
Identification and quantification of components in ternary vapor mixtures
using a microelectromechanical-system-based electronic nose

Weichang Zhao,1,2 Lal A. Pinnaduwage,2,3,a� John W. Leis,4 Anthony C. Gehl,2

Steve L. Allman,2 Allan Shepp,1 and Ken K. Mahmud1

1Triton Systems, Inc., 200 Turnpike Road, Chelmsford, Massachusetts 01824, USA
2Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-612, USA
3Department of Physics, University of Tennessee, Knoxville, Tennessee 37996, USA
4Department of Electrical, Electronic, and Computer Engineering, University of Southern Queensland,
Toowoomba, Queensland 4350, Australia

�Received 1 November 2007; accepted 12 March 2008; published online 16 May 2008�

We report the experimental details on the successful application of the electronic nose approach to
identify and quantify components in ternary vapor mixtures. Preliminary results have recently been
presented �L. A. Pinnaduwage et al., Appl. Phys. Lett. 91, 044105 �2007��. Our
microelectromechanical-system-based electronic nose is composed of a microcantilever sensor array
with seven individual sensors used for vapor detection and an artificial neural network for pattern
recognition. A set of custom vapor generators generated reproducible vapor mixtures in different
compositions for training and testing of the neural network. The sensor array was selected to be
capable of generating different response patterns to mixtures with different component proportions.
Therefore, once the electronic nose was trained by using the response patterns to various
compositions of the mixture, it was able to predict the composition of “unknown” mixtures. We
have studied two vapor systems: one included the nerve gas simulant dimethylmethyl phosphonate
at ppb concentrations and water and ethanol at ppm concentrations; the other system included
acetone, water, and ethanol all of which were at ppm concentrations. In both systems, individual,
binary, and ternary mixtures were analyzed with good reproducibility. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2921866�

I. INTRODUCTION AND BACKGROUND

The biological nose �in particular, the canine nose� is one
of the most sensitive detectors in existence today. Around a
quarter of a century ago, Persaud and Dodd1 realized that
biological olfaction, which is highly sensitive and selective,
is based on the use of multiple sensors that are only broadly
selective. They proposed an “electronic nose” based on this
concept.1 Just as in the case of olfactory receptors,2 the indi-
vidual sensors in an electronic nose can only be broadly se-
lective, since the binding of an analyte needs to be revers-
ible. There is no requirement for an analyte-specific sensor
coating; by definition, such an analyte-specific sensor would
bind the analyte in a permanent way, for example, by chemi-
sorption, and thus, it could be used only one time �a “throw-
away sensor”�. On the other hand, in an electronic nose,
since the sensor responses are reversible, the detection can be
repeated after a short recovery time. Another advantage of an
electronic nose is that all of the “trained” components of the
mixture are simultaneously identified and quantified.

The biological olfactory system is quite complex and
highly selective. Recently, exhaustive searches of the almost
complete genome sequences of human and mouse have led
to the identification of around 900 odorant receptors in hu-
mans and around 1500 in mice.3 The odor detection is based
on the “smell” patterns generated by receptor array. The hu-

man olfactory system is able to distinguish thousands of dif-
ferent odors3 by using pattern recognition, and some odors
are due to complex mixtures of pure compounds: A particular
mixture of odor molecules creates a unique response pattern
in the olfactory bulb, which the brain subsequently interprets
as a particular odor. At least in the initial stages, the elec-
tronic nose does not need to be that complex. In particular,
detection of explosive or chemical vapors requires the iden-
tification of mostly one or a few pure compounds. Further-
more, some of the “interferent” vapors could be removed
with the use of a preconcentrator located in front of the elec-
tronic nose. Therefore, the ability to detect a few pure com-
pounds in simple mixtures could lead the way to a practical
electronic nose for chemical and explosive vapor detection in
the near future. However, by expanding the number of sen-
sors in the sensor array, it may be possible to develop a
functional electronic nose even without using a preconcen-
trator. To achieve such a “stand-alone” device, a
microelectromechanical-system �MEMS�-based electronic
nose will be required to keep the device small. It must be
noted that the primary receptors in the biological nose, which
are cilia, are comparable in size to the microcantilever sen-
sors, and there are thousands of cilia in the biological nose.

A MEMS-based electronic nose has other highly desir-
able features in addition to being able to accommodate a
large numbers of sensors in a small device. The rapid devel-
opment of the integrated circuit technology during the past
two decades has initiated the fabrication of chemical sensors
on silicon or complementary metal oxide semiconductor.4,5
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The largely two-dimensional integrated circuit and chemical
sensor structures processed by combining lithographic, thin-
film, etching, diffusive, and oxidative steps have been re-
cently extended into the third dimension by using microma-
chining or MEMS technologies—a combination of special
etchants, etch stops, and sacrificial layers.4 Therefore,
MEMS technology provides an excellent means to meet the
criteria needed for a full-blown electronic nose, such as batch
fabrication at low cost, low power consumption, as well as
miniaturization of the devices.

Research on the development of electronic noses based
on several sensor platforms has been conducted over the past
two to three decades �see Refs. 6–9 and references therein�.
However, most effort has been devoted to the development
of individual sensor coatings to achieve high sensitivity of
detection. The holy grail of chemical sensors is the ability to
selectively identify target analytes. Even though much of the
work so far has been devoted to sensitive detection of indi-
vidual analytes, any practical applications cannot be realized
until selective detection is achieved. As mentioned earlier, a
single reversible sensor is inherently nonselective. The selec-
tivity is to be achieved via pattern recognition based on a
sensor array, just like in the case of the biological nose. Even
with the increased activity in sensor array research recently,
successful quantitative identification of component vapors
has not been reported for mixtures with more than two com-
ponents �see, for example, Refs. 10–16 and references
therein�. The excellent ability of a carbon black sensor array
to accurately identify a number of low volatility organic mol-
ecules individually presented to the sensor array has been
reported.17 Similarly, a fiber optic bead-based sensor array18

and microcantilever sensor array19 have been shown to be
able to accurately identify different odors individually pre-
sented to the sensor arrays. The most recent reports on the
successful quantitative analysis of binary mixtures were
based on surface acoustic wave sensor arrays12–14 and micro-
cantilever sensor arrays.15,16 Partial success of the analysis of
ternary mixtures has been described in Ref. 12, and quanti-
tative identification of one unknown component in a ternary
mixture has recently been reported.16 In all these studies,8–14

the concentrations of the component vapors were in the ppm
range or higher.

A variety of pattern recognition algorithms has been
used in conjunction with the above mentioned and other vari-
ous sensor arrays �see Refs. 8 and 20–22 and references
therein�. Among these, the artificial neural network �ANN�
mimics the mammalian neuron processing of odor stimuli,
offers powerful nonlinear mapping capability and generaliza-
tion ability, and is more resistant to signal noise and drift.23,24

Recently, we reported a preliminary account of the de-
tection of ppb concentrations of the nerve gas simulant dim-
ethylmethyl phosphonate �DMMP� and ppm concentrations
of ethanol and water vapor in ternary mixtures.25 In this pa-
per, we provide a detailed account of the experiments in-
volved. Sensitive and selective detection of DMMP has im-
portant significance because of its relevance in the detection
of chemical threats.26 Furthermore, chemical sensors are no-
torious for their inability to deal with humidity, and this

study shows that it is possible to selectively identify DMMP
vapor from water vapor.

II. EXPERIMENTS

A. Apparatus

A schematic diagram of the apparatus is shown in Fig. 1.
There are two major parts of the apparatus: the calibrated
vapor supply and the vapor detection system. The upper left
part of Fig. 1 shows the vapor supply system, which is com-
posed of mass flow controllers �MFCs�, valves, vapor gen-
erators, etc., and the flow cell block in the upper right part of
Fig. 1 represents the vapor detection system, which is com-
posed of a flow cell with the microcantilever sensor array
and the electronic circuit board for data acquisition. Both
systems are controlled and operated by a personal computer.

The calibrated vapor supply system was designed to sup-
ply accurate, stable, and adjustable individual vapors and
vapor mixtures. The system is capable of producing vapor
streams with reproducibility, flexibility, and convenience in
terms of concentration, mixture composition, flow rate, and
vapor pulse duration. The vapors directed to the flow cell
were detected by using an array of microcantilevers with
different coatings to realize selective detection based on the
concept of the electronic nose. Detailed descriptions on the
vapor supply and the detection system will be provided be-
low.

B. Vapor generation and mixing

As shown in Fig. 1, there are four flow lines converging
to the flow cell. The top flow line is for the supply of base
flow �just the carrier gas, N2�, and the other three lines are
for the supply of the analyte vapors. The analyte vapors were

FIG. 1. �Color online� Schematic of the electronic nose system, which in-
cludes the vapor mixture generation and delivery system, the detection sys-
tem �flow cell with microcantilever sensor array�, and the data processing
and computation system. For the electronic valves, NO is normally open and
NC is normally closed.
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mixed with carrier gas, N2, and diluted to low concentra-
tions. Up to three different analyte vapors can be directed to
the flow cell. The digital MFCs �Alicat Scientific� and the
electronic three-way valves �Parker Hannifin� were remotely
controlled by LABVIEW™ software.

The vapor generators were composed of U-shape holders
containing diffusion vials �VICI Metronics, Inc.� of DMMP,
water, ethanol, and acetone. The vials were placed in the exit
side of the U-shape holders �three of the four vapors were
available at a given time�. The entrance side of the U-shape
holder was filled with glass beads to help thermalize the
carrier gas. The diffusion rate of each of the vials depends on
the temperature of the liquid inside the vial and the vial’s
dimensions. The U-shape holders were immersed in
temperature-controlled baths to maintain stable temperatures.
In our experiments, the DMMP, water, ethanol, and acetone
vapor generators were kept at 20, 10, 20, and 20 °C, respec-
tively. The diffusion rates of the three diffusion vials were
estimated by VICI Metronics to be 30, 2300, 6000, and
35 000 ng /min for DMMP, water, ethanol, and acetone, re-
spectively. In our experiment, the flow rate of the carrier gas
was kept at 50 SCCM �SCCM denotes standard cubic centi-
meter per minute at STP�, so that the corresponding concen-
trations for the vapors were 100 ppb, 60 ppm, 60 ppm, and
300 ppm.

There were two flow controllers connected to each of the
vapor generators. The flow controller located before a vapor
generator controlled the flow rate of the carrier gas, N2, go-
ing through the vapor generator with an accuracy of 0.4% at
a flow rate of 50 SCCM. The flow controller located after a
vapor generator, together with a manual valve �Swagelok
fine metering valve�, was used to split the flow coming out of
the vapor generator. One of the two split flows led to the flow
cell to mix with other split flows coming from other lines.
Thus, the flow through each vapor generator was maintained
at a constant value �50 SCCM�, while the flow rate delivered
to the flow cell could be varied. The total flow rate of the
vapor mixture going through the microcantilever flow cell
was kept at 50 SCCM. Therefore, while the flow rate of the
mixture was kept the same as the individual flows through
the vapor generators, the concentration of a component of
the mixture was diluted to a factor equal to the fraction of the
split flow rate to the total flow rate,

ci = �flowi/flowt�Ci, i = 1,2,3, �1�

where ci is the concentration of component i in the mixture,
flowi is the flow rate of the split flow of component i to the
flow cell, flowt is the total flow rate �50 SCCM�, and Ci is
the concentration of the vapor i coming out of the vapor
generator i �maximum concentration of vapor i�. In this re-
port, we usually use the fraction of �flowi / flowt� to represent
the component concentration of the mixture. We call the con-
centration in the unit of its maximum concentration as frac-
tional concentration

Fci = �flowi/flowt�, i = 1,2,3. �2�

For example, if only 10 SCCM of the DMMP vapor is di-
rected to the flow cell, Fci would be 10 /50=0.2, i.e., 20% of
its maximum concentration; thus, ci would be 20 ppb, since

Ci was 100 ppb. The manual valves were used to build up
enough gas pressure in the vapor generators required by the
gas-splitting MFCs to properly work. The arrangement of the
metal manual valves in the flow lines and the MFCs out of
the lines allowed the flow lines to be baked.

The above design of the vapor delivery system served
two major functions: �i� it allowed each vapor generator to
be maintained at a constant flow rate and, thus, maintain
stable vapor streams; �ii� in generating vapor mixtures, it
allowed the flexibility to deliver accurate and adjustable con-
centrations of vapor components to the flow cell. Both of
these are important to be able to consistently deliver cali-
brated vapor streams over long periods.

When we installed a new vapor generator to the appara-
tus, we always monitored the exit flow and the responses of
the sensors to the vapor to make sure that there was no leak-
ing along the line and flushed the generator with the carrier
gas �N2� for several days to remove water vapor. Once a
vapor generator was loaded, the carrier gas through it was
kept running 24 h a day until all measurements were
completed.25,26

C. Microcantilever sensor array

The flow cell was customized to hold four Canti-4™
piezoresistive microcantilever chips �from Cantion A/S, now
a subsidiary of NanoNord A/S, Denmark�. Each of the chips
had four microcantilevers or two pairs. One cantilever of
each pair was coated with gold by the manufacturer, and the
other uncoated cantilever was used as a reference. We ap-
plied self-assembled monolayer �SAM� coatings to three of
the chips by soaking in SAM solutions of 4-mercaptobenzoic
acid �4-MBA�, 2-MBA, and 4-methoxybenzenethiol. There-
fore, only three different coatings were realized by those
three cantilever chips. In the other chip, we applied a fresh
gold coating �50 nm� on top of an existing gold-coated lever
and a silver coating �50 nm� on top of the other gold-coated
lever. Since the readout did not properly work for one pair of
the cantilevers �coated with 4-MBA� in our experiment, the
sensor array contained seven-microcantilever sensors with
five different coatings. In Figs. 2–4, the sensor coatings were
in the following order: 4-MBA, 2-MBA, 2-MBA, silver,
gold, 4-methoxybenzenethiol, and 4-methoxybenzenethiol.

The microcantilever deflection was detected via varia-
tion of the piezo-resistance of the microcantilevers. The
change in piezo-resistance of each coated microcantilever
with respect to that of the reference microcantilever was
measured by using a Wheatstone bridge circuit.27 We se-
lected four Canti-4™ chips, which had best selectivity in
responses to the DMMP, water, ethanol, and acetone. For
example, two of the seven sensors were mainly sensitive to
water vapor, two of the sensors were sensitive to water and
ethanol �or acetone� but in opposite deflect directions, and
one sensor was mainly sensitive to DMMP.

D. Measurement procedure

We studied two different vapor mixture systems by using
the same seven-microcantilever array. The first was com-
posed of DMMP, water, and ethanol �DWE mixtures� and the
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other was composed of acetone, water, and ethanol �AWE
mixtures�. Since DMMP is a nerve gas stimulant and can be
detected in a relatively low concentration �100 ppb�, the first
mixture �DWE� was studied in more detail than the second

�AWE�. We usually collected one data set in 1 day. Six data
sets of the DWE mixture were collected in a 2 week period,
and two data sets of the AWE mixtures were collected in a 1
week period. Summaries of the DWE and the AWE mixtures

FIG. 2. �Color online� Various response patterns of the
DMMP-water-ethanol vapors. The corresponding com-
positions are shown on the right side of the frame.
There is a unique response pattern correlating to a de-
tected composition.

FIG. 3. �Color online� Various response patterns of the DMMP-water-ethanol vapors presented in the same level to show the distinguishable magnitudes of
the responses. �a� Patterns for DMMP-water binary mixtures. �b� Patterns for the same DMMP-water binary mixtures in �a�, except that there are four
measured patterns to each composition to show how well the patterns were reproduced. �c� Patterns for DMMP-ethanol binary mixtures. �d� Patterns for
DMMP-water-ethanol ternary mixtures. The relative compositions of the mixtures are shown in the legends.
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are shown in Tables I and II, respectively.
Based on formula �2�, the mixture composition is ex-

pressed by a three-element vector of �Fc1 ,Fc2 ,Fc3�, where
Fc1+Fc2+Fc3=1 or 100%. For example, in DWE mixtures,
the three individual vapors of DMMP, water, and ethanol are
expressed as �100%, 0%, 0%�, �0%, 100%, 0%�, and �0%,
0%, 100%�, respectively, the binary mixtures are expressed
with one zero fractional concentration, such as �20%, 80%,
0%�, and the ternary mixtures are expressed with three non-
zero fraction concentrations, such as �20%, 40%, 40%�.

The experimental apparatus shown in Fig. 1 led to two
features for vapor concentrations. First, there was a highest
concentration for each of the three vapors due to the constant
vapor temperature and flow rate of each of the vapor genera-
tors. Second, the sum of the three fractional concentrations
was 100% due to the constant flow rate �50 SCCM� going
through the flow cell and the same flow rate �50 SCCM�
going through each of the three vapor generators. Because of
the restriction of the second feature, the three-element com-
position vector had only two degrees of freedom.

If the component proportion represents the “odor” of a
vapor mixture, the concentration scale of the mixture repre-
sents the strength of the odor. From Eq. �1�, a mixture with
certain odor can be expressed as

�c1,c2,c3� = ��flow1/flowt�C1,�flow2/flowt�C2,

�flow3/flowt�C3� �3�

There are only two independent variables to express the odor

or the vector of �c1, c2, c3�. In a three-dimensional space for
all possible compositions of ternary mixtures, whose coordi-
nates are expressed by the three fraction concentrations of
Fc1, Fc2, and Fc3, all of the possible odors form an equilat-
eral triangle surface �two dimensional �2D�� with three ver-
tices of �100%, 0%, 0%�, �0%, 100%, 0%�, and �0%, 0%,
100%� due to the restriction of Fc1+Fc2+Fc3=100%.

For better recognition of the response patterns, the ANN
needs to be more “experienced”; i.e., more data need to be
used to train the ANN. We prepared the training data based
on two major considerations: �1� By choosing mixture com-
positions representing a variety of odors, the apparatus al-
lowed us to adjust the component concentrations at suitable
increments and to provide detection vapor mixtures with
compositions evenly covering many compositions or the
odors on the triangle surface in the “concentration space”
�see Fig. 5 later�. These vapor compositions included indi-
vidual vapors, binary mixtures, and ternary mixtures. Usu-
ally, we varied the component fraction concentration in a
step of 20% by adjusting the flow rate of the second flow
controller in steps of 10 SCCM for the total flow rate of 50
SCCM. �2� In repeated detection at a given composition, we
usually took four measurements per composition and these
repeated measured patterns helped the network to be more
experienced and, thus, to filter out the noise. The measure-
ment software allowed us to set the number of pulses, pulse
duration, and the time interval between a pulse and its suc-
ceeding pulse. In our experiments, the number of pulses,
duration, and interval were 4, 30 s, and 150 s, respectively.
We measured the different compositions one by one and re-
corded the data into a text-format �ASCII� data file. One such
data file/set �20–30 MB� usually included data related to
21–45 mixtures and took 5–10 h for the data collection.

E. Artificial neural network training and testing

We chose an ANN for pattern recognition, since most
responses of the microcantilevers were nonlinear and com-
plex. The biologically inspired ANN is a self-adapting sys-
tem that can modify its response to external forces by using
previous experience, which offers a more flexible and faster
method of analysis.24 The ANN we used for the pattern rec-
ognition was a back-propagation ANN written in MATLAB®.
The training procedure and testing details will be discussed
elsewhere.28

III. RESULTS AND DISCUSSION

A. Response patterns

The successful identification of vapor mixture by using
electronic nose depended on the sensor array responses to

TABLE I. Response data sets for DMMP-water-ethanol mixtures.

Set Number of
compositions

Number of
patterns

Number of
common

compositions

Composition
category

1 29 116 21 1
2 29 116 21 1
3 45 180 45 2
4 27 108 21 1
5 27 108 21 1
6 45 180 45 2

TABLE II. Response data sets for acetone-water-ethanol mixtures.

Set Number of
compositions

Number of
patterns

Number of
common

compositions

Composition
category

1 21 84 21 1
2 21 84 21 1

FIG. 4. �Color online� Comparison of the response patterns of two arbitrary
compositions collected on different days to display the reproducibility of the
responses.
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different mixtures with different patterns. For vapor mixtures
with the same components but different component propor-
tions, the mixtures can be labeled as having different odors.
If a sensor array responded with different patterns to differ-
ent odors, the electronic nose could discriminate different
odors or component proportions. Therefore, in addition to
identifying the presence or absence of certain components,
we can also quantify the concentrations of the components.
As shown in Fig. 2, the microcantilever array responded to
different compositions with different response patterns.

For better pattern recognition, we also needed low level
of noise and good reproducibility of the responses, in addi-
tion to high level of difference between patterns for different
compositions. Some example response patterns from our
data are shown in Fig. 3. Figure 3�a� shows the response
patterns obtained for single pulses at varying concentrations
for binary mixtures of DMMP and water vapor; response
patterns with four repeated pulses for the same DMMP-water
binary mixtures are shown in Fig. 3�b�. Figures 3�a� and 3�b�
graphically display the levels of the noise and the reproduc-
ibility comparing the difference between patterns corre-
sponding to varying compositions. The repeated responses
had been used to train the ANN to make it more experienced
with the features of noise and signal. Figure 3�c� shows the
patterns for ethanol-DMMP binary mixtures at varying con-
centrations, and Fig. 3�d� shows the patterns of the DMMP,
water, and ethanol ternary mixtures. From these examples, it
is clear that the difference between patterns of different pulse
to the same composition is somewhat smaller compared to
the difference between the patterns corresponding to two dif-
ferent compositions and that the reproducibility is good.

Besides the reproducibility of consecutive pulses, we
also monitored the reproducibility between patterns to the
same composition but collected in different days. As shown
in Fig. 4, two ternary mixtures were measured in four differ-
ent days in an 8 day period. Figure 4 shows that the patterns
measured in different days changed a little and quite smaller
than the pattern difference among different compositions.
The pattern reproducibility of the sensor array over several
days guarantees that the electronic nose trained by using data
of 1 day will be able to correctly detect mixtures presented to
it several days later. Even though our study was limited to a
2 week period, it should be good for a longer period. We plan
to test over longer periods in the next study.

B. Comparison of the predicted concentrations to the
actual concentrations

As we discussed in Sec. II D, all possible odors
�Fc1 ,Fc2 ,Fc3� form a triangular surface in the “concentration
space,” which is the space of all possible compositions. If we
need the ANN to be representatively trained over the whole
triangular surface, we need to accordingly collect training
data over the triangle surface. We collected such data for
DWE mixtures in six different days corresponding to six data
sets �Table I�. The six data sets were in two categories: four
data sets with about 25 different mixtures and two data sets
with 45 mixtures, each of which was different from any of
the first category. We trained and tested the ANN by using
several different methods: �1� one data set of the first cat-
egory was used for training and other five for testing; �2� all
data were placed in one pool and randomly selected 80% for
training and 20% for testing. We collected data on AWE
mixtures in two different days �Table II�. The two data sets
correlate to 21 compositions. For both DWE and AWE mix-
tures, we trained the ANN by using the above two methods
by dividing the data into two groups for training and testing.

In the restricted composition space �the 2D triangle sur-
face�, one point represents a composition. Figure 5 graphi-

FIG. 5. �Color online� Graphical comparison of the predicted and actual
compositions. The triangle is the 2D surface for all of the possible compo-
sitions ��Fc1Fc2Fc3�, i.e., 1.0�Fc1 ,Fc2 ,Fc3�0.0� with the restriction Fc1

+Fc2+Fc3=1. One dot represents an actual composition and one star repre-
sents an estimated composition. The color of a dot or star is a mixture of
three individual colors of red �DMMP�, green �water�, and blue �ethanol�
with the same proportion of the dot’s or star’s composition.
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cally compares the predicted compositions �stars� with the
actual compositions �filled circles� for the DWE mixtures.
Figure 5�a� displays the predicted values of the first category
mixtures, and Fig. 5�b� displays the predicted values of the
second category mixtures. The predicted concentrations are
quite close to the actual values. Figure 5�b� shows that the
ANN can also predict mixture compositions that are different
from compositions used for training.

C. Prediction of the mixtures of DMMP, water, and
ethanol

For the DMMP-water-ethanol mixtures, we trained the
ANN by using data set 2 of Table I. The data set correlates to
29 different compositions including 3 individual vapors, 16
binary mixtures, and 10 ternary mixtures. There are 21 com-
mon compositions in data set 2 with those in the data sets 1,
4 and 5. The common compositions are the first 21 compo-
sitions in Table III. The 29 compositions cover all of the 2D
composition space �the triangle surface of Fig. 5�. We tested
the trained ANN by using other five data sets. The tests on
data sets 5 and 6 are shown in Tables III and IV, respectively.
Note that the data set 6 has no common compositions with
the data set 2, which was used for training. Comparing the
test results in Tables III and IV, there is no obvious differ-
ence in prediction accuracy between the tests of the two data
sets. The ANN can recognize patterns correlating to compo-
sitions that are not the compositions used for training.

A summary of the five tested data sets is displayed in
Table V. The average errors for each of the three components
are very small, which are �0.06. In our ANN training, the
mean square error �MSE� was used as the network perfor-
mance error. During training, the weights and biases were
iteratively adjusted to minimize the MSE. In general, the
MSE is a measure of the accuracy of ANN predictions. The
MSEs in Table V have not shown any obvious trend to in-
crease with the time delay between collections of data for
testing and data for training. The MSE of data set 4 �seventh
day� is bigger than the MSE of data set 1 �first day�,
�0.0056�0.0036�, but the MSE of 5 �eighth day� is smaller

TABLE III. Prediction results for data set 5 of DMMP-water-ethanol mix-
tures. Note: D=DMMP, W=water, and E=ethanol.

Actual composition Predicted composition
D W E D W E

1.00 0.00 0.00 0.98 0.01 0.01
0.80 0.20 0.00 0.83 0.16 0.01
0.80 0.00 0.20 0.78 0.03 0.19
0.60 0.40 0.00 0.62 0.33 0.05
0.60 0.20 0.20 0.57 0.18 0.25
0.60 0.00 0.40 0.47 0.04 0.49
0.40 0.60 0.00 0.35 0.61 0.04
0.40 0.40 0.20 0.36 0.41 0.24
0.40 0.20 0.40 0.38 0.20 0.42
0.40 0.00 0.60 0.34 0.03 0.62
0.20 0.80 0.00 0.20 0.77 0.02
0.20 0.60 0.20 0.22 0.64 0.14
0.20 0.40 0.40 0.18 0.42 0.40
0.20 0.20 0.60 0.23 0.12 0.65
0.20 0.00 0.80 0.13 0.02 0.85
0.00 1.00 0.00 0.00 0.95 0.04
0.00 0.80 0.20 0.00 0.84 0.16
0.00 0.60 0.40 0.00 0.61 0.38
0.00 0.40 0.60 0.01 0.39 0.60
0.00 0.20 0.80 0.01 0.07 0.92
0.00 0.00 1.00 0.00 0.01 0.99
0.04 0.96 0.00 0.00 0.99 0.01
0.04 0.76 0.20 0.05 0.75 0.21
0.04 0.56 0.40 0.00 0.57 0.42
0.04 0.36 0.60 0.04 0.30 0.66
0.04 0.16 0.80 0.03 0.05 0.91
0.04 0.00 0.96 0.05 0.00 0.95

TABLE IV. Prediction results for data set 6 of DMMP-water-ethanol mix-
tures. Note: D=DMMP, W=water, and E=ethanol.

Actual composition Predicted composition
D W E D W E

0.90 0.00 0.10 0.82 0.03 0.16
0.70 0.30 0.00 0.78 0.18 0.04
0.70 0.20 0.10 0.66 0.18 0.16
0.70 0.10 0.20 0.54 0.12 0.34
0.70 0.00 0.30 0.62 0.03 0.35
0.50 0.50 0.00 0.43 0.55 0.02
0.50 0.40 0.10 0.39 0.45 0.15
0.50 0.30 0.20 0.65 0.25 0.11
0.50 0.20 0.30 0.54 0.17 0.29
0.50 0.10 0.40 0.37 0.07 0.56
0.50 0.00 0.50 0.47 0.04 0.49
0.30 0.70 0.00 0.32 0.66 0.02
0.30 0.60 0.10 0.22 0.62 0.15
0.30 0.50 0.20 0.36 0.43 0.21
0.30 0.40 0.30 0.25 0.44 0.31
0.30 0.30 0.40 0.28 0.31 0.42
0.30 0.20 0.50 0.24 0.12 0.64
0.30 0.10 0.60 0.27 0.11 0.62
0.30 0.00 0.70 0.18 0.03 0.79
0.10 0.90 0.00 0.01 0.97 0.02
0.10 0.80 0.10 0.06 0.87 0.08
0.10 0.70 0.20 0.04 0.84 0.12
0.10 0.60 0.30 0.10 0.63 0.27
0.10 0.50 0.40 0.08 0.64 0.28
0.10 0.40 0.50 0.16 0.37 0.47
0.10 0.30 0.60 0.06 0.43 0.51
0.10 0.20 0.70 0.11 0.12 0.77
0.10 0.10 0.80 0.09 0.09 0.82
0.10 0.00 0.90 0.06 0.00 0.94
0.80 0.10 0.10 0.69 0.12 0.19
0.60 0.30 0.10 0.50 0.36 0.14
0.60 0.10 0.30 0.48 0.07 0.44
0.40 0.50 0.10 0.22 0.62 0.15
0.40 0.30 0.30 0.23 0.49 0.28
0.40 0.10 0.50 0.24 0.12 0.64
0.20 0.70 0.10 0.07 0.87 0.05
0.20 0.50 0.30 0.21 0.66 0.12
0.20 0.30 0.50 0.11 0.44 0.46
0.20 0.10 0.70 0.10 0.11 0.78
0.00 0.90 0.10 0.00 0.98 0.02
0.00 0.70 0.30 0.00 0.87 0.13
0.00 0.50 0.50 0.00 0.61 0.39
0.00 0.30 0.70 0.02 0.30 0.68
0.00 0.10 0.90 0.00 0.01 0.99
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�0.0019�. Compared to data sets 1, 4, and 5, which have 21
common compositions with the trained data set 2, the test
MSEs of data sets 3 and 6 �0.0078 and 0.0068� are obviously
bigger. We ascribe the bigger MSEs to the tested composi-
tions being not exactly equal to the compositions that were
trained. The network recognized the patterns of those inter-
polated compositions as patterns similar to those trained pat-
terns and was able to output approximate compositions.

Based on the predicted compositions as those shown in
Tables III and IV, we can identify and quantify individual
components from the ternary mixtures. For example, we set
DMMP as the interested vapor and water and ethanol as the
interference vapors. For identification, our goal is to predict
the presence or absence of the DMMP. From Tables III and
IV, we find that the highest predicted concentration for zero
DMMP was 0.02. If we set 0.03 ��3 ppb� as the criterion to
alarm for the presence of DMMP, we find that there is no
false alarm for any of the 11 cases of DMMP absence �i.e.,
zero false positive�. However, for the 61 cases of DMMP
presence in Tables III and IV, there are 3 cases without alarm
that are expected to alarm �3/61 chance of false negative�.
They are �0.04 0.96 0.00� and �0.04 0.56 0.40� in Table III
and �0.10 0.90 0.00� in Table IV. If we restrict our discussion
only to the data in Tables III and IV, the presence or absence
of DMMP is 100% reliable for DMMP concentration more
than 0.20 ��20 ppb� and 95% reliable for concentration be-
tween 0.20 and 0.0. For component quantification, the aver-
age error on component concentration is below 0.05 �or 5%,
Table VI�, except in data set 3 where the average errors are
0.051 and 0.055 for DMMP and water, respectively.

Unlike the analytical chemistry approach that individu-
ally detects the components and then allows us to calculate
the composition of the mixture, the electronic nose approach
directly detects the mixture �by recognizing the unique re-
sponse pattern correlated with a mixture� and simultaneously

allows us to calculate the component concentrations. The
ANN-predicted concentrations of DMMP from all of the
measurements in the five tested data sets are shown in Fig.
6�a�; these data come from the two possible binary mixtures
and the ternary mixtures. Similarly, the predicted concentra-
tions for water and ethanol are shown in Figs. 6�b� and 6�c�,
respectively. Finally, all of the data are summarized in Fig. 7.

In former paragraphs, we usually present the prediction
results in a three-element vector �such as those in Tables III
and IV�. To change an angle to look at the data, we rear-
ranged the order to list the results, which was not according
to the mixture composition �vector� but to the components
�elements�. The links among the three component concentra-
tions in a vector were ignored and we focused on one com-
ponent each time. Take DMMP as an example; we put to-
gether all predicted compositions with the same DMMP
concentration no matter what the ratio of other two concen-
trations of water or ethanol was. Thus, based on the test
results of the five tested data sets, we got the predicted con-
centrations �0.0–1.0� for DMMP vapor within the mixtures
that concentration proportion of other two components was
not restricted, as shown in Fig. 6�a�. Similarly, we also got
the predicted concentrations for water and ethanol, as shown
in Figs. 6�b� and 6�c�, respectively. To save space, we put the
three prediction curves into the one frame of graph �Fig. 7�.
For lower concentrations ��0.0�, there were usually more
mixture vapors detected. For DMMP concentration of 0.10,
there were 24 mixtures detected, and the prediction mean
and error were calculated based on the prediction results of
the 24 mixtures. The results in Fig. 7 show that the electronic
nose system in this report, which includes the seven-pair
microcantilever array and the neural network algorithm, is

TABLE V. Summary of prediction errors for DMMP-water-ethanol mix-
tures. Note: cat. =category. Refer to Table I.

Data set DMMP Water Ethanol Average

1 Mean 0.0069 −0.0287 0.0218 0.0000
�cat. 1� MSE 0.0035 0.0041 0.0031 0.0036

Max 0.1360 0.1110 0.1218 0.1229
Min −0.1497 −0.1295 −0.1710 −0.1501

4 Mean −0.0099 0.0214 −0.0115 0.0000
�cat. 1� MSE 0.0048 0.0055 0.0065 0.0056

Max 0.1766 0.2050 0.1525 0.1780
Min −0.1752 −0.1281 −0.2082 −0.1705

5 Mean −0.0143 −0.0108 0.0251 0.0000
�cat. 1� MSE 0.0014 0.0021 0.0023 0.0019

Max 0.0329 0.0414 0.1195 0.0646
Min −0.1285 −0.1287 −0.0606 −0.1060

3 Mean −0.0508 0.0552 −0.0044 0.0000
�cat. 2� MSE 0.0078 0.0087 0.0068 0.0078

Max 0.0908 0.1890 0.1609 0.1469
Min −0.1805 −0.0813 −0.1936 −0.1518

6 Mean −0.0441 0.0317 0.0124 0.0000
�cat. 2� MSE 0.0070 0.0069 0.0064 0.0068

Max 0.1452 0.1890 0.1599 0.1647
Min −0.1760 −0.1206 −0.1759 −0.1575

TABLE VI. Prediction results for data set 2 of acetone-water-ethanol mix-
tures. Note: A=acetone, W=water, and E=ethanol.

Actual composition Predicted composition
A W E A W E

1.00 0.00 0.00 0.96 0.03 0.01
0.80 0.20 0.00 0.85 0.15 0.00
0.80 0.00 0.20 0.86 0.03 0.11
0.60 0.40 0.00 0.67 0.32 0.02
0.60 0.20 0.20 0.69 0.21 0.10
0.60 0.00 0.40 0.52 0.07 0.41
0.40 0.60 0.00 0.32 0.54 0.13
0.40 0.40 0.20 0.55 0.34 0.11
0.40 0.20 0.40 0.56 0.13 0.30
0.40 0.00 0.60 0.54 0.05 0.41
0.20 0.80 0.00 0.35 0.63 0.02
0.20 0.60 0.20 0.19 0.58 0.23
0.20 0.40 0.40 0.24 0.30 0.46
0.20 0.20 0.60 0.57 0.07 0.37
0.20 0.00 0.80 0.19 0.02 0.79
0.00 1.00 0.00 0.00 0.99 0.01
0.00 0.80 0.20 0.08 0.61 0.31
0.00 0.60 0.40 0.03 0.45 0.52
0.00 0.40 0.60 0.03 0.31 0.66
0.00 0.20 0.80 0.16 0.13 0.72
0.00 0.00 1.00 0.04 0.01 0.95
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capable of selectively detecting DMMP vapor of ppb con-
centration in the presence of two interference vapors of ppm
concentrations.

D. Prediction of the mixtures of acetone, water, and
ethanol

To use the same microcantilever array, we also studied
the detection of ternary mixture of acetone, water, and etha-
nol. The response patterns for the three individual vapors are
shown in Fig. 8. The response pattern of acetone is more
similar to the pattern of ethanol comparing with the pattern
of water. The biggest difference between the patterns of ac-
etone and ethanol is at sensors 6 and 7.

FIG. 6. �Color online� Comparison of the estimated concentrations of �a�
DMMP vapor, �b� water vapor, and �c� ethanol vapor, with the actual con-
centrations that were presented to the sensor array for a single test data set.
The data consisted of those for binary mixtures �15 mixtures� and ternary
mixtures �30 mixtures�, where the mixture compositions were different from
the compositions of mixtures used in the training set. Please note that 100%
of actual concentrations for DMMP, water, and ethanol vapors from the
vapor generators are 100 ppb, 60 ppm, and 60 ppm, respectively.

FIG. 7. �Color online� Comparison of the estimated concentrations of
DMMP, water, and ethanol vapors, with the actual concentrations that were
presented to the sensor array. The data shown are from all five test data sets
taken over the 2 week period. For concentrations over 70%, each point was
the average of four to eight data points; for concentrations in the range of
30%–60%, each point was averaged over 10–20 data points; for concentra-
tions in the range of 0%–20%, each point was averaged over 24–30 data
points. There were 9 mixtures for unitary, 72 mixtures for binary, and 92
mixtures for ternary mixtures. So, the bulk of the data taken was for ternary
mixtures where all three component vapors had nonzero concentrations.

FIG. 8. �Color online� Response patterns of individual acetone, water, and
ethanol vapors.
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We collected two data sets in two different days which
was 6 days apart. Each data set includes the response pat-
terns to 21 different compositions �as those top 21 composi-
tions in Table III�, which fraction concentrations were ad-
justed in a step of 0.20. Each of the 21 different
compositions or mixture vapors was measured in four pulses
�30 s pulse duration and 150 s interval�. One data set was
used to train the ANN, and the other was used to test the
training. The predicted compositions are shown in Table VI
and the graphical prediction results are shown in Figs. 9 and
10. The prediction results of the electronic nose system on
the acetone-water-ethanol mixtures were still good but not as
good as the prediction on the DMMP-water-ethanol mix-
tures. The errors of the predicted concentrations were less
than 0.20 except the composition of �0.20 0.20 0.60�. For
each of the three vapors, the presence �concentrations of
�0.20� and absence �concentration of 0.0� were easy to dis-
criminate because the predicted value of actual concentration
bigger than 0.20 was always bigger than the predicted value
of actual concentration that is 0.

The average MSEs for acetone, water, and ethanol were
0.0080, 0.0071, and 0.0067, respectively �we skipped the
composition of �0.20 0.20 0.60��. Compared to the MSEs in
Table V, the MSEs of the acetone-water-ethanol mixtures are
bigger than the MSEs of the DMMP-water-ethanol mixtures
with the same compositions as those for training the network
�data sets 1, 4, and 5 in Table V�. Considering the similar
response patterns of acetone and ethanol, the pattern recog-
nition of the acetone-water-ethanol mixture responses must
be more difficult than that of the DMMP-water-ethanol mix-
ture responses.

Reproducibility of vapor concentrations together with
the reproducible responses from the microcantilevers were
necessary for the training of the ANN to be effective over
long time periods.

IV. SUMMARY

We have investigated selective detection of components
in ternary vapor mixtures of DMMP-water-ethanol and
acetone-water-ethanol by using an electronic nose system
based on a microcantilever sensor array and an ANN maxi-
mum concentration of DMMP that was 100 ppb, and the
concentrations of the other vapors were in the ppm range.
Once the neural network was trained with a training vapor
mixture set, the trained neural network was able to quantita-
tively identify either the individual vapors or the components
of binary and ternary mixtures within the 2 week period of
the experiments. The neural network was able to quantify the
vapor concentrations within 20% and was able to detect
DMMP with zero false alarm rate at 10 ppb level. Stable
sensor coatings providing reproducible signals together with
well-calibrated vapor streams are necessary to conduct such
vapor detection studies. The SAM coatings that we used
were covalently bound to the microcantilever surface and are
expected to be only a monolayer thick; this leads to robust,
durable coatings with reproducible responses. Further studies

are underway to improve the sensor array �by adding more
sensors/coatings� and also to incorporate a preconcentrator
so that more complex vapor mixtures could be analyzed.

FIG. 9. �Color online� Comparison of the estimated concentrations of �a�
acetone, �b� water, and �c� ethanol vapors, with the actual concentrations
that were presented to the sensor array for a single test data set.
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