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Three-Dimensional Modeling and Visualization of
Single Tree LiDAR Point Cloud Using

Matrixial Form
Fayez Tarsha Kurdi , Elżbieta Lewandowicz , Jie Shan , and Zahra Gharineiat

Abstract—Tree modeling and visualization still represent a chal-
lenge in the light detecting and ranging area. Starting from the
segmented tree point clouds, this article presents an innovative tree
modeling and visualization approach. The algorithm simulates the
tree point cloud by a rotating surface. Three matrices, X, Y, and
Z, are calculated by considering the middle of the projected tree
point cloud on the horizontal plane. This mathematical form not
only allows tree modeling and visualization but also permits the
calculation of geometric characteristics and parameters of the tree.
The superimposition of the tree point cloud over the constructed
model confirms its high accuracy where all the points of the tree
cloud are within the constructed model. The tests with multiple
single trees demonstrate an overall average fit between 0.3 and
0.89 m. The built tree models are also compliant with the Open
Geospatial Consortium CityGML standards at the level of a phys-
ical model. This approach opens a door to numerous applications
for visualization, computation, and study of forestry and vegetation
in urban as well as rural areas.

Index Terms—Light detection and ranging (LiDAR), Open
Geospatial Consortium (OGC) CityGML physical model, tree
model, vegetation, visualization.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) technology can be
used in both urban and rural forests [1], [2]. In this context,

static terrestrial scanning can play a major role in mapping
and modeling for small-scale projects [3], [4]. Some mapping
and modeling tasks require airborne scanning where the un-
manned aerial vehicle (UAV) is widely employed regarding
easy operation and cheap cost compared with the conventional

Manuscript received 4 September 2023; revised 22 October 2023 and 19 De-
cember 2023; accepted 22 December 2023. Date of publication 4 January 2024;
date of current version 16 January 2024. This work was supported in part by the
Statutory Research Project of the Faculty of Geoengineering of the University
of Warmia and Mazury in Olsztyn, Poland, entitled “Geoinformation from the
Theoretical, Analytical and Practical Perspective” under Grant 29.610.008-110.
(Corresponding author: Fayez Tarsha Kurdi.)

Fayez Tarsha Kurdi and Zahra Gharineiat are with the School of Surveying
and Built Environment, University of Southern Queensland, Springfield Cam-
pus, Springfield, QLD 4300, Australia (e-mail: fayez.tarshakurdi@usq.edu.au;
zahra.gharineiat@usq.edu.au).
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airplanes, although the regulations of UAV flight and mapping
specifications are still a research topic [5], [6] and may vary
among different applications. Nevertheless, whichever LiDAR
data measurement tool is employed, one of the first steps of data
processing is data classification [7], [8], [9], i.e., to obtain mostly
terrain, vegetation, and buildings classes from the source point
clouds. In the recent years, machine learning techniques have
been widely used to automatically classify [10], [11] and model
[12] the LiDAR data.

Concerning the vegetation class, trees are often the main
component of this class in urban and suburban areas. Regardless
of the tree species, a tree consists of roots, a trunk, branches,
leaves, and maybe fruits. According to the season of data ac-
quisition and the tree species, the leaf mass can be present
or not. However, the tree shape can be depicted according to
their generic forms, such as spreading, columnar, globe, fan,
broad oval, and narrow conical [13]. From another viewpoint,
the geometric form can be semiregular, such as pine trees, or
irregular acacia trees. The problem with tree modeling is that
trees do not have a regular geometric form, such as manmade
objects, e.g., buildings and bridges. Moreover, most trees grow
and change their shapes during the time and seasons, which is
why most tree modeling approaches in the literature focus on
extracting the tree parameters, such as trunk diameters, height,
and biomass volume. To best represent and model trees, the Open
Geospatial Consortium (OGC), an international organization
developing and promoting open standards for geospatial data and
services, facilitating interoperability in the geospatial domain,
has endorsed CityGML as an adopted standard for representing
three-dimensional (3-D) urban models [14]. Although CityGML
has simplified 3-D tree symbols, adapted to tree parameters, it
does not have tools for the automatic creation of single 3-D tree
models that can precisely present the actual shape of real trees.
Such models would correspond to physical models. As such, tree
model reconstruction and visualization from the LiDAR point
cloud still pose a challenge.

The main contribution of this article is the introduction of a
3-D parameterizable and visualizable mathematical model for
single tree point clouds. To construct this model, a rotating
surface is adapted to simulate the tree geometry. To be specific,
three matrices X, Y, and Z are formed from a tree point cloud
to represent the tree. This model uses a vertical cylinder of
zero radius passing through the middle of the bounding box
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defined by the tree point cloud. In this way, every LiDAR point
corresponds to one cell in the model matrices. This solution
strategy enables us to build an innovative algorithm that can
automatically construct a tree model from the LiDAR point
cloud. Our development has the following advantages.

1) The tree model is saved in a mathematical form.
2) The suggested algorithm allows for visualizing the tree

model.
3) The tree model allows calculating the tree parameters.
4) The tree model can consider the trunk and the crown

according to their geometric forms.
5) The tree model corresponds to the physical model accord-

ing to the OGC CityGML standard.
To summarize, the motivation for developing the presented

approach in this article is to construct a tree modeling algorithm
that is able to consider the general case of a tree point cloud
regardless of the complexity level of its geometric form. The
envisaged tree model should be simple, visualizable, and allow
calculating the tree parameters. Hence, the novelty of this article
is given as follows.

1) Introduction of an innovative modeling algorithm that is
adaptive to the geometric complexity of the tree.

2) The developed algorithm is based on a matrixial presenta-
tion and, thus, can accommodate different point densities.

3) The proposed algorithm is easy to implement and only
needs minimal memory and computation cost.

In this study, the authors do not intend to obtain a tree skeleton
or a real model of a tree consisting of a trunk, branches, leaves,
and crown, which is the closest to reality. Such solutions have
already been proposed. Instead, the intention is to have a simple
model that can be rapidly created from LiDAR measurement and
is convenient for visualization and computation. It is supposed
to present a physical object model [14] of a tree compliant with
the OGC CityGML3 standard.

The rest of this article is organized as follows. Section II
makes a literature review of similar studies carried out before.
Section III presents the employed LiDAR dataset in this study,
followed by Section IV elaborating the suggested approach and
illustrating the obtained results in Section V. Finally, Section VI
concludes this article.

II. LITERATURE REVIEW

The data collected with LiDAR aerial mapping technology,
terrestrial mapping tools, backpack mobile mapping systems,
and smartphones are used to model 3-D geographic space and
capture changes in terrain features. Data points can be classified
into thematic subsets relating to landform, land development
[15], and tall and short vegetation [16]. These tools create new
research opportunities by converting point clouds to subsets
representing individual topographic objects and transforming
them into vector objects [16], [17]. The international standards
for 3-D modeling are set by the OGC CityGML model [14],
which defines the principles for mapping physical topographic
objects and physical volumetric objects [14], [18]. Physical
volumetric models are combined with semantic and functional
data to develop the detailed models of the urban systems [18],

[22], road networks, and other systems, including in real time
[23], [24].

Most 3-D models are developed to represent cities and urban
settings [19], [25]. Such modeling has been automated at the
Level of Details 2 [26], [29]. Forests are also mapped with the
use of 3-D models [30], [32]. Various methods for extracting
individual trees have been proposed in the pieces of literature
[33], [35]. These techniques are used to model urban green areas,
roadside trees [36], and individual dendrological objects. LiDAR
input datasets have been expanded to include topographic data
collected with the use of various platforms, including vehicles,
backpack mobile mapping systems, and stationary devices [37],
[39]. The generated tree models, in particular tree canopies, have
been used to determine shaded areas in street infrastructure [39]
and the extent to which trees obstruct light access in agricultural
crop fields [40].

According to the European Union (EU) regulations [41],
all EU countries need to report on greenhouse gas emissions
in forests. The models of above-ground biomass (AGB) are
generated for that purpose [42], [44]. Various solutions for
modeling forests with the use of machine learning methods
and hyperspectral and LiDAR data have been described in the
literature [43], [45]. The AGB model can be used to calculate
the carbon footprint and the carbon balance [42], [46]. The
carbon footprint model is more reliable when it is developed
based on the biomass of individual trees [47], [48]. Models of
individual forest trees are also generated for research needs on
forest management and environmental assessments of habitats
of various animal species, including birds [49].

Data subsets describing individual trees can be extracted from
LiDAR data [38], [50], [52] for modeling purposes. Tree models
are generated from LiDAR point clouds with the use of clustering
algorithms in machine learning that extract the geometric proper-
ties of tree trunks, branches, and canopies [53], [60]. Solutions
for modeling individual leaves have also been proposed [54],
[57]. Voronoi diagrams have been used to extract individual trees
from point clouds, and tree canopies have been extracted with
region growing algorithms and grouping algorithms [38]. Zhu
et al. [55] concluded that the models of the structure and shape of
trees, branches, and canopies are not always satisfactory in terms
of silhouette and detail. The cited authors proposed an approach
to 3-D tree canopy reconstruction by developing a concave mesh
from all scanned points.

Individual trees can also be modeled with the use of selected
point-cloud layers (cross sections) [56]. The model is generated
based on the distribution of leaf area across layers. In a study
by Reckziegel et al. [40], horizontal cross sections at different
heights were applied to develop a canopy height model in
predefined steps. Local maxima from the subsets of LiDAR
points were generated in successive layers to develop a 3-D
model of the tree trunk. Trees are increasingly modeled based
on the topological neighborhoods between subsets of LiDAR
points that present trunk and branches. Graphs and optimization
algorithms are applied to model tree trunks and branches [61],
[67]. These tools and methods are also used to develop hierar-
chical models of trees [58] and to transform skeleton models at
various levels of detail [59].
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Similar to building information modeling, tree informa-
tion modeling is a digital representation of the physical and
functional characteristics of a tree at different levels of detail
based on the CityGML 3.0 standard [20]. The models of individ-
ual trees are generated at different levels of detail by researchers
[68], [69]. A review of the literature indicates that methods for
automated modeling of individual trees based on laser scanning
data should be developed for various applications. Two main
approaches to 3-D trees modeling dominate. The first approach is
based on the generated skeletons [56], [61], [65]. It is proposed to
supplement it with leaves using an algorithm based on the clump
of leaves concepts [53]. This solution requires the recording of
geometry and semantic data of the skeleton in graph structures
[56], [66]. Leaves should be modeled only on growth twigs.
The second approach involves dividing the tree point cloud into
horizontal slices, then extracts the circumference of each slice.
From all extracted circumferences, it defines the tree crown and
trunk [40], [59], [60], [70].

The aim of this study is to develop an algorithm for auto-
matic tree model generation from LiDAR points representing
individual trees. The generated model will be a physical vol-
umetric model of the space occupied by the tree. Unlike the
conventional raster or voxel data models, our development is
based on both metric and angular divisions. The cells in such
a division are stored in a regular matrix format. As a result of
this model, the original irregular LiDAR points of a tree are
regularized or structuralized. This simplification facilitates not
only the visualization and presentation of trees but also eases
the derivation of tree properties for canopy change monitoring
during growth and degradation.

III. DATASETS

Subsets of airborne laser scanning data were obtained for
the study from the polish spatial data infrastructure. LiDAR
measurements were conducted in March 2018 with a density
of 12 points/m2. The acquired data represent individual trees
on the campus of the University of Warmia and Mazury in
Olsztyn, Poland. The subsets of LiDAR points representing var-
ious species and genera of deciduous and coniferous trees were
selected (see Fig. 1) for the study based on a list of dendrological
objects in the geographic information system database created
in 2012 based on classic field surveying data [60]. It is desirable
to update the dendrological database from 2012 and supplement
it with physical 3-D tree models, specified on the LiDAR data.
In the following sections, such a solution is presented based on
the selected subsets of the LiDAR point cloud of single trees.

IV. TREE MATRICES

In the context of 3-D model construction of the scanned scene
and regarding the high diversity and complexity of tree geometry,
as well as the nonstopped demand for an algorithm that can
model and visualize the vegetation in forest and urban areas,
this article proposes an innovative tree modeling approach.
It simulates the rotating surface suggested by Lewandowicz
et al. [29], [72], which was originally suggested for building
modeling. This strategy uses the matrixial form to construct the

Fig. 1. 3-D visualization of trees on the campus of the University
of Warmia and Mazury based on the dendrological database by using
(a) Esri symbolization and (b) Own tree symbolization. (c) Location of tree
trunks and (d) diameters of tree canopies in the dendrological database based
on the field measurements, with LiDAR data classified based on height [71].

tree model that conserves the tree geometry depicted through the
tree LiDAR point cloud. This section will detail the suggested
method.

First, the middle of the bounding box of the projected point
cloud on the horizontal plane (OXY) is calculated. The under-
lying assumption is that the Z-axis of the coordinate system
is vertical and the XY-plane is horizontal. As such, this point
can represent the point-cloud gravity center where the trees
geometric form is symmetrical, and the LiDAR point distribution
is homogeneous. The equations suggested by Lewandowicz
et al. [29] are employed as follows:

Xg = X +
Xmax −Xmin

2
, Yg = Y +

Ymax − Ymin

2
(1)

where Xg and Yg are the coordinates of the middle of the
bounding box; and Xmin, Ymin, Xmax, and Ymax are the extreme
values of X and Y coordinates (minimum and maximum).

Second, a vertical line is introduced that passes through the
calculated center of the bounding box to represent a cylinder
having a zero radius. This cylinder represents a rotating sur-
face that can be expressed by three matrices (2)–(6) shown at
the bottom of the next page. Indeed, this 3-D surface can be
presented through three matrices X, Y, and Z. The first two
matrices X and Y define a grid in the OXY -plane, whereas
the third matrix Z represents the heights of this grid. Suppose a
3-D rotating surface around the Z-axis, this surface is sliced by
horizontal planes into a series of layers. Every slice represents a
row in the three matrices. Since all points of one slice have the
same Z value, one-row cells in the Z matrix have the same value
Zi. Furthermore, in the X and Y matrices, one slice represents
a circle included or parallel to the plane OXY because the
supposed surface is the rotating surface around theZ-axis. If one
circle is divided radially into t circular sectors, each sector will
present one cell among that row. Hence, the coordinates of this
cell can be calculated regarding the farthest west point, the circle
radius, and the angle between theX-axis and the line connecting
the concerning point and the gravity center (see Fig. 2). In this
context, matrices 2–4 can be written using the generic form (5).
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Fig. 2. Formation of the rotating-surface matrices. (a) Division of the surface
by horizontal planes into “n = 5” slices. (b) Radialy division of one slice into
“t = 6” circular sectors. (c) Calculation of the X and Y matrix cell values,
G is the gravity center, P is a LiDAR point, O is the calculation origin, and
(d) LiDAR points lie on the 3-D tree model.

Fig. 2 illustrates how the rotating surface, which is taken as a
cylinder, is divided into horizontal slices, where each slice has
a constant Z coordinate value. Thereafter, each slice is divided
into a given angular sector. Finally, each angular sector allows
the calculation of the X and Y matrix cell values depending
on the rotation origin (O), the point-cloud gravity center (G),
and the circle radius.

The dimension of the Z matrix is n×m, and the values of
each row are identical (n and m are explained in the following
text). Xg and Yg are the coordinates of the gravity center (1);
Xi, Yi, and Zi, (i = 1, . . . , n) are the point coordinates of
the sectors; j = 1, . . . , m; n is the number of points in the
semicross section. The three matrices X,Y, and Z have the
same dimensions. αi and βi are the step values of X and Y,
respectively; and m is the number of columns in matrix X.

To create these matrices, the LiDAR tree point cloud must first
be sorted descending according to the Z coordinate values. The
repeated Z coordinate values shall be eliminated. The number
of columns can be considered according to the point density
and must meet m = 4k + 1 > 7, where k is a given value
representing the number of considered sectors by slice quarter.

In this article, considering all tree point clouds having ap-
proximately the same point density lower than 10 points/m2,
then the number of columns is taken equal to (m = 25 for k =
6). As an example, to understand how the number of columns
(m) is calculated, when k = 1, it is noted that one circular slice
consists of four quarters, which can represent four columns [C1
C2 C3 C4] of the model matrices. To make the rotating surface
closed, the first angular sector must be added again after the last

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xg

Xg

Xg

Xg + β1,1

Xg + β2,1

Xg + β3,1

Xg + 2β1,2

Xg + 2β2,2

Xg + 2β3,2

. . . . . .

. . . . . .

. . . . . .

Xg + (m− 1)× β1,m−1

Xg + (m− 1)× β2,m−1

Xg + (m− 1)× β3,m−1

.
Xg Xg + βn,1

.
Xg + 2βn,2

.
. . . . . . .

.
Xg + (m− 1)× βn,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

Y3

Y1 + α1,1

Y2 + α2,1

Y3 + α3,1

Y1 + 2α1,2

Y2 + 2α2,2

Y3 + 2α3,2

. . . .

. . . .

. . . .

Y1 + (m− 1)× α1,m−1

Y2 + (m− 1)× α2,m−1

Y3 + (m− 1)× α3,m−1

.
Yn

.
Yn + αn,1

.
Yn + 2αn,2

.
. . . . .Yn + (m− 1)× αn,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Z =

⎡
⎢⎢⎢⎣
Z1 Z1 · · · Z1

Z2 Z2 · · · Z2

...
...

...
...

Zn Zn Zn Zn

⎤
⎥⎥⎥⎦ (4)

Xi,j = Xg + (j − 1)× βi,j−1

Yi,j = Yi + (j − 1)× αi,j−1

Zi,j = Zi

where i : 1 to n; j : 1 to m

⎫⎪⎪⎬
⎪⎪⎭

(5)

αi,j = (Yg − Yi) sin

(
2jπ

m
+

3π

2

)
, βi,j = (Yg − Yi) cos

(
2jπ

m
+

3π

2

)
. (6)



3014 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

column, and the number of columns becomes 5 [C1 C2 C3 C4
C1]. Furthermore, the representation of one slice quarter by only
one point (K = 1) will simplify the tree model and produces an
undesirable deformed model. That is why, a decision is taken to
consider the minimum number of angular sectors of each slice
quarter equals k = 2 instead of 1. Hence, for two (2) sectors
by quarter (k = 2), there will be m = 4 × 2 + 1 = 9 columns;
for three sectors by quarter (k = 3), there will be 13 columns;
and for six sectors by quarter (k = 4), there will be 25 columns.
At this stage, an important question arises: how many angular
sections must be considered by slice quarter? (That means, what
is the considered value of the parameter k?). The answer to this
question is obviously related to the LiDAR point density. Indeed,
when the point density is high, extra slice divisions are requested
to minimize the number of points represented by each sector.
At this stage, more investigation is requested in future work
to determine the exact equation that calculates the number of
columns as a function of point density.

The following equation is used to form the three matrices:

Xi,j = Xg Yi,j = Yg Zi,j = cloudi,3 (7)

where cloudi,3 is the corresponding Z coordinate in the cloud
point of row number i (where the point cloud was previously
sorted descending according to the Z coordinate values).

Third, considering the point cloud before removing the redun-
dant Z coordinate value points, each point will lead to modifying
one cell in the X matrix as well as the same corresponding cell in
the Y matrix. The row of the focus cell is determined from the Z
coordinate value of the point. Hence, to determine the column of
the concerning cell, it is necessary to calculate the θ angle with
(8), which is formed between the X-axis and the line connecting
the concerning point and the gravity center. In fact, the angle θ
depicts the location of the concerning point regarding the gravity
center

θ = arctan
abs (ΔY)

abs (ΔX)
= arctan

abs (Y − Yg)

abs (X −Xg)
. (8)

Once θo is calculated, the corresponding cell that will be
modified can be calculated according to the following equation:

CN = m× round

(
θo
2π

)
(9)

where CN is the column number in matrices X and Y (2) and
(3), m is the number of columns in matrix X, and “round” is a
function that provides the round value of a given real number.
The new value of the corresponding cells in X and Y matrices
is calculated using the following equation:

XCN = Xg + Dispg × cos θo
YCN = Yg + Dispg × sin θo

}
(10)

where XCN and YCN are the corresponding cell values in the X
and Y matrices, Dispg is the distance between the gravity center g
and the given LiDAR point p, which can be calculated according
to the following equation:

Dispg =

√
(Xp −Xg)

2 + (Yp − Yg)
2. (11)

Fig. 3. Visualization of a tree modeled by the model matrices with, respec-
tively, (a) 9, (b) 17, (c) 25, and (d) 33 columns, where the number of rows is
369.

To conclude, the application of (9) to each tree LiDAR point
allows filling the corresponding cell in the X and Y matrices.
Once all tree points are employed, the model matrices will
contain two types of cells: filled cells where their values are
calculated from the LiDAR points, and empty cells where there
are no available LiDAR points to calculate their values. Hence,
the empty cells remaining in the X and Y matrices are filled
by Xg and Yg values, consecutively. In essence, the suggested
modeling approach transforms the list of trees LiDAR points
defined by their cartesian coordinates Xi, Yi, and Zi into three
matrices X, Y, and Z. The new matrixial form of the tree point
cloud not only allows visualization of the tree within a 3-D scene
but also allows fitting the tree model to improve it and realize
the relevant calculation, such as tree height, footprint diameter,
and upper biomass volume on the tree cloud (see Section V-C).

V. RESULTS AND DISCUSSION

Once the suggested tree modeling approach has been detailed,
we will analyze the obtained tree models and discuss their
accuracy.

A. Analysis of Tree Model Structure

As shown above, the tree point-cloud model consists of three
matrices X, Y, and Z. On the one hand, one row of these matrices
represents one level of slice. On the other hand, the number of
columns of these matrices can be selected arbitrarily, as long
as it satisfies 4k + 1 > 7 or 2k > 3. This section focuses on the
analysis of the model cell values.

If a point cloud is laid on the constructed model, the number
of points inside a model cell will be variable according to the
cell dimension. Table I compares the number of LiDAR points
located inside model cells considering four cases where the
number of columns of the model matrices is, respectively, 9,
17, 25, and 33 (see Fig. 3 and Table I). In this context, the
model cells can be classified into four categories according to
the number of LiDAR points inside the cell. First, it is the case
when a model cell contains no LiDAR points, i.e., the cell is
empty. It can be noted from Table I that more than 75% of the
model cells belong to this category. Moreover, when the number
of columns of the model matrices increases, the number of cells
in this family doubled. It can be noted from Table I for Tree 1 that
when the number of columns of the model matrices equals 9, the
number of model cell contains 9353 LiDAR points. However, it
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TABLE I
NUMBER OF LIDAR POINTS LOCATED INSIDE MODEL CELLS

FOR THREE EXAMPLE TREES

becomes 19 745 when the number of columns equals 17. The
same notice can be observed when the number of model matrix
columns increases to 25 and 33. Second, a model cell contains
only one LiDAR point. It can be noted from Table I that the
number of cells in this category increases slightly when the
number of columns increases. Indeed, increasing the number
of columns leads to a reduction on the cell’s dimension. Finally,
in the third and fourth cases, a cell may have two or more points.
In fact, the number of cells in these two categories is negligible
due to the popularity of the first two cases.

To conclude, this analysis allowed understand the relationship
between the point density and the number of columns in the tree
model matrices. Moreover, it also permitted the reader to deeply
perceive how the tree point cloud could be transformed into a
3-D model.

Finally, in the automatic modeling of LiDAR data, there are
two main approach families (model-driven and data-driven).
At this stage, it is important to discuss the location of the
suggested approach within these two families. According to
Tarsha Kurdi et al. [73], the model-driven approach consists of
searching for the most appropriate model among basic models
contained in a model library, whereas the data-driven approach
attempts to construct a model by using a series of more or less
complex operations, allowing the generation of a model without
employing a specific library. As the proposed approach does not
use a model library, it seems to be nearer to a data-driven than a
model-driven approach.

Fig. 4. Superimposition of a tree point cloud (red circles) over its tree model.

From another viewpoint, in both modeling families, a model,
such as a 3-D building model, is composed of planes and edges
extracted from the LiDAR point cloud. That means the model
consists of a group of basic vector geometric elements connected
according to predefined topological relationships. The suggested
approach uses different modeling concepts based on the math-
ematical description of the focus object through three matrices,
which can be visualized in 3-D space. That is why, the suggested
approach may present a new modeling family that will be added
to the two main modeling approach families.

B. Accuracy

The modeling accuracy will be estimated by comparing the
constructed tree model with its point cloud [11]. Fig. 4 shows
the superimposition of the point cloud over the tree model. It is
noticed that the constructed model fits accurately the tree point
cloud. At this stage, it is necessary to note that if two or more
LiDAR points have the same Z coordinate value and the same
angle θ value, only one of these points will be considered and
the other points will be presented by the considered point. To
avoid neglecting any points, it is sufficient to increase or decrease
their Z coordinate value by only a small number, such as 1 mm.
According to Table I, the percentage of neglected points does
not surpass 5% of the point cloud regarding the point irregular
distribution.

From (2) and (3) as well as Fig. 5, it can be noted that one
tree model consists of a matrix of cells connected through robust
neighbor relationships. To analyze a tree model’s accuracy re-
garding the tree point cloud, the mean cell dimensions are used
as an evaluation metric. The width (CW) and height (CH) of a
cell can be calculated using the following equation:

CW =
2πDispg

m
;CH = Zi − Zi−1 �= 0 (12)
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Fig. 5. Visualization of tree point clouds and tree models; (1a) to (15a) are the tree point clouds; and (1b) to (15b) are the derived tree models.

TABLE II
ACCURACY OF THE TREE MODELS FOR m = 33 (THE NUMBER OF COLUMNS IN THE MATRICES)

where Dispg is the distance between the gravity center g and
the given point (11), and m is the number of columns in
matrix X.

From (12), it can be noted that the cell dimensions are related
to the number of columns in the tree model matrices, the distance
from the rotating axis, and the point density. Hence, when the
number of columns of the model matrices increases, the cell
width will decrease. Moreover, CW and CH values are variable
from one point to another, which is why, for each tree model,
the minimum, maximum, and mean values of these parameters
can be calculated (see Table II). In fact, the two parameters CW

and CH also express the accuracy of the cell location within the
constructed tree model. Indeed, one LiDAR point is supposed
to be located in the cell center, but in practice, it can be located
anywhere inside the cell space. To conclude, the accuracy of
the tree model can be improved by increasing the number of
columns of the model matrices (2)–(4).

C. Tree Parameter Calculation

In the context of tree modeling starting from LiDAR data, it
is necessary to estimate the tree parameters, such as the height,
crown diameter, trunk diameter, and the upper biomass volume
[44], [54], [66], [67]. Although Herrero-Huerta et al. [67] define
seven parameters as a full description of a tree, only three are
considered in this article: the tree height, the crown diameter, and
the trunk diameter. In fact, this choice has been adopted because
the other parameters can be deduced from these three. The tree
height (Ht) can be calculated directly from (13) using the matrix
Z (4), where Z1 and Zn are the Z coordinates of the highest
and lowest points of the tree point cloud. The crown diameter
equals the tree footprint diameter (Fd), which can be calculated
using (14), where the tree footprint is supposed to be circular.
Concerning the trunk diameter, it can be noted from Fig. 5 that
the trunk LiDAR points may be missed or indistinguishable in
the tree point cloud (Trees 6–15) because the laser pulses did not



TARSHA KURDI et al.: 3-D MODELING AND VISUALIZATION OF SINGLE TREE LiDAR POINT CLOUD USING MATRIXIAL FORM 3017

TABLE III
CALCULATION PERCENTAGE OF TRUNK RADIUS TO TREE FOOTPRINT RADIUS

arrive at the trunk, or the tree trunk is surrounded by obstacles,
such as grasses, tree branches, and leaves, where the trunk points
cannot be distinguished from the other surrounding points

Ht = Z1 − Zn (13)

Fd = 2× max (Dispg) (14)

where Z1 and Zn are the first and the last values in matrix Z (4).
Dispg is the distance between the gravity center g and the given
point (11).

In the case of the presence of distinguishable trunk LiDAR
points (trees number 1–5 in Fig. 5), the trunk can be modeled and
measured. For this purpose, the middle point of the bounding box
(1) must be located at the trunk center, supposing that the trunk
has a cylindrical geometric form. Unfortunately, in most cases,
the middle point of the bounding box is not congruent with the
trunk center, which is why only one side of the trunk appears in
the tree models (Trees 1b–5b in Fig. 5). Moreover, if the middle
point of the bounding box is congruent with the trunk center, but
the trunk is not covered sufficiently by LiDAR points, only the
parts of the trunk covered by LiDAR points will also appear in
the tree model. To solve this issue, each matrix of (2)–(4) must be
divided into two submatrices: the upper submatrix that models
the tree crown, and the bottom submatrix that models the tree
trunk. Every one of these two submatrices must be calculated
independently, and then the couples of submatrices must be
merged to get the complete tree matrix. To calculate the trunk
matrix, after descending sorting of tree point cloud according
to the Z coordinate values (see Section IV), the last four points
of the tree point cloud are assigned to the trunk section; then,
the mean of the selected points is calculated. Thereafter, the
distance between the selected points and the mean is calculated.
If the greatest distance is bigger than a given threshold, then this
operation must stop, else the next upper point is added to the
selected trunk points and the same procedure is repeated. This
operation allows for detecting all trunk points [see Fig. 6(a)].
To determine the value of the used threshold, it can be noticed
from Table III that the trunk radius of most trees is smaller than
10% of tree footprint radius. Consequently, a dynamic threshold
value is considered to be 10% of tree footprint radius.

Once the tree point cloud is divided into crown and trunk
clouds, the crown cloud can be modeled using the same ap-
proach, as suggested in Section IV [see Fig. 6(d)]. Concerning
the trunk cloud, regarding the continuity of the trunk geometric

Fig. 6. Tree trunk modeling (Tree 4 in Fig. 5). (a) Division of the tree
point cloud into crown and trunk clouds. (b) Trunk model considering the
points covering the trunk. (c) Trunk model considering constant radius.
(d) Crown model. (e) Tree model with constant trunk radius. (f) Tree model
with nonconstant trunk radius.

Fig. 7. Tree 4 in Fig. 5. (a) Tree model. (b) Adopted tree model for calculating
the CV.

form and the popularity of vertical trunks, the trunk point cloud
is suggested to be modeled using the same algorithm proposed
by Tarsha Kurdi et al. [72], which is developed to model the mul-
tirotunda buildings [see Fig. 6(b)]. Another choice can be shown
in Fig. 6(c), which supposes that the trunk can be modeled as a
cylinder. However, the second choice is more suitable because
the tree trunk has a normally chaotic asymmetrical geometric
form. Figs. 6(e) and 7(f) illustrate tree number 4 in Fig. 5 with
variant and constant diameter trunk models consecutively. To
consider a more general case where the trunk is not always
vertical and may have a variant diameter, the approach suggested
by Xu et al. [61] can be adapted in future studies to extract the tree
skeleton and then the skeleton point cloud will be divided into
small horizontal slices and then a submatrix will be calculated
for each slice. Thereafter, all trunk skeleton submatrices will be
merged to calculate the complete skeleton submatrix, which can
further be merged with the tree crown submatrix to calculate the
whole tree matrix.
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Fig. 8. RAEs of the calculated tree parameters. Ht: tree height; Fd: tree
footprint diameter; and Td: trunk diameter.

Fig. 9. Visualization of complete vegetation matrix. (a) 2-D visualization. (b)
3-D visualization.

At this stage, it is important to discuss the calculation of the
tree’s AGB. According to Herrero-Huerta et al. [67], the tree’s
AGB consists of the trunk and the crown. To calculate the canopy
volume (CV) or the base crown volume (BCV), which represents
the trunk volume, the air spaces inside the crown and between
leaves and branches will be considered full. Hence, this article
proposes to construct the tree rotating-surface model suggested
by Tarsha Kurdi et al. [72], which simplifies the question of
CV calculation. Fig. 7 shows two tree models, where Fig. 7(a)
represents the model constructed by the suggested approach in
this article, whereas Fig. 7(b) shows the tree model that will be
used to calculate the AGB. Unfortunately, the trunk diameter
in Fig. 9(b) is greater than the truth because it considers the tree
footprint gravity center instead of the trunk footprint gravity
center. Furthermore, Fig. 7(b) model supposes that the tree is

symmetrical, which is not the case. Nevertheless, the tree BCV
equals the volume summation of the frustum of cones forming
the tree model. More investigations are envisaged in future effort
to reduce the committed errors of BCV calculation.

Table IV further illustrates a numerical comparison between
the tree parameters of direct measurement on the point clouds us-
ing the Cloudcompare software and the automatically extracted
parameters from the constructed tree models. This comparison
concerns the trees, as shown in Fig. 5. Table IV also mentions the
AGB volume values (BCV+CV). The values of trunk diameters
(Td) are calculated only for the trees having distinguishable trunk
points (Trees 1–5). Furthermore, Table IV and Fig. 8 illustrate
the relative absolute errors (RAEs) of extracted tree parameters
in the same table. On the one hand, it can be noted that the
tree heights are accurately estimated regarding the constructed
tree models where max (ΔHt) = 21 cm and max RAE Ht =
2.01%. On the other hand, the tree footprint and trunk diameters
sometimes hold considerable errors (e.g., ΔFd = 4.81 m and
RAE F = 25.76%). In fact, this error can be explained through
(14), which considers the crown and trunk to have a circular
geometric form that envelopes the tree points. That is why, it
multiplies the radius value by 2 to calculate the circle diameter
value. The same issue can be met when the trunk diameter value
is estimated. Indeed, the irregularity of the geometric form of
the tree trunk can sometimes cause a considerable difference
between the direct and automatic diameter estimation, e.g., in
Tree 5, ΔTd = 0.31 m.

However, in spite of the differences in tree parameter values
between the direct measurement and the automatic calculation
from the constructed tree model, the automatically extracted
parameters are still acceptable regarding the adopted hypothesis
of the tree’s geometrical form.

At this stage, it is shown that the modeling method is beneficial
to visualize all modeled trees of the same scanned scene. Below
we further demonstrate that a tree can be expressed mathemati-
cally by three matrices X, Y, and Z. For one scanned scene with
a q number of trees, whole trees can be expressed within three
matrices Xv, Yv, and Zv (15)–(17)

Xv =
[
X1 X2 . . . Xq

]
(15)

Yv =
[
Y1 Y2 . . . Yq

]
(16)

Zv =
[
Z1 Z2 . . . Zq

]
(17)

where Xi, Yi, and Zi (i = 1 to q) are the three matrices that
represent one tree, and q is the number of trees in the scanned
scene.

To visualize the complete vegetation matrix, a loop from 1 to
q can be used to read and visualize the individual tree matrices.
Fig. 9 shows the 2-D and 3-D visualization of the complete
scanned scene of 55 trees. From Fig. 9, it can be noted that the
target trees are of different species and have different volumes,
heights, and crown diameters. At this stage, the illustrated results
in Fig. 9 confirm the effectiveness of the suggested tree modeling
approach.
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TABLE IV
TREE PARAMETERS OF DIRECT MEASUREMENT AND AUTOMATICALLY EXTRACTED FROM THE MODEL

D. Comparison With a Similar Algorithm

It is necessary, at this stage, to highlight the differences
and originality aspects of the presented algorithm regarding
the building modeling algorithm suggested by Tarsha Kurdi
et al. [72]. Indeed, the two algorithms are based on the hypothesis
of rotating surfaces, and they use three matrices to visualize the
calculated models; however, the focus is totally different. The
present approach targets the trees class, whereas the algorithm
suggested by Tarsha Kurdi et al. [72] targets buildings. To be
specific, they use three matrices X, Y, and Z to express and
visualize the constructed model. The input data are the LiDAR
point cloud of the target object.

On the other hand, the building modeling algorithm cal-
culates the vertical cross section to construct the basic
building model and keeps being improved by considering
all building LiDAR points. However, the present algorithm
calculates the tree model without using the tree’s vertical cross
section. The present algorithm does not need to be improved,
such as the building modeling algorithm, because it considers
all points of the LiDAR point cloud. Furthermore, the present
algorithm considers the discontinuity geometrical nature of the
tree crown, whereas the building modeling algorithm considers
the geometrical continuity nature of the buildings. The tree
modeling algorithm distinguishes between the crown geometry
and the truck geometry, but the building modeling algorithm
does not distinguish between different parts of the building.

To conclude, despite the same mathematical principle being
used in the last two modeling algorithms, each algorithm is
adapted to be harmonized with the different geometrical nature
of the target objects in the two cases.

Fig. 10. Computation cost of the suggested tree modeling algorithm for trees,
as mentioned in Table IV.

E. Computation Cost
It is important to underline the computational cost of the

suggested modeling approach. In this article, we used an Intel(R)
Core (TM) i7-10610U CPU @ 1.80 GHz 2.30 GHz, RAM
32.0 GB (31.6 GB usable). Moreover, the code is developed
and tested under MATLAB 2021b.

Fig. 10 shows the computation cost, as mentioned in Table IV.
It can be noted that regarding the modest used computer quality,
the processing time of the tested tree point-cloud samples is
reasonable where the average processing time is about 0.5 s
by tree. Such low computational cost may be explained by the
simplicity of the modeling suggested algorithm regarding the
huge number of LiDAR points, which is considered a great
gain in the context of 3-D tree modeling from LiDAR data and
would be beneficial for large-scale forest inventory at the level of
individual trees, especially considering that the performance can
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be further improved with more efficient implementation, such
as with Python.

VI. CONCLUSION

There is a need for automatic mass modeling of individual
trees. This article proposed to build them on the basis of the
segmented LiDAR points of single trees. It assumes that the tree
trunk is vertical and can be modeled by multiple layers depend-
ing on the height of the trees. Under these assumptions, the tree
model is represented by three matrices. The assumed number of
height levels corresponds to the number of rows of the model
matrix, while the point density contributes to the determination
of the number of columns of the model matrix. The adopted num-
ber of rows and columns of the matrix determines the structure
of the model and enables a 3-D visualization of the tree. Thus,
the accuracy of the model may be variable. This assumption
simplifies the model and allows it to be made quickly. Despite
this simplification, thanks to the proposed algorithm, the shape
of the crown corresponds to reality with the calculated accuracy.
The point density, the distance between the point and the gravity
center, and the relation of one point to the other play an essential
role in the accuracy of tree modeling. By using the proposed
model, the mean accuracy achieved for the 55 tested trees is
between 0.3 and 0.89 m, while the relative accuracy is between
04% and 17.5%. The released tests demonstrated that this devel-
opment is a simple and effective algorithm for 3-D modeling of
individual trees and can be used for tree parameter calculation.

The proposed method of generating 3-D trees differs sig-
nificantly from those presented in Section II. Although many
tree models in the literature can consider the tree trunk if the
trunk LiDAR points are distinguishable, they do not consider
the complete skeleton of the tree and are unable to form one
coherent crown body, causing a high generalization that leads
to a significant deformation of the trees. Instead, our model is
physical volumetric models of the space occupied by the tree.
It generates a layered-segmented structure, reflecting a more
realistic shape of the tree. The algorithm is simpler and can be
potentially used for mass production and adopted as a general
tree modeling approach in the OGC CityGML standard.

More investigations are needed in future work to consider the
general trunk geometry and integrate the tree skeleton within the
constructed model. Moreover, the tree solid model will be used
to calculate the AGB volume.
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