

 

IV. DISCUSSION 

A. Crown rot detection 

Current CR detection methods are invasive and time-consuming, particularly under 

field conditions. A rapid, non-invasive approach is ideal to improve management 

decisions, reduce input costs to growers, decrease labour and production time and 

improve the accuracy of phenotyping for researchers and breeders. Near-infrared 

spectroscopy has the potential to detect crop disease before visible symptoms appear, 

increasing available decision time (Kumar et al. 2002). 

Our results illustrate successful disease discrimination using machine learning and 

near-infrared sensing technologies to detect F. pseudograminearum induced CR early 

in the disease lifecycle, as soon as early tillering (Table 1, 5). The DWT-based 

classification models outperformed the PCA-based models in 67% of the 36 test cases 

when trained on the 20-80% data split, while both techniques performed best in 50% 

of the 36 test cases on the larger test data split (Table 2). PCA-based classification 
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utilised fewer overall features in both training sets. Accuracies and F1 scores are 

consistently higher, across methods, in the second week of measurement and again in 

week five when compared to other timepoints. Results indicate that PCA has greater 

potential in differentiating between plus and minus inoculated plants when used in 

combination with tree-based machine learning algorithms (e.g. decision tree 

classifiers, extreme random forest classifiers), consistent with the literature (Nasution 

et al. 2018), however further work is needed to investigate this potential fully. The top 

performing model regardless of analysis approach was the artificial neural network, a 

MLP (multilayer perceptron) in these experiments. This suggests potential for further 

model refinement and development using deep learning algorithms.  

While F. pseudograminearum induced CR detection was achieved using this 

approach, limitations have been identified that need to be addressed in future research. 

The models achieved accuracies on the order of 60%. This level of detection accuracy 

may be due to lower disease pressures at the time of detection, as infection is still in 

the early stages. This may result in less spectral variance between inoculated and non-

inoculated plants. The models would likely improve with the input of more disease 

data and further work should investigate this. CR breeders indicate that detection 

accuracies over 30% would help advance breeding programs. The models were trained 

individually on each set of environmental conditions: each timepoint was treated as an 

individual dataset with models being optimised for that specific timepoint. Additional 

research needs to address whether a single developed model can be created for use 

across temporal and environmental situations. Generalised models will be developed 

and potential uses across these variable situations will be addressed in a Part B of this 

paper series. The outcomes of the research presented in this paper demonstrate strong 

capability of CR detection and warrant further investigation to develop models for 

disease tracing and spatial modelling in laboratory, glasshouse or field environments. 

The results indicate that accuracy sufficient for tracing (> 50%) CR spread can be 

obtained early in the growing season with a time window to allow for data collection 

(3-weekly average). Accuracy of greater than 50% is expected to be necessary for 

tracing CR spread, based on expert pathologist consultation, and the results are 

successful in achieving the necessary accuracy. Spatial modeling using this approach 

would allow an increased understanding of the CR disease cycle, expanding research 
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opportunities and potentially increasing the effectiveness of novel CR control 

measures (e.g. precision spraying) (Simpfendorfer et al. 2019). 

B. Temporal effects on disease detection 

The results show CR detection ability, as well as a temporal patterning effect as the 

season progresses. Both accuracies and F1 scores drop when trained on the 80-20% 

split around week 3 and week 4 of data collection (Table 5). Models trained on the 20-

80% split exhibited less discrepancy in detection ability than models trained on a larger 

portion of the dataset. The unique patterning seen in model accuracies as the season 

progresses is likely indicative of changes in the underlying host-disease interaction. 

Further work in disease detection modelling has the potential to increase understanding 

of the biological relationships in the F. pseudograminearum-wheat disease cycle. 

Further research is necessary to develop an understanding of these temporal effects. 

Increasing input feature bandwidths may decrease the potential for environmental or 

site-specific features to be selected for disease detection. 

C. Disease model specificity limitations 

Reflectance-based crop disease approaches are currently not adequately robust to 

handle genotypic and environmental variability with success. Difficulties arise due to 

variation in spectral signatures caused by genotypic diversity and environmental 

conditions, particularly differences in canopy cover and structure (Jacquemoud et al. 

2009). Additional issues can arise when trying to discriminate spectral signatures from 

those caused by other stresses, whether biotic or abiotic (Zhang et al. 2012). These 

problems have been discussed in (Anderegg et al. 2019) and described in detail in 

previous studies (Devadas et al. 2015; Zheng et al. 2019). Temporal features observed 

in this study (Temporal effects on disease detection) may be beneficial in excluding 

some of this genetic and environmental variability from datasets by producing 

signatures that are unique in both time and observable reflectance patterning. 

Anderegg et al. (2019) were able to show that temporal changes in spectral reflectance 

indicated both the presence of Septoria tritici blotch (Zymoseptoria tritici) in wheat, as 

well as disease severity, in addition to the separation of disease from physiological 

senescence, indicating that such an approach is a viable alternative to manual disease 

assessment. 
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The results of this study indicate that weeks 1–3, early tillering, comprise a window of 

increased CR detection capability (Tables 1, 3, 5; Fig. 3–6). Further, the results 

presented here indicate that taking a measurement for each week in this window 

increases overall detection capability, versus single weekly measurements. These 

results should inform further methodology development, particularly around high-

throughput phenotyping methodology development for CR breeding programs. 

D. Effects of training data 

Our results indicate that when reducing the train-test split from 80-20% to 20-80% 

accuracies decrease, however, training time is also decreased. In these experiments, 

wavelet-based models performed better that PCA models when using a smaller train-

test split. DWT-based models also produced a smaller overall range of accuracies than 

PCA-based models (Tables 1, 3). This indicates that wavelet approaches may be 

beneficial when working in agriculture where models cannot be trained on all possible 

outcomes and speed is a priority. Additionally, these results indicate that an 80-20% 

split may overfit the models by including too many specific signatures associated with 

a particular plant’s disease cycle, as opposed to a robust model including only major 

indicators of the presence of F. pseudograminearum. Other training splits should be 

investigated to find a balance between model specificity and detection capability and 

minimise this potential risk. 

E. Feature selection considerations 

In our results the PCA-based models with top accuracies used less features, overall, 

than the wavelet-based models (Table 4). This may be a consideration for developing 

disease specific sensors, where less features could equate to lower cost and more 

technology adoption. This is a limitation of current imaging systems as each feature or 

band is associated with a particular filter on the system. Any additional feature required 

for detection increases the size, cost, weight and processing time of the system, which 

may impact potential uses, specifically when envisioning use in an aerial environment 

(e.g. UAV-based system). 

V. CONCLUSION 

In these experiments, we tested the ability of near-infrared spectroscopy, processed 

with PCA or DWT and machine learning methods, to detect F. pseudograminearum 

in bread wheat. Our results demonstrate potential in the proposed approach, for the 
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early detection of CR, additionally suggesting potential in limiting training dataset size 

in machine learning-based crop disease detection. 

Our results indicate that wavelet-based models performed better when trained on less 

data (20-80%), while PCA performance increased when trained on the larger training 

dataset (80-20%). This suggests that wavelet-based models may be of more value 

when training sets are limited or when large-scale data acquisition is difficult. Further, 

smaller training datasets limit the amount of processing time required for detection and 

may reduce overfitting of models to the data. Wavelet-based models had higher 

minimum accuracies and less of an absolute difference between minimum and 

maximum accuracies than the PCA approach. While PCA demonstrated better ability 

to discriminate CR than wavelet-based approaches under the larger training data split, 

the larger differences in accuracies reported indicates that wavelet-based approaches 

may be more repeatable. However, results indicate that PCA is a better dimensionality 

reduction technique than DWT when used in conjunction with tree-based classifiers 

(decision tree classifiers, random forest classifiers). 

Overall, our results indicate that accuracies obtained from models developed and tested 

on glasshouse data were the best. Early and late tillering (week 2 and 5) consistently 

returned the highest accuracies in CR discrimination, indicating temporally specific 

methodologies can increase CR detection capability. Further, it was discovered that a 

3-weekly average, specifically weeks 1–3, returned higher overall accuracies than 

weekly (overall) models alone. 

Experiments incorporating CR quantification and further model development, 

particularly with a focus on single model development across sites and environments 

should be tested. This is likely to increase model robustness as well as contribute to a 

deeper understanding of CR biology, specifically temporally. Finally, further work is 

needed to discover the degree to which these models can be utilised in image-based 

systems, potentially allowing for robotic or remote (e.g. UAV) approaches to CR 

detection and quantification. 
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CHAPTER 4 

MACHINE LEARNING FOR THE DETECTION OF CROWN 

ROT, FUSARIUM PSEUDOGRAMINEARUM, PART B: 

GENERALISED TEMPORAL MODELS FOR PCA AND 

DISCRETE WAVELET APPROACHES  

  

In this study, an extension of Part A, principal component analysis (PCA) and the 

discrete wavelet transform (DWT) were compared for ability to increase machine 

learning model disease prediction accuracy across six machine learning methods 

(logistic regression classification, k-nearest neighbors, decision trees, extreme random 

forests, support vector machines, artificial neural networks), for the detection of 

Fusarium pseudograminearum induced crown rot, using models developed from 

combined data (generalised) across multiple trial sites and temporal windows. 

ANOVA F-values were used to select the optimal wavelet features. Two train-test data 

splits were evaluated for effectiveness in model development, 80-20% and 20-80%. 

Models were developed in three-week classes, weekly classes and an ‘All’ class 

consisting of combined data across the nine-week sensing window. 

 

Humpal J., McCarthy C., Percy C., & Thomasson AJ. (2020b). Machine learning for 

the detection of crown rot, Fusarium pseudograminearum, Part B: generalised 

temporal models for PCA and discrete wavelet approaches. This chapter was prepared 

according to the instructions to authors given by Computers and Electronics in 

Agriculture. 
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Abstract- In this paper, generalised models are developed from data obtained from 

multiple sites infected with crown rot (CR) (Fusarium pseudograminearum) at 

temporal scales of one, three and nine weeks. Models are developed on near-infrared 

hyperspectral data using the discrete wavelet transform (DWT) and traditional 

principal component analysis (PCA) and are compared for CR prediction capability. 

The discrete wavelet transform is applied to hyperspectral data obtained from five 

bread wheat (Triticum aestivum), resistance trials. Data features are extracted using six 

supervised learning techniques and are scored using 5-fold cross-validation and F-

scores. The DWT results are compared to PCA evaluation at similar bandwidths. 

Prediction accuracy is assessed using a 20-80% and an 80-20% train-test split. The 

results show ability for development of models for the automated classification of 

disease with poor symptom visibility, using both DWT and PCA model approaches, 

across multiple sites, at variable temporal scales. The PCA-based system performed 

best in a majority of individual test cases, in terms of accuracy when training on both 

20% and 80% of the disease data. PCA-based classification also utilised fewer overall 

features in both training sets. 
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I. INTRODUCTION 

Wheat CR (Fusarium pseudograminearum) is a global concern, causing up to a 50% 

yield loss, or greater, under conducive conditions, particularly in arid and semi-arid 

regions (Klein et al. 1991; Kazan & Gardiner 2018). When F. pseudograminearum 

hyphae fragments contained in crop residues and soil receive sufficient moisture, the 

fungus is able to infect a susceptible host in close contact to the pathogen. The fungus 

begins by colonising the area immediately around the point of contact and proceeds 

upwards and inwards (Alahmad et al. 2018). With a lack of cost-effective fungicide or 

other in-season control options, severe infection can lead to necrosis of the stem, 

limiting production capability. The visible symptoms of CR include browning of the 

stem under the leaf sheaths and the appearance of white heads late in the season. These 

symptoms are often difficult to detect quickly and limit the ability of breeding 

programs to rapidly produce germplasm with improved resistance and tolerance to this 

disease, as rating is time consuming, often involving the removal of plant material 

from the field. A rapid, high-throughput phenotyping (HTP) system for CR resistance 

and tolerance would save breeders time and inputs, allowing growers access to new 

improved commercial cultivars faster. 

A wavelet analysis approach could provide novel application for CR detection. The 

ability of the approach to return features of variable scales simplifies the development 

of multispectral sensors for infield CR detection and quantification, by returning 

narrow and wide-scale features or bands in the disease detection model. An accurate 

sensing system with minimal features keeps the cost of the system down while also 

increasing model robustness. This paper is Part B of a series of three papers that 

describe the development of crop disease models for the detection and quantification 

of CR in wheat. Part A demonstrated variation in the accuracy and F1 scores of PCA 

and wavelet approaches for preprocessing of spectral data collected across 9 weeks 

from five experiments (Chapter 3). This paper, Part B, further explores improvements 

in accuracy and precision and recall by comparing the performance of models 

developed across different combinations of data with the aim to generalise CR 

phenotyping models, making developed models more robust across environments. Part 
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C expands upon this model development and these findings to investigate the potential 

impact of spatial and temporal information on CR detection.  

The literature has consistently shown that using spectral reflectance to discriminate or 

phenotype disease to facilitate crop breeding programs is difficult due to the large 

amount of variation that arises from genotypic and environmental variation 

(Jacquemoud & Baret 1990; Jacquemoud & Ustin 2001; Delalieux et al. 2007; 

Jacquemoud et al. 2009; Anderegg et al. 2019; Zheng et al. 2019). This variation can 

occur due to differences in canopy reflectance and morphology brought on by genetic 

or environmental factors and can be further influenced by temporal considerations (e.g. 

growth stage) as described in detail in previous studies (Devadas et al. 2015; Alahmad 

et al. 2018; Zheng et al. 2019) and observed in Part A of this research (Chapter 3). The 

aim of this study is to determine if and to what degree models built upon combined 

near-infrared reflectance data from germplasm with diverse genetic backgrounds 

across multiple environments, both glasshouse and field, can discriminate CR without 

being specifically tailored to a single dataset. This paper will further evaluate the effect 

of different train-test sizes to determine whether there is a significant reduction in the 

accuracy of developed models. A reduction in the size of the train-test split could 

reduce computation costs. 

II. MATERIALS AND METHODS 

A. Trial site, plant cultivation and experimental design 

This study delivers part B of a series of objectives built around analysis of data from 

five CR trials. The methodologies are outlined in Part A (Chapter 3) of this series and 

are described in brief in the following section. Three glasshouse trials were conducted 

between 2018 and 2019 in Toowoomba, Queensland in collaboration with the 

University of Southern Queensland’s Centre for Crop Health. In the first glasshouse 

trial, four standard genotypes of bread wheat were observed under null and positive F. 

pseudograminearum colonised grain inoculation. Twelve replicates, for 96 total plants 

were observed. In the second glasshouse trial an additional standard was added to the 

initial four, with six replicates of each treatment, a total of 60 plants observed. The 

third glasshouse trial was a replication of the second. All glasshouse trials were 

maintained between 20–25° C and watered to field capacity, weekly. Plants were 
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removed from the glasshouse and assessed on disease severity at physiological 

maturity. 

Two field trials were conducted in 2018 and 2019 at the Tosari Research Station (-

27.859964, 151.452766). These trials consisted of three replicates of paired, inoculated 

and non-inoculated plots arranged in a randomised strip plot design. Six plants were 

randomly selected from each of the plots of the five genotypes for NIR scanning each 

week. All plants from glasshouse and field trials were removed from the soil at 

maturity for manual disease scoring at the Centre for Crop Health. While natural 

infection with crown rot or other pathogens is possible, assessors reported no natural 

infection of material. All glasshouse and field trials were statistically designed in 

collaboration with biostatisticians at Queensland Department of Agriculture and 

Fisheries (QDAF). 

B. Near infrared measurements 

Near infrared measurements were collected using the handheld, DLP® NIRscan™ 

Nano (Texas Instruments, USA), for nine weeks, from when the Zadoks (Z) 13, 21 

stage was identified. The Nano has an Indium Gallium Arsenide (InGaAs) detector 

with a shape of 854×480, pixel pitch of 5.4 µm and a 10 nm spectral resolution, with 

two tungsten lamps as an integrated light source. The signal to noise ratio of the Nano 

is 6000:1. Measurements were collected from the centre of the youngest tiller leaf, the 

youngest flag leaf and the leaf considered centre-most in the canopy profile, for both 

inoculated and non-inoculated plants. Measurements were saved as comma separated 

value (CSV) files for use in data analysis. All measurements were calibrated using 

10% grey, 60% grey and 99% white reference Spectralon® panels. Measurements 

were corrected as described below:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑛𝑡 (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

(Labsphere 1998) 

C. Data grouping 

Data was grouped into a combined dataset, comprising all measurements across all 

trials, denoted as ‘All’, a weekly dataset (‘Weekly’), comprising all measurements for 

a particular week across trials, and a ‘3-weekly group’ dataset, comprising models 

built upon combined data from the first three, middle three or last three weeks, in the 
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nine week window, across trials. The ‘3-weekly group’ dataset was used to examine 

the impact of larger time-windows on the detection capability of models developed on 

combined data from across trials and dates. Data groupings were replicated for both 

the 20-80% and 80-20% data splits. 

D. Data analysis 

All model analysis was performed using the Python computing environment (Python 

version 3.6.8, Python Software Foundation 2019). Data analysis primarily used the 

SciPy ecosystem (Jones et al. 2001) and the Scikit-learn library (Pedregosa et al. 2011). 

Additional libraries and packages have been cited where relevant throughout. 

D.1 PCA approach 

The PCA analysis was performed following the methodology outlined in Part A of this 

paper series (Chapter 3). To approximate the bandwidths produced in the wavelet 

approach, raw spectral data of adjacent wavebands were averaged. For implementation 

in machine learning algorithms the resulting averaged bands were standardised and 

scaled 0–1 using the Python SciPy library, version 0.19.1 (Jones et al. 2001). Spectra 

were then smoothed using the Savitzky-Golay filter (Savitzky & Golay 1964) with a 

window size of 5 bands and a second order polynomial, using the savgol_filter function 

in the Python library SciPy (Jones et al. 2001). Principal component analysis (PCA) 

was performed on the smoothed signals and constrained to a maximum of 10 principal 

components using the decomposition package in the Python SciPy library (Jones et al. 

2001). These principal components were used to determine the most important signal 

features for disease detection within the input data set. The PCA transformed dataset 

was used with the machine learning algorithms. 

D.2 Wavelet approach 

The wavelet approach uses a scaled operator to return data features at both local and 

global resolutions, as described below (1):  

 

𝜔sƒ(λ) =  ƒ(λ) ∗  ψs (λ) =  ƒ(λ)  ∗  
1

𝑠
 ψ (

λ

𝑠
)   (1) 

   (Bruce & Li 2001) 
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where ƒ(𝜆) is the near-infrared signal, s represents the scale and 𝜓𝑠 (𝜆) the scaled 

wavelet function. The discrete wavelet transform (DWT) is advantageous over 

traditional methods which often require an operator derived from the smoothing 

operation (Bruce et al. 2002). Near-infrared spectral signatures were examined for 

outliers (z score > 3) and transformed using the DWT with a Daubechies 2 wavelet 

from the PyWavelets library, version 1.0.3 (Lee et al. 2019). The Daubechies 2 wavelet 

is an asymmetric and biorthogonal wavelet from the Daubechies family of wavelets 

(Part A, Fig. 2) (Daubechies 1988).  

Resulting spectral features were transformed to bandwidths of 7.02, 14.04, 27.59, 

53.33, 100.00, 200.00, 400.00 and 800.00 nm. Resulting spectra were standardised and 

scaled to 0–1 in the Python SciPy library version 0.19.1 (Jones et al. 2001). 

D.3 Feature selection 

Wavebands with bandwidths less than 25 nm were discarded before feature selection 

to increase model robustness across environments, in this study both glasshouse and 

field. Signal features represent the wavelengths in the hyperspectral signature which 

were most highly correlated to the differences in disease presence. Features for the 

PCA approach were selected based on the features of most importance in determining 

the principal components. Wavelet feature selection was determined using the 

SelectKBest function from the feature_selection package of the Python Scikit-learn 

library, using the selection classifier f_classif function which computes the ANOVA 

F-value (Pedregosa et al. 2011). The top 1–10 features were selected based upon their 

determined k highest ANOVA values. 

D.4 Machine learning techniques 

Six machine learning techniques were evaluated for effectiveness in discriminating 

CR, Fusarium pseudograminearum: logistic regression, k-nearest neighbors, decision 

trees, extreme random forests, support vector machines and artificial neural networks. 

Logistic regression is a statistical model that uses a logistic function to model a binary 

dependent variable. K-nearest neighbors assigns classification based on a majority 

vote of the nearest neighbors compared to stored instances of training data. Decision 

trees create a model that predicts the value of a target variable based on several input 

variables. In these models each branch represents combinations of features that lead to 

an outcome or class label, the leaves of the tree. A support vector machine constructs 
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a hyper-plane or set of hyper-planes in a high or infinite dimensional space, where 

separation is achieved by the hyper-plane that has the largest distance to the nearest 

training data points. Artificial neural networks (ANN) are classification systems that 

analyse training data without being programmed with specific rules and can 

automatically discover unique characteristics from the input training data set. 

D.5 Model evaluation and validation 

Nine weeks for each of three glasshouse and two field trials were evaluated using the 

PCA and wavelet methods. Each of the resulting datasets were split into training and 

test sets of 20-80% and 80-20% respective splits. The input feature sets were trained 

for each combination of hyperparameters determined using the GridSearchCV 

function from Scikit-learn’s model_selection package (Pedregosa et al. 2011). The 

GridSearchCV function performs an exhaustive search over specified parameter 

values for an estimator, optimised by 5-fold cross-validation. Each validation split 

used for scoring was a random independent validation split. These splits were obtained 

using the train_test_split function in Scikit-learn (Pedregosa et al. 2011). The resulting 

models were scored on accuracy and F1 (F-score). Additionally, the number of features 

included in the top performing models was considered. The equations used for 

accuracy, precision, recall and F1 are reported below (2,3,4,5): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖)  (2) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
        (3) 

Where 𝑡𝑝 is number of true positive values and 𝑓𝑝 is number of false 

positive values 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
        (4) 

Where 𝑡𝑝 is number of true positive values and 𝑓𝑛 is number of false 

negative values 

𝐹1  =  2 ·
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
       (5) 
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III.  RESULTS 

A. Binary classification: accuracy 

PCA-based models returned higher maximum accuracies across all data groupings and 

both data splits with accuracies ranging from 56.02–69.78% versus 53.71–58.43% 

with DWT. However, wavelet-based models had a narrower overall range in 

accuracies across all test cases of 9.22% versus 21.69% in the PCA-based models 

(Table 1, Fig. 1, 2). 

When models were developed on data from all trial sites across the nine weeks, in both 

the 20% and 80% training datasets, PCA outperformed wavelet analysis in logistic 

regression classification, decision tree classification and extreme random forest 

classification. Wavelet analysis performed better in artificial neural network-based 

classification and support vector classification in both training datasets. Wavelet 

analysis performed better than PCA in k-nearest neighbor classification when trained 

on 20% of the dataset with PCA performing better when trained on 80% of the dataset 

( Fig. 1, 2, Table 2).  

When examining models developed in three-week groupings, PCA analysis 

outperformed wavelet analysis in the 20% training dataset in support vector 

classification, logistic regression classification, decision tree classification and 

extreme random forest classification with wavelet analysis performing best in artificial 

neural network classification and k-nearest neighbor classification. In the 80% training 

dataset PCA outperformed wavelet analysis in artificial neural network classification, 

decision tree classification, extreme random forest classification and k-nearest 

neighbor classification, while wavelet analysis performed best in support vector and 

logistic regression classification (Fig. 1, 2, Table 2).  

Models developed from all trial sites for individual weeks showed that in both the 20% 

and 80% training datasets, PCA outperformed wavelet analysis in artificial neural 

network classification, decision tree classification and extreme random forest 

classification. Wavelets performed best in both training datasets in support vector 

classification, logistic regression classification and k-nearest neighbor classification 

(Fig. 1, 2, Table 2). Top average accuracies of 69.78 ± 0.72% were recorded using the 

PCA approach on data from three-weekly groups trained on an 80-20% train-test split 

(Table 1). 
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Table 1: Minimum and maximum ranges of average classification accuracies of CR 

detection of machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% or 80-

20% train-test split. Models were developed on data combined across all 5 

experiments. Data is reported as ‘All’ data (weeks 1–9); 3-week groupings (weeks 1-

3, 4-6, 7-9); and ‘Weekly’ (each individual week) from Z 13, 21.  

 

    DWT PCA 

Data split Temporal grouping Minimum Maximum Minimum Maximum 

20-80 

All data (n=4476) 49.88 54.43 49.78 56.02 

3-weekly groups 
(n=1452–1512±SE) 

49.21 ± 0.66 53.71 ± 1.11  49.15 ± 0.19 56.11 ± 1.27 

Weekly  
(n=444–504±SE) 

50.01 ± 0.37 54.34 ± 0.95 49.53 ± 0.09 57.77 ± 0.76 

80-20 

All data (n=4476) 51.00 56.28 48.09 67.72 

3-weekly groups 
(n=1452–1512±SE) 

50.51 ± 0.85 55.42 ± 1.32 48.76 ± 0.69 69.78 ± 0.72 

Weekly  
(n=444–504±SE) 

51.34 ± 1.24 58.43 ± 1.26 49.91 ± 1.02 64.66 ± 1.30 
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Fig. 1: Average accuracies of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on 20% of input datasets. Models were developed on combined 

data from all trial sites from all weeks measured combined (weeks 1–9), from 3-week 

groupings and from combined data for each week from Zadoks (Z) 13, 21.  
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Fig. 2: Average accuracies of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on 80% of input datasets. Models were developed on combined 

data from all trial sites from all weeks measured combined (weeks 1–9), from 3-week 

groupings and from combined data for each week from Zadoks (Z) 13, 21.  
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Table 2: Percentage of instances in which each system (DWT or PCA) outperformed 

the others in CR detection, based upon accuracy percentage and trained on 20% or 

80% of input data. Models were developed on data combined across all 5 experiments. 

Data is reported as ‘All’ data (weeks 1–9); 3-week groupings (weeks 1-3, 4-6, 7-9); 

and ‘Weekly’ (each individual week) from Z 13, 21.  

 

    MLP SVC 
Logistic 

Regression Decision Tree 

Extreme 
Random 
Forest K-Nearest 

Data split Temporal grouping DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

20-80 
  

All data (n=4476) 100.00 0.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00 100.00 100.00 0.00 

3-weekly groups 
(n=1452–1512±SE) 

66.67 33.33 33.33 66.67 33.33 66.67 0.00 100.00 0.00 100.00 100.00 0.00 

Weekly 
(n=444–504±SE) 

44.44 55.56 66.67 33.33 55.56 44.44 0.00 100.00 22.22 77.78 100.00 0.00 

80-20 
  

All data (n=4476) 100.00 0.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 

3-weekly groups 
(n=1452–1512±SE) 

0.00 100.00 100.00 0.00 100.00 0.00 0.00 100.00 0.00 100.00 0.00 100.00 

Weekly 
(n=444–504±SE) 

44.44 55.56 55.56 44.44 55.56 44.44 22.22 77.78 0.00 100.00 66.67 33.33 

 

B. Binary classification: precision and recall 

Wavelet models returned higher maximum F1 scores than PCA analysis when trained 

on 3-weekly (0.5843 ± 0.0348) groups under the 20-80% data split and a higher 

minimums (0.5464) under models developed on all available data (‘All’) in the 80-

20% split. PCA-based models returned higher maximum F1 scores across all scenarios 

under the 80-20% data split and higher minimum scores under the ‘All’ category in 

the 20-80% data split (0.5199). PCA-based models returned scores with a smaller 

overall range than wavelet-based models when trained under the 80-20% data split 

(Fig. 3, 4, Table 3). Overall, the highest score was achieved (F1 = 0.6953) with PCA 

analysis when trained on 3 weekly groups under an 80-20% data split. 
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Table 3: Minimum and maximum range of average F1 scores of CR detection of CR 

detection of machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% or 80-

20% train-test split. Models were developed on data combined across all 5 

experiments. Data is reported as ‘All’ data (weeks 1–9); 3-week groupings (weeks 1-

3, 4-6, 7-9); and ‘Weekly’ (each individual week) from Z 13, 21.  

 

    DWT PCA 

Data split Temporal grouping Minimum Maximum Minimum Maximum 

20-80 

All data (n=4476) 0.4854 0.6656 0.5199 0.6645 

3-weekly groups 
(n=1452–1512±SE) 

0.4090 ± 0.2068 0.5843 ± 0.0348 0.2533 ± 0.1267 0.5470 ± 0.0034 

Weekly  
(n=444–504±SE) 

0.2932 ± 0.1145 0.5550 ± 0.0246 0.2355 ± 0.0983 0.5608 ± 0.0115 

80-20 

All data (n=4476) 0.5464 0.6570 0.4618 0.6727 

3-weekly groups 
(n=1452–1512±SE) 

0.3500 ± 0.1701 0.5639 ± 0.0235 0.4641 ± 0.0351 0.6953 ± 0.0123 

Weekly  
(n=444–504±SE) 

0.5028 ± 0.0797 0.6162 ± 0.0193 0.5004 ± 0.0281 0.6437 ± 0.0127 
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 Fig. 3: Average F1* scores of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on 20% of input datasets. Models were developed on combined 

data from all trial sites from all weeks measured combined (weeks 1–9), from 3-week 

groupings and from combined data for each week from Zadoks (Z) 13, 21.  

*F1 - the harmonic mean of precision and recall 
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 Fig. 4: Average F1* scores of CR classification detection of machine learning models 

pre-processed with the discrete wavelet transform (DWT) or principal component 

analysis (PCA), trained on 80% of input datasets. Models were developed on combined 

data from all trial sites from all weeks measured combined (weeks 1–9), from 3-week 

groupings and from combined data for each week from Zadoks (Z) 13, 21.  

*F1 - the harmonic mean of precision and recall  
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C. Binary classification: feature number 

The number of features in the models developed with data from the nine weeks 

combined (‘All’) with the highest classification accuracies were evaluated. In the 20% 

training, 80% testing dataset, PCA analysis returned fewer features in models than 

wavelet analysis in 67% of test cases. PCA outperformed wavelet analysis in regard to 

number of features using artificial neural network classifiers, decision tree classifiers, 

extreme random forest classifiers and k-nearest neighbor classifiers. In the 80% 

training, 20% testing data set, PCA analysis returned fewer features than wavelet 

analysis in 83% of test cases. PCA outperformed wavelet analysis in all modeling 

techniques tested with the exception of the extreme random forest classifier, where the 

preprocessing techniques performed equally (Table 4). 

In the 20% training, 80% testing dataset, PCA analysis returned fewer features in 

models than wavelet analysis in 83% of test cases when information of each of the 

three-weekly groups with the highest classification accuracies were considered. PCA 

outperformed wavelet analysis in regard to number of features in all machine learning 

approaches tested with the exception of extreme random forest classification in the 

three-week grouping. In the 80% training, 20% testing data set, PCA analysis returned 

fewer features than wavelet analysis in 50% of test cases. PCA outperformed wavelet 

analysis in all modeling techniques except artificial neural network classification and 

decision tree classification, and logistic regression classification where both 

preprocessing techniques returned fewer features in an equal number of test cases 

(Table 4). 

In the 20% training, 80% testing dataset, PCA analysis returned fewer features in 

models than wavelet analysis in 83% of test cases when information for each of the 

individual weeks with the highest classification accuracies were evaluated. PCA 

outperformed wavelet analysis in regard to number of features in all machine learning 

approaches tested except decision tree classification, where both models returned the 

same number of features in individual weeks. In the 80% training, 20% testing data 

set, PCA analysis returned fewer features than wavelet analysis in 83% of test cases, 

again. PCA outperformed wavelet analysis in all modeling techniques except extreme 

random forest classification, where both approaches returned the same number of 

features (Table 4). 
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Table 4: Number of features chosen, out of an available 10, optimised for accuracy of 

CR classification detection of machine learning models pre-processed with the discrete 

wavelet transform (DWT) or principal component analysis (PCA), trained on 20 or 

80% of input datasets. Models were developed on data combined across all 5 

experiments. Data is reported as ‘All’ data (weeks 1–9); 3-week groupings (weeks 1-

3, 4-6, 7-9); and ‘Weekly’ (each individual week) from Z 13, 21.  

    MLP SVC 
Logistic 

Regression 
Decision Tree 

Extreme 
Random Forest 

K-Nearest 

Data split Temporal grouping DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

20-80 

All data (n=4476) 8 6 1 10 1 3 10 9 10 5 10 6 

3-weekly groups 
(n=1452–1512±SE) 

6 ± 2 4 ± 2 4 ± 3 1 ± 0 4 ± 3 1 ± 0 9 ± 0 5 ± 3 6 ± 1 7 ± 2 6 ± 2 1 ± 0 

Weekly  
(n=444–504±SE) 

9 ± 1 6 ± 1 3 ± 1 1 ± 0 5 ± 1 1 ± 0 7 ± 1 7 ± 1 7 ± 1 6 ± 1 6 ± 1 1 ± 0 

80-20 

All data (n=4476) 7 2 2 1 10 1 7 2 8 8 5 1 

3-weekly groups 
(n=1452–1512±SE) 

4 ± 2 6 ± 2 4 ±3 1 ± 0 1 ± 0 1 ± 0 5 ± 1 6 ± 1 7 ± 2 5 ± 1 3 ± 0 1 ± 0 

Weekly  
(n=444–504±SE) 

8 ± 1 6 ± 1 3 ± 1 1 ± 0 5 ± 1 1 ± 0 6 ± 1 5 ± 1 5 ± 1 5 ± 1 5 ± 1 1 ± 0 

 

D. Temporal effects 

Analysis of variance (ANOVA) detected no significant temporal effects between 

datasets that were grouped into the 3-weekly categories in either the 20-80% or 80-

20% data splits. However, significant temporal effects were observed for both data 

splits across weekly models, p = 0.028199 for the 20-80% split and p = 0.000268 for 

the 80-20% split (α = 0.05) (Table 5). 
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Table 5: ANOVA analysis of variation between weeks for accuracy of CR 

classification detection (+ or -) of optimised machine learning models, trained on 20 

or 80% of input datasets. Models were developed on combined data from all 

experiments (weeks 1–9). ‘Groups’ are denoted as from identification of Zadoks (Z) 

13, 21. 

 

Data split 
Growth 
Stage Groups Count Sum Average Variance 

20-80 

Tillering 

1 14 7.6048 0.5432 0.00068 

2 14 7.3838 0.527414 0.001126 

3 14 7.5006 0.535757 0.000824 

4 14 7.3882 0.527729 0.000768 

5 14 7.806 0.557571 0.002078 

Stem 
Extension 

6 14 7.5025 0.535893 0.000871 

7 14 7.1963 0.514021 0.000385 

8 14 7.3676 0.526257 0.00054 

Boot 9 14 7.5683 0.540593 0.001336 

α  0.05         

P-value  0.028199         

80-20 

Tillering 

1 14 9.088 0.649143 0.006906 

2 14 7.8591 0.561364 0.004961 

3 14 7.0426 0.503043 0.015527 

4 14 6.988 0.499143 0.028833 

5 14 8.5935 0.613821 0.004414 

Stem 
Extension 

6 14 8.5512 0.6108 0.001821 

7 14 8.2763 0.591164 0.005718 

8 14 8.1162 0.579729 0.003282 

Boot 9 14 8.0282 0.573443 0.004801 

α  0.05         

P-value  0.000268         

 

IV. DISCUSSION 

A. Crown rot detection 

Currently CR detection and assessment methods rely on trained assessors and involve 

destructive sampling. These methods are time consuming and expensive, particularly 

to process a large number of samples to characterise infection levels in an entire field 

or paddock, or for germplasm assessment by researchers and breeding companies. 

Rapid, non-invasive, high-throughput CR detection is required to reduce costs and 

improve germplasm delivery timeframes. Near-infrared spectroscopy has the potential 
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to detect and quantify crop disease before visible symptoms appear, becoming 

particularly useful in situations where crops exhibit few symptoms, or where 

symptoms are difficult to perceive, for example, soil and stubble-borne diseases 

(Kumar et al. 2002). Results from Part A show potential for automated classification 

of CR using both DWT and PCA approaches. In Part A the DWT-based classification 

system outperformed the PCA-based system when training on a 20-80% split, while 

both systems performed best in 50% of test cases on the 80-20% split. In both training 

splits the PCA-based approach utilised fewer features in top performing models. 

The results of our experiments, presented in this paper, illustrate potential for the use 

of optimised machine learning and near-infrared sensing technologies to detect CR 

across trial sites/paddocks (Tables 1–3). Results indicate that PCA has more potential 

in this regard when used in combination with tree-based machine learning algorithms 

(e.g. decision tree classifiers, extreme random forest classifiers), consistent with the 

results presented in Part A of this paper series (Chapter 3) and in the literature 

(Nasution et al. 2018). Wavelet-based models show particular potential when trained 

on smaller portions of datasets, indicating value in robust model development. 

The models were trained on weekly, tri-weekly and all-inclusive groups across 5 

experiments. The use of these generalised models, allows for models to be developed 

specifically for CR detection across environments, which can be evolved into a 

multispectral sensing system for direct deployment to growers and breeders, without 

the need to train new models at each site. The fewer features involved in the top 

performing tri-weekly models, relative to other data groupings, would allow for less 

expensive multispectral sensing solutions to be developed, as each additional feature 

corresponds to a new filter or sensor/camera. Further, tri-weekly models have the 

advantage of flexibility with sensing times, and therefore disease detection may be less 

constrained to a particular timepoint and will fit in readily with other breeding program 

or grower operations.  

Accuracy and F1 scores were reduced compared to training on individual data sets (Part 

A) when generalised models were developed. This drop is consistent across all data 

splits and groupings. Consistent with Part A, PCA-based approaches outperformed 

DWT-based approaches in number of features across both data splits. However, when 

models were generalised PCA-based approaches outperformed DWT-based 

approaches in both the 20-80% and 80-20% train-test splits. Further refinement of data 
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groupings needs be investigated to determine whether other temporal combinations are 

beneficial in model development.  Additional analysis of temporal effects along with 

spatial effects will be evaluated in Part C of this study. 

B. Temporal effects 

Near-infrared hyperspectral and reflectance-based crop disease approaches are not 

currently sufficiently robust to handle site variability with success. This has been 

discussed in Anderegg et al. (2019), described in detail in previous studies (Devadas 

et al. 2015; Zheng et al. 2019) and noted in Part A of this research. Results indicate 

that temporal features must be investigated further to obtain the highest accuracy 

across environments and cropping sites. Results show that there are significant 

differences in accuracies temporally across weekly groups, but not across tri-weekly 

groups. 

C. Effects of training splits 

Reducing the train-test split from 80-20% to 20-80% results in less of a reduction in 

accuracy and F1 scores, in DWT-based models than in PCA-based models (Tables 1, 

3). PCA-based models generally perform with greater accuracy on higher percentages 

of training data. PCA also returned higher accuracies overall for models generated 

from multi-site data. Additionally, PCA-based models performed better with tree-

based classifiers (decision tree, extreme random forests), indicating the potential for 

use of PCA with tree-based classification, consistent with recent literature (Nasution 

et al. 2018). Further, as using a higher train-test split may overfit the models by training 

on features specific to a particular dataset and not necessarily to a particular disease 

(i.e. CR), other training splits should be investigated as put forward in Part A. Finally, 

a smaller train-test split would decrease processing time. 

D. Feature selection 

In our results the PCA-based models generally utilised fewer overall features in best 

performing models as opposed to DWT-based models (Table 4). This is consistent to 

findings in Part A and should be a consideration for developing disease specific 

multispectral sensors with less features, where lower cost sensor development is 

required. 
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V. CONCLUSION 

In Part A of this study, we tested the ability of near-infrared spectroscopy in 

conjunction with various machine learning methods and preprocessing techniques to 

detect CR (Fusarium pseudograminearum) in wheat. Results from Part A were further 

explored in this paper to determine the capacity to which these models could be 

generalised, both temporally and across environments. The successful generalisation 

of accurate CR models would allow for the development of a sensing system usable 

across breeding programs and trial sites while minimising required calibration of 

models. This generalised system would decrease sensor adoption costs while 

increasing system viability. Results show potential in combined dataset model 

development around CR detection. 

Generalised models developed using PCA-based approaches outperformed DWT 

approaches overall in the tri-weekly grouping in the 20-80% train-test split, both in 

accuracy and in F1 scores, while both processing approaches performed best across 

half of the test cases in the ‘All’ and ‘Weekly’ groups. PCA-based, generalised models 

outperformed DWT approaches across both the ‘All’ and tri-weekly groupings in the 

80-20% train-test split, with both approaches performing best on 50% of cases in the 

‘Weekly’ grouping. Further, PCA-based approaches consistently provided models 

with fewer features than wavelet-based approaches and performed better in 

conjunction with tree-based models, also consistent with Part A. Fewer features are an 

important consideration in the development of new sensing solutions as the cost of a 

sensor increases with each additional input band. The highest accuracies and F1 scores 

for generalised CR models were seen using a PCA-based approach on tri-weekly 

groupings with an 80-20% train-test split. These results were obtained using an 

extreme random forest classifier with an average accuracy of 69.78 ± 0.72% and a F1 

of 0.6953 ± 0.0123. Significant temporal patterning effects were seen between 

individual weekly model accuracies, which will be investigated further in Part C of 

this paper series. 

Further experiments, particularly around CR quantification and model development 

should and will be examined. These examinations will increase knowledge and 

understanding of CR pathology and model specificity for phenotyping systems. 

Further work should be undertaken to examine image-based system modelling, 

potentially increasing model deployment opportunities. 
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CHAPTER 5 

MACHINE LEARNING FOR THE DETECTION OF CROWN 

ROT, FUSARIUM PSEUDOGRAMINEARUM, PART C: 

SENSING LOCATION AND TIMING 

  

In this study, an extension of Part A and B, significant differences in accuracy between 

sensing dates (temporal) and sensing location (spatial) are evaluated in the scope of 

detection of Fusarium pseudograminearum induced crown rot, using the discrete 

wavelet transform (DWT) and six machine learning methods, developed from 

combined data across multiple trial sites. ANOVA F-values were used to select the 

optimal wavelet features, with data trained on an 80-20% train-test split. Significant 

temporal and spatial differences were observed using ANOVA and the Tukey HSD, 

post-hoc test. 

 

Humpal J., McCarthy C., Percy C., & Thomasson AJ. (2020c). Machine learning for 

the detection of crown rot, Fusarium pseudograminearum, Part C: sensing location 

and timing. This chapter was prepared according to the instructions to authors given 

by Computers and Electronics in Agriculture.  
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Abstract- In this paper, temporal and spatial sensing considerations are evaluated in 

the context of Fusarium pseudograminearum induced crown rot (CR) detection, using 

a commercially available near-infrared contact sensor. Machine learning models were 

developed from features derived from a discrete wavelet transform (DWT) for the 

detection of CR in five genotypes of known susceptibility (standards). Models were 

evaluated across nine weeks from three weeks after identification of Zadoks (Z) 13, 

21 in three glasshouse and two field trials, with signatures recorded from the youngest 

leaf of the newest emerged tiller, centre-most leaf, flag leaf of the newest emerged 

tiller and grain head, when present. Significant differences in time of detection 

(temporal), from Z 13, 21 and sensing location (spatial) are reported.  

 

Keywords- crop disease, temporal, machine-learning, sensing, wavelet 
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I. INTRODUCTION 

Wheat CR is a significant cereal disease in Australia caused by one of three Fusarium 

species, Fusarium culmorum, Fusarium graminearum or Fusarium 

pseudograminearum (Parry et al. 1994). With the increase in conservation 

management agriculture in recent years, CR prevalence has grown, as infectious 

material is retained in the field between seasons (Simpfendorfer et al. 2019). Potential 

annual yield loss from CR has been estimated to have increased from 1998 to 2008 

from 3.0 to 22.2%, across the Northern, 0.4 to 10.5%, across the Southern and 0.1 to 

1.5% across the Western regions of Australia. However, reports in more recent years 

have indicated that the distribution of CR has increased again, particularly across the 

Western region, with incidence of paddocks with high levels of infected stubble across 

the grain belt during 2014–2017 at 31% in the Northern region, 21% in the Western 

region and 15% in the Southern region (Simpfendorfer et al. 2019).  

Traditional CR assessment relies on disease correlation to noticeable stem browning 

and whiteheads, and therefore incidence and severity of disease is often determined 

well after infection. This limitation of traditional CR assessment makes it a suitable 

target for machine vision applications. However, spatial and temporal considerations 

need to be measured when developing such systems to provide a methodology for 

consistent, accurate disease assessment and to begin to better understand the 

underlying biological mechanisms that determine host tolerance and resistance. 

Several recent publications have indicated that temporal patterning is important in 

disease detection and quantification, in addition to being advantageous in advanced 

and high-throughput (HTP) phenotyping applications (Franke & Menz 2007; 

Busemeyer et al. 2013; Bauriegel & Herppich 2014; Anderegg et al. 2019). However, 

there is no set best time to detect crop disease. While Bauriegel and Herppich (2014) 

reported that 10–14 days after infection was ideal for detecting downey mildew in 

lettuce cultivars, Franke and Menz (2007) reported detection ability of powdery 

mildew and leaf rust in winter wheat increased as the season progressed. These 

differences are likely due to differences in disease cycles, host response and specific 

individual sensor limitations. A novel, promising approach is the use of spectral-

temporal features as independent inputs into disease resistance modeling applications, 

as changes over time are often unique and can be used to develop more specific disease 

signatures than those based on a single timepoint. This approach has been successfully 
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validated on 330 wheat genotypes under Septoria tritici blotch infection (Anderegg et 

al. 2019). Temporal effects have been considered in this study to determine if 

individual or groups of timepoints, from one to nine weeks after wheat inoculation 

with F. pseudograminearum (Z 13, 21), are significantly more effective at determining 

CR infection. 

While the importance of temporal considerations when developing crop disease 

detection and quantification methodologies has been documented, there has been 

limited research focused on sensing location, or where the sensor is directed, to 

increase detection capability. Studies have included scaling drone and other aerial-

based platforms and sensors to the resolutions and bands detected by satellites, but 

little research has been conducted on placement of the sensors within the crop, as most 

systems look directly downward onto the canopy (Clark 2017). This study also aims 

to determine the optimal sensing location or combination of locations for a contact 

near-infrared sensor for the analysis and discrimination of CR infection specifically 

for use in breeding programs.  

In Part A of this study, machine learning models based on near-infrared spectroscopy 

were developed for CR detection in wheat and successfully exhibited detection 

capability (Chapter 3). In Part B these models were generalised to determine the impact 

of combining disease data, both temporally and across sites (Chapter 4). While 

detection F1 scores and accuracies dropped in the generalised models, CR detection 

was again successful. 

II. MATERIALS AND METHODS 

A. Trial site, plant cultivation and experimental design 

This study is part of a set of objectives derived from data from five CR trials. As such, 

the methodologies are briefly laid out in the following sections and are fully outlined 

in Part A of this paper series (Chapter 3). Three glasshouse trials and two field trials 

were conducted as part of this research. The three glasshouse trials were conducted in 

2018 and 2019 at the Leslie Research Centre in Rockville, QLD and the University of 

Southern Queensland’s Centre for Crop Health (USQ-CCH) in Darling Heights, QLD 

as described previously (Chapter 3, 4). Briefly, in the first glasshouse trial in 2018 four 

genotypes with known resistances to CR, known in the breeding community as 

standards, were examined in inoculated and non-inoculated pots with twelve 
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replicates, totaling 96 plants. In the final two glasshouse trials, five standards were 

observed over six replicates of inoculated and non-inoculated pots, for 60 total plants. 

Each plant was scanned throughout the season and was removed from the pot after 

flowering for manual scoring at the USQ-CCH research facilities. All trials were 

controlled at 20–25° C and plants were watered once per week to field capacity. 

Infection was achieved by applying F. pseudograminearum colonised wheat grain 

inoculum, at the two-leaf stage, to individual plant coleoptiles as outlined in (Percy et 

al. 2012). At maturity plants were harvested and removed from the glasshouse for 

disease severity assessment. 

Two field trials were conducted in 2018 and 2019 at the Tosari Research Station, QLD 

(-27.859964, 151.452766). These trials consisted of three replicates of the same 

standards as the glasshouse trials, with plus and minus inoculated plots paired and 

arranged in a randomised strip plot design. Six plants from each plot were scanned 

throughout the season and were removed from the ground at flowering for manual 

scoring at the USQ-CCH research facilities. F. pseudograminearum colonised millet 

inoculum was applied above the seed in furrow at planting to inoculated plots in field 

trials. All glasshouse and field trials were statistically designed in collaboration with 

biostatisticians at Queensland Department of Agriculture and Fisheries (QDAF). 

B. Near-infrared measurements 

Near-infrared hyperspectral scans were collected by a handheld contact sensor, the 

DLP® NIRscan™ Nano (Texas Instruments, USA). Scans were taken from the centre 

of the youngest leaf of the newest emerged tiller, the flag leaf of the newest emerged 

tiller, the centre-most leaf and the grain head, when present. Grain heads began to 

appear across a few early maturing plants at weeks 7–9, only in glasshouse trials. Leaf 

measurements were collected once a week throughout the growing season from Z 13, 

21. No data was collected in week 8 in the second glasshouse trial due to technical 

issues during collection. All other measurement dates were situated within 8 days of 

each other. Measurements were calibrated with 10% grey, 60% grey and 99% white 

reference Spectralon® panels, measured at the beginning of sampling. Measurements 

were corrected as described:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑛𝑡 (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 
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(Labsphere 1998) 

C. Data grouping 

Data was grouped into individual weekly datasets and a combined dataset, comprising 

all measurements across all trials for evaluation of any temporal patterning. For spatial 

patterning, data was grouped based on location of measurement. Groups were tiller, 

centre, flag and head. A combined group was also created for the spatial data, 

consisting of combined data across all locations, both including and excluding head 

data. 

D. Data analysis 

All data analysis was performed using the Python computing environment (Python 

version 3.6.8, Python Software Foundation 2019). Data analysis was primarily limited 

to the SciPy ecosystem (Jones et al. 2001) and the Scikit-learn library (Pedregosa et 

al. 2011). Any additional libraries and packages have been cited where relevant. 

Spectral signatures were analysed and any outliers (z-score > 3) were removed. The 

resulting signatures were transformed using the discrete wavelet transform (DWT), 

using a Daubechies 2 wavelet from the PyWavelets library (Lee et al. 2019). This 

wavelet is asymmetric and biorthogonal (Daubechies 1988). 

The DWT approach (1) uses a scaled operator to return transformed data features 

indicative of significant signatures at both local and global scales:  

 

𝜔sƒ(λ) =  ƒ(λ) ∗  ψs (λ) =  ƒ(λ)  ∗  
1

𝑠
 ψ (

λ

𝑠
)   (1) 

   (Bruce & Li 2001) 

 

where ƒ(𝜆) is the input signal, s is the scale and 𝜓𝑠 (𝜆) is the scaled wavelet function. 

Resulting transformed spectra were standardised and scaled in the Python SciPy 

library (Jones et al. 2001). 

Any resulting features with bandwidths less than 25 nm were discarded to reduce 

model noise. Feature selection was based upon the SelectKBest function in the 

feature_selection package of the Scikit-learn library. The top k, 1–10 features were 

selected using the k highest ANOVA F-values (Pedregosa et al. 2011). 
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Six machine learning techniques were evaluated for effectiveness in classifying pots 

or plots into diseased (inoculated) or healthy (non-inoculated) plants including logistic 

regression classification, k-nearest neighbors, decision trees, extreme random forests, 

support vector machines and a multilayer perceptron artificial neural network. The 

multilayer perceptron was determined to be the most effective method of 

discriminating diseased from healthy plants (Chapter 3, 4). Multilayer perceptron, 

artificial neural networks (MLP, ANN) are classification algorithms that evaluate 

training data without specific programing to discover unique characteristics, otherwise 

overlooked from the input training data set. A MLP consists of a minimum of three 

layers of nodes, an input, a hidden layer and an output layer. MLPs are a class of 

feedforward ANN, which use backpropagation to distinguish non-linear data patterns 

(Wasserman & Schwartz 1988). 

D.1 Evaluation and validation 

Data was collected and evaluated for nine weeks after inoculation for each of the trials 

using the wavelet-machine learning approach. Each dataset was split into training and 

test sets using an 80-20% split using Scikit-learn’s train_test_split function (Pedregosa 

et al. 2011). These data feature sets were trained to determine an optimal combination 

of hyperparameters using the GridSearchCV function from Scikit-learn’s 

model_selection package (Pedregosa et al. 2011). This function performs a 

comprehensive search over specified input parameters using k-fold cross-validation to 

determine optimal model parameters. The resulting optimised models were tested on 

random, independent validation sets and scored for accuracy and F1 (F-score). The 

equations used for accuracy, precision, recall and F1 are reported below (2,3,4,5): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖)  (2) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
        (3) 

Where 𝑡𝑝 is number of true positive values and 𝑓𝑝 is number of false 

positive values 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
       (4) 
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Where 𝑡𝑝 is number of true positive values and 𝑓𝑛 is number of false 

negative values 

𝐹1  =  2 ·
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
       (5) 

D.2 Temporal features 

Resulting accuracies were established for each week and the best models for each 

approach were used to determine temporal differences between the nine weeks 

evaluated, from one to nine weeks of data collection from Z 13, 21. An ANOVA was 

performed using the f_oneway function in the stats analysis package of the SciPy 

ecosystem, version 0.19.1 (Jones et al. 2001). To determine significant differences 

between weeks a Tukey HSD (Honest Significant Difference) test was performed with 

a significance threshold of α = 0.05 using the pairwise_tukeyhsd function from the 

statsmodels.stats.multicomp package, version 0.11.1 (Seabold & Perktold 2010). 

D.3 Spatial features 

The resulting accuracies determined for each of the six machine learning methods were 

also used to discriminate spatial differences between the four sensing locations tested, 

the newest tiller, centre-most leaf, flag leaf and grain head, as well as, combined data 

from all locations. The combined data group was split to both include and exclude 

head data. Both the single top model accuracies for each location and groups of the top 

twenty accuracies were evaluated to determine significant differences between 

locations. An ANOVA determined significant differences between the sensing 

locations, both when including grain head information and when it was excluded. To 

determine which locations performed significantly better than the others a Tukey HSD 

test was performed with a significance threshold of α = 0.05. 

D.4 Temporal and spatial interaction 

Finally, accuracies determined for each of the machine learning techniques were used 

to evaluate the interaction between sensing locations and timepoint. Interactions were 

evaluated at the individual trial level and on combined trial data. The top twenty 

accuracies were used to evaluate interaction variances between the temporal and 

spatial data using a two-factor ANOVA, significant interactions between sensing 

location and timepoint were observed. The two-factor ANOVA was performed using 

the anova_lm function in the statsmodels.stats.anova package, version 0.11.1 (Seabold 

& Perktold 2010). To determine which combinations of weeks and sensing location 



CHAPTER 5. SENSING LOCATION AND TIMING 

 

97 

 

were significant a Tukey HSD test was performed (α = 0.05) using the 

pairwise_tukeyhsd function included in the statsmodels.stats.multicomp package, 

version 0.11.1 (Seabold & Perktold 2010).  

III. RESULTS 

A. Temporal effects 

Timepoints which were significantly different from one another (α = 0.05) were 

evaluated across trials and combined data. When evaluating the initial glasshouse trial, 

2 and 4 weeks from Z 13, 21 were identified as temporally significant. In the second 

glasshouse trial, week 2 was again significant with the addition of week 1 and week 5, 

while the final glasshouse trial showed significant differences in weeks 1 and 7 of data 

collection (Table 1). 

Both field trials had significant temporal effects at week 5 of data collection, with the 

second trial also showing significant differences in week 1. When looking at combined 

data, weeks 2, 4, 5 and 9 post-identification of Z 13, 21 were determined to be 

significantly advantageous in discriminating CR infection in an equal number of cases 

(Table 1). 

Overall, timepoints of significance appeared across most trials in weeks 1–2 weeks 

after identification of Z 13, 21, at 4–5 weeks and again after 9 weeks post-identification 

of Z 13, 21 (Table 1). These timepoints correspond to important events in the wheat 

lifecycle, specifically early-tillering (1–2 weeks), late-tillering (4–5 weeks) and the 

boot stage (9 weeks). 
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Table 1: Weeks of data collection that were significantly different for each glasshouse 

and field experiment and for all data combined as determined by ANOVA and Tukey 

HSD (α=0.05). Week comparisons that did not exhibit significant differences were 

omitted from this table. 

 

 

B. Spatial effects 

Sensing was significantly (α = 0.05) more accurate when evaluating the top twenty 

models developed on data from tillers, centre leaves and flag leaves, as opposed to 

individual locations. No significant differences were observed when only evaluating 

  
Multiple Comparison of Means, Tukey HSD, α = 0.05 

Data grouping Group 1 Group 2 
Mean 

difference p-adj Lower Upper 

Glasshouse 1 

Week 2 Week 4 -15.345 0.001 -24.9789 -5.7111 

Week 2 Week 9 -11.4383 0.0097 -21.0722 -1.8045 

Week 4 Week 5 11.6033 0.0082 1.9695 21.2372 

Glasshouse 2 

Week 1 Week 3 -28.8883 0.001 -41.4957 -16.281 

Week 1 Week 4 -37.9067 0.001 -50.514 -25.2993 

Week 1 Week 5 -19.1467 0.001 -31.654 -6.4393 

Week 1 Week 6 -31.9017 0.001 -44.509 -19.2943 

Week 1 Week 7 -38.9267 0.001 -51.534 -26.3193 

Week 1 Week 9 -34.1383 0.001 -46.7457 -21.531 

Week 2 Week 3 -20.3183 0.001 -32.9257 -7.711 

Week 2 Week 4 -29.3367 0.001 -41.944 -16.7293 

Week 2 Week 6 -23.3317 0.001 -35.939 -10.7243 

Week 2 Week 7 -30.3567 0.001 -42.964 -17.7493 

Week 2 Week 9 -25.5683 0.001 -38.1757 -12.961 

Week 5 Week 4 18.86 0.001 6.2527 31.4673 

Week 5 Week 6 -12.855 0.0429 -25.4623 -0.2477 

Week 5 Week 7 -19.88 0.001 -32.4873 -7.2727 

Week 5 Week 9 -15.0917 0.0096 -27.699 -2.4843 

Glasshouse 3 

Week 1 Week 2 18.82 0.0303 1.0649 36.5751 

Week 1 Week 7 27.6167 0.001 9.8615 45.3718 

Week 1 Week 9 20.04 0.0166 2.2849 37.7951 

Week 7 Week 5 20.51 0.013 2.7549 38.2651 

Week 7 Week 8 -24.0717 0.0019 -41.8268 -6.3165 

Field 1 

Week 1 Week 5 14.2233 0.0025 3.5176 24.929 

Week 3 Week 8 -11.4383 0.0282 -22.144 -0.7326 

Week 5 Week 7 -12.305 0.0137 -23.0107 -1.5993 

Week 5 Week 8 -15.0267 0.0012 -25.7324 -4.321 

Week 5 Week 9 -11.8017 0.021 -22.5074 -1.096 

Field 2 

Week 1 Week 5 15.4783 0.001 7.561 23.3957 

Week 1 Week 6 9.525 0.0083 1.6077 17.644 

Week 1 Week 7 8.5633 0.0251 0.646 16.4807 

Week 1 Week 8 10.715 0.0019 2.7977 18.6323 

Week 5 Week 2 9.7267 0.0066 1.8093 17.644 

Week 5 Week 3 10.4433 0.0027 2.526 18.3607 

Week 5 Week 4 9.02 0.0151 1.1027 16.9373 

Week 5 Week 9 -10.7183 0.0019 -18.6357 2.801 

Combined (All 
Experiments)  

Week 2 Week 4 -10.5307 0.0061 -19.2583 -1.8031 

Week 2 Week 8 -11.3439 0.002 -20.0715 -2.6163 

Week 5 Week 4 8.983 0.0383 0.2554 17.7106 

Week 5 Week 8 -9.7963 0.0152 -18.5239 -1.0686 
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the top models for each group, in either the head-retained or head-removed datasets. 

When head data was retained and the top 20 models were evaluated, combined data 

significantly outperformed tiller and flag data, while head data, alone, also 

outperformed tiller data (Table 2).  

Table 2: Significant differences in sensing location (leaf or head of the center-most 

tiller, the newest emerged tiller or the youngest flag leaf) across 3 glasshouse and 2 

field trials for individual sensing locations and combined data for either the single top 

performing accuracy for each model or the top twenty accuracies for each model as 

determined by ANOVA and Tukey HSD. Significance is denoted as ‘S’ (significant) 

or ‘NS’ (not significant). 

 

Multiple Comparison of Means, Tukey HSD, α = 0.05 

Combined Data 

Data grouping Group 1 Group 2 
Mean 

difference p-adj Lower Upper Significance 

Highest Accuracy - 
Head Data Removed 

Centre Flag 0.0064 0.9 -0.0943 0.17 NS 

Centre Combined 0.0038 0.9 -0.0969 0.1044 NS 

Centre Tiller 0.0013 0.9 -0.0993 0.102 NS 

Flag Combined -0.0026 0.9 -0.1033 0.098 NS 

Flag Tiller -0.005 0.9 -0.1057 0.0956 NS 

Combined Tiller -0.0024 0.9 -0.1031 0.0982 NS 

Highest Accuracy - 
Head Data Retained 

Combined Centre 0.0075 0.9 -0.1285 0.1435 NS 

Combined Flag -0.0005 0.9 -0.1365 0.1355 NS 

Combined Head -0.0006 0.9 -0.1366 0.1354 NS 

Combined Tiller 0.0008 0.9 -0.1352 0.1367 NS 

Centre Flag -0.008 0.9 -0.144 0.128 NS 

Centre Head -0.0081 0.9 -0.1441 0.1279 NS 

Centre Tiller -0.0067 0.9 -0.1427 0.1293 NS 

Flag Head -0.0001 0.9 -0.1361 0.1359 NS 

Flag Tiller 0.0013 0.9 -0.1347 0.1372 NS 

Head Tiller 0.0013 0.9 0.1373 0.13763 NS 

Top 20 Accuracies - 
Head Data Removed 

Centre Flag -0.0099 0.6776 -0.0333 0.0136 NS 

Centre Combined 0.0366 0.001 0.0132 0.06 S 

Centre Tiller -0.0163 0.2791 -0.0397 0.0071 NS 

Flag Combined 0.0464 0.001 0.023 0.0699 S 

Flag Tiller -0.0064 0.8888 -0.0299 0.017 NS 

Combined Tiller -0.0529 0.001 -0.0763 -0.0295 S 

Top 20 Accuracies - 
Head Data Retained 

Combined Centre -0.0326 0.1376 -0.0709 0.0057 NS 

Combined Flag -0.0421 0.0231 -0.0804 -0.0037 S 

Combined Head -0.0151 0.7932 -0.0534 0.0232 NS 

Combined Tiller -0.062 0.001 -0.1003 -0.0237 S 

Centre Flag -0.0095 0.9 -0.478 0.0289 NS 

Centre Head 0.0175 0.6986 -0.0208 0.0558 NS 

Centre Tiller -0.0294 0.2222 -0.0677 0.0089 NS 

Flag Head 0.0269 0.3072 -0.0114 0.0652 NS 

Flag Tiller -0.0199 0.5985 -0.0583 0.0184 NS 

Head Tiller -0.0469 0.0076 -0.0852 -0.0086 S 
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C. Temporal and spatial interaction 

Significant variation (α = 0.05) was seen in the interaction between timepoint (week) 

and sensing location (Table 3). Significant interactions were observed across all 

individual trials and combined data, with temporal and spatial interactions accounting 

for the majority of variance in four of the six data groupings (Eta2, ω2). This interaction 

was most important in analysis of combined data across all trials. Mean accuracies for 

each significant interaction as determined by Tukey’s HSD test (α = 0.05) ranged from 

60% to 78% (Fig. 1). The interaction with the highest mean accuracy occurred at week 

five using combined scan data from the centre-most leaf, the newest emerged tiller leaf 

and the flag leaf. 

Table 3: Significant differences of sensing location (leaf or head of the center most 

tiller, the newest emerged tiller or the youngest flag leaf), timepoint (‘Week’) and 

interaction (‘Location:Week’) between timepoint and sensing location across 3 

glasshouse and 2 field trials for individual trials and combined data for the top twenty 

accuracies for each model as determined by a two-factor ANOVA. Significance is 

denoted as ‘S’ (significant) or ‘NS’ (not significant). 

Two-Factor ANOVA, α = 0.05 

Data Grouping Variable 
Sum of 
Squares df F PR (>F) Eta2 ω2 Significance 

Glasshouse 1 

Location 1.156 5 55.494 5.25E-51 0.074 0.072 S 

Week 3.547 8 106.472 1.95E-128 0.226 0.224 S 

Location:Week 6.813 40 40.893 3.08E-181 0.434 0.423 S 

Residual 4.194 1007          

Glasshouse 2 

Location 0.002 5 0.032 0.968 4.33E-05 -0.001 NS 

Week 28.711 7 343.110 4.60E-143 0.647 0.644 S 

Location:Week 6.154 35 14.709 1.16E-57 0.139 0.129 S 

Residual 9.540 798          

Glasshouse 3 

Location 0.190 5 7.158 0.001 0.014 0.012 S 

Week 1.816 8 42.760 8.35E-40 0.130 0.127 S 

Location:Week 6.945 40 32.702 9.49E-143 0.496 0.481 S 

Residual 5.044 950          

Field 1 

Location 0.625 4 47.244 6.60E-36 0.074 0.073 S 

Week 3.952 8 149.402 1.10E-156 0.470 0.466 S 

Location:Week 1.012 32 9.569 9.88E-39 0.120 0.108 S 

Residual 2.827 855          

Field 2 

Location 0.781 4 66.971 2.57E-49 0.143 0.140 S 

Week 0.749 8 32.117 2.75E-44 0.137 0.133 S 

Location:Week 1.451 32 15.552 6.53E-65 0.265 0.248 S 

Residual 2.493 855          

Combined (All 
Experiments) 

Location 2.759 5 16.565 3.02E-16 0.016 0.015 S 

Week 5.240 8 19.663 1.95E-29 0.030 0.029 S 

Location:Week 10.051 40 7.542 2.56E-40 0.058 0.050 S 

Residual 154.806 4647           
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Fig. 1: Group means (●) and confidence intervals (–) of combined data of interactions 

between location and timepoint determined by Tukey HSD to be significant. 

IV. DISCUSSION 

A. Temporal effects 

This paper describes significant (α = 0.05) temporal effects as early as one to two 

weeks from identification of Z 13, 21 in wheat inoculated with F. pseudograminearum 

(Table 1). This suggests not only potential for early disease detection, but that early 

disease detection may be more accurate than CR detection later in the growing season. 

The temporal patterning observed in these experiments indicates a decrease in disease 

detection accuracy after weeks six to seven of measurement with accuracies increasing 

again around the eight to nine-week mark. Further work will develop these specific 

temporal patterns into features for model refinement and further model development 

which has been shown to increase model accuracy over single timepoint models 

(Anderegg et al. 2019). 
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Model accuracy fluctuations may correspond to pathogen toxin production and/or 

plant disease host responses. F. pseudograminearum is known to produce 

deoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone, which may be detectible by 

near-infrared sensing (Leslie & Summerell 2006). Previous work has shown 

deoxynivalenol may contribute to shifts in the near-infrared absorption between 

healthy and Fusarium damaged wheat kernels (Peiris et al. 2009). Additionally, it has 

been hypothesised that when under attack by certain CR pathogens (F. culmorum), 

wheat synthesises an anti-fungal compound, which may be an additional target for 

near-infrared spectral sensing (Skov et al. 2004). These shifts may be more apparent 

at certain timepoints and as such may be responsible for the temporal patterning seen 

here. Additional biochemical research should be carried out to determine wavebands 

and assess signatures and quantities of isolated toxins and biological defense chemicals 

produced from green tissue for comparison to discovered temporal patterns. Further 

research is required to determine the relationship between these temporal differences 

in NIR signatures and the pathogen biology and disease cycle, in addition to furthering 

knowledge of cereal CR resistance and tolerance mechanisms.  

B. Spatial effects 

Significant (α = 0.05) spatial effects were observed between sensing locations when 

comparing accuracies from the top twenty models in each group (tiller, centre, flag, 

head, combined). Tiller scans were taken from the centre of the youngest leaf of the 

newest emerged tiller; flag scans from the flag leaf of the newest emerged tiller; centre 

scans from the centre-most leaf. When evaluating differences involving these groups 

for each machine learning technique, using a combination of measurements throughout 

the canopy profile a combination of tiller, centre and flag measurements returned 

significantly higher accuracies than any of those measurements alone. This suggests 

that a combination of measurements, throughout the canopy should be used when 

discriminating CR before heads begin to emerge. When head data was included in the 

evaluation of the top twenty model groups, combined data again proved to perform 

better in most instances.  

Interestingly, head data alone was shown to significantly outperform all data collected 

on leaves (Table 2). This could be due to detection of decreased grain fill or quality in 

the wheat kernels, increased moisture stress, or molecular changes caused by the 

Fusarium infection, as discussed above in Temporal effects. While this suggests 
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potential for the use of head data in disease detection and discrimination, if disease 

discrimination is desired early in the season, such as by a breeding program for use in 

quickly selecting germplasm to advance, models built on other measurements should 

be considered. Further, the results of this study indicate significant temporal effects 

early in the season using young tissues, consistent with findings reported in Percy et 

al. (2012), whereby the disease is shown to be progressive in its movement through 

each plant part. However, results of this study suggest that using a combination of 

scans produces significantly better results than using scans of a single tissue. These 

results indicate that the best potential combination of temporal and spatial parameters 

for near-infrared CR discrimination is measurement at late-tillering (week 5) using a 

combination of leaf scans throughout the canopy. Further, these results indicate that 

when transferring this system to a camera-based approach, images should be obtained 

including as much leaf information as possible, versus targeting a specific leaf. 

Results of the data groupings and analysis conducted in this paper are consistent with 

Part A of the paper series, where increased accuracies and F1 scores were achieved at 

1–2 weeks, 5–6 weeks and 9 weeks of data collection (Chapter 3). These timepoints, 

corresponding to the wheat growth stages of early-tillering, late-tillering and booting, 

respectively, are shown here to be significant in the successful detection of CR, in 

conjunction with scans throughout the canopy, with an emphasis on young tissue scans 

and early identification. 

C. Temporal and spatial interaction  

Significant interaction (α = 0.05) was observed between sensing location and timepoint 

when the top twenty accuracies were evaluated across machine learning methods 

(Table 3). Tukey HSD (α = 0.05) determined that in early weeks, until week 6, 

significant interaction occurred between the weeks and all location measures. After 

week 6, the most significant interactions consistently involved grain head or combined 

sensing data (Fig. 1). This suggests that scan location increases in importance later in 

the season. These findings indicate that for optimal CR detection, the interaction 

between timing and location of sensing measurements is important to consider. This 

further suggests, in conjunction with the points discussed above, that as the disease is 

progressive, optimal detection time and sensing location move like a wave with this 

progression. As such, using a combination of sensing locations, such as observed from 
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a camera system, and data from early-tillering, late-tillering and booting significantly 

impacts and increases CR detection capability. 

Further work should evaluate the accuracies of models targeting specific tillers 

throughout the growing season to determine how disease detection is impacted by tiller 

age and size. Additionally, this evaluation could be used to model disease progression 

through the host crop to improve our understanding of these pathogen-host 

interactions. Stem measurements, at the site of lesions, should also be included to 

determine suitability for rapid disease detection and quantification. However, while 

stem measurements may be suitable for post-harvest quantification, they are less likely 

to be adaptable to either real-time or in-season remote sensing systems as they are 

rapidly hidden by the crop canopy closing and would likely require a system that 

travels up every other row to image stem browning, as opposed to an overhead system, 

like those commonly integrated into unmanned aerial vehicle (UAV) platforms. 

V. CONCLUSION 

In this study, temporal and spatial features were evaluated for significance in F. 

pseudograminearum induced CR detection in bread wheat using near-infrared 

hyperspectral spectroscopy, pre-processed with the discrete wavelet transform (DWT) 

and discriminated with machine learning models. Results of this further research 

indicate significant temporal and spatial effects to consider when developing CR 

detection frameworks. Significant temporal patterning was observed at one to two 

weeks from Z 13, 21 in plants inoculated with F. pseudograminearum, dropping off 

and rising again around the four to five-week mark and again rising at the nine-week 

mark, consistent with observations reported in Part A of this study. This patterning 

should be investigated in future studies for use as an input feature to further refine 

disease models. Investigation of spatial features revealed that combinations of sensing 

locations throughout the canopy performed better than individual features. Further, the 

use of grain heads for sensing showed potential for disease discrimination, compared 

to tillers. However, combined features provide an advantage over grain head features 

when early detection is the goal, as with developing high-throughput breeding 

programs. Further work should investigate how these differences, both temporally and 

spatially, relate to pathogen toxicity, host response and disease lifecycle.  
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CHAPTER 6 

DEVELOPMENT OF MULTILAYER PERCEPTRON MODELS 

FOR HIGH-THROUGHPUT PHENOTYPING OF CROWN 

ROT, FUSARIUM PSEUDOGRAMINEARUM 

  

In this study, multilayer perceptron artificial neural networks (MLP, ANN), 

preprocessed for feature reduction with either a discrete wavelet transform (DWT) or 

principal component analysis (PCA) were used to develop models to phenotype 

Fusarium pseudograminearum induced crown rot of wheat by quantifying disease 

using six developed scales. The scales correlate to percentage stem browning and were 

tested across glasshouse and field environments, with models developed from 

individual trials and combined site data. Models were shown to perform best in field 

environments. PCA and DWT approaches performed with similar accuracy in 

developed models. 

Humpal J., Percy C., McCarthy C., & Thomasson AJ. (2020d). Development of 

multilayer perceptron models for high-throughput phenotyping of crown rot, 

Fusarium pseudograminearum. This chapter was prepared according to the 

instructions to authors given by Computers and Electronics in Agriculture.  
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Abstract- In this paper, multilayer perceptron artificial neural networks (MLP, ANN), 

preprocessed with a discrete wavelet transform (DWT) or principal component 

analysis (PCA) were used to build models to quantify Fusarium pseudograminearum 

induced crown rot (CR) in bread wheat. Six scales were developed and tested, 

correlating to categories of percentage stem browning, traditionally used to quantify 

resistance and tolerance of wheat to CR. The scales were tested across three glasshouse 

and two field trials, with models being developed from individual trial data, as well as, 

combined data from all experiments. Average accuracy ranged from 32.17% to 

96.40% with models performing better with field data than in the glasshouse. Both 

PCA and DWT approaches performed similarly in developed models. 

 

Keywords- crop disease, crown rot, ANN, proximal sensing, DWT 
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I. INTRODUCTION 

Fusarium pseudograminearum is the predominant pathogen responsible for CR 

infection in Australia. Recent reports indicate that CR, traditionally a significant issue 

in winter cereals in the northern grains region of Australia, is becoming more 

widespread, with increasing significance across the Northern, Western and Southern 

regions (Simpfendorfer et al. 2019). As CR is a stubble-borne disease, the increasing 

adoption of conservation agriculture has allowed inoculum to build up in the soil, 

particularly in rotations with limited cycles out of host crops (Simpfendorfer et al. 

2019).  

There are currently no viable options for fungicide control of CR infection, although 

targeting application to the base of the crop using inter-row drop applicators has been 

reported to show some success in yield retention (Simpfendorfer et al. 2014). As the 

most successful management approaches involve rotation into a non-host crop or inter-

row seeding, genetic solutions to CR are a priority to Australian grain growers. 

Current breeding programs must grow plants through to maturity to screen for 

tolerance and resistance. Tolerance is the ability of germplasm to resist yield loss under 

disease pressure while resistance is the ability of germplasm to combat the disease 

directly (Forknall et al. 2019), reducing the spread, whether that be through the 

production of anti-fungal compounds or other host responses. A machine vision 

system that could determine CR severity early in the season would allow for rapid 

screening of resistance and would also be a step toward the development of a high-

throughput phenotyping (HTP) platform for early resistance and tolerance screening 

based on machine vision technologies. Early detection would allow for only the most 

promising material to be moved forward through the program, freeing capital for 

investment in additional lines in each step of germplasm development. 

Additional advantages to developing machine-based HTP methodologies include 

shifting from reliance on human interpretation of visual disease symptoms. Traditional 

CR assessment, in breeding programs, relies on removing the plant from the field, 

often off-site, to score percentage stem browning around the lower internodes. 

However, human assessment, particularly in plant disease rating, has been shown to 

contain significant variability, both between samples scored by an individual assessor 

and between multiple assessors (Nutter Jr et al. 1993; Newton & Hackett 1994; Nutter 
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1997). While this variability has been hypothesised to be due to imperfect scoring 

systems, it is likely to be specifically due to the variation between human colour 

interpretations in CR scoring systems, an issue evident in any interpretive, colour-

based system. Further, traditional CR assessment is time consuming. A machine-vision 

system would allow trained assessors to reproduce scores more reliably and more 

quickly. 

Previous research has reported the successful detection of CR using multiple machine 

learning methods and processing techniques on data obtained from a contact near-

infrared sensor (900–1700 nm) (Chapter 3, 4, 5). Successful disease prediction models 

were developed and evaluated from both site-specific data and generalised data 

collected across multiple trial sites and timepoints (Chapter 3, 4). Additionally, 

significant differences in sensing location, as well as, temporal and locative-temporal 

differences in detection accuracy were determined (Chapter 5). 

This study was conducted to expand upon these findings and examine the phenotyping 

capability of these approaches. The previous chapters used analysis to determine 

detection (positive or negative) capability of developed analyses while this chapter 

examines the capability for multi-class classification. Specifically, a multilayer 

perceptron (MLP) approach was developed, preprocessed with either DWT or PCA 

for dimensionality reduction and feature selection. The goal of this method was to 

successfully quantify CR using a machine-vision approach which could be beneficial 

to CR breeding programs. 

II. MATERIALS AND METHODS 

A. Trial site, plant cultivation and experimental design 

Five experimental trials were conducted for this study, including three glasshouse trials 

and two field trials in collaboration with researchers from the University of Southern 

Queensland Centre for Crop Health (USQ-CCH), as previously described (Chapter 3). 

All glasshouse and field trials were statistically designed in collaboration with 

biostatisticians at Queensland Department of Agriculture and Fisheries (QDAF). 

Glasshouse trials were conducted from 2018–2019 at the Leslie Research Centre, 

Rockville, QLD and at the USQ-CCH, Darling Heights, QLD. The initial glasshouse 

trial consisted of four standard genotypes, with known resistances to CR. These were 

examined in 96 inoculated and uninoculated pots for twelve replicates. In the 2nd and 
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3rd glasshouse trials, five standards were observed over six replicates (60 plants). All 

experiments were arranged in a randomised block design and grown in a glasshouse 

which maintained temperature at 20–25° C. Plants were watered to field capacity once 

per week to minimise external influences. Colonised wheat grain inoculum (Percy et 

al. 2012) was applied at the two-leaf stage, to individual plant coleoptiles of the 

inoculated treatments. Plants were harvested at maturity and rated for disease severity. 

Two field trials were conducted in the winter of 2018 and 2019 at the Tosari Research 

Station, QLD (-27.859964, 151.452766). F. pseudograminearum colonised millet 

inoculum was applied to inoculated plots in furrow, above the seed at planting. These 

trials contained three replicates of the same standards as the glasshouse trials and were 

arranged in a paired strip plot, where genotypes were placed in a randomised block 

with paired inoculated and non-inoculated plots. Six plants from each plot were 

evaluated for nine weeks throughout the season, from Zadoks (Z) 13, 21 (Zadoks et al. 

1974), and removed for manual scoring at USQ-CCH.  

B. Near-infrared measurements 

The DLP® NIRscan™ Nano (Texas Instruments, USA) was used to take near-infrared 

hyperspectral measurements of inoculated and non-inoculated plants for nine weeks, 

from Z 13, 21. Measurements were taken from the centre of the leaf of the youngest 

fully emerged tiller, the newest flag leaf, the determined centre-most leaf and a grain 

head if present, for both inoculated and non-inoculated plants. Due to technical issues 

during data collection, no data was collected in week 8 of the second glasshouse trial 

at Leslie Research Centre. Every other measurement date was within 8 days of each 

other. Spectral scans were calibrated with 10% grey, 60% grey and 99% white 

reference Spectralon® panels, measured at the beginning of the sampling session. 

Measurements were corrected as follows:  

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑛𝑡 (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) 

(Labsphere 1998) 
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C. Data analysis 

Data analysis was performed inside the Python computing environment, unless 

otherwise stated (Python version 3.6.8, Python Software Foundation 2019). Data 

analysis was primarily conducted using the SciPy ecosystem (Jones et al. 2001) and 

the Scikit-learn library (Pedregosa et al. 2011). Figures were developed using the 

seaborn data visualisation library (Waskom et al. 2014) on top of the matplotlib data 

visualisation library (Hunter 2007). Additional libraries and packages have been cited 

where appropriate. 

C.1 Discrete wavelet transform 

Raw spectral signatures from the DLP® NIRscan™ Nano (Nano) were analysed and 

outliers (z-score > 3) were removed. The resulting cleaned signatures were 

transformed using the discrete wavelet transform (DWT), with a Daubechies 2 wavelet 

from the PyWavelets library (Lee et al. 2019). The Daubechies wavelet family is 

asymmetric and biorthogonal (Daubechies 1988). 

The DWT approach (1) uses a scaled operator to return transformed features or 

wavelets revealing significant patterns at both high-resolution (local) and low-

resolution (global scales):  

 

𝜔sƒ(λ) =  ƒ(λ) ∗  ψs (λ) =  ƒ(λ)  ∗  
1

𝑠
 ψ (

λ

𝑠
)   (1) 

   (Bruce & Li 2001) 

 

where ƒ(𝜆) is the input signal, from the cleaned spectral signature, s is the scale 

variable and 𝜓𝑠 (𝜆) is the scaled wavelet function. Transformed spectral features were 

standardised and scaled (0–1) in the Python SciPy library (Jones et al. 2001). 

Resulting features with bandwidths less than 25 nm were removed to reduce model 

noise caused by local environmental factors. Features were selected based on highest 

k, 1–10 ANOVA F-values using the SelectKBest function of the feature_selection 

package in the Scikit-learn library (Pedregosa et al. 2011). 
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C.2 Principal component analysis 

Raw spectra of adjacent wavebands from the Nano were averaged to approximate the 

wider bandwidths produced in the DWT approach and outliers were removed (z-score 

> 3). The resulting bands were standardised and scaled (0–1) using the preprocessing 

package in the Python SciPy library, version 0.19.1 (Jones et al. 2001). Resulting 

spectra were smoothed using the Savitzky-Golay filter (Savitzky & Golay 1964). The 

window size was set at 5 bands and a second order polynomial was used by applying 

the savgol_filter in the Python library SciPy (Jones et al. 2001). PCA was applied to 

the resulting spectra and restricted to 1–10 principal components using the 

decomposition package from the Python SciPy library (Jones et al. 2001). Features of 

maximum importance were determined from the principal components. Resulting 

features with bandwidths less than 25 nm were removed and transformed features were 

used in model development. 

C.3 Modelling 

A multilayer perceptron, artificial neural network (MLP, ANN) technique was 

evaluated for effectiveness in quantifying plant disease based on six scoring systems, 

with differing numbers of data groupings from two to eleven groups, associated with 

traditional stem browning percentage (Fig. 1). ANNs consist of multiple nodes which 

act like the neurons in an animal’s brain, allowing the models to find patterns in the 

data where driving mechanisms are not fully understood. MLPs are a class of forward 

feeding ANN, which uses backpropagation to classify data when linear patterns do not 

exist (Wasserman & Schwartz 1988). Analysis was performed across individual trials, 

in addition to a dataset containing data combined from all trials. Further, three 

additional groupings were developed around early-tillering (weeks 1–2), late-tillering 

(weeks 4–5) and booting (week 9), based on their impact in successful CR detection 

from previous research (Chapter 3, 4, 5). 
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 % Stem Browning  

Rating 
System 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

1 
ND 

Group 1 
(5) 

Group 2 
(14) 

Group 3 
(25) 

Group 4 
(36) 

Group 5 
(44) 

Group 6 
(54) 

Group 7 
(65) 

Group 8 
(77) 

Group 9 
(85) 

Group 10 
(95) 

2 
ND 

Group 1 
(8) 

Group 2 
(29) 

Group 3 
(50) 

Group 4 
(72) 

Group 5 
(91) 

3 
ND 

Group 1 
(9) 

Group 2 
(35) 

Group 3 
(60) 

Group 4 
(87) 

4 
Group 1 

(9) 
Group 2 

(69) 

5 
ND 

Group 1 
(13) 

Group 2 
(69) 

6 
ND 

Group 1 
(9) 

Group 2 
(49) 

 

Fig. 1. The grouping of the six rating systems developed for evaluation of CR quantification ability and the average stem browning score 

(%) of samples used to develop each grouping across all trials in parenthesis. Not detectable is denoted as ND.
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C.4 Evaluation and validation 

Each experimental dataset was split into train-test datasets using an 80-20% split and 

used as inputs into the MLP models. The splits were determined using the 

train_test_split function in Scikit-learn (Pedregosa et al. 2011). The transformed 

signatures were labelled according to the groupings in Figure 1 based on visual ratings 

by trained assessors. Traditional visual CR rating involves removing the plant from 

the trial, removing the leaf sheaths around the lower internodes and scoring based on 

percentage of colour variation of the stem. The resulting datasets were trained to 

determine the optimal combination of hyperparameters for accurate quantification 

with the GridSearchCV function from Scikit-learn’s model_selection package 

(Pedregosa et al. 2011). This performs a complete search over specified input 

parameters using k-fold cross-validation to determine best model parameters for a 

given input dataset. The resulting models were tested and scored for accuracy using 

random independent validation sets. The equation used for accuracy is reported below 

(2): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖)  (2) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 

 

III. RESULTS 

A. Glasshouse trials 

PCA based models returned average accuracies from glasshouse trials ranging from 

32.17% when separating the plants into eleven groups (rating system 1), to 80.83% 

when separating into the three groups, not detectible (ND), less than 25% browning 

and greater than 25% browning (Fig. 2). DWT based models followed a similar pattern 

for glasshouse trials with fewer groupings generally performing better than rating 

systems with more groups. DWT model means ranged from 35.31% for eleven groups 

to 73.67% for two to three groups (Fig. 2). When using the PCA approach, glasshouse 

data returned the highest average accuracy, 80.83%, of the groupings for rating system 

6 (Fig. 2). 
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Fig 2. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for each of the six rating systems (Fig. 1) for both 

PCA and DWT preprocessing techniques for glasshouse trials. 

B. Field trials 

Overall, field trial data performed better than all other data groupings across rating 

systems 1–4 with both PCA and DWT approaches (Fig. 3). Higher accuracies were 

achieved in field trials than in glasshouse trials (Table 1) with average accuracies of 

54.95% to 94.46% for PCA based models and 55.16% to 96.40% for DWT based 

models. Further, rating systems with larger numbers of categories, rating systems 1–

3, performed better under field conditions with mean accuracies from 54.95% to 

67.86% (Fig. 3). Under glasshouse conditions rating systems 1–3 returned mean 

accuracies from 32.17% to 59.93% (Fig. 2). Field trials followed a pattern similar to 

that seen in the glasshouse trials with groupings with 2–3 categories outperforming 

other rating systems (Fig. 3).  
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Fig 3. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for each of the six rating systems (Fig. 1) for both 

PCA and DWT preprocessing techniques for field trials. 

C. Combined Data 

When data from all five trial sites was combined, average accuracies followed similar 

patterns to both glasshouse and field data with higher scores seen when classifying 

plants into fewer groups (2–3). PCA and DWT approaches performed similarly with 

means ranging from 41.28–81.38% and 43.25–82.68%, respectively. The highest 

average accuracy was achieved using rating system 4 (Fig. 4). 
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Fig 4. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for each of the six rating systems (Fig. 1) for both 

PCA and DWT preprocessing techniques for models built on combined data from all 

trial sites. 

D. Growth Stages 

When early-tillering data was evaluated across both glasshouse and field trials, DWT 

means ranged from 44.53–83.21% while PCA means ranged from 40.66–82.48% (Fig. 

5). Late-tillering data presented DWT means of 45.59–83.20% with PCA means from 

41.01–82.37% (Fig. 6). Late-tillering performed better than all other data groupings 

using the DWT approach and rating system 5, with an average accuracy of 76.08% 

(Fig. 6). Booting data returned DWT means of 42.36–85.38% with PCA means 

ranging from 42.48–82.23% (Fig. 7). DWT-based approaches returned slightly higher 

maximum means across all growth stage groupings of 83.20–85.38% compared to 

82.23–82.48% (Fig. 5–7). Rating systems containing fewer categories (systems 4–6) 

returned higher accuracies than systems with larger numbers of categories, consistent 

to what was seen in the glasshouse, field and combined data groupings. Grouping data 
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into late-tillering and booting growth stages improved accuracies over the combined 

data grouping in rating system 6 (Fig. 4, 6, 7). 

 

Fig 5. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for early-tillering for each of the six rating systems 

(Fig. 1) for both PCA and DWT preprocessing techniques for models built on 

combined data from all trial sites. 
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Fig 6. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for late-tillering for each of the six rating systems 

(Fig. 1) for both PCA and DWT preprocessing techniques for models built on 

combined data from all trial sites. 
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Fig 7. Distribution of accuracies and average mean and standard deviation (std) (table) 

across machine learning methods for booting for each of the six rating systems (Fig. 

1) for both PCA and DWT preprocessing techniques for models built on combined 

data from all trial sites. 

IV. DISCUSSION 

The results of this research indicate potential for a CR resistance quantification 

framework to be developed from the methodologies outlined in this study. A resistance 

framework is the first step in further developing technologies and methodologies to 

provide tools for resistance and tolerance quantification to breeding companies and 

research requiring CR phenotyping. Results indicate that data from field conditions 

resulted in higher average accuracies in developing quantification models. Germplasm 

can express CR symptoms differently in different environments including between 

seasons and also glasshouse and field environments (Wildermuth & McNamara 1994). 

Furthermore, in this study plants were scored at flowering in the field as compared to 

maturity in the glasshouse. CR discrimination ability has previously been reported to 

be higher at flowering than at maturity, as infected phloem cells began to disintegrate 
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and may fade by maturity (Malligan 2009; Knight & Sutherland 2016). Further 

increases in phenotyping accuracy may be seen if assessor scores used for training are 

obtained at the same time as the NIR reading. 

Results also indicate potential for the further development of a phenotyping system 

that can be used in controlled environments with average accuracies as high as 80.83% 

in the glasshouse in this study. The significantly higher number of lines that can be 

screened in a field environment should be considered. Further, field trials are required 

for tolerance screening while resistance trials can be conducted in both glasshouse and 

field environments (Forknall et al. 2019). High accuracy can be achieved in both the 

glasshouse and field. If early quantification is acceptable and the seed does not need 

to be retained, seedling assays in the glasshouse may be desirable as glasshouse trials 

have the advantages of temperature and moisture control to reduce variation while also 

allowing multiple experiments to be conducted in a single season (Purss 1969; 

Dodman & Wildermuth 1987; Wildermuth & McNamara 1994; Wallwork et al. 2004; 

Mitter et al. 2006). A quantification framework discriminating disease into three 

categories (not-detectible, low and high), with high accuracy, as shown here, would be 

beneficial in breeding pipelines by allowing early discrimination of lines with high 

severity of CR. These lines could be removed from the pipeline earlier than possible 

with traditional methods, saving resources for the development of more successful 

germplasm.  

Further, the results of this study indicate the potential for the use of growth stage 

targeting to improve precision of CR discrimination by specifically targeting early-

tillering, late-tillering and booting. This finding is consistent with previous findings in 

Chapter 5 which indicated significant differences existed between sensing timepoints 

for CR detection. This timepoint sensitivity has been previously documented in 

multiple cropping systems (Busemeyer et al. 2013; Bauriegel & Herppich 2014; 

Anderegg et al. 2019). 

The success of this study shows the potential for the development of a high-throughput 

phenotyping (HTP) methodology for the quantification of CR resistance and tolerance 

in both glasshouse and field environments. Successful development of an HTP system 

could be transferred into an automated robotic or tractor-based system for the detection 

and quantification of CR, such as that previously developed for use in yellow rust 

detection in wheat (Moshou et al. 2004; Moshou et al. 2005; Moshou et al. 2011). 
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Further work will begin to evaluate the potential of camera-based systems to 

discriminate CR, using the approaches developed with contact-based sensors, 

potentially enabling equipment, robotic and aerial-based phenotyping frameworks. 

V. CONCLUSION 

In this study, we evaluated the potential for PCA-MLP or DWT-MLP based 

quantification of F. pseudograminearum induced CR in bread wheat. Quantification 

was based upon near-infrared spectroscopy across six developed scoring systems 

consisting of differing numbers of scoring categories, with separation into two to 

eleven groups. Early detection of CR has been reported using this NIR point based 

sensor (Chapter 3, 4). However, successful quantification of CR in both field and 

glasshouse environments would enable the development of an HTP methodology for 

CR breeding in Australia and around the world. 

Our results indicate that CR discrimination is possible across both field and glasshouse 

environments and in combined datasets, using a contact NIR sensor for data collection 

and processing with either PCA-MLP or DWT-MLP machine learning approaches. 

Further, our results indicate discrimination capability can be further improved in 

combined data by targeting timepoints corresponding to the specific growth stages of 

early-tillering, late-tillering and booting, consistent with findings in Chapter 5. The 

results indicate that while discrimination can be obtained using up to eleven separate 

levels of infection classification, the highest accuracy can be obtained by using two to 

three categories. Further, these results indicate that field trial data may be more 

successful in future model development, possibly due to the increased variation these 

environments produce. 

Future work should investigate whether these methodologies can be applied to camera-

based systems to allow for varied data-collection methodologies (e.g. robotic, UAV, 

human). Further, future work should also begin to validate these findings across a 

wider array of germplasm and cereals. 
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CHAPTER 7 

CNNs FOR CROWN ROT DISCRIMINATION IN WHEAT, 

PART A: DETECTION 

  

In this study, one single input and two multi-input convolutional neural networks 

(CNN) were developed for the discrimination of Fusarium pseudograminearum 

induced crown rot of wheat. Five wavebands of importance for crown rot detection 

were identified in the near-infrared (NIR) range from analysis in chapters 3 and 4. The 

wavebands were each selected to correlate to a narrow-bandpass filter with 50 nm 

widths for use with a full spectrum continuous NIR camera system (900–1700 nm). 

CNN models were developed incorporating single, combinations of two and all five 

wavebands. The resulting systems were tested in a glasshouse trial in 2019 across four 

weeks of early crown rot infection, from three weeks post-inoculation (Zadoks (Z) 13, 

21) (Zadoks et al. 1974). Models were shown to achieve average accuracies across 10 

random independent validation splits of 53–100%, with a dual-band model centered at 

950 and 1350 nm performing best on average across data groupings. Resulting models 

have been successfully ported to a development board for real-time detection 

applications. 

Humpal J., McCarthy C., Percy C., & Thomasson AJ. (2020e). CNNs for crown rot 

discrimination in wheat, Part A: detection. This chapter was prepared according to the 

instructions to authors given by Computers and Electronics in Agriculture.  
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Abstract- In this paper, Part A of a pair of papers around neural network development 

for crown rot (CR) discrimination, one single input and two multi-input convolutional 

neural networks (CNNs) were developed for the discrimination of CR in wheat 

induced by the Fusarium pseudograminearum pathogen. Five wavebands of 

importance for CR detection were identified from previous research in the near-

infrared (NIR) range. Each waveband was selected to correlate to a narrow-bandpass 

filter with 50 nm widths for use with a full spectrum NIR camera system (900–1700 

nm). Wavebands were used as inputs into the developed CNNs consisting of single, 

two input and five input models and were trained and tested on four weeks of data 

from a glasshouse trial in 2019, from three weeks post-inoculation (Zadoks (Z) 13, 

21). This is early in the CR lifecycle before symptoms become apparent. Models were 

shown to achieve average accuracies across 10 independent random validation splits 

of 53–100%, with a dual band model (950, 1350 nm) performing best, with an average 

accuracy across datasets of 87%. Further, models were successfully deployed on a 

development board, enabling real-time detection applications. 

 

Keywords- crop disease, fusarium pseudograminearum, CNN, remote sensing, NIR 
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I. INTRODUCTION 

CR is a cereal stubble-borne disease that is estimated to cost the Australian wheat 

sector $79 million per year in lost profits (Murray & Brennan 2009). Recent reports 

have indicated that these losses have increased along with the distribution of CR, 

across the Australian grain belt from reports from 2014–2017 (Simpfendorfer et al. 

2019). Incidence of paddocks with high levels of infected stubble were reported at 

31% in the Northern region, 21% in the Western region and 15% in the Southern 

region.  

The fungal pathogen predominantly responsible for cereal CR in Australia is Fusarium 

pseudograminearum. CR infection begins when infected grass or cereal debris comes 

into contact with the roots, stem, sub-crown internode or crown of the host crop 

(Burgess et al. 1993). It is hypothesised that the recent increase in the adoption of 

conservation agriculture has allowed infectious material to build up in the soil, 

increasing CR inoculum levels throughout Australia (Simpfendorfer et al. 2019).  

Current CR disease identification is time-consuming and labour intensive as it relies 

on sampling plants throughout the paddock. As CR is difficult to identify early in the 

season without sufficient sampling, emerging areas of disease may be overlooked. This 

can cause delays in production decision-making around input selection and timing (e.g. 

nitrogen and water). Delays in identification can potentially lead to expending 

resources in areas of the crop where productivity will already be low, while early 

identification could provide guidance around obtaining maximum potential yield 

under disease. Further, a machine-vision-based analysis tool could potentially allow 

growers to identify areas of disease which otherwise would be mistaken as damage 

from other factors such as frost. A camera-based machine-vision system would allow 

growers to identify in paddock CR infections rapidly and reliably. 

Multispectral imaging takes readings of light in multiple spaced bands at positions 

across the electromagnetic spectrum. Unique reflectance signatures have been reported 

in different agricultural disease systems (Steddom et al. 2005; Franke & Menz 2007; 

Polder et al. 2014). However, the wide-spread use of broad spectral vegetation indices 

(SVIs) like NDVI when attempting to discriminate plant stressors may reduce output 

reliability as these indices are seldom stress specific.  
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Previous chapters have reported the successful detection of CR in both the field and 

glasshouse using a near-infrared contact sensor (900–1700 nm) and machine learning 

methodologies (Chapter 3, 4, 5). This study aims to build upon the previous research 

to develop a camera-based system for the detection of CR. A camera-based system 

would allow for more rapid identification of the disease by removing the requirement 

to come into contact with the plant tissue, potentially enabling airborne disease 

identification systems. Convolutional neural networks (CNNs) were developed to 

include image data from one, two or five feature wavebands identified as important 

for CR detection in previous chapters. A CNN is a class of deep neural networks, 

widely used for image analysis and classification, which learns patterns internally 

(LeCun et al. 1998).  

Disease specific indices which allow early detection of CR can help growers make in-

crop management decisions to maximise profitability in the presence of CR infection 

both by optimising input timing and restricting input application. A machine vision-

based system for the discrimination of early-season CR would also be a step forward 

in the development of a high-throughput phenotyping (HTP) methodology for rapid 

germplasm screening. Current breeding programs grow plants through harvest in order 

to screen for tolerance and resistance. Early detection capability would allow for the 

most effective germplasm to be moved through the program, reducing breeding costs 

and retaining additional capital for line development. 

II. MATERIALS AND METHODS 

A. Experimental design and plant cultivation 

An experimental glasshouse trial was conducted in 2019 at the University of Southern 

Queensland’s Centre for Crop Health (CCH), Darling Heights, QLD. Six replicates of 

plus and minus inoculated pots of five standard genotypes, with known resistances to 

CR were grown in a glasshouse with temperature controlled at 20–25° C and were 

watered once per week to field capacity. F. pseudograminearum colonised wheat grain 

inoculum (Percy et al. 2012) was applied to individual plant coleoptiles of the 

inoculated treatments at the two-leaf stage. Plants were harvested and rated for disease 

severity at physiological maturity. The glasshouse trial was statistically designed in 

cooperation with biostatisticians at Queensland Department of Agriculture and 

Fisheries (QDAF). 
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B. Near-infrared camera measurements 

The FLIR Tau™ SWIR camera core (900–1700 nm) was used to record near-infrared 

video on an attached mini-DVR (digital video recorder), of inoculated and non-

inoculated plants once a week for four weeks, from three weeks post-inoculation. 

Videos were recorded for the purpose of still image acquisition. Separate videos were 

recorded using five narrow-bandpass filters, centered at 950, 1100, 1300, 1350 and 

1600 nm with 50 nm bandwidths. These bands were selected based upon past research 

(Chapter 3, 4). Each filter was installed on the camera one at a time and imaging was 

completed for sixty plants, before the filter was changed and imaging repeated for all 

plants for each bandpass filter. Imaging took less than one minute for each bandpass 

filter and capturing all plants with all filters took less than one hour. Variations in leaf 

position seen in the images are due to slight variations in time of image acquisition 

and due to the relative movement of the camera to the plant while filters were changed 

and while individual plants were moved and removed from view of the camera. 

Measurements were taken from a height of one metre above the pot for both inoculated 

and non-inoculated pots. Pots were placed in a tray with 2 inch calibrated 2, 5, 10, 20, 

40, 60 and 80% grey and a 99% white reference Spectralon® panels, visible to the 

camera system (Fig. 1). 
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Fig. 1: F. pseudograminearum inoculated wheat plant (Plant 13) and reference panels, 

still images from video feed for each of the five narrow-bandpass filters, taken in the 

USQ-CCH glasshouse, Darling Heights QLD on 18-08-2019. Variations in leaf 

position are due to slight variations in time of image acquisition and due to the relative 

movement of the camera to the plant while filters were changed and while individual 

plants were moved and removed from view of the camera. 

C. Data analysis 

Data analysis was performed inside the Python computing environment (Python 

version 3.6.8, Python Software Foundation 2019). Data analysis was conducted using 

open-source libraries including Keras (Chollet 2015) a neural network library API, on 

top of TensorFlow, a machine learning platform (TensorFlow version 2.0.0-alpha0; 

Abadi et al. 2016). Additionally, the SciPy ecosystem (Jones et al. 2001) and the 

Scikit-learn library (Pedregosa et al. 2011) were used in model development. 



CHAPTER 7. CNN-BASED DETECTION 

133 

 

C.1 CNN Development 

Near-infrared videos were collected weekly for each plant and each of the five narrow-

bandpass filters for four weeks, from three weeks post-inoculation. Individual video 

frames were removed for each plant from each of the five wavelength videos. The 

resulting sixty image datasets were labeled for use as sets of one, two or five inputs 

into a convolutional neural network (CNN). Models were developed and tested on data 

from individual weeks (60 images/input) and combined data across the four weeks 

(240 images/input). Input images were reshaped to 100x100 pixels, converted to 

grayscale and scaled to 0–1. Each dataset was split into training-test and validation 

datasets using a 75-25% split and applied as inputs into the CNN model. The CNN 

model was developed using the Keras library on top of TensorFlow (Chollet 2015; 

Abadi et al. 2016). The resulting models used a stochastic gradient descent (SGD) 

optimiser and consisted of a concatenation layer in the two and five input models to 

combine data from individual bands, a flatten layer to convert data to a simple vector 

output, a dense layer of 128 nodes, a dense layer of 64 nodes, a 40% dropout layer to 

reduce overfitting and a final sigmoid dense layer for binary output (Fig. 2). The 

resulting CNN was validated and scored for accuracy based upon the average accuracy 

of 10 independent random validation splits per dataset. The equation used for accuracy 

is reported below (1): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖) (1) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 
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Fig. 2: Developed CNN architectures, consisting of 1 (a), 2 (b) or 5 (c) input bands. 

C.2 Real-time mobile detection 

The model framework was successfully deployed on a Jetson Nano™ Developer Kit 

(NVIDIA Corporation, USA) as the first step towards a proof-of-concept real-time 

robotic detection system. The Jetson Nano™ has maximum dimensions of 105 x 85 x 

40 mm and contains a NVIDIA Maxwell GPU, quad-core ARM Cortex-A57 processor 

and 4GB LPDDR4 memory. The board allows direct camera connection through two 

MIPI-CSI camera connectors, as well as, four USB 3.0 ports. Further, data can be 

visualised in real-time using an HDMI or DisplayPort output or saved onboard for later 

retrieval. Models were successfully developed, trained and validated on the board. A 

speed performance test was conducted between a high-end laptop and the Jetson 
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Nano™, to compare the time it took to process the images and score them per plant 

for the five-input model. The laptop contained an Intel® Core™ i7-8550U CPU @ 

1.80GHz 1.99 GHz and 16.0 GB installed RAM. The Jetson Nano™ processed and 

scored one plant every ~0.1693 s, while the laptop scored one plant every ~0.0776 s. 

III. RESULTS 

A. Discrimination of disease: weekly models  

Weekly datasets were collected 3, 4, 5 and 6 weeks after inoculation (weeks 1–4 after 

Zadoks 13, 21). Average accuracies across models for each weekly dataset ranged 

from 65 to 90%, with five weeks after inoculation returning the highest accuracies 

(week 3). This accuracy ranged from 74 to 100% (Fig. 3).  Three weeks post-

inoculation (week 1) returned the lowest accuracies, with a range of 53–78%. Standard 

deviation decreased while overall accuracy increased from weeks 2 to 3, with accuracy 

slightly decreasing again in week four. 

B. Discrimination of disease: combined models 

When data from all four weeks was combined, overall average accuracies of 72% were 

observed with a standard deviation of 8% (Fig. 3). Combined data returned the largest 

average accuracy range (61–87%), the lowest overall average accuracy and highest 

standard deviation behind week 1.  
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Fig. 3: Average mean accuracies and standard deviations for each dataset (weekly and 

combined) for each set of wavebands used in model development. The ‘Combined’ 

grouping includes all data from weeks 1, 2, 3 and 4. The ‘All’ grouping includes all 

five wavebands (950, 1100, 1300, 1350 and 1600 nm). Weeks are reported as weeks 

from Zadoks (Z) 13, 21 (Zadoks et al. 1974). 

C. Discrimination of disease: single waveband models 

Single waveband models returned average accuracies of 68–78%, dependent on the 

waveband used. The lowest average accuracy was reported using a model trained using 

the 1300 nm waveband data. The highest average accuracy was achieved using a 

waveband centered at 1350 nm. The 1350 nm single band model returned an accuracy 

of 100% on the week 3 dataset. In the single band models the highest accuracies were 

again observed in week 3, with an average of 85% across models and the lowest 

accuracies were again observed in week 1, with an average of 61% across models (Fig. 

3). 
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D. Discrimination of disease: dual waveband models 

Models developed using two wavebands (dual waveband models) returned average 

accuracies of 76–87%, dependent on waveband combination. The lowest average 

accuracy was reported using a combination of bands centered at 1300 and 1600 nm. 

The highest average accuracy was achieved using a model developed from wavebands 

centered at 950 and 1350 nm. The 950-1350 nm dual band model returned an accuracy 

of 98% on the week 2 and 100% on the week 3 datasets. The highest accuracies in the 

dual waveband models were again observed in week 3, with an average of 92% across 

models and the lowest accuracies were observed in week 1, with an average of 67% 

across models (Fig. 3). 

E. Discrimination of disease: five waveband model 

A model developed using combined data from all five wavebands returned an average 

accuracy of 84% across datasets. The lowest average accuracy of 67% was reported in 

week 1, while the highest average accuracy of 98% was reported in week 3 (Fig. 3). 

IV. DISCUSSION 

In this study multi-input CNNs were developed and tested for the ability to 

successfully discriminate Fusarium pseudograminearum induced CR of wheat from 

single, dual or sets of five near-infrared image wavebands, in a glasshouse, for four 

weeks from Z 13, 21. A combination of two 50 nm wavebands, with centres at 950 

and 1350 nm exhibited strong ability to discriminate between F. pseudograminearum 

inoculated and non-inoculated wheat plants, with an average accuracy across datasets 

of 87%. The 1350 nm centered waveband appeared both as the top performing single 

waveband model and in the top performing dual waveband model, as such, variations 

in this waveband’s intensity are likely to be important in the further development of a 

specific spectral marker of CR infection. However, multi-waveband models are 

preferable to single waveband models as single waveband models must rely on 

relationships between the waveband and references, requiring reference material in 

each image. A multi-waveband model allows internal relationships between bands to 

discriminate crop disease (Mahlein et al. 2010; Zheng et al. 2019). The results of this 

study indicate successful development of a proof-of-concept camera-based CR 

discrimination framework, which can rapidly discriminate CR under glasshouse 

conditions. Further, resulting detection accuracies were higher than previously 
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reported using a contact near-infrared sensor (Chapter 3, 4) from which the initial 

wavebands were chosen. Previous research has indicated that combining scan 

locations, throughout the canopy, can increase detection capability using a contact 

sensor (Chapter 5). As the camera-based system is able to simultaneously image 

multiple leaves on both the tillers and main stem, this could potentially contribute to 

the higher accuracies seen with this system. Finally, results indicate the successful 

development of models which can be transferred to a mobile format with potential for 

real-time disease detection. A camera-based detection methodology is a step towards 

developing real-time solutions for grower disease detection and mapping in the 

paddock in addition to phenotyping technologies to provide tools for breeding 

programs.  

Our results indicate that week three from Z 13, 21, or five weeks post-inoculation is 

the best time to use this system for the detection of CR with an average of 90% 

accuracy over 10 random independent validation splits across all developed models 

(Fig. 3). However, accuracies greater than 80% are seen in weeks two through four 

(84–90%) indicating that early detection is possible within this window around early 

tillering. Further, models validated on combined data returned average accuracies of 

72% across all models. However, combined models also exhibited larger standard 

deviation than models developed on weeks 2–4 which may be due to differences in 

disease progression appearing in the near-infrared range or simply to the larger dataset 

included. 

These results indicate that reliable detection can be accomplished from four to six 

weeks after inoculation, with five weeks being the ideal target. The importance of such 

spectral-temporal features has been reported in previous research, both in CR and other 

crop disease systems (Busemeyer et al. 2013; Anderegg et al. 2019).  

The discrimination success shown in this study indicates potential for the development 

of real-time CR detection technologies utilising near-infrared cameras, which could be 

developed into a multispectral sensing array. Further work should validate these results 

on a larger, diverse set of germplasm and the potential of this system to discriminate 

CR in the field should be evaluated. Further work should also focus on determining 

whether accuracy and sensitivity can be improved by changing the number of filters 

required for successful detection. CR camera-based detection technology would 

facilitate the early detection of disease, enabling growers to make informed decisions 
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regarding CR control strategies and enabling researchers to track infection cycles, 

increasing our understanding of this disease and its underlying pathogens. Further, the 

quantification potential of this technology should be evaluated, both in glasshouse and 

field environments. A successful quantification model using this approach would 

enable rapid high-throughput phenotyping (HTP) of CR, enabling breeding companies 

to deliver germplasm to the market more efficiently. This success also potentially 

enables the development of robotic and aerial-based, real-time phenotyping systems 

for soil and stubble-borne crop diseases, such as those previously developed for foliar 

yellow rust detection in wheat (Moshou et al. 2011). 

V. CONCLUSION 

In this study, we evaluated the potential for single and multi-input CNN classifiers 

based on single, dual or five near-infrared bands obtained using a filtered NIR camera 

to successfully discriminate F. pseudograminearum induced CR in wheat in a 

glasshouse environment. The results of this study indicate that CR discrimination is 

possible in the glasshouse both using weekly and multi-weekly (combined) datasets, 

using a multi-input CNN. These results indicate that while discrimination was 

successful across all databases, images for discrimination should be obtained between 

two and four weeks from Z 13, 21, with three weeks being the ideal timepoint.  

Part B of this pair of papers will determine whether quantification models can be 

developed with success, using this approach. Future work should investigate whether 

this approach can be applied to field/natural systems and evaluate the potential to 

integrate this system into a platform for real-time detection, for deployment on robotic 

or UAV-based platforms. This research also requires validation of this model across a 

larger set of germplasm. 
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CHAPTER 8 

CNNs FOR CROWN ROT DISCRIMINATION IN WHEAT, 

PART B: QUANTIFICATION 

  

In this study, an extension of Chapter 7, three convolutional neural networks (CNNs) 

were developed for the quantification of Fusarium pseudograminearum induced 

crown rot of bread wheat (Triticum aestivum). Five wavebands of importance for 

crown rot detection were identified in the near-infrared (NIR) range from analysis in 

chapters 3 and 4 and utilised for crown rot discrimination from image datasets in 

Chapter 7. Each waveband correlates to a narrow-bandpass filter with 50 nm widths 

for use with a continuous NIR camera (900–1700 nm) system. Single waveband, dual 

waveband and five waveband quantification models were built upon three scales 

developed in Chapter 6. Quantification models sorted plants into either two or three 

classes dependent on the scale used. The quantification models were developed and 

tested on glasshouse trial data from four weeks of early crown rot infection in 2019. 

Models achieved average accuracies across 10 independent random validation splits 

of 21–73%, dependent upon rating system, dataset and wavebands used. A binary 

rating system performed best with combined data returning significantly higher 

accuracies across all models than individual weeks. 

Humpal J., Percy C., McCarthy C., & Thomasson AJ. (2020f). CNNs for crown rot 

discrimination in wheat, Part B: quantification. This chapter was prepared according 

to the instructions to authors given by Computers and Electronics in Agriculture.  
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Abstract- In this paper, Part B of a pair of papers on neural network development for 

crown rot (CR) discrimination, a single and two multi-input convolutional neural 

networks (CNNs) were developed for the quantification of CR in bread wheat 

(Triticum aestivum) induced by Fusarium pseudograminearum using three developed 

disease scales based on percentage stem browning. Scales included two or three output 

classes determined from previous research. Near-infrared (900–1700 nm) narrow 

bandpass filters correlated to five wavebands of importance for CR detection were 

identified from previous research for use in developing a phenotyping model. All 

filters had 50 nm bandwidths. Resulting filtered images were used as inputs into the 

developed CNNs and trained and validated on four weeks of glasshouse trial data in 

2019. Developed models were shown to achieve average accuracies across 10 

independent random validation splits of 21–73%, with combined data from all four 

weeks performing best, specifically when discriminating between less than 50% stem 

browning and greater than 50% stem browning. 

 

Keywords- phenotyping, Fusarium pseudograminearum, CNN, remote sensing, NIR 



CHAPTER 8. CNN-BASED QUANTIFICATION 

144 

 

I. INTRODUCTION 

Wheat CR, caused by the fungus Fusarium pseudograminearum is a cereal stubble-

borne disease that can be responsible for a greater than 50% yield reduction under 

conducive conditions (Klein et al. 1991). This disease is estimated to cost the 

Australian wheat sector $79 million per year with recent reports indicating a further 

increase in losses and an increased distribution of the disease (Murray & Brennan 

2009; Simpfendorfer et al. 2019).  

CR is generally identified by the presence of honey brown coloured lesions along the 

stem and the appearance of dead grain heads, known as whiteheads after flowering 

(Klein et al. 1991; Malligan 2009; Knight et al. 2017; Knight et al. 2020). Current 

identification methods cause CR assessment to be time consuming and labour 

intensive, as plants are usually not scored until after flowering and rating often 

involves the removal and storage of material, off-site for manual scoring of stem 

browning to determine resistance and tolerance. In traditional CR phenotyping a 

trained assessor removes the leaf sheaths from the lower internodes of the plant and 

scores disease severity based on the percentage of honey brown lesioning on the stem. 

Potential exists for improvements in phenotyping technologies to increase breeding 

capacity and reduce associated costs. Specifically, the development of an image-based 

high-throughput phenotyping system (HTP) for CR quantification early in plant 

development would enable breeders to deliver germplasm with improved resistance 

and tolerance to growers in less time. Such a system could be designed to work with 

handheld, robotic or unmanned aerial vehicle (UAV) platforms.  

A novel approach for CR discrimination and quantification, the use of near-infrared 

(NIR) reflectance in conjunction with machine learning methods has recently shown 

potential for disease discrimination and quantification using both contact and image-

based NIR sensors (Chapter 3, 4, 5, 6, 7). The NIR spectrum consists of 

electromagnetic wavelengths from 750–2500 nm, including wavelengths invisible to 

the human eye. In the literature, reflectance within the NIR spectrum has been reported 

to correlate to specific plant molecules, such as, starches and proteins, as well as, water 

content (Kumar et al. 2002). These correlations suggest that wavelengths within the 

NIR spectrum could be used for the detection of molecular changes to plant structure, 

indicative of stress. Further, these changes can be detected throughout the plant, not 

only where visible symptoms are presented, indicating potential for use in disease 
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detection early in the disease cycle, before significant visible symptoms appear 

(Kumar et al. 2002). 

II. MATERIALS AND METHODS 

A. Experimental design and plant cultivation 

An experimental glasshouse trial was conducted in 2019 at the University of Southern 

Queensland’s Centre for Crop Health (CCH) following the methodology outlined in 

Chapter 7. The trial included six replicates of plus and minus inoculated pots of five 

standard bread wheat genotypes, with a total of 60 plants. Plants were arranged in a 

randomised block design in a glasshouse with temperature maintained at 20–25° C. 

All plants were watered to field capacity once per week. F. pseudograminearum 

colonised wheat grain inoculum (Percy et al. 2012) was applied to the coleoptiles of 

the inoculated treatments at the two-leaf stage (14 days after planting). Wheat was 

harvested at maturity for disease severity assessment. Statistical design and analysis 

of disease severity data was conducted in collaboration with biostatisticians at 

Queensland Department of Agriculture and Fisheries (QDAF). 

B. Near-infrared camera measurements 

Video was recorded on a mini-DVR (digital video recorder) using five narrow-

bandpass filters attached to the FLIR Tau™ SWIR camera core (900–1700 nm). Video 

was recorded each week for four weeks from Zadoks (Z) 13, 21 (Zadoks et al. 1974) 

to enable extraction of still image datasets. Bandpass filters were centered at 950, 1100, 

1300, 1350 and 1600 nm with 50 nm bandwidths. These bands were selected based 

upon previous research in disease discrimination in Chapter 6. All measurements were 

taken from a tripod at a height of 1 metre above the plant for both inoculated and non-

inoculated pots. Pots were placed in a tray containing a set of 2-inch calibrated 

reflectance Spectralon® panels. Panel reflectance was 2, 5, 10, 20, 40, 60 and 80% 

grey and 99% white. 
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C. Data analysis 

All analysis was performed inside the Python computing environment (Python version 

3.6.8, Python Software Foundation 2019), primarily in the Keras functional API 

(Chollet 2015) on top of TensorFlow (TensorFlow version 2.0.0-alpha0; Abadi et al. 

2016). The SciPy ecosystem (Jones et al. 2001) and the Scikit-learn library (Pedregosa 

et al. 2011) were used for preprocessing. 

C.1 Scoring systems 

Three different scoring systems, with two to three classes, assigned from traditional 

stem browning percentages were evaluated (Fig. 1). These scoring systems were 

developed in Chapter 6 for quantification analysis of contact sensor data. While six 

scoring systems were developed as part of that study, the three evaluated here produced 

the highest accuracies in previous research of 67–96% dependent on rating system and 

data grouping (i.e. glasshouse, field, combined). 
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Fig. 1: The three rating systems used for near-infrared image classification of CR and the average stem browning score (%) of samples 

used to develop each grouping. Not detectable is denoted as ND. Adapted from: (Chapter 6).
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C.2 CNN Development 

Using the Tau SWIR, videos were collected weekly for each plant using each of the 

five narrow-bandpass filters for four weeks, from three weeks post-inoculation at 

Zadoks (Z) 13, 21. Frames were removed from each video and labeled to develop a 

CR image classification dataset consisting of near-infrared images at the five 

wavelengths. The resulting weekly image datasets comprised 60 images and were 

labeled to correspond to a key comprising measurements for the three scales utilised. 

Three convolutional neural networks (CNNs) were developed, trained and validated 

on these datasets, comprising data from individual weeks (60 images/input), as well 

as, a combined dataset incorporating images from all of the four weeks (240 

images/input) (Fig. 2).  

Each image within these datasets was reshaped to 100x100 pixels, converted to 

grayscale and scaled to 0–1. A 75–25% train-test split was selected and applied to the 

resulting transformed datasets. The CNN models were then developed using the Keras 

functional API with TensorFlow (Chollet 2015; Abadi et al. 2016). These models used 

the Adam algorithm for stochastic gradient-based optimisation (Kingma & Ba 2014) 

as an optimiser and consisted of one, two or five-input models, one for each input 

waveband, a concatenation layer in the dual and five waveband models, a flatten layer, 

two dense layers, a dropout layer and a final dense layer for output (Fig. 2). The 

resulting CNNs were tested for accuracy based upon the average of 10 independent 

random validation splits per dataset. The equation used for accuracy is reported below 

(1): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦, 𝑦
^

)  =
 1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑ ·

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0
1 (𝑦

^

𝑖  =  𝑦𝑖)  (1) 

Where 𝑦
^

𝑖  is the predicted value of the 𝑖 th sample and 𝑦𝑖  is the 

corresponding true value 
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Fig. 2: Developed CNN architectures, consisting of 1 (a), 2 (b) or 5 (c) input networks.
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III. RESULTS 

A. Discrimination of disease: rating system 4  

Rating system 4 divided the images into one of two classes, consisting of 0–50% stem 

browning and > 50% stem browning (Fig. 1). Individual average accuracies across the 

weekly datasets for rating system 4 ranged from 51% to 53%. Differences in accuracies 

between weeks and models were not statistically significant. However, accuracy 

across models was significantly higher with an average of 73% when trained on the 

combined dataset. Standard deviation was low with a range of 0–3% (Fig. 3).  No 

single model and dataset combination could be identified as best using rating system 

4, from the results of this trial. 

 

Fig. 3: Average mean accuracies and standard deviations for each dataset (weekly and 

combined) for each set of wavebands used in model development using rating system 

4. The ‘Combined’ grouping includes all data from weeks 1– 4. The ‘All’ grouping 

includes data from all five wavebands (950, 1100, 1300, 1350 and 1600 nm). Weeks 

are reported as weeks from Zadoks (Z) 13, 21 (Zadoks et al. 1974). 
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B. Discrimination of disease: rating system 5  

Rating system 5 divided the images into three classes, consisting of not detectable 

(ND), 0–50% stem browning and > 50% stem browning (Fig. 1). Average accuracies 

across the weekly datasets for rating system 5 ranged from 18% in week 1, using a 

model incorporating wavebands centered at 950 and 1600 nm to 40%, in week 2 using 

a single waveband model centered at 950 nm and week 3 using a single waveband 

model centered at 1300 nm (Fig. 4). Differences in average accuracies between weeks 

across models were not statistically significant. Accuracy across models was 

significantly highest with an average of 48% when trained on the combined dataset. 

Average standard deviation varied across weeks from 0 to 14% (Fig. 4).  The best 

model across datasets using rating system 5, from the results of this trial, was identified 

as a single waveband model centered at 950 nm. 

 

Fig. 4: Average mean accuracies and standard deviations for each dataset (weekly and 

combined) for each set of wavebands used in model development using rating system 

5. The ‘Combined’ grouping includes all data from weeks 1– 4. The ‘All’ grouping 

includes data from all five wavebands (950, 1100, 1300, 1350 and 1600 nm). Weeks 

are reported as weeks from Zadoks (Z) 13, 21 (Zadoks et al. 1974). 
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C. Discrimination of disease: rating system 6  

Rating system 6 also divided the images into three classes, consisting of not detectable 

(ND), 0–25% stem browning and > 25% stem browning (Fig. 1). Average accuracies 

for rating system 6 varied across the weekly datasets from 35–49% (Fig. 5). Evaluation 

of average accuracies across all developed models on each dataset showed no 

significant difference between weeks but indicated that developing models on 

combined data across weeks was significantly better on average, with an average of 

47% across models. Standard deviation varied across datasets and models from 0 to 

20% (Fig. 5).  The best model developed using rating system 6 returned an average 

accuracy of 47% across datasets and was identified as a dual waveband model with 

wavebands centered at 950 and 1100 nm (Fig. 5). 

 

Fig. 5: Average mean accuracies and standard deviations for each dataset (weekly and 

combined) for each set of wavebands used in model development using rating system 

6. The ‘Combined’ grouping includes all data from weeks 1– 4. The ‘All’ grouping 

includes data from all five wavebands (950, 1100, 1300, 1350 and 1600 nm). Weeks 

are reported as weeks from Zadoks (Z) 13, 21 (Zadoks et al. 1974). 
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IV. DISCUSSION 

In Part A of this study, Fusarium pseudograminearum induced CR of wheat detection 

models were successfully developed using single, dual and five-input CNNs on a 

camera-based near-infrared sensor (Chapter 7). In this study single and multi-input 

CNNs were developed and tested for use in an HTP system to quantify CR into two or 

three disease severity classes. Data from five near-infrared image datasets, obtained 

from plus and minus inoculated bread wheat was analysed from three to six weeks 

post-inoculation, starting at Z 13, 21. The results of this study suggest potential for 

quantification of CR using a near-infrared camera system and a CNN to rapidly 

quantify CR under glasshouse conditions. Single waveband data and combinations of 

two and five 50 nm wavebands, with centres on 950, 1100, 1300, 1350 and 1600 nm 

exhibited varying ability to discriminate CR, depending on the model and dataset 

examined. In both rating system 5 and 6, the top performing models incorporated data 

from the 950 nm waveband, indicating some importance, relative to the other 

wavebands examined, in CR quantification using a camera-based system. However, 

average accuracies above 50% were only achieved using a binary quantification model 

on a combined dataset, with no single model determined to be best in this instance. 

This finding is counter to the findings in the development of a CNN for discrimination 

(+,-) of CR in Chapter 7, where average accuracies ranged from 53–100% and models 

performed better on individual weeks, than on combined data. Further, when 

developing crop disease detection models, multi-waveband models are often 

preferable to single waveband models as single waveband models must rely on 

relationships with external references. Multi-waveband models can incorporate 

internal relationships between bands to quantify crop disease (Mahlein et al. 2010; 

Zheng et al. 2019). 

A stagnation of accuracies is seen in the combined, ‘Rate 4’ data in Fig. 3 suggesting 

that more training data are needed to increase accuracies. This is supported by the 

flattening of training accuracies (below) at epoch 4 in Figure 6, (a), while training loss 

continues to decrease (b), suggesting the stagnation of accuracies is due to a lack of 

new training data and not from overfitting the model to the available data. 
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Fig. 6: Model accuracy (a) and loss (b) for training and validation datasets across 

epochs for a five-waveband CNN. 

Our results indicate that the ‘Rate 4’, binary quantification system is the best system 

to use for the quantification of CR in bread wheat and the ideal time is on combined 

data for four weeks from Z 13, 21, with an average accuracy of 73% over 10 

independent random validation splits (Fig. 3). However, further work should build 

upon the current dataset to increase available training data. The number of input 

images in this dataset is relatively small for a neural network multi-classifier, as 

compared to commonly used open-source image classification datasets like Imagenet 

(Deng et al. 2009) and Google’s Open Images Dataset (Kuznetsova et al. 2018) with 

approximately 14 million and 9 million images respectively. Expanding the current 

CR image dataset could not only potentially increase accuracies but allow for training 

of quantification models with more than three classes. 

The literature reports successful quantification of visible fungal infections of fruit and 

other commercial crops (i.e. chili, cotton, sugarcane) using machine learning and 
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specifically neural networks (Pujari et al. 2013a; Pujari et al. 2013b). However, the 

quantification success of the binary combined model in this study indicates potential 

for the future development of real-time phenotyping systems, using near-infrared 

cameras or multispectral sensing systems for both CR and other disease systems with 

difficult to observe symptoms. A system similar to that developed for the detection of 

septoria leaf blotch and yellow rust in wheat (Moshou et al. 2011) could be developed 

for the quantification of CR in wheat, improving germplasm delivery systems. Further 

work should validate these results on a larger, diverse set of training images and the 

potential of a system of this nature to phenotype CR in the field and in real-time should 

be evaluated. A successful CNN quantification model enables rapid high-throughput 

phenotyping (HTP) of CR. An HTP CR system would enable breeding companies to 

deliver germplasm to the market more rapidly and effectively. 

Further indications from model analysis, discussed in this study, propose that a larger 

CR disease dataset should be obtained to both increase model accuracies and build 

successful quantification models with greater than two output classes. 

Future work should focus on developing a larger, more diverse CR image dataset for 

model development, both with glasshouse and field images. Further work should also 

investigate whether models can be developed and successfully applied in field 

environments. Additional work should evaluate the potential to integrate this system 

into an HTP platform for use in CR breeding programs. 

V. CONCLUSION 

In this study, we built single, dual and five-waveband multi-input CNN classifiers for 

the quantification of F. pseudograminearum induced CR of wheat and evaluated the 

potential of these classifiers to phenotype CR resistance based on single and 

combinations of five near-infrared bands. These bands were obtained using a filtered 

NIR camera to simulate a multispectral system.  

Potential for detection was evaluated across five image databases, built from images 

obtained in a glasshouse trial. These databases include sets of images for four 

individual weeks and a combined dataset including images from all four weeks.  

The results of this study indicate that using CNNs to quantify CR in the glasshouse is 

possible. This is the first study, to the authors’ knowledge to show potential for the 

successful quantification of CR using an image-based system. However, accuracies 
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greater than 50% were only obtained using a binary classification system on combined 

data from four weeks. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE RECOMENDATIONS 

1 KEY FINDINGS 

1.1 OBJECTIVE 1 - investigate available wavelet-based techniques for 

discriminating crop disease in the literature. 

Discrete wavelet transform (DWT) techniques for signal processing in agriculture 

were investigated in a thorough literature review (Chapter 2). DWT-based analysis 

techniques have been shown to outperform traditional data analysis in hyperspectral 

data manipulation (Bruce & Li 2001; Bruce et al. 2002; Koger et al. 2003; Ge & 

Thomasson 2006; Ge et al. 2007). 

Specifically of interest for this study, DWT was found to have been used to 

successfully detect fungal disease in fruit trees (Kempeneers et al. 2005). It was 

reported that features extracted from the DWT approach performed better than features 

extracted from original hyperspectral signatures. DWT was also used as a 

preprocessing step in a data fusion system for the detection of soybean rust disease 

(West et al. 2007). This system was derived from multiple DWTs at different scales. 

The DWT-based system outperformed an LDA-based system with more consistent 

accuracy range of 89–90% versus the 60–90% obtained by LDA. Recent work has 

indicated that wavelet-based spectral features can be used to successfully discriminate 

yellow rust and powdery mildew in winter wheat (Shi et al. 2017; Shi et al. 2018). 

Additionally, wavelets have been used to successfully extract fungal disease from 

multiple crop images for use in neural network classification, with accuracies of 

86.48% (Pujari et al. 2013a). 

It was determined that DWT used for hyperspectral data dimensionality reduction has 

been repeatedly shown to outperform traditional analysis in the literature. DWT 

presents advantages in original curve representation, feature number, computational 

efficiency and spectral waveband selection (Bruce & Li 2001; Ge & Thomasson 2006; 

Ge et al. 2007; Shi et al. 2017; Shi et al. 2018).
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1.2 OBJECTIVE 2 - determine whether a discrete wavelet transform-based 

model can outperform traditional analysis techniques in the discrimination of 

crown rot of wheat in the near-infrared spectrum (900–1700 nm). 

To determine whether a discrete wavelet transform-based model can outperform 

traditional analysis techniques in the discrimination of CR of wheat in the near-infrared 

spectrum (900–1700 nm) data was evaluated using a contact near-infrared sensor in 

three glasshouse and two field trials. Principal component analysis (PCA) and the 

discrete wavelet transform (DWT) were compared for ability to increase machine 

learning model disease prediction accuracy for the discrimination of CR, when used 

as a dimensionality reduction technique, across six machine learning methods (logistic 

regression classification, k-nearest neighbors, decision trees, extreme random forests, 

support vector machines, artificial neural networks). Additionally, two train-test data 

splits were evaluated, 20-80% and 80-20%. Accuracy was determined using four 

(initial glasshouse trial) or five standard bread wheat genotypes with varying 

susceptibility to CR. Discrimination ability was compared for models developed on 

individual weekly datasets (Chapter 3) and on combined datasets across weeks and 

trials (Chapter 4).  

In this study, wavelet-based models performed better than PCA models when using a 

smaller train-test split. However, PCA models demonstrated more ability to detect CR 

under the larger, 80-20%, data split. Wavelet-based models also had higher minimum 

accuracies and a smaller, more consistent accuracy range than PCA models. These 

results indicate that wavelet-based models should be considered for agriculture 

applications where models must be more generalised to account for naturally occurring 

signature variances, influenced by environment. The discrimination difficulty caused 

by environmental and genetic diversity, and compounding of both abiotic and biotic 

stresses has been addressed in detail in the literature (Jacquemoud & Ustin 2001; 

Jacquemoud et al. 2009; Zhang et al. 2012; Devadas et al. 2015; Anderegg et al. 2019; 

Zheng et al. 2019). In addition to reducing spectral noise, smaller train-test splits may 

increase model development speed. Using train-test splits that are overly large could 

potentially lead to overfitting by including environmentally specific signatures, not 

only general signatures associated with CR infection. 

Results of this study indicate that PCA has greater potential in CR discrimination (+,-

) when used in combination with tree-based machine learning algorithms (e.g. decision 
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tree classifiers, extreme random forest classifiers). This finding is consistent with 

recent reports in the literature that PCA-based feature reduction can improve the 

accuracy of decision tree classification (Nasution et al. 2018). PCA-based models 

performed better than wavelet-based models when trained on multi-site data, returning 

higher overall accuracies. Additionally, our results indicate that PCA-based models 

used less features than wavelet models, overall, when obtaining top accuracies. This 

may be a consideration when developing multispectral sensors from models derived 

from hyperspectral signatures, as each additional feature equates to another sensor in 

the system. Fewer sensors equate to lower cost and weight. This is particularly 

important when developing sensing systems for use on UAV platforms such as those 

previously developed for the detection of lemon myrtle rust (Austropuccinia psidii) 

(Heim et al. 2018; 2019). 

1.3 OBJECTIVE 3 - develop models to identify whether bandwidths 

corresponding to available commercial near-infrared filter sizes can discriminate 

and phenotype CR of wheat. 

Models developed in Chapter 3 and 4 using a contact near-infrared sensor to 

discriminate CR removed all derived bandwidths less than 25 nm, resulting in all 

feature bands being greater than 27 nm. These models returned acceptable accuracies, 

dependent on grouping, of up to 79.17% for models developed from weekly data and 

69.78% for generalised models. 

Further, when limiting feature choice to bands larger than 25 nm for developing a 

phenotyping methodology using the contact NIR sensor (Chapter 6), average accuracy 

was as high as 96% when dividing the plants into two groupings using a DWT-based 

approach. In this case, field data outperformed models developed on glasshouse data. 

Finally, single-band, dual-band and five-band multi-input CNNs were developed for 

the analysis of near-infrared image data with 50 nm bandwidths, to both detect and 

quantify CR (Chapter 7–8). The top performing detection model returned maximum 

average accuracies of 100% across 10 independent random validation splits at four and 

five weeks post-inoculation and consisted of two wavebands centered at 950 and 1350 

nm. The top performing quantification models returned average accuracies of 73% 

across 10 independent random validation splits on a combined dataset incorporating 

data across a four week window. 
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These studies indicate that successful models for both the detection and phenotyping 

of CR in bread wheat can be developed using large bandwidths. Large bandwidths can 

easily be incorporated into novel multispectral sensing systems. 

Further, preprocessing with the Savitzky-Golay filter and PCA or DWT to minimise 

noise in the signatures of large spectral bands was shown to be successful. This noise 

reduction is necessary as the narrow bands recorded by hyperspectral sensors are 

highly sensitive (Shafri & Yusof 2009; Rasti et al. 2018). Further, discrimination of 

CR using a contact NIR sensor or individual bands from a NIR camera has not been 

reported before these studies.  

1.4 OBJECTIVE 4 - use commercially available filters on an imaging sensor to 

determine if the developed models can be utilised in an imaging system. 

In the study outlined in Chapter 7, we developed a multi-input CNN classifier and 

evaluated the potential of this system to discriminate CR based on five near-infrared 

bands, deemed important in Chapters 3 and 4, obtained using a filtered NIR camera in 

a glasshouse environment. Detection ability was evaluated across five databases, 

including images from each of four individual weeks, from three weeks post-

inoculation with Fusarium pseudograminearum, and a dataset using combined data 

from all weeks. Discrimination of CR was successful using this system and had not 

been reported before this study. Further, three scoring systems developed in Chapter 6 

were evaluated for potential integration into a quantification CNN for CR phenotyping, 

using the five near-infrared bands (Chapter 8). Discrimination and quantification of 

CR using individual bands from a NIR imaging system, with the potential for real-time 

detection, indicates further potential for the development of a new CR specific 

multispectral sensor for deployment on multiple sensing platforms (e.g. robotic, UAV, 

handheld, equipment-based). An intelligent multi-sensor system has been developed 

for the detection of visible fungal disease on wheat (Moshou et al. 2011). However, no 

system yet exists for the detection or quantification of CR. The development of such a 

system could be expanded to include other stubble or soil-borne diseases with few 

visible symptoms. 

Successful discrimination was achieved in the glasshouse using individual (weekly) 

and combined datasets. Results indicate that images used for discrimination should be 

taken between four and six weeks post-inoculation, with five weeks being the optimal 
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timepoint. This is consistent with reports of the importance of temporal patterning in 

plant disease detection and quantification (Franke & Menz 2007; Busemeyer et al. 

2013; Bauriegel & Herppich 2014; Anderegg et al. 2019). Successful quantification 

was also obtained using the combined dataset and a binary classification system 

(Chapter 8), although further improvements in accuracy are likely with expansion of 

the CR image training database. This study indicates that CR discrimination and 

quantification is possible using commercially available filters on a NIR imaging 

sensor, with real-time detection capability. 

2 ADDITIONAL FINDINGS 

Six machine learning methods (logistic regression classification, k-nearest neighbors, 

decision trees, extreme random forests, support vector machines, artificial neural 

networks) were evaluated for ability to discriminate CR in wheat, in conjunction with 

PCA or DWT dimensionality reduction. Artificial neural networks, specifically 

multilayer perceptrons, were determined to be the most accurate machine learning 

method for the discrimination of CR, particularly when used in conjunction with DWT 

(Chapters 3, 4). This finding informed the decision to use a multilayer perceptron for 

the development of CR quantification models in Chapter 6 and the development of 

CNNs for image discrimination and quantification in Chapters 7 and 8. However, tree-

based classifiers were found to be effective for use in conjunction with PCA-derived 

features, in agreement with the literature (Nasution et al. 2018). 

Overall, DWT-based models performed better than PCA models when trained on 

smaller data splits (20-80%), while PCA-based models performed better when using 

larger data splits (80-20%). These findings may be important in informing 

preprocessing decisions in agriculture. If less training data are available, a DWT-based 

approach may be more desirable than a PCA-based approach, while also decreasing 

training time. 

Results from ANOVA and post-hoc analysis indicate significant (α = 0.05) temporal 

effects as early as one to two weeks from Z 13, 21, suggesting potential for early 

disease detection (Chapter 5). The resulting temporal patterning indicates timepoints 

of significance at early-tillering, late-tillering and the boot stage.  

Further to the temporal effects observed, significant (α = 0.05) spatial effects were 

seen when accuracies from the top twenty models in each group (tiller, centre, flag, 
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head, combined) were compared (Chapter 5). The observation of these spatial effects 

is significant as most current crop sensing systems look directly downward onto the 

canopy (Clark 2017) without taking into account specific areas of interest before data 

acquisition. Results indicate that a combination of measurements throughout the 

canopy profile (tiller, centre, flag) return significantly higher accuracies than any 

individual measurement. This finding indicates that a combination of measurements 

should be used when discriminating or phenotyping CR, specifically before flowering. 

The inclusion of head data into the models showed that combined data, again, 

outperformed individual scans in a majority of instances. 

Finally, an ANOVA determined significant (α = 0.05) interaction between timepoint 

and location of sensor scan across all data groupings (individual trials and combined 

data). The interaction between temporal and spatial data accounted for the majority of 

the variance observed across four of six data groupings (Eta2, ω2). The use of combined 

sensing data at week 5 from identification of Z 13, 21 was determined to be the optimal 

combination of timepoint and sensing location for successful CR detection. 

3 FUTURE RECOMMENDATIONS 

This study is the only study to our knowledge to evaluate near-infrared changes in CR 

reflectance throughout the growing season. Further, it is the first study to use wavelet-

based, near-infrared signatures, in combination with machine learning techniques, to 

discriminate and phenotype CR of wheat. Future work should begin to investigate how 

temporal and spatial differences relate to pathogen toxicity, host response and disease 

progression.  

Additional work should also investigate whether imaging-based CR detection can 

successfully be applied to field or natural systems and whether the quantification 

model developed in Chapter 8 can be applied to field systems with success as natural 

systems introduce increased spectral variation and canopy spectral properties are still 

in the process of being fully understood (Jacquemoud & Ustin 2001; Jacquemoud et 

al. 2009; Anderegg et al. 2019). Work should also evaluate the potential to integrate 

this image-based methodology into a platform for real-time detection of CR, available 

for deployment on robotic or drone-based platforms. Models developed in this research 

should also begin to be validated on a larger set of diverse germplasm. 
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Future work should also investigate the potential for a system to be built using this 

methodology for the detection and quantification of other crop diseases in both wheat 

and other cropping systems. The ability of and level to which these models can detect 

the differences between stresses, both biotic and abiotic should be evaluated. Finally, 

the ability of this methodology to be used to develop models for the discrimination of 

disease complexes and interactions should be assessed. 

The overall success of the studies presented in this thesis shows the potential for the 

development of these models and frameworks into a high-throughput phenotyping 

(HTP) methodology for the quantification of CR resistance and tolerance, for the use 

in breeding programs both in Australia and globally. A machine-based HTP 

methodology would shift the breeding programs from reliance on human interpretation 

of visible disease symptoms, increasing rating accuracy and repeatability. Early 

disease detection and quantification would allow for only germplasm with the most 

potential for yield retention to be moved through the breeding program. This would 

free additional capital and resources throughout the program for investment into 

further lines. 

4 CONCLUSIONS 

The studies presented in this thesis resulted in several novel findings including the 

successful, automatic, non-destructive detection of CR that could previously only be 

detected manually; the successful implementation of wavelet analysis to reduce the 

volume of sensor data required for CR detection; the discovery of spatial and temporal 

effects impacting disease detection capability; the successful development and 

implementation of a CR phenotyping methodology using data from a contact NIR 

sensor; the development of  real-time capable CNNs for the detection and 

quantification of CR using multiple NIR images as inputs. These findings are the first 

steps in developing an HTP system to provide plant breeders with new tools for 

quantifying CR resistance and tolerance, increasing the cost-effectiveness of such 

programs and ultimately delivering genetic solutions to growers more quickly. This 

research may also lead to the development of an independent multispectral sensor for 

the discrimination and/or quantification of CR, capable of large-scale coverage on an 

aerial platform, increasing opportunities for growers, researchers and breeders to 

understand and combat CR. 
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APPENDIX A – GLOSSARY 

 

GLOSSARY 

Ascospores:  a spore contained or produced within an ascus, specific to ascomycete 

fungi 

Boot: stage of cereal development where pollen forms, head develops and flag leaf is 

fully emerged 

Early Tillering: stage of cereal development where the main shoot has four to five 

leaves and two or more tillers have formed 

Flowering: stage of cereal development when final grain number has been determined 

identified by freely hanging anthers 

Hyperspectral: acquisition of hundreds of contiguous wavebands across the 

electromagnetic spectrum 

Inflorescence: the complete flower of a plant 

Macroconidia: a large asexual fungal spore 

Multispectral: acquisition of a specific number of spaced wavebands across the 

electromagnetic spectrum 

Near-infrared: spectrum of light from 750–2500 nm 

Overfitting: producing an algorithm which too closely fits the problem data, causing a 

failure to predict further data points 

PREDICTA® B: a DNA-based soil test which identifies soil-borne pathogens from 

soil samples 

Resistance: ability of a host crop to combat a pathogen 

Solarisation: the use of sunlight to heat soil to a temperature lethal to pests or pathogens 

Short-wave Infrared: spectrum of light from 1400–3000 nm  
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Spectral Vegetation Index: a transformation of two or more spectral bands to allow 

improved comparison of spectral phenomena 

Spectroscopy: the study of the interaction of matter with electromagnetic radiation 

Stem Extension: when cereals begin to extend their stems 

Stomata: pores in the epidermis of a plant’s tissue, allowing movement of gases into 

cells 

Thermal Infrared: spectrum of light from 8000–15000 nm 

Tillering: the creation of lateral shoots from a plant 

Tolerance: ability of a host crop to resist yield impact when under pathogen load 

Two-leaf Stage: when the third leaf is present, but not yet fully expanded 

Ultraviolet: spectrum of light from 10–400 nm 

Waveband: a band of adjacent frequencies 

Wavelet: an oscillation with an amplitude that begins and ends at zero 

Whiteheads: the premature death of plant flowers
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APPENDIX B – TRIAL LAYOUT 

Chapters 3-6 all used near infrared point sensor data from a total of five trials, which included two glasshouse and one field trial in 2018, 

and one glasshouse and one field trial in 2019. Chapters 7 and 8 used near infrared camera data from the glasshouse trial in 2019. 
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B.1 1ST GLASSHOUSE TRIAL 

Layout of the first glasshouse trial at the Leslie Research Centre in 2018. Forty-eight inoculated (red) and forty-eight non-inoculated 

(green) pots of four genotypes (1–4) were placed in a randomised design. 
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B.2 2ND GLASSHOUSE TRIAL 

Layout of the second glasshouse trial at the Leslie Research Centre in 2018. Thirty inoculated (red) and thirty non-inoculated (green) pots 

of five genotypes (1–5) were placed in a randomised design. 
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B.3 3RD GLASSHOUSE TRIAL 

Layout of the third glasshouse trial at the Centre for Crop Health at USQ in 2019. Thirty inoculated (red) and thirty non-inoculated (green) 

pots of five genotypes (1–5) were placed in a randomised design. 
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B.4 1ST FIELD TRIAL 

Layout of the first field trial at the Tosari Research Station (-27.859964, 151.452766) in 2018. This trial consisted of three replicates across 

four genotypes (1–4) with inoculated (red) and non-inoculated (green) plots paired and arranged in a randomised strip plot design. 
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B.5 2ND FIELD TRIAL 

Layout of the second field trial at the Tosari Research Station (-27.859964, 151.452766) in 2019. This trial consisted of three replicates 

across four genotypes (1–4) with inoculated (red) and non-inoculated (green) plots paired and arranged in a randomised strip plot design. 
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APPENDIX C – SUPPLEMENTARY FIGURES AND TABLES 

C.1 Weekly average classification accuracies (%) of CR detection of optimised machine learning models pre-processed with the discrete 

wavelet transform (DWT) or principal component analysis (PCA), trained on a 20-80% train-test split. Weeks are weeks from Zadoks (Z) 

13, 21. Supplementary to Chapter 3. 

Accuracy (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 
 

DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 50.63 57.38 48.95 47.95 49.79 47.54 50.21 56.97 49.79 61.07 52.32 48.77 

week 2 60.76 65.23 47.26 49.22 47.26 50.78 59.49 66.41 59.49 67.19 58.65 50.39 

week 3 57.2 61.15 50.8 49.23 50.8 48.08 56 62.69 54.8 61.54 52 48.08 

week 4 57.14 56.98 47.76 49.22 48.57 50.39 53.06 58.91 56.33 58.53 51.02 51.16 

week 5 70.52 55.89 49.8 49.81 62.15 49.81 62.55 65.02 59.76 63.5 60.96 47.91 

week 6 57.2 50.93 49.42 47.96 51.75 48.33 59.14 55.76 56.03 54.28 54.09 48.33 

week 7 56.97 54.92 54.58 56.06 52.99 53.03 54.98 57.58 54.58 56.44 56.97 54.92 

week 8 67.53 63.11 48.92 45.08 48.92 50 60.17 59.43 59.74 57.79 54.98 49.18 

week 9 54.34 60.78 50.68 47.41 46.58 51.29 54.34 60.34 53.88 62.07 52.05 52.16 

Glasshouse 2 

week 1 99.29 95.14 93.57 90.97 97.86 90.97 90 75 95 84.03 91.43 72.92 

week 2 72.86 78.17 70 81.69 70.71 69.72 72.86 69.01 72.14 71.83 76.43 72.54 

week 3 77.17 73.44 59.78 48.96 63.59 70.83 61.96 69.79 61.41 78.13 61.41 56.25 

week 4 64.54 70.14 61.7 49.31 61.7 56.94 56.03 60.42 54.61 68.06 62.41 54.17 

week 5 86.96 76.39 71.74 56.25 73.19 57.64 64.49 69.44 64.49 72.22 64.49 54.17 

week 6 79.56 75 56.93 53.47 59.85 50.69 62.04 74.31 63.5 67.36 62.04 47.92 

week 7 55.35 53.94 55.35 42.42 55.35 42.42 52.83 58.79 52.2 56.36 55.35 46.06 

week 8 – – – – – – – – – – – – 

week 9 78.82 69.44 56.47 50.56 57.65 49.44 56.47 70 58.82 73.89 55.88 52.22 
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Glasshouse 3 
week 1 54.35 52.82 52.17 50 55.07 55.63 57.25 52.11 57.25 56.34 53.62 50 

week 2 92.25 83.45 49.3 48.97 71.83 57.93 66.2 75.86 69.01 84.83 61.97 54.48 

 

week 3 89.44 86.99 49.3 54.79 60.56 55.48 64.08 78.77 62.68 84.25 70.42 58.9 

week 4 80.82 74.19 65.75 48.39 65.07 59.35 66.44 73.55 71.23 75.48 65.07 58.71 

week 5 65.81 55.76 61.94 50.91 61.94 46.67 62.58 63.03 62.58 59.39 61.94 49.7 

week 6 75.16 87.57 54.04 44.97 53.42 45.56 56.52 76.92 54.66 78.7 62.11 50.3 

week 7 90.59 83.15 57.06 50 57.65 51.12 66.47 81.46 66.47 80.34 64.71 57.87 

week 8 63.28 57.14 48.59 55.49 59.89 53.85 62.71 61.54 60.45 64.84 58.76 53.85 

week 9 73.86 77.6 64.77 52.46 65.91 57.38 63.64 72.13 67.05 72.13 65.34 50.82 

Field 1 

week 1 60.73 46.8 50.76 48.84 48.94 47.09 56.19 51.16 54.91 51.16 57.7 49.13 

week 2 58.59 51.19 56.75 50.89 57.06 50.89 56.44 55.95 55.79 54.46 56.13 53.87 

week 3 66.46 60.29 55.18 50.14 57.93 47.25 56.1 60.58 53.13 59.42 55.49 51.3 

week 4 61.49 62.32 49.25 48.99 57.31 48.99 53.43 60.87 58.63 60 52.84 51.01 

week 5 67.26 66.76 62.5 59.25 61.9 58.96 55.95 56.07 59.88 63.01 60.12 51.45 

week 6 67.17 67.06 63.53 65.89 62.92 66.47 58.05 56.27 54.17 64.72 59.88 56.85 

week 7 52.08 54.78 50 48.7 50 48.41 54.76 55.94 54.24 55.07 52.08 50.14 

week 8 57.58 50.73 49.39 49.56 56.36 50.73 53.94 52.2 64.2 52.2 53.33 51.03 

week 9 66.27 68.79 49.41 55.49 49.41 54.34 57.69 67.05 56.18 78.03 60.06 59.54 

Field 2 

week 1 51.95 54.62 51.35 47.98 52.85 50.58 51.35 53.76 50.45 53.47 51.35 49.42 

week 2 55.65 50.29 54.17 49.71 54.46 49.71 56.55 54.05 54.46 50.58 54.17 47.11 

week 3 54.71 54.62 53.5 49.71 54.71 49.13 51.67 55.2 51.98 54.62 50.76 55.78 

week 4 54.73 54.05 52.96 49.71 46.75 48.27 57.1 52.89 55.92 48.27 54.14 52.02 

week 5 61.61 60.98 60.12 53.18 57.44 55.2 58.33 59.83 58.93 65.32 63.99 54.34 

week 6 54.35 50 49.25 50.87 51.95 53.76 54.05 52.02 55.26 52.31 54.05 48.27 

week 7 61.59 54.34 53.05 49.13 51.52 53.76 53.05 56.94 52.74 57.51 52.74 53.76 

week 8 58.21 52.31 53.13 48.55 52.24 49.42 54.93 54.62 56.12 53.47 53.13 48.55 

week 9 53.29 48.84 50 47.69 53.59 48.27 55.09 53.18 52.4 50.29 52.4 48.27 

GlasshouseAverage 70.476923 68.334615 56.793462 52.751923 59.617308 54.648846 61.250385 66.355385 61.459615 68.099615 61.016154 53.53 

GlasshouseStdError 2.7035649 2.4822135 2.0160741 2.0617744 2.1287472 1.9381706 1.5405505 1.5742022 1.7625924 1.893785 1.7006136 1.3033495 

FieldAverage 59.095556 56.042778 53.572222 51.348889 54.296667 51.735 55.259444 56.032222 55.521667 56.883889 55.242222 51.768889 
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FieldStdError 1.2373721 1.5818511 1.0636162 1.0905149 1.0297074 1.1431991 0.4837425 0.9307887 0.7735755 1.7192047 0.8654213 0.788973 

Average 65.820909 63.306136 55.475682 52.177955 57.440682 53.456818 58.799545 62.132273 59.030455 63.511364 58.654091 52.809545 

StdError 1.8673394 1.8359848 1.2797205 1.2898887 1.3738488 1.2448518 1.027117 1.2611814 1.1671875 1.5547755 1.1411101 0.8376813 

Top GH 18 8 19 7 19 7 6 20 6 20 24 2 

% 69.23 30.77 73.08 26.92 73.08 26.92 23.08 76.92 23.08 76.92 92.31 7.69 

Top Fld 14 4 14 4 13 5 9 9 8 10 16 2 

% 77.78 22.22 77.78 22.22 72.22 27.78 50.00 50.00 44.44 55.56 88.89 11.11 

Number of instances as top 
performer 32 12 33 11 32 12 16 28 14 30 40 4 

Percentage of instances as top 
performer 72.73 27.27 75 25 72.73 27.27 36.36 63.64 31.82 68.18 90.91 9.09 
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C.2 Weekly average classification accuracies (%) of CR detection of optimised machine learning models pre-processed with the discrete 

wavelet transform (DWT) or principal component analysis (PCA), trained on an 80-20% train-test split. Weeks are weeks from Zadoks 

(Z) 13, 21. Supplementary to Chapter 3. 

Accuracy (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 63.33 59.02 55 40.98 50 36.07 66.67 65.57 63.33 63.93 63.33 50.82 

week 2 66.67 70.31 68.33 48.44 68.33 60.94 65 73.44 68.33 79.69 68.33 60.94 

week 3 61.9 49.23 50.79 40 57.14 43.08 60.32 58.46 61.9 58.46 55.56 47.69 

week 4 54.84 52.31 53.23 40 53.23 40 50 58.46 48.39 50.77 53.23 33.85 

week 5 68.25 68.18 65.08 45.45 66.67 53.03 57.14 66.67 66.67 75.76 58.73 62.12 

week 6 55.38 66.18 50.77 48.53 50.77 61.76 63.08 55.88 60 63.24 67.69 51.47 

week 7 63.49 46.97 57.14 59.09 55.56 65.15 61.9 62.12 61.9 62.12 58.73 54.55 

week 8 74.14 65.57 50 50.82 53.45 50.82 56.9 63.93 58.62 63.93 58.62 45.9 

week 9 60 60.34 52.73 44.83 49.09 48.28 61.82 62.07 56.36 72.41 56.36 50 

Glasshouse 2 

week 1 100 100 97.14 100 97.14 97.22 97.14 83.33 97.14 97.22 100 94.44 

week 2 88.57 88.89 91.43 86.11 88.57 83.33 88.57 86.11 88.57 94.44 91.43 77.78 

week 3 69.57 81.25 67.39 68.75 69.57 66.67 67.39 72.92 69.57 81.25 71.74 62.5 

week 4 66.67 77.78 52.78 41.67 52.78 63.89 69.44 75 63.89 69.44 55.56 66.67 

week 5 97.14 97.22 68.57 80.56 77.14 77.78 71.43 72.22 77.14 91.67 82.86 69.44 

week 6 85.71 88.89 62.86 44.44 62.86 69.44 62.86 69.44 62.86 80.56 60 50 

week 7 60 61.9 55 52.38 62.5 45.24 55 57.14 57.5 69.05 65 38.1 

week 8 – – – – – – – – – – – – 

week 9 81.4 77.78 58.14 53.33 58.14 55.56 67.44 66.67 65.12 75.56 53.49 55.56 

Glasshouse 3 

week 1 65.71 75 54.29 63.89 51.43 66.67 54.29 75 54.29 72.22 54.29 50 

week 2 97.22 86.49 72.22 81.08 72.22 89.19 72.22 72.97 66.67 89.19 66.67 62.16 

week 3 97.22 89.19 66.67 67.57 69.44 70.27 63.89 86.49 66.67 83.78 66.67 48.65 

week 4 81.08 87.18 56.76 76.92 56.76 79.49 78.38 79.49 67.57 92.31 62.16 76.92 

week 5 79.49 73.81 53.85 47.62 53.85 57.14 66.67 69.05 56.41 69.05 66.67 66.67 
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week 6 90.24 93.02 63.41 55.81 65.85 79.07 73.17 86.05 63.41 93.02 65.85 55.81 

week 7 97.67 97.78 74.42 64.44 74.42 75.56 81.4 86.67 88.37 95.56 83.72 66.67 

week 8 57.78 69.57 55.56 54.35 46.67 52.17 68.89 67.39 66.67 71.74 60 52.17 

week 9 84.09 80.43 72.73 60.87 75 78.26 70.45 78.26 77.27 82.61 75 67.39 

Field 1 

week 1 67.47 61.63 43.37 44.19 44.58 46.51 59.04 61.63 57.83 61.63 60.24 54.65 

week 2 65.85 67.86 54.88 44.05 54.88 57.14 62.2 55.95 65.85 64.29 63.41 54.76 

week 3 69.51 71.26 68.29 43.68 65.85 65.52 58.54 67.82 71.95 77.01 62.2 59.77 

week 4 59.52 79.31 52.38 50.57 58.33 64.37 65.48 64.37 61.9 80.46 61.9 59.77 

week 5 72.62 67.82 67.86 67.82 66.67 68.97 69.05 63.22 72.62 70.11 69.05 56.32 

week 6 72.29 70.93 62.65 70.93 61.45 70.93 61.45 72.09 61.45 72.09 68.67 62.79 

week 7 57.14 54.02 46.43 43.68 63.1 40.23 61.9 59.77 54.76 65.52 60.71 64.37 

week 8 60.24 58.14 53.01 46.51 57.83 55.81 50.6 61.63 51.81 56.98 54.22 50 

week 9 67.06 75.86 47.06 42.53 52.94 60.92 63.53 78.16 58.82 82.76 57.65 56.32 

Field 2 

week 1 59.52 51.72 53.57 45.98 48.81 47.13 51.19 50.57 46.43 57.47 46.43 45.98 

week 2 60.71 54.02 45.24 47.13 57.14 48.28 59.52 52.87 60.71 45.98 57.14 50.57 

week 3 56.63 59.77 51.81 49.43 54.22 58.62 59.04 60.92 60.24 65.52 54.22 50.57 

week 4 63.53 62.07 58.82 57.47 55.29 59.77 56.47 64.37 57.65 57.47 52.94 42.53 

week 5 67.86 65.52 67.86 63.22 61.9 58.62 63.1 58.62 71.43 66.67 66.67 57.47 

week 6 63.1 50.57 64.29 51.72 65.48 48.28 58.33 59.77 55.95 58.62 55.95 48.28 

week 7 56.1 59.77 56.1 45.98 58.54 50.57 62.2 60.92 65.85 59.77 58.54 47.13 

week 8 64.29 59.77 54.76 47.13 57.14 52.87 61.9 62.07 67.86 64.37 64.29 55.17 

week 9 54.76 57.47 55.95 47.13 53.57 45.98 52.38 52.87 59.52 54.02 58.33 52.87 

GlasshouseAverage 
75.6754 75.5496 62.5496 58.3819 63.0223 64.08 67.3638 71.1846 66.7162 76.8838 66.2188 

58.395 

GlasshouseStdError 
2.93404 2.98167 2.34953 3.13142 2.46617 3.07583 2.05743 1.87834 2.18284 2.50239 2.33566 

2.55492 

FieldAverage 
63.2333 62.6394 55.7961 50.5083 57.6511 55.5844 59.7733 61.5344 61.2572 64.4856 59.5867 

53.8511 

FieldStdError 
1.30098 1.93407 1.8503 2.02855 1.38471 2.04404 1.13699 1.57968 1.66441 2.22433 1.36884 

1.39181 

Average 
70.5855 70.2682 59.7868 55.1609 60.825 60.6045 64.2586 67.2368 64.483 71.8118 63.5057 

56.5361 

StdError 
2.02522 2.14389 1.64518 2.09353 1.60056 2.08128 1.40969 1.46261 1.50084 1.95337 1.55708 

1.63461 
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Top GH 
11 14 17 9 11 15 7 19 1 25 21 

4 

% 
44.00 56.00 65.38 34.62 42.31 57.69 26.92 73.08 3.85 96.15 84.00 

16.00 

Top Fld 
11 7 15 3 10 8 8 10 8 10 17 

1 

% 
61.11 38.89 83.33 16.67 55.56 44.44 44.44 55.56 44.44 55.56 94.44 

5.56 

Number of instances as top 
performer 

22 21 32 12 21 23 15 29 9 35 39 
5 

Percentage of instances as top 
performer 

50 47.73 72.73 27.27 47.73 52.27 34.09 65.91 20.45 79.55 88.64 11.36 
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C.3 Weekly average classification F1 scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% train-test split. Weeks are weeks from Zadoks (Z) 13, 21. 

Supplementary to Chapter 3. 

F1 (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 0.6319 0.5873 0.6572 0.6482 0.6572 0.5646 0.5138 0.585 0.5122 0.6215 0.5857 0.3455 

week 2 0.6116 0.6307 0.6418 0.058 0.6418 0.137 0.5761 0.6446 0.5826 0.6038 0.5902 0.0305 

week 3 0.5304 0.5809 0 0.0149 0 0.4 0.5455 0.6008 0.4959 0.5726 0.4495 0.3541 

week 4 0.6464 0.5153 0.6464 0 0.604 0.0588 0.5207 0.5748 0.5158 0.5198 0.4167 0.3298 

week 5 0.7154 0.5538 0 0 0.52 0 0.625 0.6 0.5944 0.5897 0.5487 0.417 

week 6 0.5714 0.472 0 0.0141 0.1389 0.1146 0.5783 0.5448 0.5232 0.4434 0.4636 0.393 

week 7 0.7194 0.5939 0.6833 0.6963 0.5083 0.6242 0.5923 0.6242 0.5581 0.5735 0.605 0.5735 

week 8 0.6835 0.6484 0.657 0.4463 0.657 0.4786 0.6025 0.6148 0.5992 0.5992 0.5772 0.5231 

week 9 0.4898 0.6353 0.0806 0.6433 0.156 0.5498 0.5146 0.6226 0.5073 0.6179 0.4324 0.5316 

Glasshouse 2 

week 1 0.9929 0.9517 0.9333 0.9065 0.9787 0.9128 0.9054 0.7778 0.9504 0.8553 0.9155 0.7578 

week 2 0.7532 0.8098 0.7407 0.8219 0.7394 0.7425 0.7397 0.75 0.7417 0.7647 0.7442 0.7194 

week 3 0.7742 0.732 0.3273 0 0.4724 0.6667 0.6237 0.7264 0.6011 0.7813 0.6034 0.4615 

week 4 0.6795 0.6993 0.6635 0.6605 0.6584 0.6556 0.6 0.6588 0.5949 0.6974 0.6667 0.5147 

week 5 0.8676 0.7952 0.7111 0.5714 0.7338 0.6164 0.6475 0.7284 0.6423 0.726 0.6667 0.5417 

week 6 0.8079 0.76 0.6845 0.5442 0.6995 0.5235 0.6452 0.7299 0.6575 0.6713 0.6977 0.5033 

week 7 0.6479 0.5096 0.3717 0.3709 0.3932 0.3709 0.4722 0.5062 0.4234 0.52 0.3717 0.3597 

week 8 – – – – – – – – – – – – 

week 9 0.7857 0.7027 0.2745 0 0.4559 0.3893 0.5132 0.7404 0.4615 0.7539 0.5763 0.5114 

Glasshouse 3 

week 1 0.6634 0.5442 0.6207 0.6667 0.6448 0.6802 0.5693 0.5526 0.5693 0.5694 0.6 0.4741 

week 2 0.922 0.8286 0.6604 0.6509 0.726 0.5793 0.6795 0.7482 0.7027 0.8514 0.6405 0.6024 

week 3 0.8993 0.879 0.6604 0.5714 0.6984 0.6012 0.6871 0.805 0.6624 0.8516 0.72 0.6154 

week 4 0.8228 0.7368 0.6875 0.3846 0.6826 0.5882 0.6622 0.7389 0.7 0.7467 0.6667 0.5362 

week 5 0.6878 0.6054 0.6774 0.6747 0.6878 0.5111 0.6588 0.6474 0.6548 0.5868 0.655 0.3852 
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week 6 0.7468 0.8852 0.6494 0 0.5486 0.4713 0.6054 0.7914 0.535 0.8043 0.6347 0.494 

week 7 0.9149 0.8315 0.4966 0.2992 0.5 0.3741 0.7107 0.8308 0.6816 0.8043 0.6471 0.5509 

week 8 0.5963 0.5761 0.0215 0.449 0.5799 0.4878 0.6071 0.6277 0.5679 0.6061 0.573 0.3636 

week 9 0.7565 0.7545 0.6667 0.2435 0.6875 0.3906 0.6564 0.7059 0.7071 0.6829 0.663 0.3662 

Field 1 

week 1 0.5808 0.4246 0.6733 0 0.5806 0.3893 0.5682 0.4898 0.5739 0.4167 0.5905 0.4807 

week 2 0.5574 0.4938 0.5913 0.012 0.5758 0.1951 0.5605 0.5287 0.4863 0.508 0.4604 0.3621 

week 3 0.6605 0.5935 0.3524 0.14 0.4982 0.3893 0.5355 0.5869 0.5085 0.5783 0.5466 0.4474 

week 4 0.6786 0.5724 0 0 0.3182 0 0.5593 0.582 0.5577 0.5071 0.538 0.3475 

week 5 0.6913 0.6724 0.6519 0.5662 0.6049 0.5697 0.5819 0.592 0.5801 0.6364 0.5855 0.5116 

week 6 0.6625 0.6781 0.6571 0.6667 0.6192 0.6547 0.5747 0.5427 0.6106 0.6277 0.6189 0.5595 

week 7 0.4889 0.5329 0 0.4197 0.3058 0.4258 0.5607 0.5658 0.5284 0.5231 0.5091 0.4267 

week 8 0.5745 0.5177 0.0234 0.3857 0.5034 0.4437 0.5543 0.5534 0.5838 0.5119 0.5815 0.5045 

week 9 0.6686 0.6897 0 0.5698 0.2785 0.5183 0.56 0.6812 0.6553 0.7829 0.6266 0.6089 

Field 2 

week 1 0.5376 0.5651 0.4698 0.3431 0.5257 0.4537 0.5179 0.5413 0.4878 0.5106 0.4894 0.5042 

week 2 0.5842 0.5165 0.5523 0 0.5487 0.4882 0.5799 0.5574 0.5345 0.5128 0.5576 0.4986 

week 3 0.6761 0.5722 0.3139 0 0.4792 0.4465 0.5402 0.5678 0.4626 0.5476 0.4675 0.5714 

week 4 0.5667 0.5364 0.5293 0 0.5135 0.4207 0.565 0.5389 0.5635 0.4241 0.5245 0.4155 

week 5 0.6455 0.6301 0.6398 0.5 0.5903 0.5373 0.5765 0.6032 0.566 0.6703 0.6472 0.5707 

week 6 0.6667 0.4971 0.66 0.4753 0.6667 0.5238 0.5916 0.5493 0.563 0.4665 0.5073 0.4053 

week 7 0.6527 0.4698 0.6486 0.1852 0.615 0.4558 0.5746 0.613 0.5284 0.5836 0.492 0.3939 

week 8 0.5833 0.5385 0.5602 0.4702 0.5092 0.4928 0.5354 0.5423 0.5638 0.5091 0.5399 0.4258 

week 9 0.6667 0.462 0 0.3221 0.4444 0.4207 0.5101 0.5272 0.4897 0.4671 0.3465 0.4781 

GlasshouseAverage 
0.727635 0.685353846 0.508212 0.397558 0.568081 0.48035 0.617392 0.672208 0.605473 0.6698 

0.604277 0.471369 

GlasshouseStdError 
0.024747 0.025723811 0.054187 0.058892 0.041194 0.042197 0.017411 0.017397 0.021179 0.022596 

0.0225 0.028134 

FieldAverage 
0.619033 0.553488889 0.40685 0.280889 0.50985 0.434744 0.558128 0.564606 0.546883 0.543544 

0.534944 0.472911 

FieldStdError 
0.014062 0.017973513 0.0649 0.056215 0.026293 0.033835 0.00527 0.009879 0.011456 0.021485 

0.016922 0.017767 

Average 
0.683207 0.631409091 0.466745 0.34983 0.544259 0.461693 0.593148 0.628189 0.581505 0.61815 

0.575914 0.472 

StdError 
0.017569 0.019425085 0.041806 0.04218 0.026718 0.028435 0.011331 0.013596 0.013951 0.01843 

0.015724 0.017972 
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Number of instances as top 
performer 34 10 30 12 35 9 12 32 15 29 

40 4 

Percentage of instances as top 
performer 77.27 22.73 68.18 27.27 79.55 20.45 27.27 72.73 34.09 65.91 

90.91 9.09 

 

  



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES 

198  

C.4 Weekly average classification F1 scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on an 80-20% train-test split. Weeks are weeks from Zadoks (Z) 13, 21. 

Supplementary to Chapter 3. 

F1 (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

3 week 0.6517 0.5763 0.3415 0 0.36 0 0.6 0.6667 0.5769 0.6333 0.4762 0.375 

6 week 0.5833 0.7246 0.5778 0.0571 0.5581 0.4681 0.6441 0.7463 0.6316 0.806 0.6545 0.6032 

9 week 0.5862 0.5479 0 0 0.4255 0.1395 0.6087 0.6316 0.6 0.5846 0.5172 0.4848 

3 week 0.5758 0.5676 0.0645 0 0.3556 0.093 0.4918 0.6111 0.5 0.4138 0.4561 0.2456 

6 week 0.7436 0.6769 0.725 0 0.7042 0.4151 0.6494 0.6933 0.72 0.7714 0.5517 0.6269 

9 week 0.4848 0.6349 0.1579 0 0.2727 0.4091 0.6842 0.5946 0.597 0.6154 0.6038 0.3529 

3 week 0.7089 0.55 0.7273 0.7327 0.7083 0.7356 0.6571 0.6914 0.6479 0.6753 0.64 0.4643 

6 week 0.717 0.6441 0.6353 0.375 0.6216 0.4 0.5614 0.6571 0.5556 0.6944 0.6 0.3529 

9 week 0.5926 0.5965 0.5867 0.1111 0.5672 0.2857 0.6038 0.56 0.5385 0.625 0.4706 0.3556 

Glasshouse 2 

3 week 1 1 0.9714 1 0.9714 0.9655 0.9697 0.8333 0.9714 0.9677 1 0.9286 

6 week 0.8889 0.9048 0.9143 0.8649 0.8889 0.8421 0.8947 0.878 0.8824 0.95 0.9189 0.7895 

9 week 0.6667 0.8163 0.4828 0.6154 0.5625 0.619 0.6512 0.7347 0.6818 0.8163 0.6341 0.5714 

3 week 0.625 0.75 0.5641 0.5882 0.5143 0.6667 0.6667 0.6667 0.6486 0.7027 0.6 0.6 

6 week 0.9714 0.9677 0.5926 0.7879 0.7143 0.7778 0.7059 0.7222 0.7647 0.9091 0.8125 0.6207 

9 week 0.8571 0.875 0.7234 0.5455 0.6977 0.6857 0.6286 0.625 0.5946 0.7879 0.6111 0.25 

3 week 0.6531 0.6364 0 0.1667 0.4444 0.439 0.5 0.5909 0.5 0.6977 0.65 0.0714 

6 week – – – – – – – – – – – – 

9 week 0.7647 0.7727 0.2759 0.087 0.5263 0.5 0.6111 0.6939 0.5455 0.7556 0.4 0.4444 

Glasshouse 3 

3 week 0.6538 0.7568 0.6364 0.6486 0.625 0.6842 0.6 0.7429 0.619 0.7222 0.4737 0.4375 

6 week 0.9744 0.8571 0.7059 0.7742 0.7059 0.8889 0.75 0.7222 0.7 0.8889 0.6842 0.6316 

9 week 0.9744 0.8824 0.6842 0.6471 0.7179 0.6857 0.6667 0.8649 0.6667 0.8333 0.6842 0.24 

3 week 0.8108 0.8571 0.5789 0.6667 0.5789 0.75 0.7778 0.8 0.6667 0.9143 0.65 0.7429 

6 week 0.75 0.7179 0.625 0.5769 0.6087 0.6538 0.6977 0.6829 0.5854 0.6667 0.6667 0.5625 
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9 week 0.8889 0.9231 0.6512 0.6275 0.6667 0.7273 0.6857 0.8571 0.6341 0.9231 0.65 0.3448 

3 week 0.973 0.9796 0.7755 0.5789 0.7442 0.7442 0.7895 0.875 0.8718 0.96 0.8205 0.6939 

6 week 0.6122 0.6818 0.6667 0.5532 0.5 0.5217 0.6667 0.6667 0.6667 0.6829 0.5909 0.3125 

9 week 0.8293 0.7568 0.7273 0.6087 0.7442 0.7619 0.6818 0.7619 0.7619 0.7778 0.6667 0.6512 

Field 1 

3 week 0.6494 0.6024 0.605 0.6129 0.5741 0.54 0.55 0.5714 0.5714 0.5075 0.5143 0.5185 

6 week 0.6585 0.6667 0.5432 0.6116 0.5432 0.5909 0.6024 0.5647 0.6 0.6429 0.5833 0.4722 

9 week 0.6479 0.6914 0.6076 0.608 0.6216 0.6939 0.5 0.641 0.6349 0.7561 0.5455 0.4444 

3 week 0.6154 0.775 0.6429 0.6325 0.6316 0.6667 0.6265 0.6364 0.6024 0.8 0.5647 0.5455 

6 week 0.7333 0.6667 0.6897 0.6818 0.6744 0.6897 0.6757 0.5897 0.6944 0.6667 0.675 0.5778 

9 week 0.7013 0.6988 0.6353 0.6988 0.6279 0.6988 0.6024 0.7073 0.5676 0.6923 0.6486 0.5676 

3 week 0.5714 0.5238 0.6341 0.608 0.6517 0.48 0.5556 0.5977 0.525 0.6341 0.56 0.4746 

6 week 0.6292 0.5814 0.6296 0.6349 0.5882 0.6042 0.5057 0.6374 0.4941 0.6022 0.5128 0.3175 

9 week 0.6818 0.7529 0.6034 0.5968 0.6019 0.6047 0.6173 0.7654 0.5882 0.8193 0.5316 0.6042 

Field 2 

3 week 0.6327 0.4884 0.5806 0 0.4819 0.4773 0.5393 0.5 0.5055 0.5287 0.4598 0.3562 

6 week 0.7077 0.5556 0 0 0.5135 0.3284 0.6531 0.5287 0.6118 0.4598 0.5135 0.4941 

9 week 0.7049 0.5647 0.4286 0.2414 0.4865 0.5263 0.6136 0.6222 0.6374 0.6512 0.5682 0.4416 

3 week 0.6353 0.5823 0.4444 0.5195 0.5366 0.5679 0.6022 0.6667 0.5909 0.5843 0.5 0.2647 

6 week 0.7255 0.6737 0.7523 0.7091 0.6667 0.5714 0.6353 0.6 0.7333 0.6882 0.6957 0.5934 

9 week 0.6737 0.5376 0.7 0.5714 0.6882 0.4828 0.6022 0.6327 0.5934 0.5814 0.5195 0.4706 

3 week 0.7188 0.6237 0.5909 0.5053 0.6136 0.5057 0.6667 0.5854 0.6818 0.5977 0.5405 0.4524 

6 week 0.6809 0.6602 0.5778 0 0.561 0.5393 0.5854 0.6207 0.64 0.6593 0.5783 0.5185 

9 week 0.672 0.5934 0.4638 0 0.5349 0.4598 0.5238 0.5287 0.5854 0.5 0.5934 0.4938 

GlasshouseAverage 0.751446 0.755934615 0.553523 0.446665 0.607096 0.571523 0.670935 0.714246 0.6588 
0.760592 0.633985 0.490542 

GlasshouseStdError 0.02974 0.027557094 0.051042 0.062681 0.031481 0.048322 0.020473 0.018107 0.02274 
0.026629 0.027172 0.038993 

FieldAverage 0.668872 0.624372222 0.562733 0.457333 0.58875 0.5571 0.592067 0.610894 0.603194 
0.631761 0.561372 0.4782 

FieldStdError 0.010122 0.018613957 0.038678 0.063903 0.014986 0.022733 0.012444 0.015139 0.014649 
0.023437 0.01454 0.021759 

Average 0.717666 0.702113636 0.557291 0.45103 0.599591 0.565623 0.63867 0.671966 0.636052 
0.707889 0.60428 0.485493 

StdError 0.018941 0.020352726 0.033727 0.044843 0.01946 0.029782 0.014283 0.014483 0.015157 
0.020634 0.017818 0.024491 
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Number of instances as top 
performer 

24 17 26 11 19 20 12 29 10 
33 38 5 

Percentage of instances as top 
performer 

54.55 38.64 59.09 25 43.18 45.45 27.27 65.91 22.73 
75 86.36 11.36 
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C.5 3-week average accuracy (%) scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on a 20-80% train-test split. Accuracies for the 3-week average groups 

were calculated based on the average of the first three, six or nine weeks and described as weeks from Zadoks (Z) 13, 21. Supplementary 

to Chapter 3. 

Accuracy (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 Average DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

3 week 56.2 61.26 49 48.8 49.28 48.8 55.23 62.02 54.69 63.26 54.32 49.08 

6 week 58.91 57.93 49 48.9 51.72 49.15 56.74 60.96 56.03 61.02 54.84 49.11 

9 week 59.14 58.49 49.8 49.11 50.98 49.92 56.66 60.35 56.04 60.27 54.78 50.1 

Glasshouse 2 

3 week 83.11 82.25 74.45 73.87 77.39 77.17 74.94 71.27 76.19 77.99 76.42 67.23 

6 week 80.06 78.05 68.95 63.44 71.15 66.13 67.9 69.66 68.53 73.6 69.7 59.66 

9 week 76.82 73.96 65.69 59.2 67.49 61.08 64.58 68.35 65.27 71.48 66.18 57.03 

Glasshouse 3 

3 week 78.68 74.42 50.26 51.25 62.49 56.35 62.51 68.91 62.98 75.14 62.01 54.46 

6 week 76.3 73.46 55.42 49.67 61.31 53.44 62.18 70.04 62.9 73.16 62.52 53.68 

9 week 76.17 73.18 55.88 50.66 61.26 53.66 62.88 70.6 63.49 72.92 62.66 53.85 

Field 1 

3 week 61.93 52.76 54.23 49.96 54.64 48.41 56.24 55.9 54.61 55.02 56.44 51.43 

6 week 63.62 59.07 56.33 54 57.68 53.27 56.03 56.82 56.09 58.8 57.03 52.27 

9 week 61.96 58.75 54.09 53.08 55.76 52.57 55.84 57.34 56.79 59.79 56.4 52.7 

Field 2 

3 week 54.11 53.18 53 49.13 54.01 49.81 53.19 54.34 52.3 52.89 52.09 50.77 

6 week 55.5 54.09 53.56 50.19 53.03 51.11 54.84 54.62 54.5 54.09 54.74 51.16 

9 week 56.23 53.34 53.06 49.61 52.84 50.9 54.68 54.72 54.25 53.98 54.08 50.83 

Average 

3 week 66.806 64.774 56.188 54.602 59.562 56.108 60.422 62.488 60.154 64.86 60.256 54.594 

6 week 66.878 64.52 56.652 53.24 58.978 54.62 59.538 62.42 59.61 64.134 59.766 53.176 

9 week 66.19967 63.70667 55.862 52.48333 57.88467 53.79167 59.02967 62.29667 59.24167 63.76233 58.97767 52.94767 

SE 

3 week 5.934068 5.871802 4.659969 4.835524 4.935489 5.458925 3.948923 3.379174 4.401228 5.102655 4.363673 3.276618 

6 week 4.827534 4.716461 3.323973 2.697226 3.488108 2.98275 2.440382 3.200106 2.661855 3.937666 2.857278 1.784849 

9 week 4.354968 4.207092 2.685183 1.848176 3.008767 1.972865 2.003603 3.09313 2.185636 3.654227 2.382864 1.227279 

TopPerformer 3 week 4 1 4 1 5 0 2 3 0 5 5 0 
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6 week 5 0 5 0 5 0 1 4 1 4 5 0 

9 week 5 0 5 0 5 0 0 5 1 4 5 0 

% 

3 week 80 20 80 20 100 0 40 60 0 100 100 0 

6 week 100 0 100 0 100 0 20 80 20 80 100 0 

9 week 100 0 100 0 100 0 0 100 20 80 100 0 

Top GH 8 1 8 1 9 0 1 8 
0 9 9 0 

% 88.89 11.11 88.89 11.11 100.00 0.00 11.11 88.89 
0.00 100.00 100.00 0.00 

Top Fld 6 0 6 0 6 0 2 4 
2 4 6 0 

% 100.00 0.00 100.00 0.00 100.00 0.00 33.33 66.67 
33.33 66.67 100.00 0.00 

TopPerformer 14 1 14 1 15 0 3 12 
2 13 15 0 

% 93.33 6.67 93.33 6.67 100.00 0.00 20.00 80.00 
13.33 86.67 100.00 0.00 

Average 66.58267 64.27933 56.18133 53.39133 58.73533 54.78467 59.62933 62.39333 
59.644 64.22733 59.614 53.55733 

StdDev 10.17091 9.975538 7.310875 6.804487 7.83582 7.604303 5.870379 6.453221 
6.465832 8.568986 6.648323 4.595725 
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C.6 3-week average accuracy (%) scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet 

transform (DWT) or principal component analysis (PCA), trained on an 80-20% train-test split. Accuracies for the 3-week average groups 

were calculated based on the average of the first three, six or nine weeks and described as weeks from Zadoks (Z) 13, 21. Supplementary 

to Chapter 3. 

Accuracy (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 Average DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

3 week 63.97 59.52 58.04 43.14 58.49 46.69 63.99 65.82 64.52 67.36 62.41 53.15 

6 week 61.73 60.87 57.2 43.9 57.69 49.15 60.37 63.08 61.44 65.31 61.15 51.15 

9 week 63.11 59.79 55.9 46.46 56.03 51.01 60.31 62.96 60.61 65.59 60.06 50.81 

Glasshouse 2 

3 week 86.05 90.05 85.32 84.95 85.09 82.41 84.37 80.79 85.09 90.97 87.72 78.24 

6 week 84.61 89 73.36 70.25 74.68 76.39 76.14 76.5 76.53 85.76 76.93 70.14 

9 week 81.13 84.21 69.16 65.91 71.09 69.89 72.41 72.85 72.72 82.4 72.51 64.31 

Glasshouse 3 

3 week 86.72 83.56 64.39 70.85 64.37 75.38 63.47 78.15 62.54 81.73 62.54 53.6 

6 week 85.16 84.11 61.2 65.48 61.59 73.64 68.1 78.17 62.5 83.26 63.72 60.04 

9 week 83.39 83.61 63.32 63.62 62.85 71.98 69.93 77.93 67.48 83.28 66.78 60.72 

Field 1 

3 week 67.61 66.92 55.51 43.97 55.1 56.39 59.92 61.8 65.21 67.64 61.95 56.39 

6 week 67.88 69.8 58.24 53.54 58.63 62.24 62.62 64.18 65.27 70.93 64.25 58.01 

9 week 65.75 67.43 55.1 50.44 58.4 58.93 61.31 64.96 61.89 70.09 62.01 57.64 

Field 2 

3 week 58.95 55.17 50.21 47.51 53.39 51.34 56.58 54.79 55.79 56.32 52.6 49.04 

6 week 61.89 57.28 56.93 52.49 57.14 53.45 57.94 57.85 58.74 58.62 55.56 49.23 

9 week 60.72 57.85 56.49 50.57 56.9 52.23 58.24 58.11 60.63 58.88 57.17 50.06 

Average 

3 week 72.66 71.044 62.694 58.084 63.288 62.442 65.666 68.27 66.63 72.804 65.444 58.084 

6 week 72.25 72.21 61.39 57.13 61.95 62.97 65.03 67.96 64.90 72.78 64.32 57.71 

9 week 70.82 70.578 59.994 55.4 61.054 60.808 64.44 67.362 64.666 72.048 63.706 56.708 

SE 

3 week 5.77 6.78 6.10 8.42 5.76 6.98 4.86 4.92 4.91 6.07 5.88 5.17 

6 week 5.275104 6.24829 3.087775 4.750303 3.274817 5.367033 3.245371 3.984285 3.090881 5.186712 3.508301 3.707882 

9 week 4.75 5.67 2.72 3.91 2.77 4.36 2.82 3.55 2.38 4.76 2.70 2.77 

TopPerformer 3 week 4.00 1.00 4.00 1.00 3.00 2.00 2.00 3.00 0.00 5.00 5.00 0.00 
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6 week 3.00 2.00 4.00 1.00 2.00 3.00 1.00 4.00 1.00 4.00 5.00 0.00 

9 week 2.00 3.00 4.00 1.00 3.00 2.00 1.00 4.00 1.00 4.00 5.00 0.00 

% 3 week 80.00 20.00 80.00 20.00 60.00 40.00 40.00 60.00 0.00 100.00 100.00 0.00 

 
6 week 60.00 40.00 80.00 20.00 40.00 60.00 20.00 80.00 20.00 80.00 100.00 0.00 

9 week 40.00 60.00 80.00 20.00 60.00 40.00 20.00 80.00 20.00 80.00 100.00 0.00 

Top GH 5 4 6 3 5 4 1 
8 0 9 9 0 

% 55.56 44.44 66.67 33.33 55.56 44.44 11.11 
88.89 0.00 100.00 100.00 0.00 

Top Fld 4 2 6 0 3 3 3 
3 2 4 6 0 

% 66.67 33.33 100.00 0.00 50.00 50.00 50.00 
50.00 33.33 66.67 100.00 0.00 

TopPerformer 9 6 12 3 8 7 4 
11 2 13 15 0 

% 60.00 40.00 80.00 20.00 53.33 46.67 26.67 
73.33 13.33 86.67 100.00 0.00 

Average 46.10857 41.30944 44.61686 30.32707 39.0778 38.9983 35.28035 
46.30284 32.53662 51.15615 49.88995 26.11116 

StdDev 27.57576 26.91709 22.22229 21.12785 22.45339 23.57414 23.91928 
25.93458 24.00637 27.32994 23.35652 20.99061 
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C.7 3-week average F1 scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet transform 

(DWT) or principal component analysis (PCA), trained on a 20-80% train-test split. Accuracies for the 3-week average groups were 

calculated based on the average of the first three, six or nine weeks and described as weeks from Zadoks (Z) 13, 21. Supplementary to 

Chapter 3. 

F1 (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 Average DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

3 week 0.5913 0.5996 0.433 0.2404 0.433 0.3672 0.5451 0.6101 0.5302 0.5993 0.5418 0.2434 

6 week 0.6179 0.5567 0.3242 0.1225 0.427 0.2125 0.5599 0.5917 0.5373 0.5585 0.5091 0.3117 

9 week 0.6222 0.5797 0.374 0.2801 0.4315 0.3253 0.5632 0.6013 0.5432 0.5713 0.5188 0.3887 

Glasshouse 2 

3 week 0.8401 0.8312 0.6671 0.5761 0.7302 0.774 0.7563 0.7514 0.7644 0.8004 0.7543 0.6462 

6 week 0.8126 0.7913 0.6767 0.5841 0.7137 0.6862 0.6936 0.7286 0.698 0.7493 0.7157 0.5831 

9 week 0.7886 0.745 0.5883 0.4844 0.6414 0.6097 0.6434 0.7022 0.6341 0.7212 0.6552 0.5462 

Glasshouse 3 

3 week 0.8282 0.7506 0.6471 0.6297 0.6897 0.6202 0.6453 0.702 0.6448 0.7575 0.6535 0.564 

6 week 0.7904 0.7465 0.6593 0.4914 0.6647 0.5719 0.6437 0.7139 0.6374 0.735 0.6528 0.5179 

9 week 0.7789 0.7379 0.5712 0.4378 0.6395 0.5204 0.6485 0.7164 0.6423 0.7226 0.6444 0.4876 

Field 1 

3 week 0.5996 0.504 0.539 0.0507 0.5515 0.3245 0.5547 0.5351 0.5229 0.501 0.5325 0.4301 

6 week 0.6385 0.5725 0.4877 0.2308 0.5328 0.3663 0.5633 0.5537 0.5528 0.5457 0.5567 0.4515 

9 week 0.6181 0.575 0.3277 0.3067 0.4761 0.3984 0.5617 0.5692 0.565 0.5658 0.5619 0.4721 

Field 2 

3 week 0.5993 0.5513 0.4454 0.1144 0.5178 0.4628 0.546 0.5555 0.495 0.5237 0.5049 0.5248 

6 week 0.6128 0.5529 0.5275 0.2197 0.554 0.4784 0.5618 0.5596 0.5296 0.522 0.5323 0.4943 

9 week 0.6199 0.532 0.486 0.2551 0.5436 0.4711 0.5546 0.56 0.5288 0.5213 0.508 0.4737 

Average 

3 week 0.6917 0.64734 0.54632 0.32226 0.58444 0.50974 0.60948 0.63082 0.59146 0.63638 0.5974 0.4817 

6 week 0.69444 0.64398 0.53508 0.3297 0.57844 0.46306 0.60446 0.6295 0.59102 0.6221 0.59332 0.4717 

9 week 0.68554 0.63392 0.46944 0.35282 0.54642 0.46498 0.59428 0.62982 0.58268 0.62044 0.57766 0.47366 

SE 

3 week 0.058204 0.061853 0.0489 0.118871 0.05513 0.083328 0.04124 0.041756 0.050255 0.060816 0.046704 0.068971 

6 week 0.044058 0.051593 0.064132 0.088227 0.050671 0.081858 0.027373 0.038082 0.032951 0.049411 0.039161 0.045312 

9 week 0.040129 0.044693 0.05194 0.045552 0.042335 0.048988 0.02116 0.03324 0.023423 0.042319 0.030848 0.025176 

Average 0.69056 0.641747 0.516947 0.334927 0.569767 0.47926 0.60274 
0.630047 0.588387 0.626307 0.58946 0.475687 
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StdDev 0.096261 0.106518 0.11584 0.179318 0.100717 0.147842 0.062479 
0.075709 0.074585 0.103081 0.079337 0.09972 
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C.8 3-week average F1 scores of CR detection of optimised machine learning models pre-processed with the discrete wavelet transform 

(DWT) or principal component analysis (PCA), trained on an 80-20% train-test split. Accuracies for the 3-week average groups were 

calculated based on the average of the first three, six or nine weeks and described as weeks from Zadoks (Z) 13, 21. Supplementary to 

Chapter 3. 

F1 (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 Average DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

3 week 0.6071 0.6163 0.3064 0.019 0.4479 0.2025 0.6176 0.6815 0.6028 0.6746 0.5493 0.4877 

6 week 0.6042 0.6214 0.3111 0.0095 0.446 0.2541 0.613 0.6573 0.6043 0.6374 0.5433 0.4481 

9 week 0.6271 0.6132 0.424 0.1418 0.5081 0.3274 0.6112 0.6502 0.5964 0.6466 0.5522 0.429 

Glasshouse 2 

3 week 0.8519 0.907 0.7895 0.8267 0.8076 0.8089 0.8385 0.8154 0.8452 0.9114 0.851 0.7632 

6 week 0.8349 0.8856 0.7081 0.7336 0.7248 0.7595 0.7528 0.7433 0.7573 0.8556 0.7628 0.6267 

9 week 0.8034 0.8404 0.5656 0.5819 0.665 0.687 0.7035 0.7181 0.6986 0.8234 0.7033 0.5345 

Glasshouse 3 

3 week 0.8675 0.8321 0.6755 0.69 0.6829 0.7529 0.6722 0.7766 0.6619 0.8148 0.614 0.4364 

6 week 0.842 0.8324 0.6469 0.6568 0.6505 0.7317 0.6963 0.7783 0.6453 0.8247 0.6348 0.4932 

9 week 0.8296 0.8236 0.6723 0.6313 0.6546 0.7131 0.7018 0.7748 0.6858 0.8188 0.6541 0.513 

Field 1 

3 week 0.6519 0.6535 0.5853 0.6108 0.5796 0.6083 0.5508 0.5924 0.6021 0.6355 0.5477 0.4784 

6 week 0.6676 0.6835 0.6206 0.6409 0.6121 0.6467 0.5928 0.6184 0.6118 0.6776 0.5886 0.521 

9 week 0.6543 0.6621 0.6212 0.6317 0.6127 0.6187 0.5817 0.6346 0.5865 0.6801 0.5707 0.5025 

Field 2 

3 week 0.6818 0.5362 0.3364 0.0805 0.494 0.444 0.602 0.5503 0.5849 0.5466 0.5138 0.4306 

6 week 0.68 0.567 0.4843 0.3402 0.5622 0.4923 0.6076 0.5917 0.612 0.5823 0.5428 0.4368 

9 week 0.6835 0.5866 0.5043 0.283 0.5648 0.4954 0.6024 0.5872 0.6199 0.5834 0.5521 0.4539 

Average 

3 week 0.73204 0.70902 0.53862 0.4454 0.6024 0.56332 0.65622 0.68324 0.65938 0.71658 0.61516 0.51926 

6 week 0.72574 0.71798 0.5542 0.4762 0.59912 0.57686 0.6525 0.6778 0.64614 0.71552 0.61446 0.50516 

9 week 0.71958 0.70518 0.55748 0.45394 0.60104 0.56832 0.64012 0.67298 0.63744 0.71046 0.60648 0.48658 

SE 

3 week 0.053513 0.069243 0.094519 0.165461 0.065088 0.110159 0.049511 0.051044 0.048252 0.065127 0.061149 0.062008 

6 week 0.047789 0.061033 0.070948 0.134592 0.04659 0.093149 0.030918 0.035883 0.028682 0.053306 0.040796 0.033982 

9 week 0.040771 0.053238 0.043563 0.101509 0.029195 0.071044 0.025975 0.03298 0.023093 0.047769 0.03068 0.019534 

Average 0.725787 0.710727 0.5501 0.458513 0.600853 0.5695 0.649613 
0.678007 0.647653 0.714187 0.612033 0.503667 
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StdDev 0.095423 0.123155 0.145675 0.273064 0.098392 0.185769 0.074094 
0.0816 0.070666 0.111776 0.092061 0.085756 
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C.9 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 20-80% train-test 

split. Accuracies were calculated based on the best accuracy score on any given week from Zadoks (Z) 13, 21. The models utilised were 

an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme forest 

classifier and a k-nearest neighbor classifier. Supplementary to Chapter 3. 

Number of Features (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 4 8 7 1 6 6 6 7 8 6 1 1 

week 2 7 4 7 10 1 1 9 9 8 5 3 10 

week 3 7 1 7 4 8 10 1 1 9 8 2 9 

week 4 9 9 9 9 10 2 4 5 2 8 2 6 

week 5 6 8 8 5 6 5 8 6 10 8 4 7 

week 6 8 4 4 2 1 7 2 8 5 6 1 7 

week 7 8 6 8 3 5 10 9 7 7 5 10 7 

week 8 9 1 7 2 7 7 6 2 3 4 4 9 

week 9 10 1 1 1 1 3 1 2 1 3 3 9 

Glasshouse 2 

week 1 6 1 9 5 10 1 9 9 10 2 9 9 

week 2 10 6 8 4 9 2 8 4 10 9 2 3 

week 3 2 6 10 8 9 3 3 8 4 4 3 8 

week 4 1 2 4 8 7 9 4 5 4 5 10 8 

week 5 5 10 10 3 10 1 8 1 10 2 9 7 

week 6 9 10 8 8 6 6 8 2 9 2 4 9 

week 7 6 2 9 10 6 1 1 3 1 5 7 8 

week 8 - - - - - - - - - - - - 

week 9 4 10 10 7 9 9 9 1 1 8 10 9 

Glasshouse 3 

week 1 5 10 2 9 8 4 5 4 5 4 1 8 

week 2 7 1 8 8 9 8 8 3 9 5 1 9 

week 3 8 6 9 6 10 6 7 5 8 1 7 8 
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week 4 10 5 2 8 2 2 8 10 10 1 3 8 

week 5 4 1 1 6 2 4 3 6 1 5 2 1 

week 6 8 1 1 5 1 6 10 2 3 5 3 7 

week 7 5 5 9 4 2 4 8 7 9 2 8 4 

week 8 7 7 5 8 4 2 10 10 4 4 1 8 

week 9 7 1 6 5 2 7 7 5 9 1 1 9 

Field 1 

week 1 8 3 9 9 1 9 9 8 10 3 9 8 

week 2 9 9 9 9 4 5 7 7 6 5 7 3 

week 3 10 6 10 9 9 9 5 8 10 2 10 8 

week 4 6 5 8 7 7 1 1 6 1 5 2 5 

week 5 10 8 8 3 9 3 6 1 9 5 5 7 

week 6 8 6 4 6 3 7 3 2 10 9 1 9 

week 7 8 10 4 6 8 8 5 4 6 1 4 9 

week 8 2 10 1 7 9 2 10 1 10 3 2 10 

week 9 9 3 8 2 2 4 5 10 7 10 9 8 

Field 2 

week 1 2 4 5 2 3 7 9 1 6 4 9 7 

week 2 10 9 7 6 1 6 8 6 8 2 4 8 

week 3 2 10 9 4 6 6 2 7 1 6 1 10 

week 4 8 2 4 6 9 8 4 7 9 1 4 10 

week 5 2 3 8 7 4 10 3 9 9 7 6 9 

week 6 6 4 3 7 10 7 1 6 2 5 2 9 

week 7 10 4 2 9 1 7 8 6 10 3 1 6 

week 8 10 5 4 7 3 5 2 4 2 9 2 1 

week 9 4 7 10 10 8 5 10 9 8 3 2 8 

Avg 7 5 6 6 6 5 6 5 6 
5 4 7 

StdError 0.41 0.48 0.44 0.39 0.49 0.42 0.45 0.43 0.50 
0.38 0.48 0.35 

Number of instances as top 
performer 

14 27 16 22 19 17 16 23 13 
29 30 13 

Percentage of instances as top 
performer 

31.11 60 35.56 48.89 42.22 37.78 35.56 51.11 28.89 
64.44 66.67 28.89 
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C.10 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on an 80-20% train-

test split. Accuracies were calculated based on the best accuracy score on any given week from Zadoks (Z) 13, 21. The models utilised 

were an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme forest 

classifier and a k-nearest neighbor classifier. Supplementary to Chapter 3. 

Number of Features (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 3 2 10 4 1 5 6 1 9 2 10 9 

week 2 10 7 10 2 4 4 4 7 4 7 8 5 

week 3 9 6 5 2 3 4 3 1 5 8 2 6 

week 4 9 1 3 6 3 6 8 7 1 2 7 4 

week 5 6 1 4 1 6 5 8 2 9 2 10 2 

week 6 7 9 7 4 7 8 8 9 8 4 10 8 

week 7 3 6 7 1 8 4 7 2 10 2 10 9 

week 8 3 8 7 2 9 5 4 7 5 7 4 4 

week 9 9 9 2 9 1 2 8 4 3 9 1 5 

Glasshouse 2 

week 1 4 1 9 6 9 2 8 1 9 3 8 2 

week 2 5 8 2 5 5 2 9 2 2 1 6 6 

week 3 6 1 9 1 3 2 8 9 8 5 9 1 

week 4 8 3 1 4 8 2 3 4 6 1 4 3 

week 5 6 1 9 4 8 1 7 1 9 7 9 1 

week 6 4 4 9 5 4 2 8 4 8 8 1 1 

week 7 6 7 5 2 1 1 3 4 2 5 1 7 

week 8 - -  - -  - - - - - - - - 

week 9 4 4 1 9 8 8 9 9 7 8 7 3 

Glasshouse 3 

week 1 7 2 8 8 4 8 2 6 6 4 8 1 

week 2 9 2 6 1 9 7 7 5 7 3 9 2 

week 3 8 1 8 6 9 2 7 9 8 9 9 4 
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week 4 7 1 8 4 9 9 9 3 9 7 2 4 

week 5 5 4 7 4 7 8 6 1 7 5 6 4 

week 6 7 9 9 7 2 2 9 8 8 6 6 2 

week 7 6 2 2 6 8 4 9 4 8 5 9 1 

week 8 1 9 2 3 5 3 6 4 7 3 4 1 

week 9 8 5 6 4 8 9 9 5 7 7 8 1 

Field 1 

week 1 8 8 4 3 3 7 8 4 8 6 6 9 

week 2 9 2 4 6 7 8 3 4 7 1 9 1 

week 3 9 6 1 2 9 3 2 8 2 2 2 7 

week 4 9 1 8 1 8 1 7 7 8 1 3 6 

week 5 4 7 7 7 5 8 7 2 9 4 8 3 

week 6 8 1 2 1 9 9 8 1 5 4 4 1 

week 7 8 8 8 9 3 7 2 4 3 2 7 5 

week 8 9 6 5 2 8 8 9 8 9 4 9 6 

week 9 5 9 1 7 2 9 6 7 1 1 7 2 

Field 2 

week 1 7 1 9 2 2 8 9 2 3 8 8 1 

week 2 9 4 8 9 1 1 8 1 5 6 5 4 

week 3 2 5 9 1 9 9 2 7 1 5 5 8 

week 4 9 3 3 3 2 5 4 1 2 2 8 9 

week 5 3 4 9 6 9 8 7 6 5 1 6 6 

week 6 2 9 3 7 3 9 8 9 4 6 5 9 

week 7 1 1 9 1 9 7 2 3 1 1 3 8 

week 8 2 9 7 1 9 1 4 3 3 7 9 8 

week 9 2 1 6 8 3 6 1 3 4 6 7 9 

Avg 6 5 6 4 6 5 6 5 6 
4 6 5 

StdError 0.40 0.46 0.44 0.40 0.44 0.43 0.38 0.41 0.42 
0.38 0.41 0.43 

Number of instances as top 
performer 

11 28 14 27 17 19 17 26 14 
25 12 29 

Percentage of instances as top 
performer 

24.44 62.22 31.11 60 37.78 42.22 37.78 57.78 31.11 
55.56 26.67 64.44 
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C.11 Average number of features chosen, between 1 and 10, optimised for F1 of CR classification detection of optimised machine learning 

models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 20-80% train-test split. F1 

was calculated based on the best F1 score on any given week from Zadoks (Z) 13, 21. The models utilised were an artificial neural network 

(MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor 

classifier. Supplementary to Chapter 3. 

Number of Features (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 4 8 7 1 6 6 6 7 8 6 1 1 

week 2 7 4 7 10 1 1 9 9 8 5 3 10 

week 3 7 1 7 4 8 10 1 1 9 8 2 9 

week 4 9 9 9 9 10 2 4 5 2 8 2 6 

week 5 6 8 8 5 6 5 8 6 10 8 4 7 

week 6 8 4 4 2 1 7 2 8 5 6 1 7 

week 7 8 6 8 3 5 10 9 7 7 5 10 7 

week 8 9 1 7 2 7 7 6 2 3 4 4 9 

week 9 10 1 1 1 1 3 1 2 1 3 3 9 

Glasshouse 2 

week 1 6 1 9 5 10 1 9 9 10 2 9 9 

week 2 10 6 8 4 9 2 8 4 10 9 2 3 

week 3 2 6 10 8 9 3 3 8 4 4 3 8 

week 4 1 2 4 8 7 9 4 5 4 5 10 8 

week 5 5 10 10 3 10 1 8 1 10 2 9 7 

week 6 9 10 8 8 6 6 8 2 9 2 4 9 

week 7 6 2 9 10 6 1 1 3 1 5 7 8 

week 8 – – – – – – – – – – – – 

week 9 10 8 8 9 3 6 9 8 9 8 7 5 

Glasshouse 3 

week 1 5 10 2 9 8 4 5 4 5 4 1 8 

week 2 7 1 8 8 9 8 8 3 9 5 1 9 

week 3 8 6 9 6 10 6 7 5 8 1 7 8 
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week 4 10 5 2 8 2 2 8 10 10 1 3 8 

week 5 4 1 1 6 2 4 3 6 1 5 2 1 

week 6 8 1 1 5 1 6 10 2 3 5 3 7 

week 7 5 5 9 4 2 4 8 7 9 2 8 7 

week 8 7 7 5 8 4 2 10 10 4 4 1 8 

week 9 7 1 6 5 2 7 7 5 9 1 1 9 

Field 1 

week 1 8 3 9 9 1 9 9 8 10 3 9 8 

week 2 9 9 9 9 4 5 7 7 6 5 7 3 

week 3 10 6 10 9 9 9 5 8 10 2 10 8 

week 4 6 5 8 7 7 1 1 6 1 5 2 5 

week 5 10 8 8 3 9 3 6 1 9 5 5 7 

week 6 8 6 4 6 3 7 3 2 10 9 1 9 

week 7 8 10 4 6 8 8 5 4 6 1 4 9 

week 8 2 10 1 7 9 2 10 1 10 3 2 10 

week 9 9 3 8 2 2 4 5 10 7 10 9 8 

Field 2 

week 1 2 4 5 2 3 7 9 1 6 4 9 7 

week 2 10 9 7 6 1 6 8 6 8 2 4 8 

week 3 2 10 9 4 6 6 2 7 1 6 1 10 

week 4 8 2 4 6 9 8 4 7 9 1 4 10 

week 5 2 3 8 7 4 10 3 9 9 7 6 9 

week 6 6 4 3 7 10 7 1 6 2 5 2 9 

week 7 10 4 2 9 1 7 8 6 10 3 1 6 

week 8 10 5 4 7 3 5 2 4 2 9 2 1 

week 9 4 7 10 10 8 5 10 9 8 3 2 8 

Avg 7 5 6 6 6 5 6 5 7 
5 4 7 

StdError 3 3 3 3 3 3 3 3 3 
2 3 2 

Number of instances as top 
performer 

13 27 16 22 19 17 17 22 13 
29 30 12 

Percentage of instances as top 
performer 

29.55 61.36 36.36 50 43.18 38.64 38.64 50 29.55 
65.91 68.18 27.27 
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C.12 Average number of features chosen, between 1 and 10, optimised for F1 of CR classification detection of optimised machine learning 

models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on an 80-20% train-test split. 

F1 was calculated based on the best F1 score on any given week from Zadoks (Z) 13, 21. The models utilised were an artificial neural 

network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest 

neighbor classifier. Supplementary to Chapter 3. 

Number of Features (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Glasshouse 1 

week 1 3 2 10 4 1 5 6 1 9 2 10 9 

week 2 10 7 10 2 4 4 4 7 4 7 8 5 

week 3 9 6 5 2 3 4 3 1 5 8 2 6 

week 4 9 1 3 6 3 6 8 7 1 2 7 4 

week 5 6 1 4 1 6 5 8 2 9 2 10 2 

week 6 7 9 7 4 7 8 8 9 8 4 10 8 

week 7 3 6 7 1 8 4 7 2 10 2 10 9 

week 8 3 8 7 2 9 5 4 7 5 7 4 4 

week 9 9 9 2 9 1 2 8 4 3 9 1 5 

Glasshouse 2 

week 1 4 1 9 6 9 2 8 1 9 3 8 2 

week 2 5 8 2 5 5 2 9 2 2 1 6 6 

week 3 6 1 9 1 3 2 8 9 8 5 9 1 

week 4 8 3 1 4 8 2 3 4 6 1 4 3 

week 5 6 1 9 4 8 1 7 1 9 7 9 1 

week 6 4 4 9 5 4 2 8 4 8 8 1 1 

week 7 6 7 5 2 1 1 3 4 2 5 1 7 

week 8 – – – – – – – – – – – – 

week 9 6 4 6 6 5 1 4 5 7 3 4 1 

Glasshouse 3 

week 1 7 2 8 8 4 8 2 6 6 4 8 1 

week 2 9 2 6 1 9 7 7 5 7 3 9 2 

week 3 8 1 8 6 9 2 7 9 8 9 9 4 
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week 4 7 1 8 4 9 9 9 3 9 7 2 4 

week 5 5 4 7 4 7 8 6 1 7 5 6 4 

week 6 7 9 9 7 2 2 9 8 8 6 6 2 

week 7 6 2 2 6 8 4 9 4 8 5 9 1 

week 8 1 9 2 3 5 3 6 4 7 3 4 1 

week 9 8 5 6 4 8 9 9 5 7 7 8 1 

Field 1 

week 1 8 8 4 3 3 7 8 4 8 6 6 9 

week 2 9 2 4 6 7 8 3 4 7 1 9 1 

week 3 9 6 1 2 9 3 2 8 2 2 2 7 

week 4 9 1 8 1 8 1 7 7 8 1 3 6 

week 5 4 7 7 7 5 8 7 2 9 4 8 3 

week 6 8 1 2 1 9 9 8 1 5 4 4 1 

week 7 8 8 8 9 3 7 2 4 3 2 7 5 

week 8 9 6 5 2 8 8 9 8 9 4 9 6 

week 9 5 9 1 7 2 9 6 7 1 1 7 2 

Field 2 

week 1 7 1 9 2 2 8 9 2 3 8 8 1 

week 2 9 4 8 9 1 1 8 1 5 6 5 4 

week 3 2 5 9 1 9 9 2 7 1 5 5 8 

week 4 9 3 3 3 2 5 4 1 2 2 8 9 

week 5 3 4 9 6 9 8 7 6 5 1 6 6 

week 6 2 9 3 7 3 9 8 9 4 6 5 9 

week 7 1 1 9 1 9 7 2 3 1 1 3 8 

week 8 2 9 7 1 9 1 4 3 3 7 9 8 

week 9 2 1 6 8 3 6 1 3 4 6 7 9 

Avg 6 5 6 4 6 5 6 4 6 
4 6 4 

StdError 3 3 3 3 3 3 2 3 3 
2 3 3 

Number of instances as top 
performer 

12 26 13 27 17 19 17 26 13 
25 12 28 

Percentage of instances as top 
performer 

27.27 59.09 29.55 61.36 38.64 43.18 38.64 59.09 29.55 
56.82 27.27 63.64 
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C.13 Average accuracy (%) scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) 

or principal component analysis (PCA), trained on a 20-80% train-test split. Models were developed on data from all trial sites from 3-

week groupings from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector 

classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. 

Supplementary to Chapter 4. 

Accuracy (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 52.47% 52.12% 48.26% 48.90% 48.09% 49.81% 51.97% 54.72% 51.97% 55.56% 51.49% 50.89% 

Group 2 52.20% 55.17% 49.28% 49.52% 49.17% 50.42% 54.16% 55.43% 53.99% 58.54% 54.98% 52.23% 

Group 3 50.96% 50.64% 50.31% 49.04% 50.37% 49.06% 53.35% 54.30% 54.23% 54.24% 54.65% 51.29% 

Average 51.88% 52.64% 49.28% 49.15% 49.21% 49.76% 53.16% 54.82% 53.40% 56.11% 53.71% 51.47% 

SE 0.46% 1.33% 0.59% 0.19% 0.66% 0.39% 0.64% 0.33% 0.72% 1.27% 1.11% 0.40% 

StdDev 0.81% 2.31% 1.03% 0.33% 1.14% 0.68% 1.11% 0.57% 1.24% 2.20% 1.93% 0.69% 

Number of instances as top 
performer 

2 1 1 2 1 2 0 3 0 
3 3 0 

Percentage of instances as top 
performer 

66.67 33.33 33.33 66.67 33.33 66.67 0 100 0 
100 100 0 
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C.14 Average accuracy (%) scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) 

or principal component analysis (PCA), trained on an 80-20% train-test split. Models were developed on data from all trial sites from 3-

week groupings from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector 

classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. 

Supplementary to Chapter 4. 

Accuracy (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 53.62% 58.15% 50.50% 49.68% 53.85% 50.97% 53.18% 65.02% 52.84% 68.45% 53.07% 58.69% 

Group 2 55.18% 59.81% 51.98% 49.20% 52.53% 50.37% 56.72% 67.13% 57.16% 70.94% 57.27% 64.58% 

Group 3 50.96% 52.28% 49.04% 47.40% 50.62% 48.81% 54.45% 68.66% 56.26% 69.96% 54.79% 62.15% 

Average 53.25% 56.75% 50.51% 48.76% 52.33% 50.05% 54.78% 66.94% 55.42% 69.78% 55.04% 61.81% 

SE 1.23% 2.28% 0.85% 0.69% 0.94% 0.64% 1.04% 1.06% 1.32% 0.72% 1.22% 1.71% 

StdDev 2.13% 3.96% 1.47% 1.20% 1.62% 1.11% 1.79% 1.83% 2.28% 1.25% 2.11% 2.96% 

Number of instances as top 
performer 

0 3 3 0 3 0 0 3 0 
3 0 3 

Percentage of instances as top 
performer 

0 100 100 0 100 0 0 100 0 
100 0 100 

 

  



APPENDIX C. SUPPLEMENTARY FIGURES AND TABLES 

219  

C.15 Average F1 scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on a 20-80% train-test split. Models were developed on data from all trial sites from 3-week groupings 

from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector classifier (SVC), 

logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

F1 (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 0.6382 0.5091 0.5609 0.3761 0.5452 0.3857 0.5157 0.5405 0.5001 0.5299 0.4943 0.3813 

Group 2 0.5193 0.5124 0 0 0.2765 0.2568 0.5361 0.5521 0.5029 0.5567 0.5338 0.3912 

Group 3 0.5955 0.4885 0.6662 0.3837 0.6662 0.4306 0.5456 0.5484 0.5417 0.5258 0.5482 0.4356 

Average 0.584333 0.503333 0.409033 0.253267 0.495967 0.3577 0.532467 0.547 0.5149 0.537467 0.525433 0.4027 

SE 0.034775 0.007478 0.206763 0.126652 0.115159 0.052088 0.00882 0.003421 0.013424 0.009689 0.016112 0.016696 

StdDev 0.060231 0.012952 0.358125 0.219368 0.19946 0.09022 0.015278 0.005925 0.023252 0.016782 0.027907 0.028919 

Number of instances as top 
performer 

3 0 2 0 3 0 0 3 1 
2 3 0 

Percentage of instances as top 
performer 

100 0 66.67 0 100 0 0 100 33.33 
66.67 100 0 
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C.16 Average F1 scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on an 80-20% train-test split. Models were developed on data from all trial sites from 3-week groupings 

from Zadoks (Z) 13, 21  across all sites. The models utilised were an artificial neural network (MLP), a support vector classifier (SVC), 

logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

F1 (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 0.5305 0.5717 0.071 0.3772 0.3802 0.4379 0.5381 0.6583 0.5214 0.6762 0.5215 0.5829 

Group 2 0.552 0.6251 0.3209 0.4963 0.4771 0.4208 0.5638 0.6828 0.5692 0.7198 0.5745 0.655 

Group 3 0.6092 0.5404 0.6581 0.5446 0.6581 0.5336 0.5422 0.6821 0.5571 0.6898 0.5428 0.6202 

Average 0.5639 0.579067 0.35 0.4727 0.505133 0.4641 0.548033 0.6744 0.549233 0.695267 0.546267 0.619367 

SE 0.023485 0.024727 0.170105 0.049744 0.081438 0.035099 0.007972 0.008053 0.014348 0.01288 0.015398 0.020818 

StdDev 0.040677 0.042828 0.29463 0.086159 0.141055 0.060793 0.013807 0.013947 0.024852 0.022308 0.02667 0.036057 

Number of instances as top 
performer 

1 2 1 2 2 1 0 3 0 
3 0 3 

Percentage of instances as top 
performer 

33.33 66.67 33.33 66.67 66.67 33.33 0 100 0 
100 0 100 
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C.17 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 20-80% train-test 

split. Models were developed on data from all trial sites from 3-week groupings from Zadoks (Z) 13, 21 across all sites. The models 

utilised were an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme 

forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

Number of Features (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 9 1 1 1 2 1 9 10 6 10 7 1 

Group 2 4 7 1 1 1 1 10 4 8 3 8 1 

Group 3 5 3 10 1 10 1 9 1 3 9 3 1 

Average 6 4 4 1 4 1 9 5 6 7 6 1 

SE 3 3 5 0 5 0 1 5 3 4 3 0 

StdDev 2 2 3 0 3 0 0 3 1 2 2 0 

Number of instances as top 
performer 

1 2 0 1 0 2 1 2 2 
1 0 3 

Percentage of instances as top 
performer 

33.33 66.67 0 33.33 0 66.67 33.33 66.67 66.67 
33.33 0 100 
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C.18 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 80-20% train-test 

split. Models were developed on data from all trial sites from 3-week groupings from Zadoks (Z) 13, 21 across all sites. The models 

utilised were an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, an extreme 

forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

Number of Features (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

Group 1 3 4 10 1 1 1 5 3 10 4 2 1 

Group 2 8 5 2 1 1 1 8 8 7 4 3 1 

Group 3 2 10 1 1 2 1 3 6 3 8 3 1 

Average 4 6 4 1 1 1 5 6 7 5 3 1 

SE 3 3 5 0 1 0 3 3 4 2 1 0 

StdDev 2 2 3 0 0 0 1 1 2 1 0 0 

Number of instances as top 
performer 

2 1 0 2 0 1 1 1 1 
2 0 3 

Percentage of instances as top 
performer 

66.67 33.33 0 66.67 0 33.33 33.33 33.33 33.33 
66.67 0 100 
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C.19 Average accuracy (%) scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) 

or principal component analysis (PCA), trained on a 20-80% train-test split. Models were developed on data from all trial sites from each 

week for nine weeks from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector 

classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. 

Supplementary to Chapter 4. 

Accuracy (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 57.95% 54.86% 52.62% 49.63% 53.48% 50.71% 54.69% 54.86% 54.51% 56.53% 55.29% 50.87% 

week 2 51.57% 52.49% 48.85% 49.39% 50.47% 49.06% 51.31% 56.99% 52.16% 59.04% 52.76% 52.49% 

week 3 54.14% 55.30% 49.68% 49.30% 49.68% 54.05% 53.17% 56.62% 53.57% 58.10% 52.11% 52.10% 

week 4 52.74% 52.97% 50.17% 49.60% 51.25% 49.92% 52.33% 55.30% 51.83% 58.35% 51.99% 51.28% 

week 5 56.10% 56.93% 49.59% 49.25% 51.40% 52.34% 55.11% 58.43% 57.00% 62.79% 59.14% 50.59% 

week 6 50.99% 54.02% 49.18% 49.84% 49.92% 51.81% 53.54% 55.68% 56.41% 57.57% 55.10% 52.21% 

week 7 50.89% 50.69% 50.64% 49.23% 51.05% 50.69% 50.97% 53.55% 49.36% 55.40% 50.56% 50.15% 

week 8 53.45% 50.95% 49.81% 50.05% 51.77% 49.41% 52.15% 52.57% 55.78% 55.36% 53.82% 50.50% 

week 9 55.79% 53.40% 49.55% 49.49% 49.55% 49.57% 55.30% 55.74% 58.14% 56.83% 58.30% 50.04% 

Average 53.74% 53.51% 50.01% 49.53% 50.95% 50.84% 53.17% 55.53% 54.31% 57.77% 54.34% 51.14% 

SE 0.83% 0.68% 0.37% 0.09% 0.41% 0.54% 0.54% 0.59% 0.95% 0.76% 0.97% 0.31% 

StdDev 2.48% 2.03% 1.11% 0.28% 1.24% 1.63% 1.61% 1.77% 2.84% 2.27% 2.91% 0.93% 

Number of instances as top 
performer 

4 5 6 3 5 4 0 9 2 
7 9 0 

Percentage of instances as top 
performer 

44.44 55.56 66.67 33.33 55.56 44.44 0 100 22.22 
77.78 100 0 
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C.20 Average accuracy (%) scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) 

or principal component analysis (PCA), trained on an 80-20% train-test split. Models were developed on data from all trial sites from each 

week for nine weeks from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector 

classifier (SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. 

Supplementary to Chapter 4. 

Accuracy (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 58.08% 83.06% 52.58% 53.16% 51.55% 52.16% 61.17% 64.12% 62.54% 70.76% 61.51% 60.80% 

week 2 53.90% 61.76% 48.47% 52.94% 46.10% 46.41% 55.93% 61.76% 56.95% 67.32% 54.92% 56.21% 

week 3 54.87% 60.44% 50.65% 48.91% 54.87% 49.53% 51.30% 61.37% 54.55% 63.24% 50.00% 50.78% 

week 4 55.81% 51.60% 49.17% 51.92% 50.17% 48.72% 53.16% 59.29% 52.82% 61.54% 52.82% 52.88% 

week 5 65.46% 65.51% 60.20% 51.58% 58.55% 56.33% 63.16% 59.81% 62.50% 67.09% 63.16% 53.48% 

week 6 59.87% 58.04% 51.32% 50.79% 47.37% 52.37% 58.88% 64.67% 63.49% 67.82% 64.14% 57.41% 

week 7 49.84% 51.54% 49.52% 50.00% 49.52% 47.84% 53.38% 57.72% 56.27% 60.49% 58.20% 54.32% 

week 8 54.10% 48.20% 54.10% 43.17% 54.10% 43.53% 57.09% 60.07% 55.60% 57.91% 57.84% 52.16% 

week 9 60.84% 59.81% 51.13% 46.73% 49.84% 53.89% 62.14% 58.57% 61.17% 65.73% 61.81% 57.32% 

Average 56.97% 60.00% 51.90% 49.91% 51.34% 50.09% 57.36% 60.82% 58.43% 64.66% 58.27% 55.04% 

SE 1.46% 3.26% 1.13% 1.02% 1.24% 1.26% 1.35% 0.75% 1.26% 1.30% 1.54% 1.00% 

StdDev 4.62% 10.31% 3.56% 3.24% 3.91% 3.98% 4.27% 2.38% 4.00% 4.12% 4.89% 3.15% 

Number of instances as top 
performer 

4 5 5 4 5 4 2 7 0 
9 6 3 

Percentage of instances as top 
performer 

44.44 55.56 55.56 44.44 55.56 44.44 22.22 77.78 0 
100 66.67 33.33 
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C.21 Average F1 scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on a 20-80% train-test split. Models were developed on data from all trial sites from each week for 

nine weeks from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector classifier 

(SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to 

Chapter 4. 

F1 (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 0.5989 0.5514 0.6264 0 0.5612 0.4463 0.5569 0.5512 0.5525 0.565 0.4933 0.4918 

week 2 0.6556 0.4557 0.6556 0 0.622 0.2337 0.5445 0.5539 0.5186 0.5391 0.5145 0.4184 

week 3 0.4987 0.4455 0 0.0031 0 0.3311 0.5066 0.5763 0.4929 0.5325 0.3841 0.4581 

week 4 0.5232 0.4903 0.0196 0.0542 0.457 0.329 0.5366 0.5414 0.4974 0.5467 0.4028 0.4604 

week 5 0.5525 0.5939 0 0.6305 0.0621 0.5916 0.5539 0.5854 0.5511 0.6438 0.5934 0.4507 

week 6 0.5083 0.5716 0 0.5515 0.4437 0.5318 0.5365 0.5619 0.567 0.575 0.5232 0.4694 

week 7 0.5523 0.4444 0.6724 0.2129 0.6193 0.2876 0.529 0.5412 0.5023 0.5339 0.485 0.4617 

week 8 0.665 0.5385 0.665 0.6671 0.6505 0.5122 0.5496 0.5183 0.58 0.5657 0.5606 0.5226 

week 9 0.4406 0.5115 0 0 0.0032 0.0062 0.5392 0.5662 0.5547 0.5455 0.4515 0.4085 

Average 0.555011 0.511422 0.293222 0.235478 0.379889 0.363278 0.5392 0.555089 0.535167 0.5608 0.489822 0.460178 

SE 0.024611 0.018688 0.11445 0.098314 0.09274 0.060304 0.005064 0.006759 0.010882 0.011523 0.022887 0.011483 

StdDev 0.073833 0.056063 0.343349 0.294943 0.278221 0.180912 0.015192 0.020276 0.032647 0.03457 0.068661 0.034449 

Number of instances as top 
performer 

6 3 3 5 5 4 2 7 2 
7 7 2 

Percentage of instances as top 
performer 

66.67 33.33 33.33 55.56 55.56 44.44 22.22 77.78 22.22 
77.78 77.78 22.22 
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C.22 Average F1 scores of CR detection of machine learning models pre-processed with the discrete wavelet transform (DWT) or principal 

component analysis (PCA), trained on an 80-20% train-test split. Models were developed on data from all trial sites from each week for 

nine weeks from Zadoks (Z) 13, 21 across all sites. The models utilised were an artificial neural network (MLP), a support vector classifier 

(SVC), logistic regression, a decision tree classifier, an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to 

Chapter 4. 

F1 (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 0.609 0.8283 0.5941 0.6158 0.5506 0.5978 0.6143 0.6447 0.6355 0.7059 0.6242 0.604 

week 2 0.5466 0.5804 0.6021 0.5636 0.4631 0.4384 0.539 0.6214 0.5436 0.671 0.4789 0.5379 

week 3 0.5209 0.6019 0.1739 0.374 0.3966 0.5091 0.5223 0.6287 0.5347 0.638 0.4762 0.4936 

week 4 0.6726 0.4752 0.0129 0.537 0.4 0.3333 0.5402 0.614 0.5034 0.6026 0.5085 0.5017 

week 5 0.6921 0.6766 0.5353 0.5234 0.5987 0.5 0.6387 0.5897 0.6299 0.6667 0.6316 0.5421 

week 6 0.6429 0.5611 0.6445 0.5691 0.6429 0.5572 0.5928 0.5987 0.6364 0.6667 0.5792 0.5485 

week 7 0.6624 0.6609 0.6624 0.4873 0.6565 0.5986 0.5559 0.5954 0.5208 0.6049 0.488 0.4599 

week 8 0.6145 0.5387 0.6733 0.5153 0.5763 0.453 0.5965 0.5882 0.5673 0.5923 0.5891 0.5461 

week 9 0.5849 0.5806 0.6267 0.3736 0.5392 0.5163 0.6061 0.5522 0.5761 0.6452 0.5903 0.5651 

Average 0.616211 0.611522 0.5028 0.506567 0.535989 0.500411 0.578422 0.603667 0.571967 0.6437 0.551778 0.533211 

SE 0.019275 0.033771 0.079705 0.02789 0.032268 0.028062 0.013381 0.009058 0.017117 0.012662 0.021151 0.014174 

StdDev 0.057825 0.101312 0.239114 0.083671 0.096805 0.084186 0.040144 0.027175 0.051352 0.037986 0.063452 0.042523 

Number of instances as top 
performer 

6 3 6 3 7 2 3 6 0 
9 7 2 

Percentage of instances as top 
performer 

66.67 33.33 66.67 33.33 77.78 22.22 33.33 66.67 0 
100 77.78 22.22 
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C.23 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 20-80% train-test 

split. Models were developed on data from all trial sites from each week for nine weeks from Zadoks (Z) 13, 21 across all sites. The 

models utilised were an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, 

an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

Number of Features (20/80 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 10 2 6 1 1 1 9 9 5 5 10 1 

week 2 9 6 7 1 2 1 4 3 10 1 7 5 

week 3 9 10 1 1 1 1 8 5 7 8 6 1 

week 4 10 9 4 1 6 1 5 6 7 1 4 1 

week 5 8 3 1 1 10 1 7 10 3 10 3 1 

week 6 6 5 1 1 5 1 4 5 10 3 10 1 

week 7 10 9 9 1 7 1 4 9 8 10 1 1 

week 8 10 5 1 1 3 1 10 3 7 7 5 1 

week 9 5 4 1 1 10 1 10 9 9 10 7 1 

Average 9 6 3 1 5 1 7 7 7 6 6 1 

SE 2 3 3 0 4 0 3 3 2 4 3 1 

StdDev 1 1 1 0 1 0 1 1 1 1 1 0 

Number of instances as top 
performer 

1 8 0 4 0 7 4 4 4 
3 0 8 

Percentage of instances as top 
performer 

11.11 88.89 0 44.44 0 77.78 44.44 44.44 44.44 
33.33 0 88.89 
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C.24 Average number of features chosen, between 1 and 10, optimised for accuracy of CR classification detection of optimised machine 

learning models pre-processed with the discrete wavelet transform (DWT) or principal component analysis (PCA) on a 80-20% train-test 

split. Models were developed on data from all trial sites from each week for nine weeks from Zadoks (Z) 13, 21 across all sites. The 

models utilised were an artificial neural network (MLP), a support vector classifier (SVC), logistic regression, a decision tree classifier, 

an extreme forest classifier and a k-nearest neighbor classifier. Supplementary to Chapter 4. 

Number of Features (80/20 split) MLP SVC Logistic Regression Decision Tree Extreme Forest K-Nearest Neighbor 

 DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA DWT PCA 

week 1 8 1 1 1 3 1 4 4 6 5 4 1 

week 2 9 7 3 1 7 1 9 7 8 9 3 1 

week 3 1 6 6 1 8 1 5 6 5 2 7 1 

week 4 5 5 3 1 6 1 2 1 6 5 1 1 

week 5 9 9 3 1 3 1 9 7 4 8 10 1 

week 6 10 9 1 1 1 1 10 10 7 7 7 1 

week 7 7 2 1 1 7 1 4 7 7 3 9 1 

week 8 10 7 4 1 2 1 8 1 2 9 6 1 

week 9 9 4 4 1 8 1 2 6 2 1 2 1 

Average 8 6 3 1 5 1 6 5 5 5 5 1 

SE 3 3 2 0 3 0 3 3 2 3 3 0 

StdDev 1 1 1 0 1 0 1 1 1 1 1 0 

Number of instances as top 
performer 

1 6 0 5 0 8 3 4 3 
5 0 8 

Percentage of instances as top 
performer 

11.11 66.67 0 55.56 0 88.89 33.33 44.44 33.33 
55.56 0 88.89 
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C.25 F1-scores and average mean and standard deviation (std) across machine learning 

methods for each of the six rating systems (Chapter 6, Fig. 1) for both PCA and DWT 

preprocessing techniques in the initial glasshouse trial at Leslie Research Centre, 2018. 

Supplementary to Chapter 6. 
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C.26 F1-scores and average mean and standard deviation (std) across machine learning 

methods for each of the six rating systems (Chapter 6, Fig. 1) for both PCA and DWT 

preprocessing techniques in the second glasshouse trial at Leslie Research Centre, 

2018. Supplementary to Chapter 6. 
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C.27 F1-scores and average mean and standard deviation (std) across machine learning 

methods for each of the six rating systems (Chapter 6, Fig. 1) for both PCA and DWT 

preprocessing techniques in the second glasshouse trial at USQ-CCH, 2019. 

Supplementary to Chapter 6. 
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C.28 F1-scores and average mean and standard deviation (std) across machine learning 

methods for each of the six rating systems (Chapter 6, Fig. 1) for both PCA and DWT 

preprocessing techniques in the initial field trial at the Tosari Research Station, 2018. 

Supplementary to Chapter 6. 
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C.29 F1-scores and average mean and standard deviation (std) across machine learning 

methods for each of the six rating systems (Chapter 6, Fig. 1) for both PCA and DWT 

preprocessing techniques in the second field trial at the Tosari Research Station, 2019. 

Supplementary to Chapter 6. 
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APPENDIX D – DEVELOPED CODE 

The stages of model development for both the contact sensor detection and 

quantification models (D.1) and the camera-based detection and quantification models 

(D.3, D.4) are presented. Code files are available upon request. 
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D.1 OVERVIEW OF MODEL DEVELOPMENT (NIRSCAN NANO) 

Flow chart representing the stages of model development from raw data recorded by 

the NIRscan Nano through to final model for both DWT (blue) and PCA-based (green) 

approaches. 
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D.2 OVERVIEW OF MODEL DEVELOPMENT (TAU SWIR BINARY) 

Flow chart representing the stages of model development for binary classification of 

CR (+,-) from raw image data recorded by the FLIR Tau SWIR with five narrow-

bandpass filters. 
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D.3 OVERVIEW OF MODEL DEVELOPMENT (TAU SWIR 

QUANTIFICATION) 

Flow chart representing the stages of model development for quantification 

classification of CR (+,-), using three scales, from raw image data recorded by the 

FLIR Tau SWIR with five narrow-bandpass filters. 
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APPENDIX E – MODEL HYPERPARAMETERS 

E.1 OVERVIEW OF MODEL HYPERPARAMETERS USED FOR 

MODEL DEVELOPMENT 

The model and hyperparameters used for each input model from Scikit-learn version 

0.21.2 (Pedregosa et al. 2011). All combinations of hyperparameters were evaluated. 

 

Model Hyperparameters 

MLPClassifier() 

activation 

function(s) 
solver 

learning 

rate 

hidden 

layer size 

maximum 

iterations 

identity 

logistic 

tanh 

relu 

lbfgs 

sgd 

adam 

constant 

invscaling 

adaptive 

100 

200 

500 

100 

200 

500 

SVC() 

kernel degree gamma   

linear 

poly 

rbf 

sigmoid 

2 

3 

4 

5 

auto 

.001 

.01 

.1 

  

LogisticRegression() default parameters (Scikit-learn version 0.21.2) 

DecisionTreeClassifier() 

splitter criterion    

best 

random 

gini 

entropy 
   

ExtraTreesClassifier() 

n_estimators criterion    

10 

100 

150 

200 

gini 

entropy 
   

 


