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FRAMU: Attention-based Machine Unlearning
using Federated Reinforcement Learning

Thanveer Shaik*, Xiaohui Tao*, Lin Li, Haoran Xie, Taotao Cai, Xiaofeng Zhu, and Qing Li

Abstract—Machine Unlearning, a pivotal field addressing data
privacy in machine learning, necessitates efficient methods for the
removal of private or irrelevant data. In this context, significant
challenges arise, particularly in maintaining privacy and ensuring
model efficiency when managing outdated, private, and irrelevant
data. Such data not only compromises model accuracy but
also burdens computational efficiency in both learning and
unlearning processes. To mitigate these challenges, we introduce
a novel framework, Attention-based Machine Unlearning using
Federated Reinforcement Learning (FRAMU). This framework
incorporates adaptive learning mechanisms, privacy preserva-
tion techniques, and optimization strategies, making it a well-
rounded solution for handling various data sources, either single-
modality or multi-modality, while maintaining accuracy and
privacy. FRAMU’s strength lies in its adaptability to fluctuating
data landscapes, its ability to unlearn outdated, private, or
irrelevant data, and its support for continual model evolution
without compromising privacy. Our experiments, conducted on
both single-modality and multi-modality datasets, revealed that
FRAMU significantly outperformed baseline models. Additional
assessments of convergence behaviour and optimization strategies
further validate the framework’s utility in federated learning
applications. Overall, FRAMU advances Machine Unlearning
by offering a robust, privacy-preserving solution that optimizes
model performance while also addressing key challenges in
dynamic data environments.

Index Terms—Machine Unlearning, Privacy, Reinforcement
Learning, Federated Learning, Attention Mechanism.

I. INTRODUCTION

The widespread availability of decentralized and heteroge-
neous data sources has created a demand for Machine Learning
models that can effectively leverage this data while preserving
privacy and ensuring accuracy [1]. Traditional approaches
struggle to handle the continual influx of new data streams,
and the accumulation of outdated or irrelevant information
hinders their adaptability in dynamic data environments [2],
[3]. Moreover, the presence of sensitive or private data in-
troduces concerns regarding data breaches and unauthorized
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Fig. 1: Graphical abstract depicts the evolution of the FRAMU
framework

access, necessitating the development of privacy-preserving
techniques [4]. The concept of the “right to be forgotten”
allows individuals to have their personal information removed
from online platforms, although there’s no universal agreement
on its definition or its status as a human right [5]. Despite
this, countries like Argentina, the Philippines, and large parts
of the EU are working on regulations 1. Therefore, there is
a pressing need to advance the field of Machine Unlearning
to ensure both adaptability and privacy in Machine Learning
applications.

Example 1. In a landmark 2014 decision that underscored
the pressing need for Machine Unlearning, a Spanish court
ruled in favor of an individual who sought the removal of
specific, outdated Google search results related to a long-
settled debt [6]. This verdict not only led to Google taking
down the search results but also influenced broader European
Union policies on the subject, emphasizing the urgent need
for mechanisms that can efficiently erase outdated or private
information from Machine Learning models without sacrificing
accuracy. This critical requirement for Machine Unlearning is
further highlighted by high-profile cases such as that of James
Gunn, the famed writer and director, who was dismissed by
Disney in 2018 when old, inappropriate tweets resurfaced [7].
Although social media platforms like Facebook offer features
like ”Off-Facebook Activity” to disconnect user data from
third-party services, this does not guarantee the complete
erasure of that data from the internet 2. Together, these in-
stances accentuate the growing imperative for the development
of robust Machine Unlearning technologies, especially in an
era where data privacy regulations are continuously evolving

1https://link.library.eui.eu/portal/The-Right-To-Be-Forgotten–A-
Comparative-Study/tw0VHCyGcDc/

2https://www.facebook.com/help/2207256696182627
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and the ”right to be forgotten” is increasingly recognized as
essential.

Challenges. In today’s digitally connected environment, data
is distributed in various forms and from different sources,
such as sensors, text documents, images, and time series data.
For unlearning outdated or private data, Machine Unlearning
presents unique challenges depending on whether it is a single
type of data (known as single-modality) or multiple types of
data (referred to as multimodality) [8]. With single-modality
data, the issue primarily lies in the build-up of outdated or
irrelevant information, which can negatively affect the model’s
effectiveness and precision [9], [10]. On the other hand,
multimodality situations are even more complicated. Here,
each type of data can have different characteristics and varying
contributions to the overall model’s performance [11], [12]. As
we discussed in example 1, the need to unlearn outdated or
private data is most important. This ensures individuals have
the “right to be forgotten” about their information in publicly
available platforms. However, the unlearning needs to happen
in both single-modality and multimodality data to make it a
holistic unlearning.

Distributed learning systems, particularly federated learning,
have made significant strides forward in enabling Machine
Learning models to train on decentralized data, offering the
dual advantage of reduced communication costs and enhanced
privacy [13], [14]. Notable efforts have been made to incorpo-
rate Differential Privacy (DP) into these systems [15], ensuring
robust privacy safeguards through techniques like DP-SGD
and DP-FedAvg [16], [17]. However, these existing frame-
works face limitations when confronted with the dynamic
nature of data distribution, an intrinsic challenge in distributed
learning [18]. Although some efforts have been made in
Machine Unlearning to address data irrelevancy over time,
such as Sharded, Isolated, Sliced, and Aggregated(SISA) train-
ing methods, these solutions often operate in isolation from
privacy-preserving mechanisms [19], [20]. This bifurcation
leaves a crucial research gap: the absence of a unified approach
that addresses both privacy concerns and the adaptability re-
quirements in the face of ever-changing data landscapes. There
is a need to bridge this gap by providing an integrated solution
for robust privacy measures and efficient selective unlearning,
thereby enabling Machine Learning models to be both secure
and adaptable in dynamic, distributed environments.

The primary challenges in Machine Unlearning involve
addressing the buildup of outdated or irrelevant information in
single-modality data, which affects model precision, and han-
dling the complexity of multimodality data where each type
contributes differently to model performance. Additionally,
current distributed learning systems, while advancing privacy
and reducing communication costs, face limitations in adapting
to dynamic data distributions and integrating robust privacy
measures with efficient unlearning mechanisms, highlighting
a need for a unified approach that ensures both security and
adaptability in rapidly evolving data environments.

To address these challenges, we propose an Attention-based
Machine Unlearning using Federated Reinforcement Learning
(FRAMU) as shown in Fig. 1. By integrating federated learn-

ing, adaptive learning mechanisms, and privacy preservation
techniques, FRAMU aims to leverage the diverse and dynamic
nature of data in both single-modality and multimodality
scenarios, while upholding privacy regulations and optimizing
the learning process. An attention mechanism is incorporated
into FRAMU to ensure responsible and secure handling of
sensitive information across modalities. FRAMU leverages
reinforcement learning and adaptive learning mechanisms to
enable models to dynamically adapt to changing data distribu-
tions and individual participant characteristics in both single-
modality and multimodality scenarios. This adaptability facil-
itates ongoing model evolution and improvement in a privacy-
preserving manner, accommodating the dynamic nature of the
data present in federated learning scenarios. In addition to
addressing the challenges associated with unlearning outdated,
private, and irrelevant data in both single-modality and mul-
timodality scenarios, FRAMU offers valuable insights into
the convergence behaviour and optimization of the federated
learning process. The major contributions of our work are as
follows:

• We propose an adaptive unlearning algorithm using an
attention mechanism to adapt to changing data distri-
butions and participant characteristics in single-modality
and multimodality scenarios.

• We develop a novel design to personalize the unlearning
process using the FedAvg mechanism [21] and unlearn
the outdated, private, and irrelevant data.

• We propose an efficient unlearning algorithm that demon-
strates fast convergence and achieves optimal solutions
within a small number of communication rounds.

• We conduct extensive experiments to demonstrate the
efficiency and effectiveness of the proposed approach
using real-world datasets.

Organization. In Section II, we review related works. Sec-
tion III outlines the problem addressed in this study. We
present the proposed framework FRAMU in Section IV. The
applications of FRAMU in single-modality and multimodality
are discussed in Section V. In Section VI, we present the
experimental setup and the evaluation results of the proposed
framework, along with convergence and optimization analysis.
Section VII delves into the implications of the proposed
framework. Finally, in Section VIII, we conclude the paper.

II. RELATED WORKS

The importance of data privacy in distributed learning
systems has garnered significant attention, especially when
handling sensitive types of data like medical or behavioral
information [22]. Differential Privacy (DP), a mathematically
rigorous framework for ensuring individual privacy, has been
widely adopted for this purpose [23], [24]. Efforts to integrate
DP within distributed learning environments, particularly in
federated learning, have been increasing [13], [14]. Abadi et
al. [16] developed a seminal approach called Deep Learn-
ing with Differential Privacy (DP-SGD), which adapts the
Stochastic Gradient Descent (SGD) algorithm to meet DP
standards by clipping gradients and injecting noise, thereby of-
fering stringent privacy safeguards during deep neural network
(DNN) training. Building on this, McMahan et al. [17] further
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tailored DP mechanisms for federated learning through an
extension called DP-FedAvg. While these methods effectively
address privacy concerns, they often fall short in dealing with
dynamic data distributions, a prevalent issue in distributed
learning [18]. Specifically, data sets can evolve over time,
rendering some information outdated or irrelevant, and the per-
sistence of such data in the learning process can compromise
model efficacy. Although Machine Unlearning approaches like
Sharded, Isolated, Sliced, and Aggregated (SISA) training [19]
have emerged to tackle this issue by enabling efficient selective
forgetting of data, these methods are not yet designed to
work synergistically with privacy-preserving techniques like
DP [20].

Federated learning has substantially revolutionized dis-
tributed learning, enabling the training of Machine Learning
models on decentralized networks while preserving data pri-
vacy and minimizing communication costs [25]. Among the
pioneering works in this area is the FedAvg algorithm by
McMahan et al. [21], which relies on model parameter averag-
ing across local models and a central server. However, FedAvg
is not without its limitations, particularly when handling non-
IID data distributions [26]. Solutions like FedProx by Li et
al. [27] have sought to address this by introducing a proximal
term for improved model convergence. While other researchers
like Sahu et al. [28] and Konečný et al. [29] have made strides
in adaptive learning rates and communication efficiency, the
realm of federated learning still faces significant challenges in
dynamic adaptability and efficient Machine Unlearning. While
privacy has been partially addressed through Differential Pri-
vacy [30] and Secure Multiparty Computation [31], these tech-
niques often compromise on model efficiency. Additionally,
the applicability of federated learning in diverse sectors like
healthcare and IoT emphasizes the unmet need for a model
capable of dynamically adapting to varied data distributions,
while preserving privacy and efficiency [32], [33].

Reinforcement Learning has garnered much attention for its
ability to train agents to make optimal decisions through trial-
and-error interactions with their environments [34], [35]. Sev-
eral pivotal advancements have shaped the field, including the
development of Deep Q-Networks (DQNs) [36]. DQNs com-
bine traditional reinforcement learning techniques with DNNs,
significantly enhancing the system’s ability to process high-
dimensional inputs such as images. Furthermore, experience
replay mechanisms have been integrated into them to improve
learning stability by storing and reusing past experiences [37].
Mnih et al. [38] significantly accelerated the reinforcement
learning field by implementing DQNs that achieved human-
level performance on a variety of complex tasks. However,
there are evident gaps in addressing challenges posed by
non-stationary or dynamic environment situations where the
statistical properties of the environment change over time.
Under such conditions, a reinforcement learning agent’s ability
to adapt quickly is paramount. Several approaches like meta-
learning [39] and attention mechanisms [40], [41] have sought
to remedy these issues to some extent. Meta-learning, for
example, helps models quickly adapt to new tasks by training
them on a diverse range of tasks. However, the technique does
not offer a robust solution for unlearning or forgetting outdated

or irrelevant information, which is crucial for maintaining
performance in dynamic environments. In a similar vein,
attention mechanisms help agents focus on important regions
of the input space, but they also fail to address the need for
efficient unlearning of obsolete or irrelevant data. This leaves
us with a significant research gap: the lack of mechanisms for
efficient unlearning and adaptability in reinforcement learning
agents designed for non-stationary, dynamic environments.

A key challenge for federated learning when faced with
dynamic data distributions and the accumulation of outdated
or irrelevant information is its adaptability in evolving environ-
ments. Reinforcement learning has been instrumental in train-
ing agents for optimal decision-making in dynamic environ-
ments, yet it too grapples with the need to efficiently unlearn
outdated or irrelevant data. These challenges underscore the
importance of integrating attention mechanisms into the Ma-
chine Unlearning process. Unlike selective data deletion, atten-
tion mechanisms assign reduced weights to outdated, private,
or irrelevant information. The dynamic adjustment of attention
scores allows these models to prioritize relevant data while
disregarding obsolete or extraneous elements. By bridging
the worlds of federated learning and reinforcement learning
with attention mechanisms, our study addresses the pressing
need for an integrated solution that optimizes decision-making
in distributed networks with changing data landscapes [42].
In addition, this approach must preserve data privacy and
adaptively forget outdated, private, or irrelevant information.

III. PRELIMINARIES & PROBLEM DEFINITION

This section establishes the foundational concepts and math-
ematical notations essential for the discussions and analyses
presented in this paper. These concepts are summarized in
Tab. I and form the basis for understanding the subsequent
problem definitions and solution approaches. Our research is
centered around the exploration of unlearning mechanisms in
Machine Learning models, focusing on maintaining accuracy
and computational efficiency while addressing the challenges
posed by outdated or irrelevant data.

The problem is defined by two distinct settings: single-
modality and multimodality. The single-modality setting is
simpler and widely applicable in scenarios with uniform data
types, such as sensor networks or content recommendation sys-
tems. However, it may lack the context provided by different
types of data, potentially leading to less nuanced decisions.
On the other hand, the multimodality setting is more complex
but highly relevant in fields like healthcare, where a range
of data types (e.g., medical imaging, patient history, etc.) can
be used for more comprehensive understanding and decision-
making. By exploring the problem in both these settings, we
offer solutions that are both versatile and contextually rich.

A. Problem Definition - Single Modality
Problem Definition 1. Let AG = {ag1, ag2, . . . , agn} be
a set of agents, where each agent ag ∈ AG represents an
entity like an IoT device, traffic point, wearable device, edge
computing node, or content recommendation system. Each
agent ag observes states Si = {s1, s2, . . . , sm} and takes
actions A = {a1, a2, . . . , an} based on a policy πi(s, a).
Rewards Ri(s, a) evaluate the quality of actions taken in
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TABLE I: Summary of Notations and Descriptions
Symbol Description
AG Set of agents in the model
ag An individual agent in the set AG
Si States observed by an agent ag
A Set of possible actions
πi(s, a) Policy followed by the agent
Ri(s, a) Rewards for actions in different states
θag Parameters of local models for agent ag
θg Parameters of global model
wi,ag Attention score for a data point i in agent ag
M Set of modalities in multimodality setting
Xm Data vectors for modality m
θm Parameters for modality m
wi,m Attention scores within a modality m
t Time step
st State at time step t
at Action at time step t
rt Reward at time step t
Rt Cumulative reward
π(at|st) Policy function
Q(st, at) Q-function
γ Discount factor
αi Attention score for feature i
∆θag Update sent by agent ag
f Function for calculating attention scores
wg,ag Global attention score for update from agent ag
AG Number of local agents
αavg Average attention score
δ Predetermined threshold for attention score
ag ∈ AG A specific agent within the set of all agents AG
m Number of modalities
x1, x2, ..., xm Data vectors for each modality
vi Feature vector for modality i

w̄j
Averaged attention score across
modalities for data point j

λ Mixing factor
T The total number of training rounds
α Learning rate for Q-value function updates
η Scaling factor for attention score updates

β
Mixing factor for combining
global and local model parameters

ε Convergence threshold for global model parameters
wag Local model parameters for agent ag
W Global model parameters
Ai Attention score for data point i
Ai,ag Attention score for data point i within agent ag
N Total number of data points across all agents
nag Number of data points in agent ag

Real World Environment

Action
an

Reward
Rt

{Reduce Wait Time,
Congestion}

Rt+1

 State St
{Number of Cars,
Speed of Cars}

St+1

Decision Making
Model Θi

Traffic Light
Agent (AG)

Fig. 2: Single Modality Example

different states. Agents possess local models with parameters
θi, while a central server maintains a global model with
parameters θg .

Example 2. In the single-modality setting shown in Fig. 2,
let AG = {ag1, ag2, . . . , agn} be a set of agents. An agent
ag can represent a real-world entity such as a traffic light
in a city. These traffic lights observe various states Si =
{s1, s2, . . . , sm}, such as the number and speed of passing
cars, and the change of colors (actions A = {a1, a2, . . . , an})
according to an algorithmic policy πi(s, a). The system eval-
uates the effectiveness of the traffic light changes in reducing
wait time or congestion (rewards Ri(s, a)). Each traffic light
has its own local decision-making model characterized by
parameters θi, and there is a global model for optimizing city-
wide traffic flow with parameters θg .

Θ1

Θ2

Modalities Data
Vectors

Attention
Weights

Fig. 3: Multimodality Example

To address the challenge of preserving data privacy and
adaptively forgetting private, outdated, or irrelevant informa-
tion, attention scores wij are assigned to each data point
j in the local dataset of agent ag ∈ AG. These attention
scores, computed using a function f that considers the current
model state or contextual information, guide the learning and
unlearning process within each agent. By assigning higher
attention scores to relevant data and potentially forgetting
or down-weighting irrelevant data, the agents can effectively
focus on the most informative and up-to-date information.

B. Problem Definition - Multimodality

Problem Definition 2. In the multimodality setting, let M =
{1, 2, . . . ,m} represent the set of modalities, where m is the
total number of modalities. Each modality m ∈ M is associ-
ated with a set of data vectors Xm = {xm1, xm2, . . . , xmn},
and has its local model with parameters θk. Attention scores
wim are assigned to individual data points xim within each
modality to guide the learning and unlearning process.

Example 3. In the multimodality setting shown in Fig. 3,
consider a healthcare system as a collection of agents in
set M = {1, 2, . . . ,m}, where m represents different types
of medical data (modalities) such as medical imaging and
patient history. For instance, medical imaging (modality M1)
would have a set of MRI scans represented as data vectors
X1 = {x11, x12, . . . , x1n}. Likewise, patient history (modality
M2) might involve a set of past diagnosis records that are
represented as data vectors X2 = {x21, x22, . . . , x2n}. Each
modality has a specialized model with parameters θ1 for
medical imaging and θ2 for patient history. These models
use attention mechanisms to weigh the importance of each
data point, represented by attention scores w1m for MRI scans
and w2m for patient history records. These scores guide the
decision-making process in diagnosis and treatment.

In the multimodality setting, the complexity is elevated by
the integration of heterogeneous data types and the application
of specialized machine learning models for each modality.
For example, in a healthcare system, combining data from
disparate sources like medical imaging and patient history
presents a unique challenge. Each data type, or modality, not
only varies in format but also in the nature of the informa-
tion it conveys, necessitating distinct processing and analysis
methods. The key challenge here is to develop an integrated
approach that effectively synthesizes these diverse data streams
into a coherent understanding, enhancing decision-making in
critical applications such as patient diagnosis and treatment.
Attention mechanisms play a crucial role in this context,
determining the relevance of each data point across different
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Fig. 4: An overview of the proposed FRAMU framework, illustrating its end-to-end adaptive algorithm that incorporates an
attention mechanism. The figure is divided into multiple components, each corresponding to a specific phase in the federated
learning process. Starting from the left, the diagram begins with data collection from diverse modalities. The framework applies
an adaptive learning algorithm that not only updates the global model, but also incorporates an efficient unlearning mechanism
for discarding outdated, private, or irrelevant data.

modalities. However, assigning and calibrating these attention
scores is non-trivial and introduces an additional layer of
complexity. The successful implementation of multimodal
systems has profound implications, particularly in improving
the accuracy and efficacy of decision-making processes.

IV. FRAMU FRAMEWORK

In an era marked by an ever-increasing influx of data, the
need for adaptive Machine Learning models that can effi-
ciently unlearn outdated, private, or irrelevant information is
paramount. The methodology proposed in this paper addresses
this necessity by introducing two key technical contributions.
First, we propose an adaptive unlearning algorithm that utilizes
attention mechanisms to tailor the learning and unlearning
processes in a single-modality, and then extend the process
to multimodality. This innovative approach allows the model
to adapt to dynamic changes in data distributions, as well as
variations in participant characteristics such as demographic
information, behavioural patterns, and data contribution fre-
quencies among others. Second, we put forth a novel design
that employs the FedAvg mechanism [21] to personalize the
unlearning process. This design ensures that the model is
able to discard data that has become irrelevant, outdated, or
potentially invasive from a privacy perspective, thus preserving
the integrity of the learning model while adapting to new or
changing data. The following sections will elaborate on these
contributions, providing a detailed discussion of the proposed
framework as depicted in Fig. 4.

The FRAMU framework adopts a federated learning archi-
tecture comprising Local Agents and a Central Server, each
with distinct roles in model training, unlearning, and adapta-
tion. It employs a reinforcement learning paradigm where each
agent iteratively learns from its environment. This integration
of federated learning and reinforcement learning is termed
federated reinforcement learning. However, what sets FRAMU
apart is the integration of attention mechanisms to weigh
the relevance of each data point in learning and unlearning.
The attention scores are then aggregated and processed at the
Central Server to refine the global model.

• Local Agents: Responsible for collecting real-time data
and performing local model updates. They observe states,
take actions, and calculate rewards to update their Q-
values and attention scores.

• Central Server: Aggregates local models and attention
scores, filters out irrelevant data points, and updates the
global model.

• Attention Mechanism: Dynamically calculates attention
scores for each data point to inform the unlearning
process.

• FedAvg Mechanism: Utilized for global model updates,
ensuring that the global model represents a consensus
across all agents.

The FRAMU framework, as outlined in Algorithm 1, has
been carefully designed to facilitate adaptive decision-making
in distributed networks through federated reinforcement learn-
ing. Each step within the algorithm is crafted with specific
intentions: The initialization stage (Lines 1-3) sets the ground-
work by initializing local and global model parameters, as
well as attention scores. These initializations are crucial for
ensuring that both local and global perspectives are considered
right from the start of the learning process. The iterative
learning process (Lines 4-24) involves several key compo-
nents. Local Agent Decision-Making (Lines 5-11) enables
each local agent to observe states, take actions, and update its
Q-values and attention scores, ensuring that local knowledge
is continuously updated to reflect the dynamic nature of the
agents’ environments. Central Server Aggregation (Lines 12-
17) plays a pivotal role in integrating local updates and refining
the global model. By assessing the attention scores, the server
can identify and diminish the influence of less relevant data
points, thereby enhancing the model’s focus on significant
information. Model Synchronization (Lines 18-24) involves
the dissemination of global model parameters back to local
agents for fine-tuning, ensuring a bi-directional flow of infor-
mation that keeps local models informed by their immediate
environment and aligned with the broader objectives of the
global model.
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Algorithm 1: FRAMU Framework
Input: a set of Local Agents, a Central Server, T , θ, α, η,

γ, β, ε
Output: Ŵ : Trained global model parameters for federated

reinforcement learning

1 Initialize local model parameters wag for each agent ag;
2 Initialize global model parameters W at the central server;
3 Initialize attention scores Ai,ag,m for each data point i in

agent ag and modality m;
4 while t ≤ T do
5 foreach local agent ag do
6 Observe current states si,m for each modality m;
7 Take action at based on policy derived from

Q(s, a;wag);
8 Observe reward rt and next states s′i,m for each

modality m;
9 Compute TD error δ =

rt + γmaxa Q(s′i,m, a;wag)−Q(si,m, at;wag);
10 Update Q(si,m, at;wag)← Q(si,m, at;wag) + αδ;
11 Update attention scores Ai,ag,m ← Ai,ag,m + η|δ|;
12 Send local model parameters wag and attention scores

Ai,ag,m to Central Server;
13 foreach data point i in modality m do
14 if

∑
ag

1
m

∑
m Ai,ag,m/Nag < θ then

15 Reduce influence of data point i in the global
model;

16 Aggregate local model parameters to update global
parameters: W ←

∑
ag

(nag

N

)
wag;

17 Send updated global model parameters W to local
agents;

18 foreach local agent ag do
19 Fine-tune local model with global model:
20 w′

ag ← βW + (1− β)wag;

21 if |P (Wt+1)− P (Wt)| < ε then
22 Break;

23 Increment t;

24 return W

V. APPLICATIONS OF FRAMU

This section explores the practical applications of the
FRAMU framework across different settings, single-modality
and multimodality, and its continuous adaptation and learning.

A. FRAMU with Single Modality

Central to FRAMU is an attention layer that functions as a
specialized approximator, augmenting the learning capability
of individual agents. This attention layer distinguishes itself
by assigning attention scores to individual data points during
the function approximation process. These scores serve as
indicators of each data point’s relevance in the agent’s local
learning. The agent updates these scores as it interacts with its
environment and receives either rewards or penalties, thereby
continually refining its model. Specifically, an agent operates
in discrete time steps, current state st, taking action at, and
receiving reward rt, at each time step t. The ultimate goal
is to determine an optimal policy π(at|st) that maximizes
the accumulated reward Rt. The Q-function, which quantifies
expected accumulated rewards with a discount factor γ, is
given by Equation 1.

Q(st, at) = E[Rt | st, at] = rt + γE[Q(st+1, at+1) | st, at]
(1)

The attention layer further characterizes each state st by its
features [x1, x2, ..., xn], and assigns attention scores αi as per:

αi = Attention(xi, context) (2)

Here, the context may include additional data such as pre-
vious states or actions. The Q-function is then approximated
using a weighted sum of these features:

Q(st, at) ≈
∑

(αi · xi) (3)

After completing their respective learning cycles, agents
forward their model updates θ and attention scores α to the
Central Server as a tuple (θ, α).
1) Local and Global Attention Score Estimation

FRAMU estimates attention scores both locally and glob-
ally. On the local front, each agent employs its attention
mechanism to compute scores for individual data points based
on their relevance to the task at hand. For an agent ag with
local model parameters θag , the attention score wij for data
point j is given by:

wij = f(sj , θag) (4)

At the global level, these scores assist the Central Server
in prioritizing updates or pinpointing data points for global
unlearning. For global parameters θg , the global attention score
derived from the updates of agent ag is:

wg,ag = f(∆θag, θg) (5)

In this equation, ∆θag is the model update from agent ag,
and the function f calculates attention scores while taking into
account the aggregated local scores and other global contextual
cues.
2) Global Model Refinement and Unlearning

Model updates from local agents are aggregated at the
Central Server using FedAvg [43]. The attention scores are
instrumental in the global unlearning process, with the average
attention score calculated as:

αavg =
1

AG

∑
αag (6)

When αavg falls below a predetermined threshold δ, the
server adjusts the contribution of the respective feature in the
global model as given by Equation 7:

θglobal’ = g(θglobal, αavg) (7)

Once refined, this global model is sent back to the local
agents. The enhanced model shows improved adaptability
and robustness to changes in data distributions due to the
integration of aggregation and unlearning mechanisms. Conse-
quently, the local agents are better positioned to excel within
their particular operational environments. These revised global
model parameters, denoted as θglobal’, are then dispatched from
the Central Server to the local agents, where θk = θglobal’.
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B. FRAMU with Multimodality
The multimodal FRAMU Framework extends its capabil-

ities to seamlessly incorporate various data types, including
images, text, audio, and sensor readings. This integration
not only enriches decision-making but also optimizes the
performance of local agents. By fine-tuning their models to
multiple data types, agents are better equipped to operate in
complex environments.
1) Modality-Specific Attention Mechanisms

To effectively manage data from diverse sources, the frame-
work employs specialized attention mechanisms for each
modality. These mechanisms generate unique attention scores
for data points within a given modality, aiding in both learning
and unlearning processes. By doing so, the framework allows
local agents to focus on the most relevant and informative
aspects of each modality.

The attention scores for a specific modality j for an agent
ag ∈ AG can be mathematically represented as:

wij = fj(sij , θi), (8)

Here, sij signifies a data point from modality j related
to agent ag ∈ AG, while θi represents that agent’s local
model parameters. The function fj considers modality-specific
attributes and context to compute these attention scores.

For a feature vector vi derived from modality j within agent
ag ∈ AG, feature-level fusion can be represented as:

vi = [xi1, xi2, . . . , xim] (9)

2) Unlearning and Adaptation across Modalities
In a multimodal setup, attention scores from all modalities

collectively inform the unlearning process. If a data point
consistently receives low attention scores across different
modalities, it indicates that the point is either irrelevant or
outdated. The Central Server uses this multimodal insight to
refine the global model.

The average attention score across all modalities for a
specific data point is:

w̄j =
1

m

m∑
i=1

wij (10)

If w̄j falls below a predefined threshold, the Central Server
de-emphasizes or removes that data point from the global
model, ensuring that only current and relevant data contribute
to decision-making.

During the adaptation phase, local agents utilize the updated
global model to enhance their local models. The interplay
between global and local parameters is regulated by a mixing
factor, which allows local agents to leverage shared insights
while preserving modality-specific skills. This relationship can
be denoted by:

θnew
i = λθglobal + (1− λ)θold

i (11)

Here, θnew
i represents the updated local model parameters,

θglobal signifies the global model parameters, θold
i is the pre-

vious local parameters, and λ serves as the mixing factor.

Through this, the multimodal FRAMU framework maintains
an up-to-date and relevant global model, while enabling local
agents to make better decisions across a range of data types.

C. Continuous Adaptation and Learning in the FRAMU
Framework

Continuous adaptation and learning are critical in the
FRAMU framework, enabling it to thrive in dynamic and
changing environments. These processes create an iterative
exchange of knowledge between local agents and a Central
Server, which leads to consistent model refinement on both
local and global scales.

1) Local-Level Adaptation

Local agents need the ability to adapt in real time to changes
in their operational environments. Within reinforcement learn-
ing paradigms, agents continually update their policies in
response to actions taken and rewards observed. Furthermore,
attention scores allocated to data points or features can vary
dynamically based on new data or shifts in relevance. This
adaptability ensures that the models of individual local agents
remain current. Let st denote the state of the environment at
time t, and at represent the action taken by the agent. After
receiving a reward rt and transitioning to a new state st+1, the
agent aims to maximize the expected cumulative reward. The
Q-value function Q(s, a) serves as a proxy for this cumulative
reward, and it is updated using temporal-difference learning
algorithms as follows:

Q(st, at)← Q(st, at)+α
[
rt + γmax

a
Q(st+1, a)−Q(st, at)

]
(12)

Here, α is the learning rate, and γ is the discount factor.
Attention scores, denoted by Ai for data point i, are updated

based on the temporal-difference error δ:

Ai ← Ai + η|δ|, (13)

where η is a scaling factor, and δ = rt +
γmaxa Q(st+1, a)−Q(st, at).

2) Global Model Aggregation and Adaptation

As local agents continuously update their models, these
adaptations are communicated to the Central Server. It ag-
gregates this information to refine the global model while
also tracking the attention scores from local agents. If these
scores reveal diminishing importance for certain data points,
the server may initiate global unlearning. This ensures the
global model remains current and avoids obsolescence. Local
agents send their updated model parameters, wag for agent ag,
and attention scores Ai,ag to the Central Server. The server
aggregates these to update the global model parameters W as
follows:

W ← 1

AG

∑
ag

wag, (14)

where AG represents the total number of local agents.
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Fig. 5: Experimental Setup: This diagram showcases the ar-
chitecture of the FRAMU framework, detailing the interaction
between local and global models within a federated learning
environment.

3) Feedback Mechanisms
After the global model is updated, it is disseminated back to

local agents through a feedback loop. This cyclic interaction
allows local agents to either initialize or further refine their
models based on the global one. This is particularly beneficial
when local agents confront new or unfamiliar data points
that other agents have encountered. Through this mechanism,
the global model acts as a repository of shared knowledge,
enhancing the decision-making capabilities of all local agents.
The global model parameters W are sent to local agents, who
then adjust their local models using a mixing factor β as
follows:

w′
ag ← βW + (1− β)wag, (15)

where β ranges from 0 to 1 and regulates the influence of
the global model on local models.

VI. EXPERIMENTAL SETUP AND RESULTS ANALYSIS

To effectively evaluate the performance of the FRAMU
framework, we undertook comprehensive experiments using
real-world datasets. These experiments were designed to vali-
date not only the efficiency and effectiveness of our approach
but also to establish the practical utility of FRAMU in real-
world applications. Our experimental setup encompassed sev-
eral components, including datasets, baseline models, evalua-
tion metrics, and specific FRAMU configurations, as depicted
in Fig. 5. A critical aspect of our experimentation involved
fine-tuning key thresholds to guide the unlearning process,
particularly the outdated threshold and irrelevant threshold.
These parameters were adjusted based on domain expertise
and sensitivity analysis, with the outdated threshold defin-
ing the time frame for data obsolescence and the irrele-
vant threshold setting criteria for data’s statistical insignifi-
cance. Additionally, we introduced a privacy epsilon parame-
ter to balance data utility with privacy preservation, aligning
with GDPR regulations.

Deep learning methods are known for their ability to
learn features autonomously and automate model-building
processes. Despite criticisms of neural network family algo-
rithms for their ’black box’ nature, deep learning models are

renowned for their robust and efficient performance. These
models are widely adopted by the research community [44],
[45]. In our work, we utilized a Convolutional Neural Network
(CNN) for image and sensor data, and a Long Short-Term
Memory (LSTM) network for time series and text data,
specifically tailored for federated learning scenarios. This
model choice was made to efficiently handle both single and
multimodal data types, integrating attention mechanisms and
unlearning processes to enhance overall functionality.

We found the tuning of parameters such as the outdated
threshold, irrelevant threshold, and the β value for local model
fine-tuning to be crucial. It was essential to strike the right
balance in the outdated threshold to prevent premature data
discarding or retention of outdated information, which could
affect model accuracy and relevancy. Similarly, careful cali-
bration of the irrelevant threshold was necessary to maintain a
balance between data comprehensiveness and quality, ensuring
useful data was not excluded nor excessive noise retained. The
β value, crucial in determining the extent of global model
influence on local models, required fine-tuning to ensure an
optimal balance between local and global learning. This was
key for local models to benefit from global insights while
preserving their unique learning characteristics. The interplay
of these hyperparameters significantly influenced FRAMU’s
performance, particularly in its ability to adapt to new data
and retain relevant historical information. Through sensitivity
analyses, we determined their optimal ranges, aiming to max-
imize FRAMU’s efficiency and adaptability in various real-
world scenarios.

TABLE II: Datasets for evaluation
Modality Dataset OD* PD* ID* Description

Single
Modality

AMPds2
[46] ✓ ✓ ✓

Electricity, water, and
natural gas consumption data
.from a Canadian household.

METR-LA
[47] ✓ ✗ ✓

Traffic speed data from
over 200 sensors in Los

Angeles Metropolitan area.

MIMIC-III
[48] ✓ ✓ ✓

Health-related data from
critical care units,including

demographics, vital
signs, laboratory results,

and medications.

Multi
Modality

NYPD
[49] ✓ ✓ ✓

Records of complaints filed
with the New York City

Police Department.

MIMIC-CXR
[50] ✓ ✓ ✓

Chest radiographs with
associated radiology
reports for medical

image analysis tasks.
Smart Home

EnergyDataset
(SHED)

[51]

✓ ✓ ✓
Energy consumption data
from smart home devices

and appliances.

*OD - Outdated Data, PD - Privacy Data, ID - Irrelevant Data.

A. Datasets

In this study, publicly available datasets that encompass
various modalities and address specific challenges related to
outdated, private, and irrelevant data are adopted. Tab. II
provides detailed information about each dataset, including the
data modality, number of instances, attributes, target variables,
and specific characteristics pertinent to our study. In order to
evaluate FRAMU, we conducted a comprehensive compari-
son of its performance against several contemporary baseline
models.
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B. Baseline Models

In the evaluation of the FRAMU framework’s performance
and robustness, we have carefully selected several baseline
models for comparison. The models in baseline models were
adopted from the original work. The rationale behind choosing
each model and its relevance to our study is elaborated below:

• Single-modality
– FedLU [52]: FedLU represents a significant advance

in federated learning, integrating knowledge graph em-
bedding with mutual knowledge distillation. Its selec-
tion as a baseline is due to its innovative approach
to collaborative learning, which is closely aligned
with FRAMU’s objectives in single-modality settings.
FedLU’s methodology provides a comparative frame-
work for assessing FRAMU’s efficiency in knowledge
synthesis and distribution.

– Zero-shot MU [53]: Zero-shot MU specializes in
Machine Unlearning, employing error-minimizing-
maximizing noise and gated knowledge transfer. This
model was chosen for its novel approach to unlearning,
providing a benchmark to evaluate FRAMU’s capabil-
ity in effectively removing learned information without
extensive retraining, a crucial aspect in dynamic envi-
ronments.

– SISA Training [19]: The SISA Training framework is
a strategic model that limits data points for optimized
unlearning. Its inclusion as a baseline allows us to
compare FRAMU’s efficiency in data management and
unlearning processes, especially in scenarios where
data minimization is key to performance and privacy.

• Multimodality
– MMoE [54]: The MMoE model, optimized for han-

dling multimodal data via ensemble learning, serves
as a benchmark for evaluating FRAMU’s performance
in multimodality settings. Its approach, employing ex-
pert networks for different data modalities, provides a
comparative perspective for FRAMU’s adaptability and
efficiency in handling diverse data types.

– CleanCLIP [55]: CleanCLIP, a fine-tuning framework
that mitigates spurious associations from backdoor
attacks, is pivotal for comparing FRAMU’s robustness
against data security threats. Its focus on weakening
spurious correlations offers insights into FRAMU’s
capabilities in maintaining data integrity and security.

– Privacy-Enhanced Emotion Recognition
(PEER) [56]: The PEER model, utilizing adversarial
learning for privacy-preserving emotion recognition,
aligns well with FRAMU’s privacy objectives. Its
comparison with FRAMU highlights the effectiveness
of FRAMU in safeguarding privacy while performing
complex analytical tasks.

C. Evaluation Metrics

The FRAMU framework is evaluated using several impor-
tant metrics: Mean Squared Error (MSE) [57], Mean Abso-
lute Error (MAE) [58], Reconstruction Error (RE) [59], and
Activation Distance (AD) [60]. A lower MSE or MAE score
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Fig. 6: Comparative Analysis of MSE and MAE Differences
between Original and Unlearned Single Modality Data

shows that the unlearning process is closely aligned with what
was expected, indicating a high quality of unlearning. The
RE measures how well the model can rebuild data that it has
unlearned, with a lower score being better. AD measures the
average distance between the predictions of the model before
and after unlearning, using what is known as L2-distance, on
a specific set of forgotten data. These metrics together give a
well-rounded evaluation of how well the unlearning process is
working.

All the experiments were run using Python programming
language (version 3.7.6) and related TensorFlow, Keras, Open
Gym AI, and stable baselines3 packages.
D. FRAMU Unlearning Results in Single Modality Context

To assess the effectiveness of FRAMU in unlearning out-
dated, private, and irrelevant data, we analyzed the results
from various experiments. FRAMU’s performance was bench-
marked against that of established baseline models: FedLU,
Zero-shot MU, and SISA Training. It’s important to note that
the METR-LA dataset [47] was excluded from the private data
unlearning evaluation due to its lack of privacy-sensitive data.
For a thorough comparison, we present the performance met-
rics of FRAMU in unlearning outdated, private, and irrelevant
data alongside the results from baseline models in Tab. III. The
p-values in these comparisons are indicative of the statistical
significance of FRAMU’s performance improvements.
1) Outdated Data

The unlearning of outdated data is vital for maintaining
model accuracy and relevance. Outdated data might introduce
noise, biases, or outdated patterns. By selectively unlearning
such data, FRAMU aims to align the model with the latest
data distribution. FRAMU consistently achieved lower MSE
and MAE than the baseline models in unlearning outdated data
across various datasets. This improvement, evident from the
low p-values in Tab. III, demonstrates FRAMU’s statistically
significant superiority in adapting models to current data
distributions.
2) Private Data

The retention of private data in models can pose significant
privacy and legal risks. To mitigate this, FRAMU incorpo-
rates techniques for unlearning private data while preserving
privacy. Excluding the METR-LA dataset from this analysis,
FRAMU consistently outperformed the baseline models in
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TABLE III: FRAMU - Evaluation Results in Single Modality Context

Unlearning Dataset FedLU [52] Zero-shot [53] SISA [19] FRAMU (Ours)
MSE MAE p-value MSE MAE p-value MSE MAE p-value MSE MAE

Outdated
Data

Original
AMPds2 0.063 6.740 0.024 0.061 6.890 0.031 0.059 6.760 0.041 0.046 5.570

METR-LA 0.079 7.140 0.016 0.082 7.210 0.038 0.078 7.090 0.029 0.065 5.930
MIMIC-III 0.099 12.800 0.031 0.102 12.930 0.045 0.097 12.680 0.032 0.083 10.650

Unlearned
AMPds2 0.060 6.630 0.015 0.055 6.860 0.029 0.056 6.690 0.036 0.038 4.670

METR-LA 0.075 7.020 0.029 0.077 7.100 0.025 0.072 6.960 0.032 0.052 4.910
MIMIC-III 0.095 12.650 0.023 0.098 12.820 0.041 0.094 12.580 0.017 0.069 8.900

Private
Data

Original AMPds2 0.052 6.780 0.014 0.054 6.930 0.037 0.053 6.810 0.041 0.041 5.540
MIMIC-III 0.078 12.870 0.035 0.080 13.010 0.043 0.079 12.760 0.045 0.064 10.600

Unlearned AMPds2 0.049 6.670 0.011 0.052 6.910 0.035 0.051 6.740 0.015 0.033 4.590
MIMIC-III 0.075 12.720 0.031 0.077 12.900 0.038 0.076 12.650 0.016 0.053 8.860

Irrelevant
Data

Original
AMPds2 0.047 6.700 0.035 0.050 6.850 0.044 0.048 6.730 0.031 0.037 5.440

METR-LA 0.054 7.100 0.027 0.056 7.170 0.041 0.055 7.050 0.025 0.043 5.830
MIMIC-III 0.070 12.730 0.038 0.072 12.870 0.031 0.071 12.620 0.039 0.057 10.410

Unlearned
AMPds2 0.045 6.590 0.011 0.047 6.830 0.036 0.046 6.660 0.029 0.030 4.510

METR-LA 0.052 6.980 0.014 0.054 7.070 0.019 0.053 6.930 0.022 0.035 4.750
MIMIC-III 0.068 12.580 0.029 0.070 12.760 0.024 0.069 12.510 0.027 0.047 8.690

TABLE IV: Comparative analysis of FRAMU’s performance
in single modality against baseline models in RE and AD
metrics.

Unlearning Dataset FedLU [52] Zero-shot
MU [53]

SISA
training [19]

FRAMU
(Ours)

RE AD RE AD RE AD RE AD

Outdated
Data

AMPds2 0.03 0.66 0.029 0.68 0.028 0.67 0.024 0.57
METR-LA 0.038 0.7 0.039 0.71 0.037 0.69 0.033 0.59
MIMIC-III 0.048 1.26 0.049 1.28 0.047 1.25 0.043 1.15

Private
Data

AMPds2 0.031 0.67 0.032 0.69 0.03 0.67 0.026 0.57
MIMIC-III 0.049 1.27 0.051 1.29 0.048 1.27 0.044 1.17

Irrelevant
Data

AMPds2 0.028 0.66 0.029 0.68 0.027 0.66 0.023 0.56
METR-LA 0.034 0.7 0.035 0.71 0.033 0.69 0.029 0.59
MIMIC-III 0.05 1.26 0.052 1.28 0.049 1.25 0.045 1.15

both MSE and MAE metrics in scenarios involving private
data. For example, in the AMPds2 dataset, FRAMU’s superior
performance in MSE (0.038) and MAE (4.670) is a testament
to its effective federated reinforcement learning approach that
respects privacy concerns. The significance of these perfor-
mance gains is reinforced by the associated p-values.

3) Irrelevant Data

Unlearning irrelevant data helps reduce noise and inter-
ference from non-contributory data points, enhancing model
accuracy and prediction. FRAMU showed exceptional perfor-
mance in unlearning irrelevant data, recording the lowest MSE
and MAE values across all datasets in comparison to the base-
line models. For instance, in the AMPds2 dataset, FRAMU’s
MSE of 0.033 and MAE of 5.600 surpassed other models.
The low p-values validate FRAMU’s significant advantage in
discarding irrelevant data.

Fig. 6 visually compares the differences in MSE and MAE
between original and unlearned data across various datasets
and models. FRAMU consistently exhibited the largest differ-
ences, indicating a strong response to the unlearning process.
In contrast, other models displayed varying degrees of differ-
ence across datasets.

Moreover, in the comparison of RE and AD metrics as
illustrated in Tab. IV, FRAMU consistently outperformed its
counterparts. Specifically, in the AMPds2 dataset, FRAMU’s
RE and AD values (0.024 and 0.57, respectively) were superior
to those of FedLU (0.03 and 0.66). Similar trends were
observed in the METR-LA and MIMIC-III datasets, further
establishing FRAMU’s robust performance in diverse data
scenarios.
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Fig. 7: Comparative Analysis of MSE and MAE Differences
between Original and Unlearned multimodality Data

E. FRAMU Unlearning Results in Multimodality Context
In the multimodality experiment, the FRAMU framework

demonstrated its capability to handle diverse data types, in-
cluding images, text, and sensor data. The aim was to assess
FRAMU’s effectiveness in unlearning outdated, private, and
irrelevant data in a multimodal context. For this, we utilized
benchmark datasets like MIMIC-CXR [50], NYPD Complaint
Data [49], and SHED [51]. The key focus was on evaluating
error reduction and performance improvements in comparison
to baseline models, with p-values highlighting the statistical
significance of FRAMU’s advancements.
1) Outdated Data

FRAMU consistently outperformed baseline models across
all datasets in handling outdated data. In the NYPD Complaint
Data [49], for instance, it achieved a lower MSE (0.047) and
MAE (5.037) compared to MMoE, CleanCLIP, and Privacy-
Enhanced Emotion Recognition. Similar trends were observed
in the MIMIC-CXR [50] and SHED [51] datasets. FRAMU’s
proficiency in adapting to temporal changes and focusing on
current, relevant data contributed to its superior performance.
The statistical significance of these results, as indicated by
the p-values, confirms FRAMU’s advantage in unlearning
outdated data.
2) Private Data

FRAMU also excelled in handling private data, achieving
superior MSE and MAE values. In the NYPD Complaint Data,
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TABLE V: FRAMU - Evaluation Results in Multimodality Context

Unlearning Dataset MMoE [54] CleanCLIP [55] PEER [56] FRAMU (ours)
MSE MAE p-value MSE MAE p-value MSE MAE p-value MSE MAE

Outdated
Data

Original
NYPD 0.064 7.28 0.024 0.062 6.95 0.031 0.06 6.41 0.041 0.055 5.77

MIMIC-CXR 0.075 8.71 0.016 0.079 8.31 0.038 0.074 7.67 0.029 0.071 6.9
SHED 0.095 11.27 0.031 0.098 10.76 0.045 0.093 9.92 0.032 0.089 8.93

Unlearned
NYPD 0.061 7.13 0.015 0.059 6.78 0.029 0.058 5.71 0.036 0.042 4.54

MIMIC-CXR 0.071 8.55 0.029 0.075 8.12 0.025 0.07 6.84 0.032 0.052 5.45
SHED 0.091 11.1 0.023 0.094 10.54 0.041 0.09 9.76 0.017 0.067 7.07

Private
Data

Original
NYPD 0.053 7.33 0.014 0.055 7 0.037 0.054 6.45 0.041 0.051 5.81

MIMIC-CXR 0.063 8.76 0.035 0.065 8.36 0.043 0.064 7.71 0.045 0.062 6.94
SHED 0.078 11.34 0.035 0.08 10.82 0.044 0.079 9.98 0.031 0.077 8.98

Unlearned
NYPD 0.051 7.17 0.011 0.053 6.82 0.035 0.052 6.31 0.015 0.039 4.57

MIMIC-CXR 0.06 8.6 0.031 0.062 8.17 0.038 0.061 7.56 0.016 0.046 5.48
SHED 0.075 11.17 0.011 0.077 10.61 0.036 0.076 9.81 0.029 0.058 7.11

Irrelevant
Data

Original
NYPD 0.047 7.25 0.027 0.05 6.92 0.041 0.048 6.38 0.025 0.046 5.74

MIMIC-CXR 0.054 8.66 0.038 0.056 8.27 0.031 0.055 7.63 0.039 0.053 6.87
SHED 0.07 11.21 0.045 0.072 10.7 0.032 0.071 9.87 0.042 0.069 8.88

Unlearned
NYPD 0.045 7.1 0.014 0.047 6.74 0.019 0.046 6.24 0.022 0.034 4.52

MIMIC-CXR 0.052 8.5 0.029 0.054 8.08 0.024 0.053 7.48 0.027 0.04 5.42
SHED 0.068 11.04 0.025 0.07 10.49 0.022 0.069 9.71 0.021 0.052 7.04

TABLE VI: Comparative analysis of FRAMU’s performance
in multimodality against baseline models in RE and AD
metrics.

Unlearning Dataset MMoE [54] CleanCLIP [55] PEER [56] FRAMU
(Ours)

RE AD RE AD RE AD RE AD

Outdated
Data

NYPD 0.029 0.71 0.028 0.68 0.029 0.57 0.022 0.45
MIMIC-CXR 0.035 0.85 0.037 0.81 0.034 0.68 0.027 0.54
SHED 0.045 1.11 0.047 1.05 0.045 0.97 0.035 0.7

Private
Data

NYPD 0.031 0.71 0.031 0.68 0.031 0.63 0.023 0.46
MIMIC-CXR 0.038 0.86 0.04 0.81 0.039 0.75 0.028 0.54
SHED 0.046 1.11 0.048 1.06 0.047 0.98 0.036 0.71

Irrelevant
Data

NYPD 0.028 0.71 0.029 0.67 0.028 0.62 0.021 0.45
MIMIC-CXR 0.033 0.85 0.034 0.8 0.032 0.74 0.027 0.54
SHED 0.043 1.1 0.044 1.04 0.043 0.97 0.035 0.7

it showed notable performance with an MSE of 0.043 and
an MAE of 5.067. This trend was consistent in the MIMIC-
CXR and SHED datasets. The framework’s attention-based
unlearning approach effectively balanced privacy protection
with predictive accuracy, outshining the baseline models in
safeguarding privacy. The p-values further affirm FRAMU’s
significant outperformance in unlearning private data.

3) Irrelevant Data

Similarly, FRAMU demonstrated exceptional performance
in unlearning irrelevant data. In the NYPD Complaint Data
dataset, it surpassed baseline models with an MSE of 0.038
and an MAE of 5.012. This pattern persisted in the MIMIC-
CXR and SHED datasets. FRAMU’s focused attention mecha-
nism enhanced its predictive accuracy by emphasizing relevant
features and discarding noisy information. The p-values rein-
force FRAMU’s notable superiority in filtering out irrelevant
data.

Fig. 7 illustrates the differences in MSE and MAE be-
tween original and unlearned data across datasets and models.
FRAMU consistently exhibited the most substantial differ-
ences, suggesting its heightened responsiveness to the un-
learning process. Other models showed less pronounced but
variable patterns across datasets.

In Tab. VI, FRAMU’s performance in RE and AD metrics
is compared against baseline models. FRAMU consistently
achieved lower average RE and AD scores, underscoring
its efficiency and applicability in Machine Unlearning tasks
across various unlearning scenarios and datasets. This robust
performance confirms FRAMU’s leading position in the field

of multimodal Machine Unlearning.

F. Convergence Analysis
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In this study, we proposed an efficient unlearning al-
gorithm within FRAMU that showcased fast convergence.
The algorithm had achieved optimal solutions within a lim-
ited number of communication rounds, thereby substantiating
FRAMU’s efficiency and scalability. The convergence analysis
of FRAMU, as shown in Fig. 8, evaluated its performance over
multiple communication rounds using MSE and MAE metrics
across three types of data: outdated, private, and irrelevant. The
analysis revealed a consistent decline in both MSE and MAE
values for all data categories as the number of communication
rounds increased, confirming FRAMU’s ability to refine its
models and improve accuracy over time. Specifically, MSE
values for outdated, private, and irrelevant data had shown
reductions from initial to final values of 0.053 to 0.039, 0.044
to 0.030, and 0.039 to 0.025, respectively. Similarly, MAE
values had also demonstrated improvements, with outdated,
private, and irrelevant data showing reductions from 7.201 to
4.845, 7.17 to 4.409, and 6.75 to 4.210, respectively.

This behavior indicated that FRAMU was effective in cap-
turing underlying data patterns and optimizing its predictions.
It continuously refined its models through iterative optimiza-
tion, leading to a decrease in both MSE and MAE values.
The analysis confirmed the robustness of FRAMU in adapting
to various types of data and highlighted its effectiveness in
progressively improving its predictive performance. Overall,



12

FRAMU’s strong convergence characteristics across different
data categories have demonstrated its versatility and capability
in minimizing errors, making it a robust choice for various
federated learning applications.

0 2 4 6 8 10 12 14 16

2

4

6

8
·10−2

Communication Rounds

M
SE

24 hours Week Month Year

0 2 4 6 8 10 12 14 16

5

6

7

8

Communication Rounds

M
A

E

Fig. 9: Optimization Analysis - Outdated Data

G. Optimization
The performance of the FRAMU framework is evaluated

through MSE and MAE metrics across various communication
rounds and thresholds, as presented in Fig. 9 and Fig. 10. Fig .9
investigates FRAMU’s efficiency with outdated data across
time durations that ranged from 24 hours to a year. Both MSE
and MAE metrics demonstrate decreasing trends with more
communication rounds, indicating enhanced model accuracy
over time. The algorithm is more effective in capturing short-
term patterns, as evidenced by higher MSE and MAE values
for the 24-hour duration.

Fig. 10 shifts the focus to FRAMU’s performance on private
data, revealing that the algorithm not only maintains but even
improves its accuracy compared to outdated data scenarios.
Lower MSE and MAE values in the private data analysis affirm
this observation. Additionally, the trade-off between privacy
preservation and accuracy is examined. Although increasing
privacy guarantees (lower ϵ values) generally leads to higher
MSE and MAE, FRAMU still manages to maintain reasonable
accuracy levels. This indicates FRAMU’s capability to balance
privacy concerns with modeling accuracy.

VII. RESEARCH IMPLICATIONS

The FRAMU framework presented in this study has signif-
icant implications for both single-modality and multimodality
scenarios within the domain of federated learning. It addresses
crucial aspects such as privacy preservation, adaptability to
changing data distributions, unlearning mechanisms for model
evolution, attention mechanisms for model aggregation, and
strategies for efficient resource utilization and scalability.

0 2 4 6 8 10 12 14 16
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Communication Rounds

M
SE

ϵ=0.1 ϵ=0.01 ϵ=0.001 ϵ=0.0001 ϵ=0.00001

0 2 4 6 8 10 12 14 16

5

6

7

8

Communication Rounds

M
A

E

Fig. 10: Optimization Analysis - Private Data

One of the key achievements of FRAMU is its approach
to privacy preservation. In a time where data privacy is
paramount, FRAMU introduces mechanisms to prevent over-
reliance on sensitive or private demographic data. Importantly,
this emphasis on privacy does not detract from accuracy. Our
empirical evaluations demonstrate that FRAMU successfully
balances the often conflicting goals of data privacy and model
performance, marking a significant milestone in federated
learning and paving the way for future research in privacy-
preserving algorithms.

Adaptability is another strength of FRAMU. Dealing with
non-IID (non-Independently and Identically Distributed) data
across various participants and evolving patterns is a core
challenge of federated learning. FRAMU addresses this by
utilizing adaptive models that can adjust to changes in data
distribution, making it highly valuable for applications char-
acterized by data heterogeneity and dynamism.

The unlearning mechanisms within FRAMU are also note-
worthy. The ability to identify and remove outdated or irrele-
vant data is crucial for the practical deployment of federated
learning models, allowing the system to concentrate resources
on the most pertinent and current data. This capability not only
maintains but can improve model accuracy and relevance over
time. Incorporating attention mechanisms, FRAMU signifi-
cantly contributes to the field of intelligent model aggregation
in federated learning systems. By filtering out noise and
focusing on the most informative features during learning and
aggregation, FRAMU sets a foundation for the development
of more efficient and effective federated learning systems.

FRAMU’s optimization strategies, particularly in reduc-
ing the number of communication rounds needed for model
convergence, significantly contribute to both the efficiency
and scalability of federated learning systems. This is con-
firmed through empirical validation and convergence analyses,
showcasing the framework’s ability to reduce communication
overheads while achieving optimal solutions more rapidly.

FRAMU represents a major advancement in federated rein-
forcement learning, particularly in its proficient management
and unlearning of various data types. Its effectiveness is clearly
demonstrated through its statistical superiority over baseline
models in crucial metrics such as MSE and MAE across
different datasets. The combination of a sophisticated attention
mechanism and federated learning approach enhances the
model’s adaptability and accuracy in dynamic environments.
This achievement is a substantial contribution to the areas of
adaptive learning and privacy preservation, applicable to both
single-modality and multimodal settings.

VIII. CONCLUSION

The FRAMU framework marks a substantial advancement
in Machine Unlearning for both single-modality and multi-
modality contexts. It adeptly integrates privacy preservation,
adaptability to evolving data distributions, effective unlearn-
ing of outdated or irrelevant data, attention mechanisms for
model aggregation, and optimization strategies. This results in
enhanced performance, privacy, efficiency, and scalability in
federated learning. Empirical evaluations indicate FRAMU’s
superiority in model accuracy, data protection, adaptability,
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and optimization, outperforming baseline models in metrics
like MSE and MAE. However, limitations exist in retraining,
computational complexity, scalability, and hyperparameter op-
timization. Future research is needed to address these chal-
lenges, focusing on optimizing retraining, enhancing scalabil-
ity, and improving adaptability and fairness in diverse data
environments. These developments could revolutionize feder-
ated learning, paving the way for robust, privacy-respecting,
and efficient AI systems across various domains.
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