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Abstract 

Automated detection of pain intensity from facial expressions remains a significant 

challenge in medical diagnostics and health informatics for providing a more 

intelligent pathway for the treatment of disease. Artificial intelligence methodologies, 

that have the ability to analyze facial expression images, utilizing an automated 

machine learning algorithm, can be a promising approach for pain intensity analysis. 

As a rapidly emerging machine learning technique, deep neural network algorithms 

have made significant progress in both feature identification, mapping, and modelling 

of the pain intensity from human facial images, with a strong potential to aid the health 

practitioners in the diagnosis of certain medical conditions from observable symptoms 

and signs of disease. While there is a significant amount of research within the pain 

recognition and management area that adopts facial expression datasets into deep 

learning algorithms to detect the pain intensity in binary classes, and identifying the 

pain and non-pain faces, the volume of research in identifying pain intensity levels in 

multi-classes remains rather limited. Although the effectiveness of deep learning 

models has been demonstrated, obtaining accurate algorithms to automatically detect 

pain in multi-class levels is still a challenging task and needs major improvement in 

the predictive skill of such techniques. In addition to this challenge, there exists 

individual behaviors, such as smiling or crying in pain situations by some patients that 

can make it potentially more difficult to measure the actual pain arising from a disease 

condition using the patient’s facial expressions through deep learning models. 

The PhD Thesis reports on the design, statistical validation and the practical testing of 

new enhanced deep neural-network algorithms tailored for the effective and efficient 

detection of pain intensity in humans by means of using a facial expression video 

image. To explore the robustness of the proposed deep learning algorithms, reliable 

information sourced from the UNBC-McMaster Shoulder Pain Archive Database, and 

the MIntPAIN database, comprised of human facial images, were used for training and 

testing of the proposed pain classification model. To provide enhanced model 

performance, the models were coupled with the fine-tuned VGGFace pre-trainer as a 

feature extraction ancillary tool. To reduce the dimensionality of the classification 

model input dataset and to extract the most relevant facial features in modeling the 

pain intensity, the Principal Component Analysis (PCA) was applied to improve its 
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computational efficiency. The pre-screened facial image features, used as potential 

model inputs, were then transferred to generate the newly enhanced deep learning 

models. In this project, three variants of the enhanced deep learning-based classifier 

algorithms were developed and evaluated , including the joint hybrid CNN-BiLSTM 

(EJH-CNN-BiLSTM) algorithm, the ensemble deep learning model (EDML), and a 

temporal neural network (TCN) with the Hue, Saturation, Value (HSV) color space as 

(HSV-TCN) algorithm. All algorithms were tested on human facial image dataset to 

model pain intensity. 

The EJH-CNN-BiLSTM deep learning algorithm comprised of convolutional neural 

networks, linked to the joint bidirectional-long-short-term memory (BiLSTM), for 

multi-classification of human pain. The resulting EJH-CNN-BiLSTM classification 

model, tested to estimate four levels of pain, revealed high accuracy (90%) and AUC 

(98.4%) on the balanced UNBC-McMaster Shoulder Pain database, benchmarked by 

a diverse suite of model performance evaluation indicators. The proposed classifier 

was improved by applying in a stacked ensemble deep learning model (EDLM). This 

ensemble deep learning model has three deep learning models based on CNN-LSTM 

and their output were merged to classify 5 levels. The results show the model 

accurately classifies pain to identify multi classes of pain level and its performance is 

high in compare with other baseline models and the state-of-the-art methodologies. 

The accuracy reached to 86 % and AUC of 90.5% for UNBC-McMaster Shoulder Pain 

database and AUC of 93.67% and accuracy of 92.26% for MIntPAIN database. 

Although the proposed models outperform pain detection from facial images in multi 

levels, the speed of the algorithm need improvement. To speed up the deep learning 

based pain recognition systems from human facial videos’ images a new algorithm 

based on the temporal convolutional network with HSV color space inputs was 

developed and the evaluation results shows its effectiveness and efficiency of it is 

noticeable in compare with other models. The obtained results show accuracy of 

94.14% and AUC of 91.3% in UNBC-McMaster Shoulder Pain database and accuracy 

89% and AUC 92% in MIntPAIN database for 5 classes and the algorithm run 6 times 

faster than the above models. 

In summary, the results from these experiments clearly prove that the proposed deep 

learning approaches were able to generate accurate performance for the recognition of 
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pain intensity levels from the videos’ images of facial expressions and could be 

adopted  in health care systems. The newly developed techniques provide key 

contributions to health informatics area, as prominent artificial intelligence tools to 

evaluate a patient’s pain level more accurately that manual methods. Subsequently, 

these techniques could be applied in the management and treatment of pain in patients 

by using a more coherent, accurate, and effortlessness methodology.
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CHAPTER 1 

Introduction 

This doctoral research thesis aims to develop enhanced deep learning predictive 

modelling techniques for pain intensity recognition from facial expression images. 

Automatic pain detection technology is essential for healthcare provider special for 

patients with limited communication ability or required regular symptoms’ reports. 

Facial expression is one of the most meaningful and natural ways to interpret pain and 

emotional states. Machine learning algorithms, implemented as an artificial 

intelligence predictive system, can offer an alternative mechanism for pain assessment 

task to detect both the pain and its relative intensity level from facial expression 

images. While the effectiveness of deep learning models and computer vision 

technology is demonstrated, in the facial data domain obtaining accurate algorithm to 

detect pain in multi levels still is challenging and needs further improvement. 

Enhanced deep neural networks were developed and evaluated to detect pain suffered 

by patients based on their facial expression images. 

In this chapter, the key background information regarding pain recognition systems 

from facial expression images are provided. Following this, automated pain 

recognition systems developed through artificial intelligence methodologies are 

explained. Deep learning, as a recent artificial intelligence technique applied in pain 

intensity detection from facial expression images, is introduced and its problems and 

challenges in automated pain detection systems from facial expression is explained. 

This is followed by the research questions. The research aims and objectives, including 

the research significance are elaborated on in the following sections, and finally, the 

chapter is closed with an outline of the thesis organization. 

1.1 Background of Pain Recognition Systems 

Pain is an individual experience and a mental sense that is considered as a relatively 

complex phenomenon and is not yet well understood. Pain is an unpleasant sensory 

and emotional experience associated with actual or potential tissue damage (Aydede 

2017). Pain is classified into two categories, mainly as an acute or a chronic pain 
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(Aydede, 2017). Acute pain is associated with a health condition, a medical diagnosis, 

or a surgical procedure (Aydede, 2017). However, chronic pain is associated with a 

high mortality disease such as cancer, Acquired Immunodeficiency Syndrome (AIDS), 

Parkinson’s Disease, low back pain, failed back surgery, or chronic headache (Payne, 

2000). Chronic pain can be caused by the disease itself as a symptom or as a treatment 

progression (Payne, 2000). The treatment of chronic pain should be self-monitored to 

access information by the pain management teams, such as type of pain and the level 

of complexity (Lynch, 2011). An effective and consistent pain assessment is required 

to select the suitable treatment, and to modify the treatment, and monitor the patient’s 

pain status.  

In clinics, several techniques are applied to measure pain, including but not limited to 

the Hierarchy of Pain Assessment Techniques, Search for Potential Causes of Pain, 

Observe Patient Behaviors, and Proxy Reporting (Herr et al., 2011). A hierarchy of 

assessment techniques is generally recommended for use in medical clinics, and the 

following steps can be used as a template for the initial assessment and treatment 

procedure (Herr et al., 2011; Werner et al., 2019): 

a.  Obtain a patient self-reporting record and check its feasibility, otherwise, a 

described document is required to elaborate on the incapability reasons of the 

self-report system. The commonly used self-reporting pain-rating scales 

consist of Visual Analogue Scale (VAS), Numerical Rating Scale (NRS), and 

Verbal Rating Scale (VRS) (Martinez et al., 2017).  

b. Identify the cause of pain such as pathologic conditions. If there is a lack of 

self-reports and behavioral signs, pathologic conditions such as surgery, 

trauma, osteoarthritis, wound, history of persistent pain, blood draw, heel sticks 

can be applied. 

c. List patient behaviors or use a behavioral assessment tool that may indicate 

pain. When a self-report is absent or the amount of information therein is 

limited, explanations for the deficiencies regarding the self-report and advance 

investigations and observations are required. In this case, the observation of 

human behavior which considers facial expressions, or vocalizations, or body 

language is taken as a valid method for pain management. Some scales are 

designed and validated for patients based on behavior observation including 

NIPS, CRIES, FLACC for infants and PACSLAC, DOLOPLUS2, PAINAD 
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for elderly people with severe dementia, and BPS, CPOT, NVPS for critical 

patients. 

d. Identify information from caregivers, family members, parents in a reliable 

proxy reporting about the patient’s behaviors. Caregivers and family members 

should be actively encouraged to contribute to the pain assessment procedure. 

e. Try a pain assessment self-report from a patient with inadequate 

communication and cognitive skills such as finger span or eye blink to answer 

yes or no questions. 

However, there is some degree of limitation with these rather manual pain assessment 

measures, especially regarding the self-reporting elements of pain management 

systems. These tools cannot always be used with infants, patients with certain types of 

neurological impairments and dementia, patients requiring postoperative care. In 

clinics using self-reported pain, measurement is not possible in many cases and even 

though clinical pain measurement can be undertaken frequently by medical staff and 

nurses such regular pain measurement is not cost-effective (Werner et al., 2019). This 

method may also mean that some relevant pain sensations may be missed or misread 

by a clinician (Werner et al., 2019). 

Since facial expressions, as a behavioral observation method of pain recognition, have 

a significant role in communicating and managing the pain, scientists have reverted 

their interests to developing machine learning algorithms to train systems to decode 

complicated associations between facial expressions and pain (Liu et al., 2018). 

Compared with humans, machine learning algorithms can utilize many different facial 

features including landmarks, colors, lighting, and movements to detect human pain 

and emotion (Liu et al., 2018). In a practical sense, faces can carry important 

information for any communal interactions, including the expression of emotions and 

pain. Significant efforts are extended to identify reliable and valid facial indicators of 

pain. In recent years, considerable progress made in the machine learning area to 

automatically recognize the facial expressions related to pain and emotions. 

Researchers have therefore applied machine learning algorithms to undertake the 

challenging task of computerized pain detection in healthcare for patients suffering 

pain issues (Bartlett et al., 2014). 

Facial expression recognition is a very challenging task since the faces were presented 

in different poses, varying with respect to the different ages of any patient. To deal 
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with these challenges faced by the healthcare industry, extracting the features from 

such complex characteristics of patients’ faces plays a key role in facial expression 

recognition (FER) (Xu et al., 2015), and the corresponding pain intensity. As is 

demonstrated in Fig. 1-1 the general framework for facial expressions consists of the 

following steps: data acquisition, data pre-processing, feature extraction, image 

classification, and post-processing, including any modelling tasks to make important 

decisions about the use of the facial expression recognition tool (Chibelushi & Bourel, 

2003). 

 

Fig. 1-1. A schematic view of the general Facial Expression Recognition (FER) 

framework used in a practical healthcare environment (Chibelushi & Bourel, 2003). 

The FER systems were categorized into two main groups, is based on the feature 

representations: static image FER and dynamic sequence FER. In the first method, the 

feature representation is encoded with only spatial information from the single image, 

whereas for the dynamic method the temporal relation among sequential frames in the 

input facial expression series, is considered. To attain an accurate and a versatile 

modelling platform for any facial image recognition task, it is important to have 

enough labelled training datasets to provide multiple and varied populations and 

environments for designing a deep facial recognition system. Ekman and Friesen 

(1978) developed the Facial Action Coding System (FACS) which provides an 

objective meaning for measuring the facial muscle contractions in facial expression 

(see Table 1-1 and Fig. 1-2). FACS developed for researchers to measure the activity 

of facial muscles from facial images. Each element of facial movement is called an 



 

5 

 

Action Unit (AU) (Chibelushi & Bourel, 2003). FASC includes 46 AUs and it 

produces facial features which can be identified in the image (Ekman & Friesen, 1978). 

Table 1-1. Action units measured in (Ekman & Friesen, 1978) 

AUs Muscle Involved Description of Action 

1 Inner frontalis Raises inner corner of 

brow 

2 Outer frontalis Raises outer corner of 

brow 
1+2 Frontalis Raises entire brow 

4 Corrugator Procerus Lowers and pulls brows 

together 

6 Orbicularis oculi, outer 

portion 

Squints eyes, makes 

crowfeet wrinkles 

7 Orbicularis oculi, inner 

portion 

Squints eyes, raise and 

straightens lower lid  

9 Levator labii superioris, 

alaque nasi  

Wrinkles nose 

10 Levator labii superioris Raises upper lip 

12 Zygomatic major Common smile 

14 Buccinator Dimples cheeks 

15 Triangularis  Lower corners of lips 

16 Depressor labii inferiors Pulls lower lips down 

20 Risorius Stretches lip corners 

straight to the side 

45 Orbicularis oculi Blink or wink 
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Fig. 1-2. Example of facial action decomposition from facial action coding system 

(Littlewort et al., 2009). 

Prkachin and Solomon (2008) measured the pain based on AUs and found that actions 

such as AU4, AU6, AU9, AU10, and AU43 contain most of the information about 

facial pain. It is noteworthy that the Prkachin and Solomon Pain Intensity (PSPI) pain 

scale is currently the only quantitative metric that can define the pain on a frame-by-

frame basis. PSPI defined pain as the sum of the intensities of brow lowering, orbital 

tightening, levator contraction and the eye closure. Accordingly, PSPI metric defined 

as follows (Prkachin & Solomon, 2008): 

Pain = AU4 + (AU6 or AU7) + (AU9 or AU10) + AU43            (1-1) 

After labelling the raw image dataset, the process of capturing facial images is essential 

since the potential sources of errors can encounter during the data collection process. 

This can affect the credibility of the actual database inducted by exogenous errors that, 

if not addressed appropriately, can potentially lead to false data features in an 

automated facial image and pain recognition system. The potential problems of image 

processing include segmentation, deformation, illumination, affordance, and 

viewpoints complications. Illumination or poor lighting in digital images, or a 

deformation of images due to a low-quality photo occur in the image analysis process. 

If these issues are not resolved carefully, the accuracy of the image recognition 

algorithm is expected to deteriorate, leading to significant errors in the result, making 

the algorithm virtually useless. The preparation of the image data as a prior task in 
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image processing technique helps resolve these challenges by reducing noise, filtering, 

and enhancing the contrast to clarify the features. A pre-processing of all input data 

before designing a robust model is an important task advocated by previous works 

(Haque et al., 2018; Rodriguez et al., 2017; Zhou et al., 2016). For example, Rodriguez 

et al. (2017) in a pain detection task from facial video data, at first, cropped and 

frontolyzed the faces’ video frames. 

Data normalization is a critical preprocessing technique that can change the range of a 

pixel’s value in images with a poor contrast. Normalization, which is sometimes called 

contrast stretching or histogram stretching, in data processing such as digital signal 

processing or image processing refers to the dynamic range expansion. Face analysis, 

as a part of image processing, is complex due to the changes in the appearance of the 

face caused by posing variations and illumination changes. Illumination normalization 

algorithms, discrete cosine transform based, difference of Gaussian such as Global 

Contrast Normalization (GCN), and local normalization and histogram equalization 

are used frequently as normalization techniques in facial expression recognition (Kuo 

et al., 2018; Pitaloka et al., 2017). Selecting and applying the right normalization can 

be a significant factor in getting the model to train effectively. Using normalization in 

the deep learning algorithms significantly improves its performance on image 

classification. Warping techniques as a normalization method based on the center 

positions of the distinctive facial features such as the eyes, nose and mouth, are helpful 

in managing rotated faces where their facial expressions are misrepresented or may 

become partially invisible in contrast to frontal face displays. As a solution to this 

problem, Zhou et al. (2016) warped every facial image in Red Green Blue (RGB) 

channels individually, then merged all channels to obtain the final RGB warped faces. 

Machine learning-based pain assessment, if developed appropriately, is expected to be 

more accurate and less biased compared with human observations and its scalability is 

priceless for clinical utilizations (Liu et al., 2018). A wide range of machine learning 

methods were developed for automatic pain prediction from human facial expression. 

These machine learning methods used in previous studies can include many different 

general categories of models, such as, but not limited to linear regressions, naive 

Bayes, logistic regression, support vector machine, gaussian processes, random 

forests, genetic algorithms and deep neural networks (Liu et al., 2018). Deep neural 

networks have become an attractive classifier algorithm of choice in many machine 
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learning tasks. However, most of the recent work in the facial expression area involves 

the use of deep learning and neural networks due to their superior performance (Liu et 

al., 2018). 

1.2 Research Problems 

Machine learning algorithms, implemented as an artificial intelligence predictive 

system, can offer a viable alternative mechanism for pain assessment tasks, such as 

using a camera to collect the relevant data (e.g., a face image), to detect both the pain 

and its relative intensity. Facial expression is one of the most meaningful and natural 

ways to interpret pain and emotional states. The challenge in the facial expression 

recognition lies in the large visual feature variations caused by person-specific 

characteristics of expressions and variations from extrinsic conditions such as 

illumination and the view point (Zhang et al., 2017). Another key challenge of facial-

expression recognition is to develop effective representations to balance the complex 

distribution of intra- and inter- class variations (Liu et al., 2017). There are noticeable 

differences in individual patient’s faces such as varying their poses and their age 

differences. There are some different characteristic behaviors in individuals that can 

affect facial expressions such as smiling or crying in pain which make measuring pain, 

from facial expressions using deep learning models, more difficult. The specificity, 

sensitivity, and the effectiveness of the deep learning algorithms still require 

improvements through enhancing the existing deep learning techniques and modifying 

the accuracy of current models. 

As discussed in section 1.1, the commonly used self-reporting pain-rating scales in 

clinics were VAS, NRS, and VRS (Martinez et al., 2017) which measure pain in 

nominal and multi-class method. Although, pain is ordinal data and could be classified 

by ordinal regression or ordinal classification, in this research work an automatic pain 

detection approach in multi-class is designed by applying deep learning to simulate the 

most common self-reported pain detection systems such as VAS and NRS techniques 

from patients’ facial expressions which are multi-class and nominal measurement 

methods. This technique would be useful for healthcare providers and patients who 

has difficulty in communicate pain by self-reporting systems due to physical condition 

such as certain types of neurological impairments and dementia, patients requiring 

postoperative care. 
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In pain recognition tasks, the major issue and challenge is availability of databases. 

Collecting data and sharing information from clinical real-use cases is difficult. The 

number of available public databases including painful facial images and video frames 

is very limited. An ideal dataset should be multimodal with more descriptions, high 

quality information about labelling, with relevant information to improve 

comparability of results. Performing the deep learning modelling experiment in most 

public available pain databases is challenging due to imbalanced data labels, and poor 

quality of image data such as unfair environment brightness, shooting angle and 

distance, background, and noise. 

The following research questions were developed and addressed in this PhD study: 

RQ 1: What are the most recent deep learning model advancements in pain recognition 

from facial expressions? 

RQ2: What is the most effective deep learning algorithm to extract and select features 

from facial pain images? 

RQ3: What is the most effective and efficient facial expression pain recognition deep 

learning algorithm to classify pain intensity on multi-level? 

RQ4: How effective are the developed enhanced deep learning models to recognize 

pain from facial expression? 

RQ5: How efficient are the developed enhanced deep learning models to recognize 

pain from facial expression? 

1.3 Aim of the PhD Thesis  

The research reported on in this PhD thesis aimed to develop, validate, and evaluate 

independently a set of new pain recognition deep learning models that were adopted 

to detect pain and its intensity from human facial expressions as video recorded 

images. These models were developed and evaluated for improving existing deep 

learning pain analysis techniques from facial behavior and tackling the above-

mentioned problems. The PhD thesis provides multiple solutions to resolve the 

challenges within deep learning pain recognition systems using facial expressions. 

After investigating the other researchers’ works, new developments are proposed and 
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verified extensively by means of advanced statistical score metrics and a visual 

analysis of results. 

This research work, undertaken to resolve the problems mentioned in the previous 

section, results in the following original contributions: 

1. Development of a new deep learning feature extraction model by finetuning a 

pre-trained convolutional neural network and reducing features by principal 

component analysis.  

2. Development of a joint hybrid classification model base on convolutional 

neural networks and recurrent neural networks. 

3. Development of a staking ensemble deep learning model based on 

convolutional neural network and recurrent neural networks by extending the 

classifier introduced in original contribution number 2. 

4. Development of a deep learning classifier by modifying temporal 

convolutional network architecture and adjusting the input images’ colour 

spaces to improve and enhance deep learning pain recognition from facial 

images task. 

Three pain detection algorithms were developed and evaluated to detect pain from 

facial expression video frames by applying the new feature extraction model. The 

results, reported in other sections of this thesis, show that the enhanced pain 

recognition algorithms have performed effectively, and efficiency as demonstrated by 

evaluating accuracy and measuring speed. 

1.4 Significant Contributions 

It is essential to assess, reassess, and document pain routinely and quickly to simplify 

treatment procedures and the interaction among health-care services (Herr et al., 2011). 

Deep learning algorithms play a role in helping healthcare providers to achieve more 

accurate and efficient assessment of pain intensity level could monitor pain 

continuously. Medical staff require an accurate, regular, timesaving, and secure AI 

tool to increase their estimation in illnesses diagnosis, facilitate patients’ treatment 

procedures, and keep healthcare workers safe from infectious diseases. 

Deep learning approaches have become a mainstream machine-learning technique 

with capacity in various nonlinear modelling tasks such as the classification and 
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feature extraction process from complex datasets especially in healthcare domains. 

Transfer learning and pre-training techniques of deep learning were identified as 

successful techniques in extracting features. While the effectiveness of deep learning 

models has been demonstrated, in the facial data domain obtaining an accurate 

algorithm to detect pain in multi levels is still challenging and needs improvement 

(Parkhi et al., 2015; Walecki et al., 2017). 

This research work undertaken to resolve the problem discussed in Section 1.2, and 

answer the research questions, results in the following outcomes: 

1. A new feature extraction, based on transfer learning, that is designed to extract 

the most important features by using a fine-tuned VGGFace and the PCA 

dimension reduction method. 

2. A new and effective enhanced joint hybrid deep learning classifier based on 

CNN-RNN that automatically estimates pain levels from facial expressions. 

3. The enhanced joint hybrid deep learning improves by extending into a new 

developed, stacked ensemble deep learning CNN-RNN model which is a more 

effective and accurate pain level classifier using facial expression video 

images. 

4.  A new deep learning algorithm constructs based on temporal neural networks 

with HSV color space inputs to speed up the deep learning pain detection 

algorithm from video frames and evaluated as an effective and efficient pain 

recognition algorithm when compared with other benchmark models. 

5.  Pain detection frameworks that can be easily implemented as an artificial 

intelligence algorithm in healthcare platforms such as mobile applications or 

web portals, to manage patients’ pain levels automatically and thus be   

practically applicable for pain detection tasks. 

1.5 Thesis Organization 

 This thesis is organized as followings: 

Chapter 1 presents the background and problem statement of the current research. The 

chapter starts with an introduction about pain detection histories in the clinic, and the 

necessity of automatic pain detection tools. Additionally, the challenges and problems 

in the deep learning pain detection algorithm from facial expressions were discussed 
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and the thesis research questions identified. The aims and original contributions of the 

thesis are also outlined in detail. 

Chapter 2 overviews the different deep learning pain detection models from human 

facial images. A summary of the literature review covering automated pain recognition 

from facial expressions, image pre-processing, deep learning feature extraction 

techniques, deep learning classifiers, and related databases is presented. The findings 

of this chapter provide information to answer to research question 1 and lead to identify 

problems, develop new enhanced pain recognition deep learning models from facial 

data, and find suitable database to train and evaluate the proposed algorithms. 

Chapter 3 discusses the research methodology developed in this thesis. A research 

methodology is a way in which one proceeds to solve the problem and a description 

of how the research will be conducted. The proposed research methodology in this 

thesis combines the strength of both the scientific approach and action research to 

achieve the research objectives. A framework is introduced for automatic pain 

detection from facial video images. This framework shows the phases and relation 

between phases. Then the applied datasets for training and testing the proposed 

algorithms, applied evaluation metrics and validation approaches, and experimental 

configuration are explained in this chapter.  

Chapter 4 presents the Enhanced Joint Hybrid (EJH-CNN-BiLSTM) proposed models 

to detect pain and its intensity from facial expression video images. The EJH-CNN-

BiLSTM is a new model proposed in this thesis which is recognize pain level from 

facial expression effectively and accurately. In this chapter the proposed model and its 

components including image preprocessing techniques applied in this model, the 

newly designed feature extraction algorithm, and the newly developed hybrid joint 

deep learning classifier are elaborated and the obtained results and comparison with 

the state-of-the-art models’ results are discussed.  

Chapter 5 explains the newly developed Ensemble Deep Learning Model (EDLM) 

proposed models to detect pain and its intensity from facial expression video images. 

In this chapter the proposed model in Chapter 4 as EJH-CNN-BiLSTM is extended in 

an ensemble deep learning approach to examine its effectiveness for pain detection 

task. The obtained results show its accurateness level is high in comparison with the 
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state-of-the-are models, and other base line models. The obtained results, evaluation, 

and comparison are discussed. 

Chapter 6 presents a significantly improved version of the Temporal Convolutional 

Networks (TCN) algorithm with Hue, Saturation, Value (HSV) color space input data 

as (HSV-TCN) to detect pain and its intensity from facial expression video images. 

Although the proposed models in Chapter 4 and 5 outperform pain detection from 

facial images in multi levels, the speed of the algorithm need improvement. To speed 

up the deep learning based pain recognition systems from human facial videos’ images 

a new algorithm based on the TCN deep neural network which is modified for this task 

with HSV color space inputs is developed and the evaluation results shows its 

effectiveness and efficiency of it is noticeable in compare with other two proposed and 

developed models and models presented in the literature review. 

Chapter 7 concludes the findings of this thesis by presenting conclusions, limitations, 

and opportunities for future research. 
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  CHAPTER 2 

Literature Review 

In this chapter, the necessary background and state of current methods will be detailed 

and reviewed. The review is organized in three main sections. Section 2.1 introduces 

feature extraction methods, and their challenges. A literature review has been 

undertaken to identify current feature extraction methods especially in pain detection 

tasks by applying deep learning methods. Section 2.2 gives background information 

of deep learning classifiers and methods were applied to pain detection from facial 

expressions. The literature reviewed in this section to identify the current deep learning 

algorithm for this task and recognize the challenges in multi classes pain detection by 

applying deep learning. Section 2.3 explains the available databases in pain detection 

area from facial expression images and videos and review their properties and 

limitations. 

2.1 Deep Learning Techniques in Feature Extraction 

The feature extraction methods are commonly applied before the classification task. 

There are some traditional methods for feature extraction such as Active Appearance 

Model (AAM), Active Shape Model (ASM), Geometric Distance Feature (GDF), 

Local Binary Pattern – Three Orthogonal Planes (LBP-TOP), Gabor Wavelet Filter 

(GWF), and Histogram of Oriented Gradient (HOG). Table 2-1 demonstrates a 

detailed set of information about each of the non-deep learning techniques. 
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Table 2-1. Traditional methods used for feature extraction. 

Techniques Description 

AAM AAM which contains a statistical model of shape and grey-level 

appearance which can be generalised to almost any face (Cootes et 

al., 1998; Edwards et al., 1998). 

ASM ASM algorithm is a statistical model of the image which deforms 

iteratively an object to fit it in a new image. It is a fast approach to 

matching a controlled set of points to a new image (Cootes et al., 

1995). 

GDF GDF represents facial landmarks such as shapes and location 

including mouth, eyes, eyebrows, and nose. GDF is distances 

between certain points of the facial image (Mozaffari et al., 2010; 

Zhang et al., 1998). 

LBP LBP compare the centre pixel value with the neighbourhood pixel 

values by using a binary code which is generated by allocating the 

value one to the higher neighbour pixel value and zero to the rest. 

Binary code is converted to decimals to get the LBP value of the 

centre pixel (Ahonen et al., 2006). 

GWF GWF is as an appearance-based method is used as an image filter in 

all or part of the face to extract feature vectors and edge detection 

(Lyons et al., 1998). 

HOG HOG is a feature descriptor in computer vision and image processing 

and used for object detection. The input image divided into small 

spatial regions which are called cells (Dalal & Triggs, 2005). 

The advent of Convolutional Neural Networks (CNNs) that are considered as powerful 

machine learning models, can achieve remarkable results in image classification and 

facial expressions problems, with the pre-trained CNNs being particularly useful for 

many other computer vision tasks (e.g., generic feature extractors) (Hu et al., 2015). 

The idea of exploring CNN-driven features is also motivated by their usefulness on a 

wide variety of classification and data-driven modelling tasks. A CNN comprises three 

categories of various layers including convolutional layers, pooling layers, and fully 

connected layers. The convolutional layer has a set of learnable filters to convolve 

through the full input images and deliver various types of activation feature maps. The 

pooling layer sees the convolutional layer output and reduces the spatial size of the 

feature maps. The last layer of the CNN are fully connected layers that support all 
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neurons in the layer and are fully connected to activations in the previous layer and 

convert the 2D feature maps into 1D feature maps for classification. 

The outputs of the CNN layers can be interpreted as the visual features within any 

image or time-series dataset. CNN models which are trained for classification purposes 

are used as feature extractors, mainly by removing the output layer. The features 

extracted from the pre-trained CNN have been successfully used in computer vision 

tasks such as scene recognition and object characteristic detection and achieve better 

results compared to handcrafted features. Egede et al. (2017) trained CNN to extract 

features for pain intensity classification. The same strategy is applied for feature 

extracting (Haque et al., 2018; Rodriguez et al., 2017; Zhou et al., 2016). This strategy 

is successfully applied in recognition systems to deal with data defects which is one of 

the problems in pain recognition (Sharif Razavian et al., 2014). 

Many variants of CNN models have achieved increasingly better performance. 

Examples of these include the renowned ImageNet dataset for object classification 

such as AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2015), 

VGGFace (Parkhi et al., 2015), ResNET (He et al., 2016) and GoogLeNet (Szegedy 

et al., 2015) which is seen to surpass the classification accuracy of human-level 

performance (Athiwaratkun & Kang, 2015).  

AlexNet is the first large-scale CNN model which led to the resurgence of deep neural 

networks in computer vision (Krizhevsky et al., 2012). The main difference of the 

AlexNet architect and its predecessors is the increased network depth, which leads to 

a significantly larger number of tunable parameters, and the use of regularization tricks 

such as activation dropout and data augmentation (Krizhevsky et al., 2012). VGGNet 

architect is one of the most popular CNN models. It introduced in 2014 and used in 

pain detection recently as a pre-trainer. It has two configurations as VGGNet16 and 

VGGNet19. Like AlexNet, it also uses activation dropouts in the first two fully 

connected layers to avoid over-fitting (Simonyan & Zisserman, 2015). All previously 

discussed, pre-trainer networks consist of a sequential architecture with only a single 

path. GoogleNet consists of a total of 22 weight layers. The basic block of the network 

is the “Inception Network”. Although the GoogleNet architecture looks much more 

complex than AlexNet and VGGNet, it involves a significantly reduced number of 

parameters with better efficiency and higher accuracy performance (Szegedy et al., 
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2015). The core idea of ResNet is introducing a so-called “identity shortcut 

connection” that skips one or more layers. This indicates that the deeper model should 

not produce a higher training error than its shallower equivalents (He et al., 2016). The 

VGGFace used CNN implementation based on the VGG-Very-Deep-16 architecture 

and evaluated on the labelled faces images in the Wild and the YouTube faces dataset 

(Parkhi et al., 2015). The AlexNet is used as pre-trainer in pain detection systems 

(Casti et al., 2019). Table 2-2 demonstrates the popular CNN feature extractors and 

pre-trainers which were recently used in facial expressions as a feature extractor. 

Table 2-2. A summary of the key CNN models that have been used in FER. 

CNNs Year Description 

AlexNet (Krizhevsky et al., 2012) 2012 AlexNet comprises 8 layers 

includes five convolutional layers, 

some of them followed by max-

pooling layers, and the last three 

are fully connected layers. 

VGGNet (Simonyan & Zisserman, 

2015) 

2015 VGGNet consists of 16 

convolutional layers and has only 

3x3 convolutions. 

VGGFace (Parkhi et al., 2015) 2015 The VGGFace is CNN 

implementation based on the 

VGG16 architecture trained by 

face data. 

GoogleNet (Szegedy et al., 2015) 2015 GoogleNet is based on several 

very small convolutions to 

drastically reduce the number of 

parameters. Its architecture 

consists of a 22 layers deep CNN. 

ResNet (He et al., 2016) 2016 It can train 152 layers with lower 

complexity than VGGNet. 

The CNN feature maps can be applied with non-deep learning methods such as 

Random Forest or a Support Vector Machines (SVM) model to produce data 

classification results or combine with unsupervised learning techniques such as 

Principle Component Analysis (PCA), independent component analysis (ICA) and 

minimum noise fraction (MNF) to select the most important features. PCA 
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effectiveness in different applications such as facial feature extraction and finding 

patterns from large dimensional images confirmed specially when it acts as a 

dimensionality reduction method (Damale & Pathak, 2018; Li et al., 2009). It provides 

the best set of data dimensions option to improve the model performance, and accelerate 

the algorithm (Sun et al., 2014). Bargshady et al. (2020a) used a fine-tuned pre-trainer 

to extract features and then transfer the extracted features into PCA to reduce the 

dimensions of them. This technique which is used in this research work improve the 

effectiveness and efficiency of the feature extraction.  

2.2 Deep learning Techniques in Image Classification 

After extracting the features, the last action of FER is classification of the input face 

images into one of the pain level categories. In the literature, there are many image 

classifier systems such as Deep Structured Learning (DSL), k-Nearest Neighbor 

(kNN), and SVM. Deep learning classifier systems are recently widely used for image 

classification purposes. Unlike the traditional methods, where feature extractions and 

classifications steps are independent, deep learning models can perform it in an end-

to-end way. Another option is to employ the CNN as a feature extraction implement 

and then apply further independent classifiers. The previous results also show that the 

combination of deep methods with independent classifiers can mean more robust 

algorithms. Walecki et al. (2017) proposed a hybrid model by merging deep learning 

with Hidden Markov Model (HMM) where a novel copula-based CNN deep learning 

approach is used for modelling multivariate ordinal variables. Based on their copula 

model, which is able to account for the ordinal structures in the output variables and 

their non-linear dependencies via copula functions modelled as cliques of a 

Conditional Random Field (CRF), the simulations were jointly optimized with a deep 

CNN feature encoding layers using a newly introduced balanced batch iterative 

training algorithm.  

Even though CNNs are considerably powerful deep learning techniques for tasks 

estimation, however; they are not influential in developing sequential data such as 

video data analysis. Recurrent Neural Networks (RNNs) designed to represent features 

in capturing information from all the earlier time steps and to renew its representation 

through upcoming information (Zhou et al., 2016). In a pain detection task, the study 

of (Martinez et al., 2017) used the LSTM-RNN algorithm to detect pain from the facial 
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dataset. This approach used the key algorithm to automatically estimate PSPI levels 

from face images. The expected scores were fed into the customized Hidden CRFs 

(HCRFs) to estimate the VAS for each person (Martinez et al., 2017; Soar et al., 2018). 

On the other hand, Bargshady et al. (2020a) developed a different technique which 

contains a fine-tuned VGGFace pre-trainer joined to a PCA to reduce the 

dimensionality of the extracted features and then when applied to another classifier, as 

a joint CNN-LSTM model, consists of a two stream hybrid deep learning technique. 

Wang and Sun (2018) combined a deep learning and a hand-crafted method by using 

a deep 3-dimensional convolutional network from video frames as input to extract 

spatiotemporal facial features and hand-crafted features to extract the geometric 

information. Egede et al. (2019), used a three streams network using three different 

feature extraction techniques including appearance HOG, CNN, and shape features 

using handcrafted algorithms and Relevance Vector Machine (RVM) for pain 

estimation. In a different way, Chen et al. (2019) proposed an automated pain detection 

system including two machine learning systems: an Automated Facial Expression 

Recognition (AFER) system that computes frame-level confidence scores for single 

AUs and a Multiple Instant Learning (Milgram et al.) system that performs sequence-

level pain prediction based on contributions from a pain-relevant set of AU 

combinations. More details about automatic pain recognition approaches are explained 

in survey paper published recently (Werner et al., 2019). 

Table 2-3 shows the summary of the literature which applied deep learning in pain 

detection from facial expressions and Table 2-4 indicated the-state-of-the-art non deep 

leaning techniques applied for the same task. 
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Table 2-3. A summary of literature that used deep learning models to detect pain 

from facial expressions. 

Paper Feature Classifier Metric Score (%) Database 

(Rodriguez et 

al., 2017) 

VGGFace LSTM AUC, 

MAE, 

MSE, PCC, 

ICC 

93.3, 0.5, 

0.74, 0.78, 

0.45 

UNBC-

McMaster 

(Martinez et 

al., 2017)  

AAM BiLSTM + 

HCRF 

MAE, ICC 0.94, 0.30 UNBC-

McMaster 

(Haque et al., 

2018) 

VGGFace LSTM Mean 

Frame, 

Mean 

Sequence 

18.17, 

18.55 

Multimodal 

Intensity Pain 

(MIntPAIN) 

(Walecki et 

al., 2017) 

VGG16 CRF MAE, ICC 0.61, 0.45 

and 1.23, 

0.63 

UNBC-

McMaster 

(Xu et al., 

2015) 

CNN 

MSRA-

CFW 

CNN. Mean 

accuracy 

81.5 PICS 

(Egede et al., 

2017) 

ASM CNN + 

RVR 

RMSE, 

CORR 

0.99, 0.67 UNBC-

McMaster 

(Zhou et al., 

2016) 

AAM RCNN MSE, PCC 1.54, 0.65 UNBC-

McMaster 

(Bellantonio 

et al., 2016) 

VGGFace CNN + 

LSTM. 

F measure 0.69 UNBC-

McMaster 

(Bargshady et 

al., 2020a) 

VGGFace 

+ PCA 

CNN+LST

M 

Accuracy, 

AUC 

91.2, 98.4 UNBC-

McMaster 

(Wang & 

Sun, 2018) 

HOG CNN + 

SVR 

RMSE, 

PCC 

0.94, 0.68 UNBC-

McMaster 

(Wang et al., 

2017) 

HOG CNN MAE, MSE 0.991, 

1.720 

UNBC-

McMaster 

(Tavakolian 

& Hadid, 

2019) 

ResNet ResNet MSE, AUC 0.32, 

98.53 

UNBC-

McMaster 

and 

BioVid 

(Salekin et 

al., 2019) 

VGG16 LSTM Accuracy, 

AUC 

92.48, 90 Infant COPE 

(Theagarajan 

et al., 2018) 

CNNs LSTM accuracy, 

precision, 

recall 

94.85, 

94.86, 

96.29 

Infant COPE 

(Kharghanian 

et al., 2016) 

CDBN SVM Accuracy, 

F-measure, 

AUC 

87.2,86.44

, 94.48 

UNBC-

McMaster 
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Table 2-4. A summary of the state-of-the-art literature that used non deep learning 

models to detect pain from facial expressions. 

Paper Feature Classifie

r 

Metric Score 

(%) 

Database 

(Lucey, Cohn, 

Prkachin, et al., 

2011) 

AAM SVM AUC 83.9 UNBC-

McMaster 

(Lucey, Cohn, 

Matthews, et al., 

2011) 

AAM SVM AUC 84.7 UNBC-

McMaster 

(Lucey, Cohn, 

Lucey, 

Matthews, et al., 

2009) 

AAM SVM AUC 78 UNBC-

McMaster 

(Lucey, Cohn, 

Lucey, 

Sridharan, et al., 

2009) 

AAM/ASM SVM AUC 78.4 UNBC-

McMaster 

(Kaltwang et al., 

2012) 

AAM, LBP RVR MSE, 

PCC, ICC 

1.39, 

0.59, 

0.50 

UNBC-

McMaster 

(Zhao et al., 

2016) 

LBP, Gabor OSVR MAE, 

PCC, ICC 

0.81; 

0.60; 

0.56 

UNBC-

McMaster 

(Florea et al., 

2014) 

HOT SVR MSE, 

PCC 

1.21, 

0.53 

UNBC-

McMaster 

(Ashraf et al., 

2009) 

AAM SVM Hit rate 82 UNBC-

McMaster 

(Hammal & 

Cohn, 2012) 

AAM SVM Recall, F1 61, 57 UNBC-

McMaster 

(Rudovic et al., 

2013) 

LBP KCORF Precision, 

F1 

65, 

40.2 

UNBC-

McMaster 

(Khan et al., 

2013) 

HOG-LBP SVM, 

RF 

Accuracy 96.4 UNBC-

McMaster 

(Pedersen, 2015) Custom 

Features 

SVM AUC, 

Accuracy 

96.5, 

86.1 

UNBC-

McMaster 

(Rathee & 

Ganotra, 2015) 

feature 

deformation 

SVM Accuracy 96.0 UNBC-

McMaster 

(Yang et al., 

2016) 

LBP SVM Accuracy 83.4, 

71 

UNBC-

McMaster 

and BioVid 
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2.3 Pain Databases from Facial Expression 

Unfortunately, for various justifiable reasons (e.g., ethical considerations, human data 

confidentiality or institutional regulations) there appear to be not enough publicly 

available medical databases that were freely available to any researcher in the area of 

facial expression analysis for pain detection. Most of the high-quality databases could 

potentially help design a robust facial image recognition system often requires 

permission prior to their accessibility. The authorization for the usage of such 

databases is generally feasible since most of these databases only require a user-

defined form to be completed as a formality to access the records. Table 2-5 shows the 

databases denoting facial pain intensity with their relevant accessibility and other 

details.. 
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Table 2-5. Databases of facial expressions related to pain. 

Databases Samples Subjects Pain Type Description 

UNBC-McMaster 

Shoulder Pain 

Expression (Lucey, 

Cohn, Prkachin, et al., 

2011) 

200 video 

sequences, 

48398 

images 

25 Self-identified 

pain patient, 

Natural 

Shoulder pain 

Includes FACS, 

66-point 

landmarks, and 

PSPI codes for 

16 pain level. 

BioVid (Walter et al., 

2013) 

17300 

videos 

90 Healthy 

volunteers, 

Stimulated 

heat pain 

4 pain (Stimuli) 

level 

MIntPAIN (Haque et 

al., 2018) 

9366 

video 

sequences, 

187939 

images 

20 Healthy 

volunteers, 

Stimulated 

electrical pain 

5 pain 

(Stimuli) 

level 

Infant COPE 

(Brahnam et al., 2007) 

204 facial 

images 

26 Healthy, heel 

lancing pain 

simulation 

pain, crying, 

heel friction, 

nasal air, 

stimulus, rest 

Hi4D-ADSIP 

(Matuszewski et al., 

2012) 

240 pain 

sequence 

80 Healthy Pain and 

emotion 

BP4D (Zhang et al., 

2014) 

41 2D, 41 

3D pain 

video 

41 cold-pressor 

test 

Pain and 

emotion 

EmoPain (Aung et al., 

2015) 

44 video, 

50071 

pain frame 

48 Chronic back 

pain 

Pain from face 

and body 

movement 

One particularly useful database for a facial image and pain recognition system is the 

UNBC-McMaster Shoulder Pain Archive (Lucey, Cohn, Prkachin, et al., 2011). This 

database has been pre-processed and includes noise-free backgrounds, consists of 

carefully labelled images with the required facial expressions. The UNBC-McMaster 

Shoulder Pain Archive provides videos with each frame that is coded in terms of PSPI 

score (Prkachin & Solomon, 2008), and is defined on an ordinal scale 0-15. These data 

were collected by researchers at two major institutions: the McMaster University and 

the University of Northern British Columbia, under a research program devoted to a 

better understanding of the properties of facial expressions of pain. The process of data 

collection involved the identification of pain expressions and the role of pain 

expressions in clinical assessment of people suffering from such conditions. Here, the 

participants provided informed consent for the use of their facial images for scientific 
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studies on the perception of their pain, including the pain detection. The frames of 

these images were labelled using the validated PSPI score based on the FACS. 

Specifically, these aimed to code the different movements of the facial muscles to 

explain the different pain intensity levels. To collate these images, spontaneous 

expressions of the corresponding pain from these patients were recorded using a digital 

camera in a laboratory whilst they underwent eight standard range-of-motion tests. 

Statistically the database includes a total of 200 sequences across 25 different subjects, 

totaling 48398 images (Lucey, Cohn, Prkachin, et al., 2011). 

Another useful database is the BioVid repository that includes 17300 videos from a 

total of 90 subjects that can be used to estimate the pain from their facial images. To 

compensate for the varying heat pain sensitivities among these participants, the 

stimulation temperatures were therefore adjusted based on the subject-specific pain 

threshold and pain tolerance. BioVid data contains five sections and section B consists 

of pain stimulations with facial EMG sensors (Walter et al., 2013), providing a 

significant number of features that may be extracted to develop an automated pain 

recognition system. 

The MIntPAIN has been generated recently. The MIntPAIN repository has multimodal 

pain-related data that were obtained by providing electrical stimulations in five 

different levels for a total of 20 healthy subjects. Each subject completed two trials 

during the data capturing session and each of those trials had 40 sweeps of pain 

stimulations. In each sweep, data were captured in two distinct parts: one for ‘no pain’ 

and the other for ‘one of the four pain levels’, although some sweeps were missed for 

only a few subjects (Haque et al., 2018). 

Infant COPE has been collected from infant facial expression. Infant COPE includes 

a total of 204 color photographs were taken of 26 Caucasian neonates (13 boys and 13 

girls) ranging in age from 18 h to 3 days old. All infants were in good health. The facial 

photographs consist 67 in resting mood, 18 in crying, 23 in air stimulus, 36 in friction 

and 60 in acute pain (Zhang et al., 2014). 

Hi4D-ADSIP database contains 3360 3-D dynamic high-resolution sequences from 80 

subjects of seven expression categories: anger, disgust, fear, happiness, sadness, 

surprise, and pain. The database consists of 48 female and 32 male subjects from a 

variety of ethnic origins. The database has been validated using psychophysical 



 

25 

 

experiments used to formally evaluate the accuracy of the recorded expressions 

(Matuszewski et al., 2012). 

BP4D 3D includes video database of spontaneous facial expressions in a diverse group 

of young adults (23 women, 18 men) Frame-level ground-truth for facial actions has 

been obtained using the FACS. Facial features track in both 2D and 3D domains. Cold 

pressor uses by submerging a hand in ice water for as long as possible to provide 

physical pain (Zhang et al., 2014). 

EmoPain includes body movement and facial expression videos from potential 

participants were identified by health care staff from the Pain Management Centre 

at the National Hospital for Neurology and Neurosurgery, United Kingdom. The 

dataset will be made available to the research community via a web-accessible 

interface linked. The first release will contain eight continuous facial pain ratings 

and the temporal annotations for movement-based pain behaviors from four 

raters, and the approximate onset and end timings of each exercise will also be 

provided for the patient set. One challenge in the using the EmoPain for facial 

expression is the original images is not accessible and only extracted features from 

specific feature extractor were available (Aung et al., 2015). 

2.4 Chapter Summary 

In this chapter the related literature about feature extraction methods were discussed. 

The traditional and non-deep learning techniques and deep learning feature extraction 

methods were explained. Both deep learning and non-deep learning classifiers applied 

to pain detection from facial expressions were reviewed and their strength and 

weaknesses, number of recognized classes, the applied databases, measurement 

metrics were elaborated and compared. Then the popular and available databases in 

pain detection from facial expressions to train and evaluate the models were discussed. 

The previous studies review show that pain recognition algorithms based on deep 

learning models to detect pain levels from facial expression in multi classes still need 

improvement. In this research new enhanced deep learning models for this task were 

developed and evaluated and in the following sections details about the proposed 

methods, results, and comparison with the state-of-the-art were discussed. 
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CHAPTER 3 

Research Methodology 

In this chapter the applied research methodology and the proposed research design and 

approaches applied in this thesis research work is introduced and explained. The 

research design framework and its components including doing literature review, 

developing conceptual framework, developing theoretical framework, selecting 

databases, doing experimental, evaluation the developed frameworks, and writing and 

documentation are described. Several research approaches appeared to be legitimate 

within the field of knowledge discovery and information systems. These methods 

include case study, field studies, action research, prototyping, and scientific such as 

experimental methods. As this research focuses on the development of robust 

mechanisms in the knowledge discovery system, these mechanisms or proposed 

theories must be proven by the classic scientific method of experiment. This research 

needs diagnosis of the problem and development the solution for the problem as 

identified in action research. The scientific experimental approach integrated with 

action research is chosen as the research method. The main features of each approach 

(scientific method and action research) are outlined and justified, below. 

3.1 Scientific Approaches 

Scientific approaches may be defined as those that have arisen from the scientific 

tradition – characterized by repeatability, reductionism and refutability – and which 

assume that observations of the phenomena under investigation can be made 

objectively and rigorously (Lyytinen & Klein, 1985). The scientific method is common 

to many disciplines such as biology or sociology and only the tools of research are 

different (Leedy & Ormrod, 2005). 

3.2 Action Research Approach 

General action research (AR) is viewed as a cyclical process (Susman, 1983). This 

process contains four major phases: plan, act, observe and reflect. It aims to link theory 

and practice, achieving both practical and research objectives. In this  research,  action 
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research is used as one of the primary research approaches because: (1) it provides a 

general guideline and methodology to perform research activities in a logically and 

efficient way; (2) action research has the strength of evaluating and reflecting on 

learning (Susman, 1983). Evaluative and reflective learning enables the researcher to 

step back and critically analyze an action, decision, or product by focusing on what is 

done or being done that incorporates learning to be applied to a new situation (Susman, 

1983). As this thesis research project focuses on the development of the knowledge 

discovery system, evaluation and reflection were needed to find the best solution; 

scientific methodology integrated with action method is applied. 

3.3 Research Design and Approach 

A research design is the arrangement of conditions for the collection and analysis of 

data in a manner that aims to combine relevance to the research purpose with economy 

in a procedure (Selltiz et al., 1976). It is a blueprint for the collection, measurement, 

and analysis of data (Phillips, 1966). A research methodology is a way in which one 

proceeds to solve the problem and a description of how the research will be conducted 

(Leedy & Ormrod, 2005). It is an operational plan generated from a research design. 

It also provides a more detailed description of the approach taken in carrying out the 

research, such as the characteristics of data, data collection instruments, and the data 

collection process. For example, description of the sample size and the origin of data, 

description of data collection instruments, and pretext of these instruments (Gable, 

1994). The research design conducted in this doctoral thesis can be described as (1) 

exploratory, (2) observational, (3) experimental, and (4) descriptive. The proposed 

research methodology generated from the research design combines the strength of 

both the scientific (empirical) approach and action research to achieve the research 

objectives. It includes seven main phases. (1) literature review; (2) constructing a 

conceptual framework; (3) developing theoretical models; (4) data selection; (5) 

experimental configuration including building a prototype system, and carrying out 

several experiments; (6) undertaking laboratory evaluation and reflection; (7) 

interpreting and analyzing results, and thesis writing. Fig. 3-1 shows the research 

design schema. 
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Fig. 3-1. Research design framework developed in this doctoral thesis. 

3.3.1 Literature Review 

A literature review involves the researcher exploring the literature to establish the 

status quo, formulating a problem or research inquiry, defending the value of pursuing 

the line of inquiry established, and comparing the findings and ideas with his or her 

own (Bruce, 1994). This involves the synthesis of the work of others in a form that 

demonstrates the accomplishment of the exploratory process. This phase explores 

potential important issues/problems, relationships and relevant theories identified from 

past research, and focuses on the emerging fields for proposed research. The major 

tasks were critical analysis and evaluation of the literature to answer research question 

one. The several crucial related topics: automated pain recognition from facial 

expression, image processing, deep learning feature extraction, deep learning 

classification, related and available pain database from facial images were discussed 

in the literature review. 
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3.3.2 Conceptual Framework 

The general image processing conceptual framework strategy for facial expression are 

described in this section which shows the roadmap for this research. After deciding on 

the problem, a preliminary literature review is used to define the conceptual framework 

to conduct an automated pain detection system from facial expressions based on image 

processing techniques. Based on the schematic view of the general FER framework 

used in a practical healthcare environment tool (Chibelushi & Bourel, 2003), the 

conceptual framework is designed as shown in Fig. 3-2. 

 

Fig. 3-2. Proposed conceptual framework 

3.3.3 Theoretical Framework 

New deep learning models for extracting features and detecting pain intensity from 

facial expression video images were developed to answer research questions two and 

three. The developed theorical models for feature extraction and pain intensity 

classification and their results are described in Chapter 4, 5, and 6. The purpose of this 
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is to develop and design a new mechanism based on the literature review to solve 

problems of pain recognition automatically from facial expressions’ images and 

estimation of pain intensity levels. 

3.3.4 Data Selection 

To train and test the proposed deep learning model to recognise pain from facial 

expression, two popular databases the UNBC-McMaster Shoulder Pain Archive 

database (Lucey, Cohn, Prkachin, et al., 2011) and MIntPAIN (Haque et al., 2018) 

were selected. Unfortunately, the number of databases for pain detection from facial 

expression is very limited and, in many cases, such as some of the databases described 

in section 2.5 of the previous chapter, accessing the patients’ raw image data is 

restricted. These two databases were selected since their images and labels were 

available to use and contain very useful information for pain analysis and can be used 

in any algorithm. In the following sections detailed information for both databases, 

their data characteristics and the selected datasets used for the experiment are 

described. 

3.3.4.1 UNBC-McMaster Shoulder Pain Archive Dataset 

The UNBC-McMaster Shoulder Pain Archive database (Lucey, Cohn, Prkachin, et al., 

2011) provides video frames within a set of video sequences with each frame labeled 

in terms of the PSPI score. This database also provides a total of 200 sequences across 

25 subjects with a total of 48,398 facial images. Fig. 3-3 shows some of these images 

indicated by the PSPI. 
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Fig. 3-3. Image frame samples of the UNBC-McMaster Shoulder Pain Archive 

database (Lucey, Cohn, Prkachin, et al., 2011) used in this study 

Like many image-based datasets, the database is unbalanced, and it is very challenging 

to perform the modelling experiments. This meant that, as shown in Fig. 3-4, the 

number of no pain images PSPI score labels were higher than other labels and the 

number of images with PSPI labels greater than 4 is few in this database. Based on the 

specific character of the database it is likely that any model would be biased towards 

the prediction of no-pain at the cost of missing pain frames. 

 

Fig. 3-4. Amount of the PSPI code per each class in the UNBC McMaster Shoulder 

Pain Database 
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It must be noted that using imbalanced data basically means the researcher is 

intentionally biasing the data to potentially get an interesting result. To deal with this 

issue, in this thesis, a selected dataset of the database is applied.  To doing this, the 

main database is balanced using under resampling techniques to reduce the majority 

class (no-pain class). Full sequences included only no pain (PSPI = 0) frames were 

removed and some no-pain frames from the beginning and end of sequences, which 

included no-pain frames, were removed.  10,783 images were used in this research. To 

create the training sequence for the proposed video analyses algorithm, the frames 

were firstly sorted out in time domain, and subsequently, each sequence is set to 20 

frames. On the other hand, the number of classes for more than PSPI = 4 is few. the 

classes with PSPI = 4 and greater than 4 were categorized as a strong pain level. In 

order to balance data for each class, the database is divided as follows, no-pain (PSPI 

= 0), weak-pain (PSPI = 1), mid-pain (PSPI = 2 and 3), and strong-pain (PSPI > = 4). 

As described in Table 3-1, the selected dataset from the UNBC-McMaster shoulder 

Pain database has four classes. 

Table 3-1. Divided levels of pain in the database for four levels based on PSPI codes 

of images’ frames. 

PSPI Score Pain Level Number of images 

0 No pain 2483 

1 Weak pain 2871 

2 and 3 Mid pain 3757 

4 and >4 Strong pain 1672 

3.3.4.2 MIntPAIN Dataset 

The MIntPAIN database includes pain video data taken by electrical stimulation in 

five levels (Level 0 – no pain to Level 4 – highest pain level) of 20 subjects. Each 

subject includes two trials, and each trial includes 40 sweeps of pain stimulation. In 

this research work, a dataset of all RGB images from the 20 subjects has been selected. 

The number of no pain video sequences were more than any other. based on the 

specific character of the database it is likely that any model would be biased towards 

the prediction of no-pain at the cost of missing pain frames. Using imbalance data is 

basically intentionally biasing data to get an interesting result. To deal with this issue, 
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in this study the database has been balanced using under resampling techniques to 

reduce the majority class (no-pain class). So, some no pain sequences were removed. 

The resampling technique is applied on the selected dataset since a few subjects were 

missing for some sweeps and there is also not an equal proportion for each class. the 

under-sampling technique is applied to reduce the majority class, and some no painful 

sequences (label 0) were  removed. The total of 34800 video frames is selected for 

experimentation in this research. Fig. 3-5 shows the samples of the selected dataset. 

 

Fig. 3-5. Samples of selected dataset of MIntPAIN database (Bellantonio et al., 2016; 

Haque et al., 2018). 
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3.3.5 Experimental Configuration and Results 

A prototype modelling system is developed to train, test, and evaluate the proposed 

enhanced deep learning pain detection model to answer research questions four and 

five. Modelling experiments were conducted to validate the effectiveness and 

efficiency of the proposed models in chapters 4, 5, and 6. The developed algorithms 

were executed under Intel Core i7 @ 3.3 GHz and 16 GB memory computer. Python 

software (Sanner, 1999) is used for the model construction and prototyping, since it 

has freely available library suits for deep learning such as Keras (Ketkar, 2017), 

TensorFlow (Abadi et al., 2016), Scikit-learn (Pedregosa et al., 2011) and Matplotlib 

(Hunter, 2007). Keras allows for easy and fast prototyping and supports both 

convolutional networks and recurrent networks. Matplotlib is a Python 2D plotting 

library that is used for plotting and statistical analysis of modelling data. 

3.3.6 Evaluation and Reflection 

Evaluation of the obtained results is one of the most important parts of the research to 

estimate the effectiveness and efficiency of the proposed models and answer research 

questions 4 and 5. To evaluate the proposed algorithms, training and testing datasets 

were  divided by k-fold cross validation by k=10. Cross-validation is a computer 

intensive technique, using all available examples as training and test examples. It 

mimics the use of training and test sets by repeatedly training the algorithm K times 

with a fraction 1/K of training examples left out for testing purposes. 

In practice, the data set D is first chunked into K disjoint subsets (or blocks) of the 

same size 𝑚 ≜ 𝑛/𝐾.  

If 𝑇𝑘 for the 𝐾𝑡ℎ such block, and 𝐷𝑘the training set obtained by removing the elements 

in 𝑇𝑘 from D.  

The cross-validation estimator is defined as the average of the errors on test block 𝑇𝑘  

obtained when the training set is derived from 𝑇𝑘 (Bengio & Grandvalet, 2004): 

𝐶𝑉(𝐷) =
1

𝐾
∑

1

𝑚

𝐾
𝑘=1 ∑ 𝐿(𝐴(𝐷𝑘), 𝑧𝑖). 

𝑧𝑖∈𝑇𝑘
              (3-1) 

To evaluate the generality of the proposed algorithms the Leave One-subject Out Cross 

Validation (LOOCV) is also applied.  
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If data  

𝑦1, … 𝑦𝑛 

modelled as independent given parameter 𝜃; thus, 

𝑝(𝑦|𝜃) = ∏ 𝑝(𝑦𝑖|𝜃).𝑛
𝑖=1                 (3-2) 

This formulation also encompasses latent variable models with 

𝑝(𝑦𝑖|𝑓𝑖 , 𝜃), 

where 

𝑓𝑖  

are latent variables. Suppose of a prior distribution  

𝑝(𝜃),  

generate a posterior distribution 

𝑝(𝜃|𝑦)  

and a posterior predictive distribution  

𝑝(�̃�|𝑦) = ∫ 𝑝(�̃�𝑖|𝜃)𝑝(𝜃|𝑦)𝑑𝜃.                (3-3) 

To maintain comparability with the given dataset and to obtain easier interpretation of 

the differences in scale of effective number of parameters, a measure of predictive 

accuracy for the n data points taken one at a time defines as: 

elpd == expected log pointwise predictive densityfor a new dataset =

∑ ∫ 𝑝𝑡(�̃�𝑖)𝑙𝑜𝑔𝑝(�̃�𝑖|𝑦)𝑑�̃�𝑖
𝑛
𝑖=1                 (3-4) 

where 

𝑝𝑡(�̃�𝑖) 

is the distribution representing the true data-generating process for �̃�𝑖. 

The LOOCV estimate of out-of-sample predictive fit is 

𝑒𝑙𝑝𝑑𝑙𝑜𝑜𝑐𝑣 = ∑ log 𝑝(𝑦𝑖|𝑦𝑖−1)𝑛
𝑖=1                 (3-5) 

where 

𝑝(𝑦𝑖|𝑦𝑖−1) = ∫ 𝑝(𝑦𝑖|𝜃)𝑝(𝜃|𝑦𝑖−1)𝑑𝜃               (3-6) 
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is the leave-one-out predictive density given the data without the 𝑖𝑡ℎ data point 

(Vehtari et al., 2017). 

Several performance evaluations measures, including classification accuracy, Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Area under Curve (AUC), 

Precision-recall curves (PR curves), and F-measure were used to evaluate the 

performance of the proposed model.  

Classification accuracy is the ratios of the number of correct predictions to the total 

number of input samples in both training and testing sets.  

MAE is the average of the difference between the original values and the predicted 

values. It gives us the measure of how far the predictions were from the actual output. 

However, they do not give any idea of the direction of the error whether the data is 

under predicting or over predicting. 

MSE is quite like MAE, and the only difference is that MSE takes the average of the 

square of the difference between the original values and the predicted values. The 

advantage of MSE is that it is easier to compute the gradient, whereas MAE requires 

complicated linear programming tools to compute the gradient. Mathematically, the 

metrics were stated as follows where: 

𝑒 = 𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑒𝑡𝑟𝑢𝑒                 (3-7) 

and  

N = number of errors: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑒𝑖|

𝑁
𝑖=1                  (3-8) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑒𝑖)

2𝑁
𝑖=1                  (3-9) 

True Positive Rate (TPR) corresponds to the proportion of positive data points that 

were correctly considered as positive, with respect to all positive data points. False 

Positive Rate (FPR) corresponds to the proportion of negative data points that were 

mistakenly considered as positive, with respect to all negative data points. FPR and 

TPR both have values in the range [0, 1]. The algorithms calculate TPR and FPR 

metrics and applied them for the measuring of the AUC and F measures.  
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AUC is one of the most widely used metrics for evaluation. AUC of a classifier is 

equal to the probability that the classifier will rank a randomly chosen positive 

example higher than a randomly chosen negative example. AUC is the area under the 

curve of the plot FPR vs TPR at different points in [0, 1] (Powers, 2011). The area 

under the receiver operating characteristic (Bellantonio et al., 2016) curve (i.e., the 

AUC) is used as a performance measure for these machine learning algorithms 

following other works e.g., (Bradley, 1997). The details of the AUC calculation were 

described in Bradley (1997).  

The F-measure is used to measure a test’s accuracy, and it balances the use of precision 

and recalls doing it. The F measure can provide a more realistic measure of a test’s 

performance by using both precision and recall. F-measure and precision were 

calculated based on False Positive (FP), True Negative (TN), False Negative (FN), and 

True Positive (TP). PR curves is based on precision rather than the false positive rate, 

and better reflect model performance when predicting rare outcomes (Davis & 

Goadrich, 2006). the PR curve contains TP/(TP+FN) on the y-axis and TP/(TP+FP) 

on the x-axis. It is a curve that combines precision and recall in a single visualization. 

More information and formula about measuring PR curves could find in (Boyd et al., 

2013). In this thesis experimental the sklearn Python library has been used to calculate 

PR curves. 

In the following the equation of some metrics based on TP and FN were described: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (3-10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (3-11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (3-12) 

𝐹1 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
              (3-13) 

3.3.7 Interpretation and Write up  

The overall results produced by developing the model, the results of experimental, and 

literature review were analyzed, interpreted, and reported. The research results were 

presented in appropriate publications. 
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3.4 Chapter Summary 

In this chapter the research methodology concepts and types applied in this doctoral 

thesis is discussed. The research design framework, steps, and its components 

development to answer the related research questions is explained. The applied 

databases, configuration set ups, evaluation metrics which is utilized in the proposed 

models is introduced and clarified. The goal of this chapter is to provide an overview 

for the content of Chapters 4, 5 and 6 which were elaborated in the following chapters. 

In the following chapters three proposed models to pain recognition system from facial 

expression video images is described and discussed. 
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CHAPTER 4 

The Proposed Hybrid CNN-BiLSTM (EJH-CNN-BiLSTM) Model 

This Chapter reports on the successful design of an enhanced joint hybrid deep 

learning approach, utilizing CNN linked to a joint bidirectional long short term 

(BiLSTM) neural network algorithm to address existing challenges of pain intensity 

estimation. The study applies the UNBC-McMaster Shoulder Pain Achieve database 

(Lucey, Cohn, Prkachin, et al., 2011), to train the proposed algorithm and 

subsequently, detect the pain in four different levels efficiently and effectively. To 

attain this, the popular VGGFace pre-trainer (Parkhi et al., 2015) was fine-tuned and 

utilized to extract the features from the facial image dataset. To improve the 

computational efficiency of the algorithm, the full dataset was reduced to only the most 

significant input features by applying the PCA, and the outputs of the selected features 

were then transferred to the CNN-BiLSTM joint network for the classification of pain 

intensity. The novelty in the study lies in developing a new EJH-CNN-BiLSTM 

algorithm that is able to extract and select most prominent features and classify pain 

levels. The newly proposed system was then conditioned in such a way that the outputs 

of the machine learning algorithm were further tuned to estimate four pain levels 

ranging from 0 to 3 [0 = no pain and 3 = strong level of pain]. The contributions of 

this research work will result in: 

1. An efficient and effective algorithm, based on transfer learning, that is 

designed to extract the most important features by using a fine-tuned VGGFace 

and the PCA dimension reduction method. 

2. A new enhanced joint hybrid deep learning approach that automatically 

estimates four-levels of pain from facial expressions is proposed. 

3.  The newly proposed EJH-CNN-BiLSTM model consists of both the feature 

extraction and the classification algorithm in a single workflow that can be 

easily implemented in a real-time online system. 

A block-diagram of the proposed modelling framework established in this study is 

illustrated in Fig 4-1. Basically, it is divided into three primary components that aim 

to improve the overall efficacy of the algorithm. In the first step, the original images 

(captured as video frames) were transferred to the pre-processing stage, which applied 
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procedures related to the cropping, resizing and normalizing techniques required to 

adjust the original images before being incorporated into the feature extraction phase 

and the model training stage. Subsequently, in a new proposed framework for feature 

extraction and selection, the fine-tuned pre-trained CNN framework was applied to 

extract these features. This was later output into the PCA stage, aimed to reduce the 

dimensionality of the extracted features from the video’s images. Since this study used 

video-image based data, additional temporal information is necessary to improve the 

classification model. It should be noted that the BiLSTM algorithm, used as a specific 

type of RNN neural net, is especially suited for sequential datasets since their neurons 

do not only have connections between the next layers but also have connections to 

themselves, which aim to capture the past and future input features. the extracted 

features in a sequence length were transferred into a newly developed Enhanced Joint 

Hybrid classifier algorithm, denoted in this study as the EJH-CNN-BiLSTM in order 

to obtain four distinct pain intensity levels. The details of the proposed model were 

explained in the following subsection. 

 

Fig. 4-1. The proposed EJH-CNN-BiLSTM model designed for pain detection from 

facial expression images. 

4.1 Image Preprocessing 

For a better performance of the proposed algorithm, applying image pre-processing 

for the raw selected datasets is essential. For this purpose, some important image pre-

processing techniques including face detection, image cropping, centralizing, and 



 

41 

 

resizing were applied to the raw images. Face detection and cropping is also an 

important task to achieve high recognition rate. Face detection involves detecting a 

face from an image using complete image (image-based approach) or by detecting one 

or more features from the image (Feature based approach) such as nose, eyes, lips etc. 

Face detection can also be done based on active shape models such as locating head 

boundary. The OpenCV face detection library (Emami & Suciu, 2012) and 

detectMultiScale () method (Howse et al., 2016) was applied to detect face from the 

raw image. Algorithm 4-1 shows the related procedure. 

Algorithm 4-1: Face detection algorithm using OpenCV and detectMultiScale () 

1 Procedure FaceDetection (image)  

2       import cv2 

3       import numpy as np 

4       face_casecade = cv2.CascadeClassifier (image) 

5       img = cv2.imread (imgfile_path) 

6       img_copy = np.copy (img) 

7       faces = face_cascade.detectMultiScale (img, 1.25, 6) 

8       for f in faces: 

9            x, y, w, h = [v for v in f] 

10            img = cv2.rectangle (img_copy, (x,y), (x+w, y+h), (255,0,0) , 3) 

11            img = img [y:y+h, x:x+w] 

12       end for 

13 end Procedure 

In a real-world scenario, an image dataset may be taken in a variety of conditions such 

as different orientations, location, scales, and brightness. the conventional image pre-

processing technique such as the illumination, normalization, cropping, and 

centralizing (Fig. 4-2) were applied in these raw images to improve the identification 

of the images during any experimental phase. Cropping was done using the face 

detection algorithm. The images centralizing applied on the images as a pre-processing 

technique.  
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Fig. 4-2. Image pre-processing steps for a sample image data (a) face detection, (b) 

centralizing, (c) resizing. 

Algorithm 4-2 shows the process of the images’ centralizing. Numpy zeros as 

np.zeros() function in python was used to get an array of given shape and type filled 

with zeros. Three parameters can pass inside function np.zeros were shape, dtype as 

np.zeros (shape, dtype, order) (McKinney, 2012). The numpy.unit8 as np.unit8 

describes unsigned integer (0 to 255). Finally, the input images were resized to 

224×224×3 pixels because this representation is the most common input size for most 

of the deep neural network models. 

Algorithm 4-2: Images’ centralizing process 

1 Procedure centering_image (img_shape[])  

2       import numpy as np 

3       size = [256,256] 

4       img_size = img_shape [:2] 

5       row = (size [1] - img_size [0]) // 2  

6       col = (size [0] - img_size [1]) // 2 

7       resized = np.zeros (list (size) + [img.shape[2]]) , dtype = np.unit8) 

8       resized [row: (row + img.shape [0]), col: (col + img.shape[1])] = img 

9       return resized 

10 end Procedure 

To normalize the pixel values for both the training and testing datasets, these data were 

rescaled to the range of [0,1]. This involved first converting the data type from 

unsigned integer to float values, and then dividing the pixel values by the maximum 

value (Schertler, 2014). 

https://www.bing.com/search?q=NumPy&filters=sid%3a02b7fc51-21ca-9683-5c0f-bd126e83a249&form=ENTLNK
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒: 𝑅 → 𝑅: 𝑥 →
𝑥

𝑑
               𝑑 = max

𝑥 ∈𝑖𝑚𝑎𝑔𝑒
∥ 𝑥 ∥            (4-1) 

4.2 Proposed Feature Extraction Model 

Feature extraction and representation is a crucial step for multimedia processing. How 

to extract ideal features that can reflect the intrinsic content of the images as complete 

as possible is still a challenging problem in computer vision. How to find effective 

features is the core issue in image classification and pattern recognition. Humans have 

an amazing skill in extracting meaningful features, and a lot of research projects were 

undertaken to build a facial expression system as smart as human in the last several 

decades. 

Deep learning has been widely applied to several real-world applications. However, 

most existing supervised algorithms work well only under a circumstance such as the 

training and test data should be represented by the same features and drawn from the 

same distribution. the performance of these algorithms heavily depends on collecting 

high quality and sufficient labeled training data to train a statistical or computational 

model to make predictions on the future data. However, in many real-world scenarios, 

labeled training data were in short supply or can only be obtained with expensive cost. 

This problem has become a major bottleneck of making machine learning methods 

more applicable in practice (Yang et al., 2020). 

In the last decade, semi-supervised learning (Blum & Mitchell, 1998) techniques were 

proposed to address the labeled data sparsity problem by making use of a large amount 

of unlabeled data to discover an intrinsic data structure to effectively propagate label 

information.  

Nevertheless, most semi-supervised methods require that the training data, including 

labeled and unlabeled data, and the test data were both from the same domain of 

interest, which implicitly assumes the training and test data were still represented in 

the same feature space and drawn from the same data distribution. Instead of exploring 

unlabeled data to train a precise model, active learning, which is another branch in 

machine learning for reducing annotation effort of supervised learning, tries to design 

an active learner to pose queries, usually in the form of unlabeled data instances to be 

labeled by an oracle (e.g., a human annotator). The key idea behind active learning is 
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that a machine learning algorithm can achieve greater accuracy with fewer training 

labels if it is allowed to choose the data from which it learns (Lewis). 

However, most active learning methods assume that there is a budget for the active 

learner to pose queries in the domain of interest. In some real-world applications, the 

budget may be quite limited, which means that the labeled data queried by active 

learning may not be sufficient enough to learn an accurate classifier in the domain of 

interest. 

Transfer learning, in contrast, allows the domains, tasks, and distributions used in 

training and testing to be different. The main idea behind transfer learning is to borrow 

labeled data or extract knowledge from some related domains to help a machine 

learning algorithm to achieve greater performance in the domain of interest (Pan & 

Yang, 2009). Thus, transfer learning can be referred to as a different strategy for 

learning models with minimal human supervision, compared to semi-supervised and 

active learning. 

There were four transfer learning approaches, including (Yang et al., 2020):  

• Instance-transfer: Re-weighting the labeled data for the target domain. 

• Feature-representation-transfer: Selecting a good feature set to reduce the 

difference between two domains. 

• Parameter transfer: Discovering parameters in one domain and reusing these 

parameters in the target domain. 

• Relational-knowledge-transfer: Mapping of knowledge between two domains. 

With respect to the nature of the target task (Pan & Yang, 2009) distinguish the 

following three settings: 

• Inductive transfer learning: target task is different than the source one. 

• Transductive transfer learning: target task and source task were the same, but 

the domains were different. 

• Unsupervised transfer learning: target task is different than the source task, but 

they were related to each other. 

For deep neural networks, in some cases there may not be enough data to train the 

network or creating the labeled data might be expensive. transfer learning can be 

applied to adopt the knowledge that has been learned in earlier settings. For example, 
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there were various CNN models such as AlexNet (Krizhevsky et al., 2012), GoogleNet 

(Szegedy et al., 2015), and VGG (Simonyan & Zisserman, 2015), which can be used 

later on for similar tasks. The two common transfer learning strategies in deep learning 

were deep feature extraction and fine-tuning (Kaya et al., 2019).  

In the deep feature extraction, the input data was provided to the pre-trained network 

and activation values of various layers were stored and used as features. In fine-tuning, 

deep neural network was trained for a similar task, in which labeling is relatively 

easier. While the first layers of the pre-trained network can be fixed, fine-tuning can 

be done on the final layers of the model to learn the properties of the new dataset. The 

pre-trained model was re-trained with the new small dataset and weight values of the 

model were updated according to a new task. Fine-tuning process occurs on the 

network using back propagation with labels. Learning to transmit is often faster than 

training a new neural network because all the parameters in the new network were not 

estimated from scratch. In the lower layers of the network, more general features exist 

such as color blobs and Gabor filters and they can be transferred to other tasks as well. 

However, in higher layers, features were more task specific. Deep learning systems 

provide high performance for several problems, but they require huge amount of data 

and time for their training. In this case, reusing these pre-trained models for similar 

tasks is quite helpful. 

Deep convolutional neural networks have a wide range of applications in image feature 

extraction (Han et al., 2017). However, with the continuous improvement of the 

network level, the feature dimension of image extraction is also rising, which makes 

the subsequent processing of features extracted by deep convolutional neural networks 

rely heavily on the dimension reduction algorithm. 

There were a few CNN models that were successfully trained for this face recognition 

task such as VGGFace. Its architecture proposed by Parkhi et al. (2015) which 

achieved state-of-the-art results in extracting features and relied on a very deep facial 

recognition CNN architecture. It consists of 5 convolution blocks and 3 fully 

connected layers including fc6, fc7, and fc8 as shown in Fig. 4-3. Each convolution 

block comprises of two or three convolutional layers with a max-pooling layer to 

reduce the size of the output feature map. 
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Fig. 4-3. The original VGGFace pre-trainer adopted for deep face recognition (Parkhi 

et al., 2015). 

Achieving an optimal pain detection algorithm is a challenging task. There is a great 

difference between the target task's image set and the pre-trained image set, regardless 

of the number of categories or image styles. In the retrieval task of the target image 

set, the visual features of the image were directly extracted by the pre-trained CNN 

model. to make the pre-trained CNN model parameters more suitable for the feature 

extraction of the target image set, the VGGFace pre-trained CNN model was fine-

tuned as follows: VGGFace were used and retrain it for pain estimation by keeping the 

convolution layers of this model unchanged while replacing the fully connected layers 

with a new fully connected layer. 5 convolutional blocks and the new replaced fully 

connected layer were retrained by transfer learning. The replaced, fully connected 

layer was followed by dropout and the size of it was 1024. Fig. 4-4 shows the proposed 

fine-tuned VGGFace architecture to extract features from image pain data. 

 

Fig. 4-4. The proposed fine-tuned VGGFace architecture to extract image feature. 

The ADAM-optimizer is one of the most popular gradient descent optimization 

algorithms and faster than other optimizers. The ADAM-optimizer were applied to 

retrain fine-tuned VGGFace since it is a superior optimizer that can tune the parameter 

automatically during training (Han et al., 2018). 

in this research paper, there were a total of 38,816 features, which were extracted from 

the training data set, calculated according to the input shape of the extracted features. 



 

47 

 

For the training data set, these were denoted as (9704, 4) where the number 9704 refers 

to the number of training images and so, we were able to obtain a product 9704 × 4 =

38,816. the 4 distinct output features (per image) extracted from the fine-tuned 

VGGFace were transferred into the PCA algorithm with an aim to reduce the 

dimensionality of the extracted features and also to speed up the classification 

algorithm. the proposed new feature extraction model applied pretrained and finetuned 

VGGFace and then the PCA algorithm was used to achieve dimension reduction. In 

the following sections the components of the proposed feature extraction model were 

explained. Fig. 4-5 shows the proposed deep feature extraction framework contains 

finetune VGGFace and PCA. 

 

Fig. 4-5. The proposed deep CNN-PCA feature extraction framework. 

The PCA algorithm with an aim to reduce the dimensionality of the extracted features 

and to speed up the classification algorithm was used. PCA is a dimensionality 

reduction method that is useful in different applications such as image compression, 

facial feature extraction, face recognition and finding patterns from large dimensional 

images (Damale & Pathak, 2018; Li et al., 2009). It helps to choose the best set of data 

dimensions that will make the model perform better, and to speed up the algorithm 

performance (Sun et al., 2014). PCA (Ueda & Hoshiai, 1997; Xu et al., 2019; Zhang 

et al., 2019) is a general-purpose dimension reduction and data analysis tool, which is 

mainly used in important research fields such as pattern recognition, artificial 

intelligence and data mining. The essence of PCA is to project data samples in high-

dimensional space into low-dimensional space by linear transformation while 

preserving the original data features as much as possible (Ma & Yuan, 2019). For 

example, when judging the category of an image, color histograms, texture features, 

edge shapes, or region shapes may be considered. If all the features were retained, 

there may be hundreds, so it is necessary to preserve the main features of the image 
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and then replace the original features with a linear combination. The PCA algorithm 

mainly achieves the dimension reduction of the original image by retaining 

components with large variance and large amount of information and removing 

components with small variance and insufficient information. 

It would thus be of interest to be able to discover “sparse principal components” such 

as sparse vectors spanning a low-dimensional space. To achieve this, it is necessary to 

reduce some of the explained variance and the orthogonality of the principal 

components. For doing this, the explained variance for each component was calculated 

by Python software. The dimensionality reduction process was achieved through an 

orthogonal, linear projection operation. The applied PCA operation can be defined as 

(Goodfellow et al., 2016): 

𝑌 = 𝑋𝐶                   (4-2) 

with 

𝑌 ∈ 𝑅𝑆×𝑃  

is the projected data matrix that contains P principal components of X with, 

𝑃 ≤ 𝑁.  

So, the key was to find the projection matrix 

𝐶 ∈ 𝑅𝑁×𝑃 

which was equivalent to find the eigenvectors of the covariance matrix of X, or 

alternatively solve a singular value decomposition (SVD) problem for X. 

𝑋 = ⋃ ∑ ⋁  𝑇
                    (4-3) 

where 

𝑈 ∈ 𝑅𝑠×𝑠 

and 

𝑉 ∈ 𝑅𝑁×𝑁  

are the orthogonal matrices for the column and row spaces of X, and Σ is a diagonal 

matrix containing the singular values, 
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λ𝑛, for n = 0,··· ,N−1 

non-increasingly lying along the diagonal. It can be shown that the projection matrix 

C can be obtained from the first P columns of V with  

𝑉 = [𝑣1, … , 𝑣𝑁]                  (4-4) 

and 

𝐶 = [𝑐1, … , 𝑐𝑃]                  (4-5) 

where 

𝑣𝑛 ∈  𝑅𝑁×1  

is the 𝑛𝑡ℎ right singular vector of X, 

and 

𝑐𝑛 = 𝑣𝑛. 

In fact, the singular values contained in Σ were the standard deviations of X along the 

principal directions in the space spanned by the columns of C. λn
2 becomes the variance 

of X projection along the 𝑛𝑡ℎ principal component direction. It is believed that variance 

can be explained as a measurement of how much information a component contributes 

to the data representation. One way to examine this is to look at the cumulative 

explained variance ratio of the principal components, given as (Goodfellow et al., 

2016): 

𝑅𝑐𝑒𝑣 =
∑ 𝜆𝑛

2𝑃
𝑛=1

∑ 𝜆𝑛
2𝑁

𝑛=1
                  (4-6) 

Fig. 4-6 describes that selecting 2 components was able to preserve majority of the 

total variance of the input data. A vital part of using PCA in practice is the ability to 

estimate how many components were needed to describe the data. This can be 

determined by looking at the cumulative explained variance ratio as a function of the 

number of components. This graph quantifies how much of the total, 4-dimensional 

variance is contained within the components. For example, we see that with the first 1 

component contain approximately 78% of the variance, while we need around 2 

components to describe close to 100% of the variance. 

if 
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𝜌 =  vectors of length of number of frames , 

and  

𝑓 =  number of features after PCA reduction   

then  

𝜌 × 𝑓                    (4-7) 

used as potential inputs were passed into the EJH-CNN-BiLSTM algorithm. In this 

case, based on the above discussion, 

𝑓 = 2  

and so, length of the number of frames for the ConvD1 layer  

(𝜌 = 2)  

with the input shape (2, 2) for the ConvD1 layer were selected. It was also found that 

𝜌 = 20  

worked relatively well for BiLSTM algorithm and the input shape for the BiLSTM 

algorithm was selected according to (20 ,2) in order to enter the EJH-CNN-BiLSTM 

classifier system. 

 

Fig. 4-6. PCA explained variance ratio for four components 
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4.3 EJH-CNN-BiLSTM Classifier 

A new hybrid deep learning classifier denoted as the EJH-CNN-BiLSTM was 

developed to classify pain levels in multi classifications. The extracted and reduced 

features from the VGGFace-PCA were transformed into the new developed EJH-

CNN-BiLSTM classifier. The EJH-CNN-BiLSTM consists of two streams hybrid 

deep learning model which their outputs joint as indicated in the classification section 

of the Fig.7. The CNN-BiLSTM hybrid deep learning contains two streams. At first, 

the selected features were transferred into CNNs includes two one-dimensional 

convolutional neural network (Conv1D) (Gulli & Pal, 2017) layers which outputs of 

Conv1D-1 were transferred into Conv1D-2 as inputs. Then, the outputs of the 

ConvD1-2 were entered to both the BiLSTM1 (stream 1) and BiLSTM2 (stream 2) 

separately. Finally, the outputs of both the BiLSTM1 and BiLSTM2 were merged and 

the Gaussian noise calculated by PCA applied to classify four pain levels. 

Structure of applied CNNs: Convolutional Neural Networks were extremely powerful 

models often used in the space of computer vision. CNNs were fast and Conv1Ds have 

also shown success on sequential learning problems and continue to be explored in 

this new space. CNN is a kind of deep learning technique, which has become very 

popular in the field of image understanding. The basic convolutional neural network 

is mainly composed of input layer, convolutional layer, pooling layer, fully connected 

layer and output layer. The input to a CNN is an n × n × m image, where n is the height 

and width and m is the number of channels, and there will be k convolutional filters of 

size a × a in the convolutional layer, where a < n. 

Fig. 4-7 shows the convolutional layer and the pooling layer incorporated to form a 

plurality of convolutional groups, and the features were extracted layer by layer, and 

finally the classification was completed through several fully connected layers. 

Convolutional layer is the core part of the network, which is mainly used to extract the 

local detail information of the image. The pooling layer is used to down-sample the 

computed feature map from the convolutional layer, which can reduce features while 

preserving the local invariance of features. Pooling operations generally include spatial 

pyramid pooling, average pooling, random pooling, and max pooling. The fully 

connected layer is used to encode the three-dimensional feature map into a one-

dimensional vector. Finally, a multi classifier was connected to the network, and the 
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corresponding error gradient was computed before backpropagation was used to 

update the neural network. 

 

Fig 4-7. General architecture of the convolutional neural network (CNN). 

The characteristics of convolution neural network, such as local connection, weight 

sharing and pooling operation, can effectively reduce the complexity of the network 

and reduce the number of training parameters, so that the model has a certain degree 

of invariance to the translation, distortion and scaling. It is robust and easy to train and 

optimize. Based on these superior features, it is widely used in various signal and 

image processing tasks (Liu et al., 2019). 

Table 4-1 indicates the structure of applied Conv1D-1 and Conv1D-2 in EJH-CNN-

BiLSTM. 
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Table 4-1. The structure of Conv1D-1 and Conv1D-2 used in the EJH-CNN-

BiLSTM proposed model. 

Layer name Input shape Filter 

size 

Kernel 

size 

Layer 

parameters 

Padding 

Conv1D-1 length = 2 

feature = 2 

input shape = 

(2,2) 

256 10 

 

Activation: 

ReLU 

Same 

Conv1D-2 length = 2 

feature = 2 

input shape = 

(2,2) 

128 10 Activation: 

ReLU 

Same 

Structure of applied RNNs: Since the data type is video and contains video image 

frames, the RNN is used in this model to improve classification. RNNs were suited to 

sequential data since their neurons have connections (weights) between the next layers 

and keep information from previous inputs. BiLSTM as an RNN type has an elegant 

solution for each sequence forward and backward as two separate hidden states to 

capture past and future information, respectively.  

LSTM deep learning was based on RNN architecture and unlike feedforward neural 

networks it has feedback connection. Standard RNNs can learn based on long-term 

dependencies like LSTM but training them is difficult since the gradients tend to 

vanish or explode. LSTM has a cell state under control by three gates as: forget, input, 

and output gates. The Forget gate keeps relevant information from prior steps. The 

input gate adds relevant information from the current step. The output gate determines 

the next hidden state status (Gers & Schmidhuber, 2001; Schmidhuber, 2015). Fig. 4-

8 shows the architecture of an LSTM cell, in which the cell state part was calculated 

by: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)     (4-8) 

The output of the forget gate was calculated as: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)     (4-9) 

The cell state for the current time-step was calculated as following:  

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)    (4-10) 
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Once the forget and input gates have controlled the amount of information in the earlier 

cell state 𝑐𝑡−1 and the new cell state  𝑐𝑡 should be let through. 

The state can expect the output of the cell as following: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑜𝑐𝑡 + 𝑏𝑜)     (4-11) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)        (4-12) 

 

Fig. 4-8. The architecture of an LSTM unit (Gers & Schmidhuber, 2001; 

Schmidhuber, 2015). Inputs: 𝑥𝑡: Input vector, 𝑐𝑡−1: memory from previous block, 

ℎ𝑡−1: output of previous block, b: Bias Outputs: ℎ𝑡: the output of current block, 𝑐𝑡: 

memory from the current block 

Obtaining both past (left) and future (Selltiz et al., 1976) frames is useful and essential 

for sequences labelling tasks such video analysis for pain recognition from facial 

expression images. However, the LSTM’s hidden state ht takes information only from 

the past frame, without having information from the future frame. BiLSTM (Dyer et 

al., 2015) as an elegant solution presents each sequence forwards and backwards as 

two separate hidden states to capture past and future information, respectively. 

The experimental results show incredible improvement in compared with model which 

used only two streams BiLSTM for this classification problem. Table 4-2 shows the 

structure of the BiLSTM1 and BiLSTM2. 
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Table 4-2. Structures of the BiLSTM1 and BiLSTM2 used in the EJH-CNN-

BiLSTM proposed model. 

Layer name Layer parameters 

BiLSTM1 Input shape = (20,2) 

Filter = 256 

Dense = 4096 

Activation = ReLU 

Gaussian Noise = PCA-Std 

Dropout = 0.5 

BiLSTM2 Input shape = (20,2) 

Filter = 32 

Dense = 4096 

Activation = ReLU 

Gaussian Noise = PCA-Std 

Dropout = 0.5 

Merging and applying the Gaussian noise: The gaussian noise calculated from PCA 

added to outputs of the dense layers during the training of the proposed EJH-CNN-

BiLSTM framework. Several studies report the addition of noise during neural 

networks training as a tool to improve the generalization capability and convergence 

time. The previous studies focused on creating new input patterns by adding random 

noise drawn from a Gaussian distribution increased generalization power if the amount 

of noise is kept sufficiently small to have no disruptive effect on the desired output. 

gaussian noise was added to the PCA components and calculated by Numpy.STD of 

Keras library in Python and the calculated amount added to outputs of the dense layers. 

The Numpy.STD computes the Standard Deviation (SD) of the given data. SD was 

measured as the spread of data distribution in the given data set. 

𝑆𝐷 =  √𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑥 − 𝑥. 𝑚𝑒𝑎𝑛())2)            (4-13) 

Dense Layer and compiling the model: 

Some algorithms such as Logistic Regression, Perceptron, Support Vector Machines 

were designed for binary classification problems. They cannot be used directly for 

multi-class classification task. some heuristic methods such as One-vs-Rest (OvR) and 

One-vs-One (OvO) for these algorithm can be used to split a multi-class classification 

problem into multiple binary classification datasets and train a binary classification 

model each (Wang et al., 2010). However, in deep learning the softmax activation 
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function which was used in the output layer to handle multi-class problems 

(Goodfellow et al., 2016). 

The softmax function takes as input a vector z of K real numbers and normalizes it into 

a probability distribution consisting of K probabilities proportional to the exponentials 

of the input numbers. Some vector components could be negative, or greater than one; 

and might not sum to 1 prior to applying softmax, but after applying softmax, each 

component will be in the interval (0,1). The softmax function was defined by the 

following formula (Goodfellow et al., 2016): 

𝜎: 𝑅𝐾 → 𝑅𝐾                (4-14) 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝐾 𝑎𝑛𝑑 𝑧 = (𝑧1, . . . , 𝑧𝑘) ∈ 𝑅𝐾         (4-15) 

Output set to calculate for four classes with activation Softmax. The network was 

optimized with Adam optimizer since it has proved to be more stable than Stochastic 

Gradient Descent (SGD) (Han et al., 2018). In training loss selected as 

categorical_crossentropy to calculate accuracy, mean squared error (MSE), and mean 

absolute error (MAE) of the proposed algorithm in measuring pain level in 4 classes. 

4.4 Proposed EJH-CNN-BiLSTM Algorithm 

The details of the proposed EJH-CNN-BiLSTM model summarized in Algorithm 4-3. 

Five epochs and 48 batches to train and test the proposed algorithm used.
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Algorithm 4-3: EJH-CNN-BiLSTM algorithm 

1 procedure EDLM (input, n, j, batch) 

2 Pre-process (input) 

3 for k ← 0, n do 

4 finetune (VGGFace) 

5 for epoch ← 0, j do 

6 features ← train (finetune (VGGFace)) 

7 end for 

8 SF ← PCA (features) 

9 GN ← Calculate (GN) 

10 for epoch ← 0, j do 

11 o1 ← CNN-BiLSTM1(SF) 

12 o2 ← CNN-BiLSTM2(SF) 

13 out ← merge (o1, o2,)  

14 out ← GN (Yang et al.) 

15 train-test (model (SF, out)) 

16 end for 

17 end for 

18 End procedure 

4.5  Experimental Results 

The pre-processed selected dataset from the UNBC-McMaster Shoulder Pain database 

was divided based on k-fold cross validation technique which k=10. For training and 

testing the fine-tuned VGGFace, five epochs and 48 batches was used. During learning 

the fine-tuned VGGFace the accuracy level increased for each batch size gradually and 

the loss amount decreased. Fig. 4-9 shows the increasing accuracy and decreasing loss 

amount during learning time for feature extracting from finetuned VGGFace for 

UNBC-McMaster Shoulder pain dataset. In epoch 5 the accuracy level reach to the 

best by approximately 90%. The blue line in the Fig. 15 indicates the increasing 

accuracy level during the learning time of the finetuned VGGFace. In contract, the red 

line in the same figure indicated the decreasing of the loss by increasing epoch. 
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Fig. 4-9. The accuracy and loss level during finetuned VGGFace feature extracting 

learning for UNBC-McMaster Shoulder Pain dataset. 

The obtained results from the finetuned VGGFace were compared with different pre-

trainer such as VGG16, GoogleNet, Alexnet. Table 10 compares the accuracy level of 

the different CNN pre-trainer accuracy applied in the UNBC-McMaster database. As 

it is explained in Table 4-3, the fine-tuned VGGFace has better performance.  

Table 4-3. The accuracy results for various pre-trainers applied for feature extraction 

task for the UNBC-McMaster Shoulder Pain dataset. 

Pre-trainer Accuracy for fine-tuned 

model (%) 

VGG16 83 

GoogleNet 77 

Fine-tuned VGGFace 88 

AlexNet 75 
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Table 4-4 shows the average of training MSE, training MAE, training accuracy, test 

MSE, test MAE, test accuracy, and AUC of the average for 10-fold cross-validation 

performance measurement. The average accuracy of 91.2% for the training set, 90% 

accuracy for the testing set, and 98.4% for AUC were achieved. 

Table 4-4. The average performance of the EJH-CNN-BiLSTM on the UNBC-

McMaster Shoulder Pain database for 10-fold cross validation. 

Training 

MSE 

Training 

MAE 

Training 

Accuracy 

(%) 

Test 

MSE 

Test 

MAE 

Test 

Accuracy 

(%) 

AUC 

(%) 

PR curves 

(%) 

0.03 0.06 91.2 0.04 0.07 90 98.4 98 

the proposed EJH-CNN-BiLSTM evaluated for each class based on TP, F-measure, 

precision, and AUC in 10-fold cross-validation. Table 4-5 shows the average 

performance measuring of the proposed algorithm for each pain levels.  

Table 4-5. The average performance of the EJH-CNN-BiLSTM on the UNBC-

McMaster Shoulder Pain database per each class. 

Class TP (%) f-measure (%) Precision (%) 

No pain 87.70 87.51 87.5 

Weak pain 88.50 89.10 90.02 

Mild pain 90.30 87.93 86 

Strong pain 93.20 95 96.54 

The obtained results were compared with the baseline models (See Table 4-6). The 

results indicate that the proposed model has significant performance improvement 

since its AUC and accuracy was higher than other models mentioned in the Table 16. 

All of them were tested in the same selected balanced dataset with total 10783 images 

by applying the 10-fold cross-validation technique for 25 subjects. 
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Table 4-6. Comparing the performance of the proposed model with different versions 

of the deep learning algorithm designed during experimental test based on average 

amount of accuracy and AUC for 10-fold cross validation on the UNBC-McMaster 

Shoulder Pain database. 

The 10-folds cross-validation was not a subject-independent performance 

measurement since images from the same subject may appear in both the training and 

testing sets. To control for this limitation, LOOCV technique was applied in which 

subjects of the training were removed from the testing. This validation allows 

exploring how the proposed method for pain intensity measurement generalizes to a 

new set of subjects who were not part of the training set. The LOOCV consists of 

building 25 classifiers for each one of the four levels of pain intensity and iterating the 

process. Table 4-7 shows the achieved results and compared them with state-of-the-art 

results for the same task by using LOOCV. 

As it is shown in the Table 4-7, Lucey, Cohn, Prkachin, et al. (2011) and Lucey, Cohn, 

Matthews, et al. (2011) applied all images of the UNBC-McMaster Shoulder Pain 

database for binary classification however, the remined research works were shown in 

the table, have applied a balanced dataset of the same database. As discussed in Section 

3.3.4.1 and illustrated in Figure 3.4, the original database labels were unbalanced and 

it is very challenging to perform the modelling experiments especially for multi-

classes classification problem. later the other research works and, in this thesis, balance 

database by oversampling and under sampling techniques which is called in the Table 

4-7 as Down-up were used.  

The MIntPAIN database includes pain video data taken by electrical stimulation in 

five levels (Level 0 – no pain to Level 4 – highest pain level) of 20 subjects. Each 

subject includes two trials, and each trial includes 40 sweeps of pain stimulation. In 

No Model Accuracy 

(%) 

AUC 

(%) 

PR curves 

(%) 

1 CNN 54.45 44.8 46 

2 VGGFace+CNN 57.3 52 58 

3 VGGFace+BiLSTM1 65 75.3 77 

4 VGGFace+BiLSTM1+BiLSTM2 73 78.5 82 

5 EJH-CNN-BiLSTM 91.2 98.4 98 



 

61 

 

this research work, a dataset of all RGB images from the 20 subjects was selected. The 

number of no pain video sequences were more than any other. based on the specific 

character of the database it is likely that any model would be biased towards the 

prediction of no-pain at the cost of missing pain frames. Using imbalance data is 

basically intentionally biasing data to get an interesting result. To deal with this issue, 

in this study the database is balanced using under resampling techniques to reduce the 

majority class (no-pain class); some no pain sequences were removed. The resampling 

technique was applied on the selected dataset since a few subjects were missing for 

some sweeps and there is also not an equal proportion for each class. the under-

sampling technique was applied to reduce the majority class, and some no painful 

sequences (label 0) were removed. 34800 video frames were selected for 

experimentation in this research. 
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Table 4-7. Comparison of the proposed EJH-CNN-BiLSTM model’s results with the state-of-the-art results in the UNBC McMaster Shoulder 

Pain database to detect pain from facial expressions based on LOOCV. 

Ref Level Classifier AUC 

(%) 

Accuracy 

(%) 

F-measure 

(%) 

MSE 

(%) 

MAE 

(%) 

Size of data 

(Lucey, Cohn, Prkachin, 

et al., 2011) 

2 SVM 83.9 - - - - All 

(Lucey, Cohn, Matthews, 

et al., 2011) 

2 SVM 84.7 - - - - All 

(Rodriguez et al., 2017) 2 CNN-LSTM 93.3 83.1 - 74 50 Down-up 

(Bellantonio et al., 2016) 3 CNN-RNN - 61.9 - - - Down-up 

(Hammal & Cohn, 2012) 4 SVM - 80 60 - - 16657 image 

The proposed model 4 EJH-CNN-

BiLSTM 

88.7 85 78.2 20.7 17.6 10783 image 
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The comparison results of the proposed EJH-CNN-BiLSTM model with the-state-of-

the art results show the proposed algorithm is significantly more effective. In terms of 

error measuring, it has fewer errors measured by MAE and MSE in comparison with 

results obtained by (Rodriguez et al., 2017). Furthermore, it achieved the highest 

accuracy by 85% in comparison with the results of the other hybrid deep learning 

algorithms done by (Bellantonio et al., 2016; Rodriguez et al., 2017; Zhou et al., 2016). 

However, the AUC achieved by (Rodriguez et al., 2017) is higher than our proposed 

model. the comparison results show the EJH-CNN-BiLSTM obtained high 

performance in accuracy and f-measure in comparison with the results achieved by 

(Hammal & Cohn, 2012) tested in four pain levels. The other noticeable point of the 

results of the proposed model is its ability in the four-levels classification. 

The proposed EJH-CNN-BiLSTM algorithm is efficient in terms of running time. The 

PCA used in feature selection of the algorithm accelerates the algorithm during 

training and testing. The running time of the algorithm improved speed by up to 3 

hours for the whole process by in Core i7 computer with 16 GB RAM. Fig. 4-10 shows 

the algorithm running time before and after using the PCA. 

 

Fig.4-10. Comparing the running time of the EJH-CNN-BiLSTM with or without 

PCA. 
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4.6 Discussion 

The analysis of the obtained results indicates that the involvement of fine-tuned pre-

training and the proposed EJH-CNN-BiLSTM method, when combined with the PCA 

with additive Gaussian noise can improve the accuracy of the algorithm. By comparing 

and analyzing the obtained results, we can conclude as follows: In terms of small 

datasets, CNNs get very low classification accuracy. There is a large number of 

parameters that have not been fully trained. pre-training and fine-tuning were very 

effective transfer learning techniques for image classification. As the results show, the 

fine-tuning network can increase the accuracy of the algorithm. In terms of efficiency, 

PCA reduces the dimensionality of the selected features then accelerates the 

algorithm's running time. Using PCA for dimensionality reduction involves zeroing 

out one or more of the smallest principal components, resulting in a lower-dimensional 

projection of the data that preserve the maximal data variance. The PCA with additive 

Gaussian noise significantly improves the performance of the algorithm.  

4.7 Chapter Summary 

A novel hybrid joint CNN-BiLSTM deep learning approach for four level pain 

recognition on facial images is proposed.  To achieve satisfactory results in terms of 

pain intensity estimation, the fully connected layer of the VGGFace was improved for 

this task by adding an extra fully connected layer and the dimensionality of the 

extracted features reduced by PCA to increase the overall computational efficiency of 

the proposed algorithm. The reduced extracted features, which were the most useful 

patterns for pain intensity estimation, feed to the classification section of the newly 

developed EJH-CNN-BiLSTM model. experimental results demonstrated that the 

proposed EJH-CNN-BiLSTM method significantly improves the performance 

achieved by using the conventional approach. The enhanced algorithm obtained an 

AUC of 98.4% and test accuracy of 90% on the balanced UNBC-McMaster Shoulder 

Pain database. Furthermore, for generalizing the proposed algorithm and comparing it 

with other similar research works, the leave-one-subject-out performance measuring 

technique was applied as well, and obtained results indicate the effectiveness of the 

proposed algorithm for unseen data. The artificial intelligence method developed in 

this study can have useful implications for the medical diagnostic areas, particularly, 
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supporting the implementation of automatic pain management practices for clinicians 

and other medical researchers. 
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CHAPTER 5 

The Proposed Ensemble Deep Learning Model (EDLM) 

The proposed ensemble deep learning model, developed in this chapter, consists of 

two newly developed sections including image-preprocessing, feature extracting and 

EDLM classifier. A stock ensemble CNN-RNN network in three streams was 

developed which their outputs were merged. The proposed approach was trained and 

tested in two databases including the MIntPAIN (Haque et al., 2018) labeled in VAS 

and the UNBC-McMaster Shoulder Pain Archive Dataset (Lucey, Cohn, Prkachin, et 

al., 2011) which labelled the video frames in PSPI and FACS metrics. The novelty and 

contributions of this research work were as follows: 

1. A new approach including a three-streams ensemble CNN-RNN classifier 

which their outputs were merged as the late fusion was assembled to classify 

pain in five levels from extracted features. 

2. The whole proposed framework as known Ensemble Deep Learning Model 

(EDLM) model in this study was trained and tested in two popular painful face 

databases and the obtained results indicates the proposed model has high 

performance in comparison with the state-of-the-art techniques and baseline 

models. 

In the following, a brief description of the ensemble learning explained and then the 

proposed EDLM classifier is elaborated.  

5.1  Ensemble Deep Learning 

Ensemble Learning Systems (ELSs) were inspired from an innate behavior of humans; 

the opinions of several experts were being collected for making a decision and then, 

based on these opinions, the final decision is made, especially if these decisions lead 

to financial, social, and medical consequences (Mousavi & Eftekhari, 2015). This 

learning method is useful in several cases, including online learning, incremental 

learning, fusion data, feature selection, and confidence estimation. Ensemble learning 

is an effective method and can improve the generalization ability of classification. An 

ensemble model, following notion of ‘The Wisdom of Crowds’, can be described as a 
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composition of multiple weak learners to form one single learner with expected higher 

predictive performance. The weak learner is defined as a learner that performs slightly 

better than random guessing (Freund & Schapire, 1997). Ensembles of learning 

algorithms were effectively used in many computer vision problems to improve the 

classification performance (Minetto et al., 2019; Simonyan & Zisserman, 2015).  

According to Dietterich (2000) ensemble learning is effective method since: “1) the 

training phase does not provide enough data to shape a single finest classifier; 2) an 

ensemble using separate starting points could better estimated the finest result; 3) an 

ensemble may expand space for a better approximation”. Ensemble learning 

algorithms improve the generalization ability. Ding and Tao (2017), used ensemble 

CNN for video-based face recognition. Their model outperforms previous approaches 

such as Deep Face (Taigman et al., 2014), DeepID2+ (Sun et al., 2015), and VGGFace 

(Parkhi et al., 2015). According to SHARKEY (1996), a neural network ensemble can 

be designed by altering the initial weights, the network architecture, and the training 

set. The combined decision created by the ensemble method is less expected error than 

the decision produced by other individual networks (Hansen & Salamon, 1990). Xie 

et al. (2013), proposed Horizontal and Vertical Ensemble methods to enhance the 

classification performance of deep neural networks. Based on their results both linear 

Horizontal Voting and Horizontal Stacked Ensemble methods can strongly enhance 

the performance of deep learning classification. 

Ensemble learning is composed of three different main parts: sample selection, training 

the base classifiers to compose the Base Classifier Pool (BCP), and combining the 

BCP; as ensemble learning decreases the risk of selecting a single classifier with a 

weak performance, it improves the classification accuracy in comparison with single 

classifier. Numerous ensemble-based algorithms were proposed, that the most 

common of them were bagging, boosting, stacking, and random forest. 

Stacking Wolpert (1992) is a learning approach based on ensemble learning which 

combines the predictions made by multiple base classifiers generated by using 

different learning algorithms 𝐿1, 𝐿2, … , 𝐿𝑛. These classifiers were trained on the same 

training data 𝐷𝑡𝑟𝑎𝑖𝑛 containing examples in the form 𝑠𝑖 =< 𝑥𝑖 , 𝑦𝑖 >, where 𝑥𝑖 is the 

input vector, and 𝑦𝑖 is the class label assosiated with it. In the first phase, base 

classifiers 𝐿1, 𝐿2, … , 𝐿𝑛 make predictions for the query instance 𝑥𝑞. In the second 
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phase, the meta-classifier M combines the predictions made by base classifiers and 

predicts the final class label. 

5.2 Proposed EDLM Classifier Structure 

The novelty of this study is to propose a new ensemble deep learning model (EDLM) 

to classify pain intensity in multi-levels from facial expression video frames data. The 

proposed framework has three steps including, image pre-processing, feature 

extracting, and EDLM classifier. The block diagram of the proposed system is shown 

in Fig. 5-1.  

 

Fig. 5-1. Block diagram of the proposed ensemble deep learning model (EDLM) to 

detect pain in multi-classes from facial expressions. 

The selected dataset is pre-processed by removing noises and backgrounds from each 

video frames. The pre-processing includes face detecting, cropping, and centralizing 

applied on the video frames. Then, the images were normalized before feeding images 

to the proposed model. the OpenCV face recognition algorithm was used to detect 

faces from noisy pictures. Then, face detected images were cropped and centralized. 

Finally, the pre-processed data was reshaped to 224×224×3 dimensions to transfer into 

VGGFace pre-trainer. To normalize the pixel values for both train and test datasets, 

the data was rescaled to the range [0,1]. This includes converting the data type from 

integer to floats and splitting the pixel values by the highest value as describes in 
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Section 4.1, Algorithm 4-1, and Algorithm 4.2. Fig. 5-2 shows the pre-processed video 

frames of the MIntPAIN database.  

 

Fig. 5-2. Examples of video frames per 5 levels after removing backgrounds, 

cropping, and resizing. 

For MIntPAIN database, 125280 features were extracted from the training data set, 

calculated according to the input shape of the extracted features. For the training data 

set, these were denoted as (31320, 4) where the number 34800 refers to the number of 

training images and so, we were able to obtain a product 31320 × 4 = 125280. the 4 

distinct output features (per image) extracted from the fine-tuned VGGFace were 

transferred into the PCA algorithm with an aim to reduce the dimensionality of the 

extracted features and to speed up the classification algorithm. 

Fig. 5-3 describes that selecting 3 components can preserve majority of the total 

variance of the input data. A vital part of using PCA in practice is the ability to estimate 

how many components were needed to describe the data. This can be determined by 

looking at the cumulative explained variance ratio as a function of the number of 

components. This graph quantifies how much of the total, 4-dimensional variance is 
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contained within the components. For example, we see that with the first 1 component 

contain approximately 48% of the variance, while we need around 3 components to 

describe close to 100% of the variance. 

 

Fig.5-3. Number of components to select from extracted features by PCA for 

MIntPAIN database. 

Then the pre-processed images enter the finetuned VGGFace-PCA feature extractor. 

The extracted and reduced features were transferred into the EDLM classifier for 

classification. The EDLM consists of three stream CNN+RNN deep learning network 

which were combined as stocked ensemble learning with merging their outputs. The 

proposed EDLM classifier as an ensemble deep learning network was developed in 

varying initial weights and network architecture. Ensemble learning is an effective 

method and can improve the generalization ability of classification. Since the data is 

video and contains video image frames, and RNNs suited for sequential data we used 

temporal information to feed into RNNs. The training of RNNs act as back-

propagation algorithm. The experimental results indicated that using three hybrid 

CNN+RNN has more accurate results than networks that only include RNN. These 

three independent and hybrid deep learning networks were DNN1, DNN2, and DNN3 

which were developed using different parameter, weight, and architecture. The 



 

71 

 

configurations of these networks were described in Table 5-1. As can be seen from 

Table 15, DNN1 and DNN2 contain two CNNs with Conv2D architecture which their 

output shift in stack way to a BiLSTM. However, DNN1 and DNN2 were different in 

weighting. For DNN3, a different architecture of CNN+RNN was used. a CNN with 

Conv1D was selected and its output was transferred into a LSTM. 

Table 5-1. Properties of DNN1, DNN2, and DNN3 proposed in the late fusion stage. 

DNN Convolution layer 1 Convolution layer 2 RNN 

DNN1 type = conv2d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5) 

type = conv2d 

filter number = 256, 

activation = ReLU, 

input shape = (1,5) 

type = BiLSTM, 

filter number = 256, 

dense = 4096, 

drop out = 0.5, 

activation = ReLU 

DNN2 type = conv2d, 

filter number = 128, 

activation = ReLU, 

input shape = (1,5) 

type = conv2d 

filter number = 128, 

activation = ReLU, 

input shape = (1,5) 

type = BiLSTM, 

filter number = 32, 

dense = 4096, 

drop out = 0.5, 

activation = ReLU 

DNN3 type = conv1d, 

filter number = 256, 

activation = ReLU, 

input shape = (1,5) 

None type = BiLSTM, 

filter number = 128, 

dense = 4096, 

drop out = 0.5, 

activation = ReLU 

The simple average method (Akcay et al., 2018) was employed as merely a combining 

model for classification of pain levels from facial expressions. The output of SAM is 

the mean value of each member model’s output. As the simplest combining model, the 

advantage of SAM is its ability to be at least better than the worst member model 

(Jeong & Kim, 2009). 

𝑦𝑐 =
1

𝑛𝑐
∑ 𝑦𝑘

𝑛𝑐
𝑘=1                  (5-1) 

𝜎𝑐
2 = 𝑣𝑎𝑟(𝑦𝑐 − 𝑦0) =

1

𝑛𝑐
= 𝜎𝑘,𝑎𝑣𝑔

2 +
𝑛𝑐−1

𝑛𝑐
𝜎𝑘,𝑗,𝑎𝑣𝑔             (5-2) 

𝜎𝑘,𝑎𝑣𝑔
2 =

1

𝑛𝑐
∑ 𝑣𝑎𝑟(𝑦𝑘 − 𝑦0)

𝑛𝑐
𝑘=1                (5-3) 
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𝜎𝑘,𝑗,𝑎𝑣𝑔 =
1

𝑛𝑐(𝑛𝑐−1)
∑  

𝑛𝑐
𝑘=1 ∑ 𝑐𝑜𝑣(𝑦𝑘 − 𝑦0 , 𝑦𝑗 − 𝑦0)

𝑛𝑐
𝑗=1,𝑗≠𝑘             (5-4) 

where 

𝑦𝑐 is the output of SAM model,  

𝑦𝑘 or 𝑦𝑗 is output of member model k or j; 

𝑦0 is the observed value; 

𝑛𝑐 is the number of member models; 

𝜎𝑐
2 is variance of classification errors for SAM; 

𝜎𝑘,𝑎𝑣𝑔
2  is the average of the error variances of member models; 

and 𝜎𝑘,𝑗,𝑎𝑣𝑔 is the average of the covariance between each classification. 

The details of the proposed EDLM method were summarized in Algorithm 5-1. During 

experimentation optimization for the feature extraction section, the model ran by 50 

epoch and 48 batches. However, for learning the classifier, the model performed by 5 

epoch and 48 batches. To estimate the skill of the algorithm, the cross-validation 

method involved by repeating 10 times.
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Algorithm 5-1: The proposed EDLM algorithm 

1: Procedure EDLM (input, n, j, batch) 

2: Pre-process (input) 

3: for k ← 0, n do 

4: finetune (VGGFace) 

5: for epoch ← 0, j do 

6: features ← train (finetune (VGGFace)) 

7: end for 

8: SF ← PCA (features) 

9: GN ← Calculate (GN)  

10: for epoch ← 0, j do  

11: o1 ← DNN1(SF) 

12: o2 ← DNN2(SF) 

13: o3 ← DNN3(SF)  

14: out ← merge (o1, o2, o3) 

15: out ← GN  

16: train (model (SF, out)) 

17: end for 

18: end for 

19: end procedure 

5.3 Results and Discussions 

To establish the robustness of the proposed EDLM model, two databases were used 

includes the MIntPAIN database and the UNBC-McMaster Shoulder Pain dataset. 

Next, the evaluated results compared with the baseline model and the state-of-the-art 

research. In the following the results of two databases were detailed. 

5.3.1 MIntPAIN Database’s Results 

The features were extracted and reduced by the finetuned VGGFace-PCA. 50 epochs 

were applied in learning of the feature extraction model to reach its best performance. 

Fig. 5-4 illustrates the accuracy and the loss error encountered in the feature extraction 

part of the EDLM model. This figure shows the average number of the accuracy for 
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10 cross validation during 50 epochs.  As it is indicated in Fig.5-4 the accuracy level 

reached to its highest level by 81% in epoch = 50. It started from 32% in epoch 1 and 

gradually increased. The red line in this figure shows the loss value average for 10 

Cross validation and shows a decreasing amount in loss level by increasing epoch. The 

loss reached the lowest level by 0.18 in epoch 50. 

 

Fig. 5-4. Accuracy and loss error during 50 epochs in the early fusion of the EDLM 

model in the MIntPAIN database. 

Later, the proposed classifier was trained and tested by selected features. Fig. 5-5 

shows the accuracy and loss level during 5 epochs in average of 10 cross validation 

for late fusion. At first, accuracy started at 81% and then from the second epoch it 

reached 92.26% in epoch 5. The red graph in Fig. 5-5 shows the MSE level in average. 

As it is shown in this graph in epoch one the MSE equal to 0.06 but by repeating testing 

and training in epoch 5 it reached to its lowest level by 0.028. 
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Fig. 5-5. Accuracy and MSE during 5 epochs in the late fusion of the EDLM model 

in the MIntPAIN database. 

Table 5-2 and Fig. 5-6 indicate the obtained results of the proposed EDLM on the 

MIntPAIN database measured by accuracy, AUC, MAE, and MSE based on 10-fold 

cross validation. 

Table 5-2. The average performance, best result, and worst results of the proposed 

model (EDLM) on MIntPAIN database for 10-fold cross validation. 

Results MSE MAE Accuracy 

(%) 

AUC 

(%) 

PR curve 

(%) 

Average 0.0245 0.0341 92.26 93.67 95 

Best 0.02102 0.028 95 95.2 98 

Worst 0.03056 0.039 89 91.4 93 
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Fig. 5-6. Box plots of Accuracy and AUC for the proposed EDLM model in the 

MIntPAIN database. 

Fig. 5-6 displays the accuracy and AUC of the proposed EDLM model in the box plot. 

It shows the distribution of data based on minimum, first quartile, median, third 

quartile, and maximum. Median shown as yellow, minimum and maximum shown as 

blue lines. Midian is demonstrated the middle value of the accuracy and AUC. The 

first quartile shows the middle number between the smallest number and the median 

of the dataset. Third quartile shows the middle value between the median and the 

highest value of the dataset. 

Other popular evaluation metrics such as F-score and precision also were exploited to 

evaluate the performance of the proposed EMDL model, and the results show optimum 

and effective ranges of effectiveness per each class. The performance of the proposed 

EDLM model shows a significant correctness per five classes measured by AUC ROC 

(Receiver Operating Characteristics) curve metric. Table 5-3 indicates the accuracy, 

AUC, f-score, and precision for each class with no-pain, pain level 1, pain level 2, pain 

level 3, and pain level 4. 
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Table 5-3. Average pain level per five classes based on accuracy, f-score, precision, 

AUC metrics in the MIntPAIN database. 

Metrics No pain Pain 1 Pain 2 Pain 3 Pain 4 

AUC (%) 87.3 84 85 89 91 

Precision (%) 85.2 85 83 88 88 

f-score (%) 86 82 82.2 86.2 90 

Accuracy (%) 92.4 89 88 93 92 

PR curves (%) 90 87 88 92 94 

The accuracy of the proposed EDLM model was assessed by TPR and FPR analysis 

and results show effectiveness of it by obtaining higher values for TPR and lower 

values for FPR in five classes. 

5.3.2 UNBC-McMaster Shoulder Pain Database’s Results 

To prove the generality of the proposed EDLM model, the experiment was conducted 

on the UNBC-McMaster Shoulder Pain dataset and the obtained results indicate that 

the proposed EDLM framework has high performance in this database. In this database 

PSPI labels per each frame was used. To enable rigorous evaluations of the proposed 

EDLM model in respect to the counterpart models, several performance evaluations 

measures, including the MAE, MSE, Accuracy, and AUC were utilized. Table 5-4 

indicates the obtained results of the proposed EDLM on the UNBC-McMaster 

Shoulder Pain database measured by accuracy, AUC, MAE, and MSE based on 10-

fold cross validation. 

Table 5-4. The average performance of the proposed model (EDLM) in the UNBC-

McMaster Shoulder Pain database for 10-fold cross validation. 

MSE MAE Accuracy 

(%) 

AUC 

(%) 

PR curves 

(%) 

0.081 0.103 86 90.5 93.5 

5.4 Discussion 

We compared the obtained results from the EDLM with a baseline model which was 

designed based on a standard VGG-Face and one stream LSTM model. Table 5-5 
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shows the comparison results obtained by the EDLM proposed framework with the 

baseline model results. As it is indicated in this table the proposed EDLM has higher 

performance than the standard baseline model. 

Table 5-5. The comparison of the obtained AUC and accuracy from the EDLM and 

the baseline model in the MIntPAIN database. 

Classification models AUC 

(%) 

Accuracy 

(%) 

PR curves 

(%) 

VGGFace + 1 stream LSTM 87 83.4 86 

The proposed EDLM model 93.67 92.26 95 

The time complexity of the proposed EDLM algorithm has also been measured in two 

databases and compared with two other baseline models which have been developed 

during experimental. Table 5-6 shows the learning time of the EDLM for two 

databases in comparison with two different baseline models. As is indicated in Table 

5-6, the total time complexity of the proposed EDLM algorithm for the UNBC-

McMaster Shoulder Pain database was 5900 s and the time complexity of it for the 

MIntPAIN database was 41700 s. As a result, the most time-consuming section of the 

EDLM was feature extraction section and adding more streams in the classifier has not 

affected the algorithm speeds and efficiency. On the other hand, the selected database 

and the required number of epochs were important factors which affect the complexity 

and learning time of the algorithm. 

The EDLM model demonstrated the highest performance in compare with the other 

models and the state-of-the-art results. Table 5-7 indicates a comparison of the 

proposed EDLM method scores against other state-of-the-art procedures in pain 

intensity recognition. In this table the obtained results trained and tested in both 

databases compared with the other research works. 
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Table 5-6. The time complexity of the proposed EDLM in compare with other baseline algorithm in the UNBC-McMaster Shoulder Pain 

database and MIntPAIN database. 

Models Database FE Time complexity 

(based on second and 

number of applied epochs) 

classification Time complexity 

(based on second and number of 

applied epochs) 

Sum (time 

complexity) 

VGGFace + 1 stream LSTM UNBC-McMaster 10400 / 5 560 / 5 10960 

VGGFace + 1 stream LSTM MIntPAIN 108000 / 50 1600 / 5 109600 

VGGFace + PCA + 1 stream LSTM UNBC-McMaster 5300/ 5 560 / 5 5860 

VGGFace + PCA + 1 stream LSTM MIntPAIN 40000 / 50 1600 / 5 41600 

Proposed EDLM (VGGFace + 

PCA + 3 stream CNN-BiLSTM) 

UNBC-McMaster 5300 / 5 600 / 5 5900 

Proposed EDLM (VGGFace + 

PCA + 3 stream CNN-BiLSTM) 

MIntPAIN 40000 / 50 1700 / 5 41700 
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Table 5-7. Comparing the proposed EDLM with the other state-of-the-art procedures in pain intensity recognition in LOOCV. 

Ref Classifier Pain 

level 

AUC 

(%) 

Accuracy 

(%) 

MSE Database Data size 

(Lucey, Cohn, Prkachin, et al., 2011) SVM 2 83.9 - - UNBC-

McMaster 

All 

(Lucey, Cohn, Matthews, et al., 2011) SVM 2 84.7 - - UNBC-

McMaster 

All 

(Rodriguez et al., 2017) CNN-LSTM 2 93.3 83.1 0.74 UNBC-

McMaster 

Down-up 

(Bellantonio et al., 2016) CNN-RNN 3 - 61.9 - UNBC-

McMaster 

Down-up 

(Zhou et al., 2016) - 2 - - 1.54 UNBC-

McMaster 

16657 images 

(Haque et al., 2018) CNN-LSTM 5  32.40  MIntPAIN All 

(Bargshady et al., 2020a) EJH-CNN-BiLSTM 4 87.7 85 0.207 UNBC-

McMaster 

10783 images 

The proposed EDLM Ensemble CNN-RNN 5 91 93 0.16 MIntPAIN 34800 images 

The proposed EDLM Ensemble CNN-RNN 5 88 90.5 0.23 UNBC-

McMaster 

10783 images 
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5.5 Chapter Summary 

This study was designed to support ongoing efforts in developing artificial intelligence 

technologies for pain detection using facial expression images, and as such, the work 

was proposed a newly designed, classification model with an ensemble deep learning 

approach. The resulting EDLM model therefore integrates the three-stream 

independent CNN-RNN based networks that were seen to vary in their structure and 

weights denoting features extracted from facial images. The proposed EDLM model 

then applied the fine-tuned VGGFace algorithm, integrated with the PCA approach to 

extract features from facial images. Finally, the ensemble deep learning model that 

includes three independent CNN-RNN was designed and tested for its classification 

accuracy. 

The proposed EDLM model was evaluated comprehensively through the MIntPAIN 

and UNBC-McMaster Shoulder Pain datasets. The evaluated results indicate that the 

proposed ensemble deep learning model has an improved performance relative to the 

conventional method such as a single hybrid deep learning model adopted for this task. 

The extensive evaluation of the EDLM model, through statistical metrics and 

diagnostic plots, reveals its capability to generate superior classification of facial 

images and its features compared with the other benchmarked models. the deep 

learning EDLM model was found to attain an optimal accuracy evidenced by a 

relatively lower error compared with the other benchmarked models. 
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CHAPTER 6 

The Proposed HSV-TCN Model 

Although, the effectiveness of the proposed models in Chapter 4 and 5 were 

outstanding, one of main drawbacks of RNNs were the exploding and vanishing 

gradient problems and the difficulties associated with parallel training and separation 

tasks. Recent literatures show the feedforward convolution model can be empirically 

superior to the recurrence models, and can thus be parallelized, making it easier to 

train the system with a more stable gradient function (Bai et al., 2018). 

deep TCN deep learning networks has proven to be an effective method in sequence-

based modeling (e.g. a video image). Notably, the TCNs were as an alternative tool to 

the conventional deep learning (or RNNs) and were used in various classification and 

modelling tasks. Each layer in the TCN system contains a 1-D convolution block with 

an increased dilation factor. TCNs can capture the action compositions, segment 

durations, and long-range dependencies, and were over a magnitude faster to train than 

competing LSTM-based Recurrent Neural Networks (Bai et al., 2018; Lea et al., 

2016). In the facial expression recognition field, the TCN algorithm has high 

performance. For example, Feng (2019) applied TCNs for measuring stress levels from 

the face, and Thomas et al. (2018) used TCN in predicting engagement intensity from 

the facial expressions. In the following the TCN architecture is explained. TCNs were 

proposed as an alternative tool to RNN algorithms adopted in various classification 

tasks (Lea et al., 2017; Lea et al., 2016).  

To overcome the RNNs challenges and further support potential applications of pain 

detection technologies in health informatics area, this Chapter aims to develop a 

Temporal Convolutional Network (TCN) algorithm that can analyze and model the 

information from video frames in HSV (Hue, Saturation and Value) color space. Based 

on literature, the choices of color space may have a significant influence on the results 

of image segmentation. There were many kinds of color space, including RGB, 

YCbCr, YUV, CIELAB, and HSV (Chen et al., 2008). This study relies on HSV 

(Smith, 2002), which were shown to yield better results for image segmentation than 

the RGB color space, were capable of emphasizing human visual perception in hues 

and have an easily invertible transform from the RGB system (Chen et al., 2007; 
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Huang & Liu, 2007; Sural et al., 2002). According to Zarit et al. (Zarit et al., 1999), 

HSV is able to generate  the best performance for skin pixel detection. HSV color 

space gives good results in lighten faces, HSL color space can also yield relatively 

good results for multi faces and HSI color space gives good results for single faces and 

zoomed faces videos (Elaw et al., 2019). 

we hypothesize that it can be relatively useful to consider the face differences and the 

subject differences encountered in the detection process and a new TCN classifier with 

enhance HSV color space input images. The proposed model is named as HSV-TCN 

includes four key components: image pre-processing, converting images into the 

enhanced HSV, VGGFace-PCA feature extractor, and TCN pain classifier as shown 

in Fig. 6-1. 

 

Fig. 6-1. The proposed framework based on the integrated CNN-TCN algorithm with 

HSV colour space input to implement a facial pain detection system from video 

frames. 
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The raw images in this study were first applied in the image preprocessing step 

utilizing the tasks of centralizing, cropping, and normalization to generate accurate 

performances and then converted to the HSV color space. Then the converted images 

have been transferred into our proposed feature extraction VGGFace-PCA introduced 

in Section 4.2. Next, the extracted features transferred into proposed TCN classifier 

which has been modified to pain recognition task and has been trained and tested by 

the UNBC-McMaster Shoulder Pain and MIntPAIN databases.  

The results indicate the notion that that HSV images could be more suitable for feature 

extraction and classification purposes and help in real-time applications that needs to 

speed up the proposed algorithm. The evaluated results show the proposed TCN 

classifier with enhance HSV color space input images and VGGFace-PCA feature 

extractor outperform pain recognition systems from facial videos’ images. in terms of 

the efficiency and complexity its performance was better RNNs models. In the 

following the details of enhance HSV color converting and the presented TCN 

classifier with obtained evaluated results and discussion were elaborated. We applied 

the same image pre-processing and feature extraction techniques introduced in the 

Chapter 4. in this chapter only the converting to the HSV color space, applied 

histogram equalization, and applied TCN classifier have been discussed and 

elaborated.  

6.1 Converting RGB to HSV Color Space 

In a real-world scenario, an image dataset may be taken in a variety of conditions such 

as different orientations, location, scales, and brightness. the raw frames were 

preprocessed by using image processing techniques such as the resizing, face detecting, 

normalizing, cropping, and centralizing to improve the identification of the images 

during experimental phase. the images were resized to 224×224×3 pixels because this 

representation was the most common input size for most of the deep neural network 

models after cropping including the VGGFace. And then OpenCV face detection and 

centralizing techniques were applied as described in the Chapter 4. 

Then the postprocessed RGB (Swain & Ballard, 1991) video images were converted 

to an enhanced HSV color space. Based on the literature, choices of color space may 

have a significant influence on the results of image segmentation. There were many 
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kinds of color space, including RGB, YCbCr, YUV, and HSV (Chen et al., 2008). 

HSV (Hue, Saturation, Value) (Smith, 2002), which were shown to yield better results 

for image segmentation than the RGB color space, and were capable of emphasizing 

human visual perception in hues and has an easily invertible transform from the RGB 

system (Chen et al., 2007; Huang & Liu, 2007; Sural et al., 2002). The HSV color 

space is motivated by the human visual system. In the HSV color space, the luminous 

component (brightness) is decoupled from color-carrying information (hue and 

saturation). The transformation of color images in RGB color space into HSV color 

space is defined as following (Rahman et al., 2014).  

• H is a kind of color and the range is 0–360 degrees. 

• S is the vividness of color and the range is 0–100%. 

• V is the brightness of a color and the range is 0–100%. 

H = {
Hi                        if B ≤ G
360 −  Hi          if B > G

                                                                       (6-1) 

H = 𝑎𝑟𝑐 cos (

1

2(R−G)+(R−B)

[(R−G)2+(R−B)(G−B)]
1
2

)                                                          (6-2) 

S =
max(R,G,B)−min (R,G,B)

255
                                                                             (6-3) 

V =
max (R,G,B)

255
                                                                                             (6-4) 

The features extracted in the HSV color space can capture the distinct characteristics 

of computer graphics better. For example, computer graphics is more color smooth 

than photographic images in the texture area. Fewer colors were contained in computer 

graphics. Intensity of computer graphics reveals different characteristic of edge and 

shade. These differences between computer graphics and photographic images were 

best described by decoupling the intensity from chromatic information, say, hue and 

saturation. HSV images were more proper for feature extraction and classification 

purposes. In the next step to increase the contract of the video frames histogram 

equalization was applied. The transformation function uniformly spreads out the most 

frequent intensity values to improve the global contrast. 
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6.1.1 Histogram Equalizations 

Histogram equalization was applied in the next step to increase the contract of the 

video frames. The transformation function uniformly spreads out the most frequent 

intensity values to improve the global contrast. Histogram equalization (HE) was 

applied to increase the contract of the video frames. Histogram equalization is best 

method for image enhancement. It provides better quality of images without loss of 

any information. The method of HE is explained as follows (Hitam et al., 2013): The 

proposed image as 𝐹(𝑖, 𝑗), with N pixels and gray levels of [0, k-1]. Thus, the 

probability density function of the image was calculated according to Equation 6-5: 

P(k) =
nk

N
                   (6-5) 

 Where, 𝑛𝑘 is the total number of pixels with the number of grayscale k in the image, 

the cumulative distribution function (CDF) of the image F (i, j) can be found by the 

following: 

C(k) = ∑ Pm
k
m=0                  (6-6) 

Using the CDF values in Equation 6-7, HE matches an input level k to an output level 

𝐻𝑘 using the level mapping equation: 

Hk = (k − 1)C(k)                 (6-7) 

Thus, the gain 𝐻𝑘 at the output level for the conventional HE that is previously 

described above can be obtained using Equation 6-8:  

∆Hk = Hk − (Hk − 1) = (k − 1)P(k)              (6-8) 

In other words, the increase in the level of 𝐻𝑘 is proportional to the probability of the 

corresponding level of k in the original image. Theoretically, for images with 

continuous intensity levels and probability density functions, such a mapping scheme 

can perfectly equalize the histogram. 

In the proposed model the V space of the HSV color space enhanced. to transform 

HSV space while enhancing only the S space with enhancement factor. The Fig. 6-2 

indicates the framework applied in this research work for image processing. 
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Fig. 6-2. The proposed image processing framework was applied for the raw images. 

Fig. 4 shows the process of image processing steps on a sample image of UNBC-

McMaster Shoulder Pain database. As it is shown in this figure the image after face 

detection, centralizing, resizing has been converted into HSV format and then the final 

step was histogram equalization by V color space. Then, the enhanced HSV color 

space image format was transferred into the proposed pain detection algorithm. 
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Fig. 6-3. Image processing steps for an image from the UNBC-McMaster Shoulder 

Pain database. (a) face detection, (b) centralizing, (c) resizing, (d) converting into 

HSV, and (e) histogram equalization. 

6.2 TCN Classifier for Pain Recognition 

In this thesis research work, a new TCN based classifier was developed by modifying 

the TCN to make it suitable for pain detection task from video post-processed images 

in HSV format.  

TCNs were a class of temporal models that use a hierarchy of temporal convolutions 

to perform the fine-grained action segmentation and subsequent detection of patterns 

within a dataset (Lea et al., 2017). They can accept variable length inputs like the other 

sequential models. In the following there were some reasons enable us to use TCNs 

over recurrent models. TCNs were a class of temporal models that use a hierarchy of 

temporal convolutions to perform the fine-grained action segmentation and subsequent 

detection of patterns within a dataset (Lea et al., 2017). They can accept variable length 

inputs like the other sequential models. In the following there were some reasons 

enable us to use TCNs over recurrent models. 

• TCNs have longer memory in comparison with recurrent neural networks with 

the same capacity. 

• The architecture of the TCNs were parallelizable with flexible receptive field. 

• Training TCN models require less memory and time. 

TCNs have longer memory in comparison with recurrent neural networks with the 

same capacity. The architecture of the TCNs were parallelizable with flexible receptive 

field. Training TCN models require less memory and time. Each layer in the TCN 

system contains a 1-D convolution block with an increased dilation factor. TCNs can 
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capture the action compositions, segment durations, and long-range dependencies, and 

were over a magnitude faster to train than competing LSTM-based Recurrent Neural 

Networks.  

Lea et al. (2017) defined two TCNs including ED-TCN as an encoder-decoder 

architecture with temporal convolutions and the Dilated TCN, which was adapted from 

the WaveNet model (Oord et al., 2016), uses a deep series of dilated convolutions. The 

following id the properties of the TCNs. 

1. computations were performed layer-wise, meaning every time-step was 

updated simultaneously, instead of updating sequentially per-frame. 

2. convolutions were computed across time, and predictions at each frame were a 

function of a fixed-length period, which was referred to as the receptive field. 

Fig. 6-4 illustrates the theoretical details of the dilated TCNs architecture taken from 

(Lea et al., 2017) designed for video analysis the idea was adapted from WaveNet 

(Oord et al., 2016) is designed for speech analysis. 

Suppose 𝑋𝑡 ∈ 𝑅𝐹0 is the input feature vector of length 𝐹0 for timestep t for 1 ≤ 𝑡 ≤ 𝑇. 

The number of time steps T may vary for each video sequence. The action label for 

each frame is given by vector 𝑌𝑡 ∈ {0,1}𝐶 where C is the number of classes. 

𝑌𝑡 is the current action given the video features up to 𝑡. Each series of the blocks 

indicate in Fig. 6-4 contains a sequence of L convolutional layers. The activations in 

the 𝑙 − 𝑡ℎ layer and 𝑗 − 𝑡ℎ block is given by 𝑆(𝑖,𝑙) ∈ 𝑅𝐹𝑤×𝑇.  

The input into each block 𝑆(𝑗,𝑙) is the output from the previous block 𝑆(𝑗−1,𝑙), except 

for the first block which defined as the input data. Each layer has the same number of 

filters 𝐹𝑤, which enables us to combine activations from different layers using skip 

connections later. Each layer consists a set of dilated convolutions with rate parameter 

𝑠, a non-linear activation 𝑓(. ), and a residual connection than combines the layer’s 

input and the convolution signal.  

Convolutions were only applied over two-time steps, 𝑡 and 𝑡 − 𝑠. The filters were 

parameterized by 𝑤 = {𝑤(1), 𝑤(2)} with 𝑤(𝑖) ∈ 𝑅𝐹𝑤×𝐹𝑤  and bias vector 𝑏 ∈ 𝑅𝐹𝑤. �̂�𝑡
(𝑗,𝑙)

 

was the result of the dilated convolution at time 𝑡. 𝑆𝑡
(𝑗,𝑙)

 was the result after adding the 

residual connection. 
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�̂�𝑡
(𝑗,𝑙)

= 𝑓(𝑊(1)𝑆𝑡−𝑠
(𝑗,𝑙−1)

+ 𝑊(2)𝑆𝑡
(𝑗,𝑙−1)

+ 𝑏)              (6-9) 

𝑆𝑡
(𝑗,𝑙)

= 𝑆𝑡
(𝑗,𝑙−1)

+ 𝑉�̂�𝑡
(𝑗,𝑙)

+ 𝑒               (6-10) 

𝑉 ∈ 𝑅𝐹𝑤×𝐹𝑤   

and 

𝑒 ∈ 𝑅𝐹𝑤  

are a set of weights and biases for the residual and parameters 

{𝑊, 𝑏, 𝑉, 𝑒} 

are separate for each layer. 

The dilation rate increases for consecutive layers within a block such that 𝑆𝑙 = 2𝑙. This 

enables us to increase the receptive field by a substantial amount without drastically 

increasing the number of parameters.  

The output of each block was summed using a set of skip connections with 

 𝑍(0) ∈ 𝑅𝐹𝑤×𝐹𝑤  

such that 

𝑍𝑡
(0)

= 𝑅𝑒𝐿𝑈(∑ 𝑆𝑡
(𝑗,𝐿)𝐵

𝑗=1 )              (6-11) 

There is a set of latent states 

𝑍𝑡
(1)

= 𝑅𝑒𝐿𝑈(𝑉𝑟𝑍𝑡
(0)

+ 𝑒𝑟)               (6-12) 

for weight matrix 

𝑉𝑟 ∈ 𝑅𝐹𝑤×𝐹𝑤                  (6-13) 

and bias 

𝑒𝑟. 

The predictions for each time 𝑡 were given by 

�̂�𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑍𝑡
(1)

+ 𝑐).               (6-14) 

The predictions for each time t were given by  

𝑈 ∈ 𝑅𝐶×𝐹𝑤                  (6-15) 

and bias 
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𝑐 ∈ 𝑅𝑐.                 (6-16) 

The filters in each Dilated TCN layer were smaller than in ED-TCN, so to get an equal-

sized receptive field it needs more layers or blocks. The receptive field is of length 

𝑟(𝐵, 𝐿) = 𝐵 ∗ 2𝐿 for number of blocks B and number of layers per block L. 

 

Fig. 6-4. The Dilated TCN model uses a deep stack of dilated convolutions to capture 

long-range temporal patterns presented by (Lea et al., 2017). The grey dashed lines 

show the network connections shifted back one-time step. L is convolutional layers, 

d is dilation rate, the activations in the l-th layer and j-th block were given by 𝑆(𝑗,𝑙) ∈
𝑅𝐹𝑤×𝑇. 

In our proposed model, dilated TCN structure as presented in (Lea et al., 2017) was 

adapted from original architecture to apply for pain detection task from facial 

expression video frames. While the number of filters and their shape were quite 

standard properties of CNNs, the number of filters and layers, the kernel size, their 

dilation rates, and the number of times the model can be stacked in TCN is highly 

parameterizable (Lea et al., 2017). in the new proposed model, d exponentially was 
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increased as illustrated in Fig. 6-5. This new developed TCN has four layers of 1-D 

Conv modules with dilation rates 1, 2, 4, 8 respectively and the input to the TCN is a 

4-dimensional feature vector derived from fine-tuned VGGFace-PCA for the UNBC-

McMaster Shoulder Pain database and 5-dimentional for the MIntPAIN. For this 

problem timestep = 4 and batch size = 20 worked well. Then the TCN output layer 

finetuned by adding an extra fully connected layer in Tensor flow as Dense (128, 

activation=’ReLU’) and set the output to calculate for four classes with activation 

Softmax. The network was optimized with NADAM. It is a kind of Adam optimizer 

with Nesterov momentum (Dozat, 2016) and has proved more stable than SGD. In 

training loss selected as categorical_crossentropy to calculate accuracy. 

 

Fig. 6-5. The proposed modified Dilated TCN model used in our pain intensity 

recognition framework from facial video frames. The grey dashed lines show the 

network connections shifted back one-time step. d is dilation rate, the activations in 

the 4 layer and 1 block were given by 𝑆(1,4) ∈ 𝑅𝐹𝑤×4. 

Tables 6-1 and Table 6-2 indicate the details of the TCN parameters used in the 

proposed model for pain intensity recognition.  
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Table 6-1. The modified TCN pain detection algorithm modeling parameters from 

the proposed framework. 

TCN parameter Parameter size 

Batch size 20 

Timestep 4 

Dilation 1,2,4,8 

Dropout 0.5 

Dense 128 

Activation ReLU 

Output 4 

Activation Softmax 

Table 6-2. The modified TCN pain detection algorithm training parameters from the 

proposed framework. 

Training parameter Parameter size 

Batch size 20 

Optimizer Nadam 

Epoch 1 

Loss categorical_crossentropy 

Metrics MAE, MSE, accuracy, AUC 

The details of the proposed CNN-TCN model were summarized in Algorithm 6-1. It 

is noteworthy that this has five epochs with 48 batches to train and test the proposed 

algorithm. 
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Algorithm 6-1: HSV-TCN 

1 Procedure HSV-TCN (input, n, j, batch) 

2 Pre-process (input, f) 

3 HSV (f, T) 

4 Histogram-Equalization (T, M) 

5 for k ← 0, n do 

6 Finetune-VGGFace (M, features) 

7 for epoch ← 0, j do 

8 Train-Test (Finetune-VGGFace ()) 

9 end for 

10 TCN (SF, Output) 

11 for epoch ← 0, j do 

12 Train-Test (TCN ()) 

13 evaluation (TCN ()) 

14 end for 

15 end for 

16 end Procedure 

6.3 Experimental and Results 

In this section the obtained results of the proposed HSV-TCN framework and related 

plots were explained and illustrated. The proposed algorithm was trained and tested in 

two databases including the UNBC-McMaster Shoulder Pain database and the 

MIntPAIN database described in Chapter 3. 

6.3.1 UNBC McMaster Shoulder Pain Database’s Results 

The presented VGGFace-PCA was trained in an epoch to learn of the feature extraction 

model and reach its best performance. The obtained results show the HSV color space 

inputs speed up training time of feature extraction algorithms. The proposed TCN 

classifier was trained and tested by selected features in an epoch as well. Two 

performance measure were applied including LOOCV and 10-fold-CV. The LOOCV 

was used on 24 subjects for the training set and one subject for the testing dataset and 

25 times it was repeated by replacing different test set. Several performance 
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evaluations measures, including the classification accuracy, MAE, MSE, AUC were 

used to evaluate the performance of the proposed model. The results obtained indicated 

the proposed framework had a high performance in detecting pain in four distinct 

levels. Table 6-3 shows the average values of the MSE, MAE, accuracy, and AUC of 

the average for LOSOCV performance measurement.  

Table 6-3. The average performance of the proposed HSV-TCN model measured by 

LOOCV for 25 subjects for four classes in the UNBC-McMaster Shoulder Pain 

database. 

MSE MAE Accuracy (%) AUC (%) PR curves (%) 

0.0692 0.1021 92.44 85 88.5 

Fig. 6-6 shows a box plot representing accuracy and AUC performance metrics. 

 

Fig. 6-6. Box plot of the measured performance of the proposed HSV-TCN 

algorithm includes accuracy, and AUC. 

Fig. 6-7 indicates a box plot representing MSE and MAE performance metrics. 
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Fig. 6-7. Box plot of the measured performance of the proposed HSV-TCN 

algorithm includes accuracy, and AUC. 

The proposed algorithm then was trained and tested by 10-cross validation technique 

to compare the results. Table 6-4 shows the obtained results from average accuracy, 

AUC, MSE, and MAE 10-cross validation. 

Table 6-4. The average performance of the proposed HSV-TCN model measured by 

10-fold-CV for 25 subjects for four classes in the UNBC-McMaster Shoulder Pain 

database. 

MSE MAE 
Accuracy 

(%) 

AUC 

(%) 

PR curves 

(%) 

0.186 0.234 94.14 91.3 93 

The performance of the proposed model was measured per each class for the UNBC-

McMaster Shoulder Pain database. Table 6-5 indicates measured the results per each 

class.
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Table 6-5. Average pain level per four classes of the proposed HSV-TCN model 

based on TP, f-score, precision by 10-fold-CV in the UNBC-McMaster Shoulder 

Pain database. 

Class TP 

(%) 

f-measure 

(%) 

Precision 

(%) 

No pain 89 89.31 88.95 

Weak pain 91.2 90.78 91.5 

Mild pain 90.30 88.3 90 

Strong pain 89.30 90 91.54 

This study explored the utility of an LSTM baseline model using the same feature 

extraction techniques but with the original RGB video frames. The extracted features 

of the RGB inputs were then passed to an LSTM model. The model consisted of an 

LSTM layer with a fully connected output layer. Notably, the LSTM cell had 32 hidden 

units, which were optimized using the ADAM optimizer and considering the MSE and 

the MAE as the accuracy metric. The network was trained for 1 epoch and 

implemented in TensorFlow; whose validation results were shown in Table 6-6. 

Table 6-6. The average performance of the LSTM model as measured by LOOCV 

for 25 subjects for four classes on RGB inputs. 

MSE MAE Accuracy (%) AUC (%) PR curves (%) 

0.1254 0.198 83 78 80.7 

It can be noted that the LSTM baseline model achieved an accuracy of about 83% 

while the MSE was 0.1254. The proposed Dilated-TCN based model resulted in 

accuracy about 92.4% with an MSE of only 0.0692. the improvement of the proposed 

TCN based algorithm on the HSV input was considerably higher than the LSTM model 

performance with a set of RGB inputs. The AUC of the proposed model, however, was 

significantly higher than the prescribed LSTM model. 

6.3.2 MIntPAIN Database’s Results 

The proposed HSV-TCN model was trained and evaluated on the MIntPAIN database. 

Table 6-7 indicates the obtained results of the proposed HSV-TCN model on the 
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MIntPAIN database measured by accuracy, AUC, MAE, and MSE based on 10-fold 

cross validation. 

Table 6-7. The average performance, best result, and worst results of the proposed 

HSV-TCN model on the MIntPAIN database for 10-fold cross validation. 

Results MSE MAE Accuracy 

(%) 

AUC 

(%) 

PR curves 

(%) 

Average 0.22 0.26 89 92 94.3 

6.4 Discussion 

The obtained results compared with the different deep learning algorithms, which 

recently applied in the same databases to detect pain from the human facial 

expressions, as indicated in Table 6-8. The comparison results of the proposed HSV-

TCN model with the state-of-the-art results show that the proposed framework is 

significantly effective and efficient. In terms of the error measurements, it has fewer 

errors measured by MAE and MSE in comparison with results obtained by (Rodriguez 

et al., 2017). Furthermore, this method was achieved the highest accuracy by 92.44% 

for LOOCV and 94.14% for 10-fold-CV in the UMBC-McMaster Shoulder in 

comparison with the results of the other deep learning algorithms. 

In comparison with state-of-the-art deep learning pain detection models from facial 

expressions, the obtained results demonstrated that the proposed HSV-TCN approach 

can achieve high performance in a multi-classification task. For example, as indicated 

in Table 6-8 the RNN model proposed by (Bellantonio et al., 2016) achieved less 

accuracy than our proposed model in the same database and for three classes. 
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Table 6-8. Comparison of the proposed framework with state-of-the-art results in the UNBC-McMaster Shoulder Pain database in LOOCV. 

 

References Pain Level Classifier AUC 

(%) 

Accuracy 

 (%) 

MSE 

(%) 

Data Size 

(Lucey, Cohn, Prkachin, et al., 2011) 2 SVM 83.9 - - All 

(Lucey, Cohn, Matthews, et al., 2011) 2 SVM 84.7 - - All 

(Rodriguez et al., 2017) 2 LSTM 93.3 83.1 74 Down-up 

(Bellantonio et al., 2016) 3 RNN - 61.9 - Down-up 

(Hammal & Cohn, 2012) 4 SVM - 80 - 16657 images 

(Bargshady et al., 2019) 4 LSTM 82.7 75.2 95 10783 images 

(Bargshady et al., 2020a) 4 CNN-RNN 88.7 85 20.7 10783 images 

The proposed model 4 TCN 85 92.44 6.92 10783 images 
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Finally, the performance of the all proposed models in this thesis including HSV-TCN, 

EJH-CNN-BiLSTM, and EDLM have been compared. The comparison results 

indicate the effectiveness of the three proposed models was high. In terms of the 

efficiency the presented HSV-TCN model has higher performance than the EJH-CNN-

BiLSTM and the EDLM models in pain detection task. The learning time of the HSV-

TCN was less than other two proposed models. Since all the proposed models have 

been trained and tested by 10-fold cross validation and just in some cases the results 

have been calculated in LOOCV validation techniques so in Table 6-9 the obtained 

results of the three proposed models in two databases were compared based on the 10-

fold cross validation.  

Table 6-9. The comparison results of the three proposed models in this thesis in 

terms of effectiveness by 10-fold cross validation. 

Model Database AUC 

(%) 

PR curves 

(%) 

Accuracy 

(%) 

MSE 

EJH-CNN-

BiLSTM 

UNBC-McMaster 98.4 98 90 0.03 

EDLM 
UNBC-McMaster 90.5 93 86 0.081 

MIntPAIN 93.67 95 92.26 0.0245 

HSV-TCN 
UNBC-McMaster 91.3 93.5 94.14 0.186 

MIntPAIN 92 94.3 89 0.22 

The feature extraction VGGFace-PCA with HSV color space only was trained in an 

epoch to reach good performance for the UNBC-McMaster Shoulder Pain database. 

Whereas with the RGB color space the 5 epochs were applied for the same database. 

Fig. 6-8 shows the scatter plot of the applied epoch for training VGGFace-PCA in 

RGB and HSV color space format for the UNBC-McMaster Shoulder Pain and 

MIntPAIN databases. 
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Fig 6-8. The epochs applied for training VGGFace-PCA feature extractor in HSV 

and RGB colour space. The blue colour indicates the UNBC-McMaster Shoulder 

Pain database, and the red colour shows the MIntPAIN database. 

Table 6-10 indicates the time spent for training the proposed model in both feature 

extraction and classifier. The comparison results show the learning time for the HSV-

TCN was less than other two proposed models in this research work. This thesis 

research work only focuses on deep learning techniques and for efficiency the obtained 

results have been compared with deep learning classifiers. It seems that the proposed 

models based on deep learning in this research work were more efficient than 

traditional classifiers such as SVM for multi-classes problem. Since SVM for multi-

classes needs more calculations such as One-vs-Rest and One-vs-One calculations 

(Milgram et al., 2006) so its efficiency for the multi-classes may not be better than 

deep learning algorithms. So, we refer it for the feature works to test SVM 

effectiveness and efficiency with the selected databases in this research thesis. 
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Table 6-10. The complexity and speed of the three proposed model in different phase in 10-fold-CV. 

Models Input 

Image 

Classifier Database Feature extraction 

time (s) / epochs 

classifier time (s) 

/ epochs 

EJH-CNN-BiLSTM (Bargshady 

et al., 2019) 

RGB BiLSTM UNBC-McMaster 5300/ 5 560 / 5 

EDLM (Bargshady et al., 2020b) RGB BiLSTM UNBC-McMaster 5300/5 600/5 

HSV-TCN HSV TCN UNBC-McMaster 1060/1 90/1 

EDLM (Bargshady et al., 2020b) RGB BiLSTM MIntPAIN 4000 / 50 1700 / 5 

HSV-TCN HSV TCN MIntPAIN 800/10 290/1 
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Misclassification Rate indicates incorrect predictions and refers to measurements 

errors. It occurs when an object was assigned to a different class than the one to which 

they should be assigned (Pham et al., 2019). It is also known as Classification Error. 

It is calculated by using  

Misclassification Rate = 
(𝐹𝑃+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
            (6-17) 

or  

Misclassification Rate =  1 − Accuracy.           (6-18) 

In clinics two types of misclassification bias were of particular importance: 

Misclassification of exposure arises when errors or biases occur during collection of 

exposure data, and Misclassification of outcome derives from errors or biases in the 

collection of outcome data. They may also influence interpretation of laboratory results or 

other diagnostic procedures. Regardless of the application, if sensitivity and specificity 

were less than 100%, some degree of misclassification will occur and may have a profound 

impact on clinical or research conclusions.  

Correcting systematic misclassification errors that occurred during data collection may not 

be possible when analyzing secondary data sources. care should be taken to minimize the 

likelihood of misclassification during data collection. This can be accomplished by having 

a detailed, straightforward, and consistent case definition, strictly following diagnosis 

guidelines, and minimizing measurement errors by selecting more accurate equipment, 

tests, or medical examination procedures. 

In Chapters 4, 5, and 6 the FP and FN have been calculated per each class and the 

obtained results show there is small percentage of misclassification occur per each 

class in three proposed algorithms. Table 6-11 indicates the classification errors of 

three proposed algorithms in UNBC-McMaster Shoulder Pain and MIntPAIN 

databases.
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Table 6-11. The misclassification error results of the three proposed models by 10-

fold cross validation. 

Model Database Accuracy (%) 1-accuracy (%) 

EJH-CNN-

BiLSTM 

UNBC-McMaster 90 10 

EDLM 
UNBC-McMaster 86 14 

MIntPAIN 92.26 7.74 

HSV-TCN 
UNBC-McMaster 94.14 5.86 

MIntPAIN 89 11 

If a model after several iterations of cross validation cannot perform to its maximum 

performance, error analysis could be required to improve the machine learning model 

performance. If the model does not perform well and the error metric like accuracy is 

bad, one of the possible solutions is to collect more data. However, collecting more 

data might take several months that delays the delivery of the project. error analysis 

should be performed to find out the root cause or causes of bad performance by 

selecting 100-200 mislabeled samples from the development set (dev set) and do 

manual error analysis to find out various issues in the mislabeled samples. Table 6-12 

shows the example of manual error analysis for images for multi-classes. 

Table 6-12. The feature work may like to concentrate more on error analysis. 

S
a
m

p
les 

B
a
d

 p
erfo

rm
a
n

ce in
 cla

ss 1
 

B
a
d

 p
erfo

rm
a
n

ce in
 cla

ss 2
 

B
a
d

 p
erfo

rm
a
n

ce in
 cla

ss n
 

Im
a
g
e w

ith
 m

u
ltip

le cla
sses 

B
lu

rry
 im

a
g
es 

Image 1 Yes No …
 

No Yes 

Image 2 No No 

…
 

Yes No 

…
 

…
 

…
 

…
 

…
 

…
 

Image 100 Yes Yes …
 

No No 

 



 

105 

 

In conclusion, the results obtained from the two databases of the proposed model and 

comparison with different deep learning models and input space colors indicates that 

the HSV color space impact the speed of feature extraction process phase and helped 

us to reach high accuracy in efficient time and less epochs. On the other hand, the 

obtained results show that the TCN classifier running time was faster than RNN and 

LDTM deep learning. The accuracy of the TCN classifier also is high. using TCN 

classifier rather than RNN classifier may be good alternative for automated pain 

recognition task from facial images. However, the impact of RNNs cannot ignored. 

the following contributions of this paper were as follows: 

• The proposed feature extractor based on finetuned VGG-Face and PCA with HSV 

color space images has extracted features effectively and in a much timely manner, 

providing good computational efficiency.  

• The proposed and the significantly modified TCN deep learning classifier system 

was able to recognize the pain level intensity from facial expression video images 

effectively and efficiently.  

The proposed entire framework developed to pain detection system was seen to 

consume much lesser time in comparison with the RNN deep classifiers with RGB 

color space inputs and the significant accuracy. it can be applied as an artificial 

intelligence tool in healthcare software applications to automatically detect pain level 

from patient faces in a smart, remote, regular, fast, and “anywhere/anytime” manner. 

6.5 Chapter Summary 

A novel automatic pain intensity recognition algorithm using video images has also 

been proposed by integrating the CNN and Temporal Convolutional Network 

algorithms with HSV input color space. The task predicts the four-intensity levels of 

pain of UNBC-McMaster Shoulder Pain Archive Database 25 patients’ video frames. 

The proposed framework uses HSV input color space of facial images as the input to 

a CNN based fine-tuned VGGFace proposed model to extract features and a single 

Dilated-TCN to classification. The experimental results indicate that there was a 

considerable improvement from the baseline LSTM model as well as the state-of-the-

art deep learning models and the proposed model achieved high performance in terms 

of accuracy and AUC. Thus, due to its efficiency, the newly proposed algorithm is a 

good choice as an automate device to monitor the pain levels of individuals faces with 
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pain. the newly developed CNN-TCN methodology in this paper can use as an artificial 

intelligence tool, especially as part of an automated pain assessment software 

applications, including its importance in medical diagnostic areas to support clinicians 

and other medical researchers in detecting and classifying pain from human facial 

expressions. 
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CHAPTER 7 

Conclusion and Future Work 

In this chapter, conclusion remark including a brief description of the problems, 

provided answers for the research, contributions have been discussed. Then, 

limitations of the research work and future work explained. 

7.1 Conclusion Remark 

Automatic pain management system from facial expressions is a critical tool in 

measuring pain level and monitoring patients’ health conditions. It decreases cost of 

regular pain measuring by medical staff and improves healthcare systems accurateness 

in recognizing patients’ pain level and plays a crucial role in designing a real-time 

system that accurately recognizes human facial expressions to support health 

monitoring and treatment devices. Due to the progress of the data science technology 

current automatic pain management tools were designed by machine learning based 

artificial intelligence technology. Machine learning algorithms, implemented as 

intelligent prediction and classification system, can offer an alternative mechanism for 

this important task. These algorithms can use information from a camera for collecting 

the relevant data, to detect both the pain and its relative intensity level. This can be 

deduced from the movements in facial muscles and its correspondence with the PSPI 

scores (Prkachin & Solomon, 2008). 

Although machine learning and deep learning algorithms have proven as a state-of-

the-art diagnostic and prognostic technology, they were not ideal. Their success can 

be greatly affected by data form, deep learning training and testing structure. Pain 

detection from facial images continue to suffer from several challenges including the 

presentation of facial images  affected by unbalanced environmental brightness, 

shooting angle and distance,  background interference, and external factors such as the 

patients smiling during pain or gender-related pain differences. There is also the issue 

of few facial image databases containing pain labels. 

to overcome these challenges and support potential applications of pain detection 

technology in the health informatics area, and answers the research questions discussed 
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in the section 1.2 this research developed and evaluated several new deep learning pain 

recognition systems to find solution to improve pain recognition deep learning 

algorithms from facial expression. Previous literatures, and current and recent deep 

learning algorithms in facial expression recognition and pain detection carefully 

reviewed and considered to answer the RQ 1 as “What were the most recent deep 

learning model advancements in pain recognition from facial expressions?”. Based on 

the reviewed literature discusses in Chapter 2, in computer vision area CNN feature 

extraction and feature selection or transfer learning methods were performed on data. 

This research work demonstrates that basic CNNs methods or simple transfer learning 

feature extraction methods were not well equipped to extracting and selecting 

important features effectively. As a solution, to answer the RQ 2: “What is the most 

effective deep learning algorithm to extract and select features from facial pain 

images?”, this thesis introduces an efficient and effective algorithm as a modified 

technique by applying a fine-tuned VGG-Face as a customized pre-trainer and 

combining its outputs with PCA dimension reduction method to extract and select 

features from pain image data effectively and efficiently. The proposed method and 

applied image pre-processing approaches to feed data for this algorithm discusses in 

Chapter 4 section 4.1 and 4.2. The contribution of this aspect of the research were as 

follows: 

• Contribution 1: The proposed new feature extraction model composing fine-tuned 

VGGFace pre-trained and PCA significantly increased the performance of the 

algorithm in terms of speed and accurate extracted features when compared with 

the standard VGGFace. 

 Three novel enhanced deep learning-based classifiers have been developed and 

evaluated including the EJH-CNN-BiLSTM, EDML, and HSV-TCN and the obtained 

results have been compared with the baseline models and other the state-of-the-art 

models to answer research questions 3 as RQ3: “What is the most effective and efficient 

facial expression pain recognition deep learning algorithm to classify pain intensity 

on multi-level?”. The comparison results among the proposed models in this research 

and other recent research in the same databases demonstrated that applying hybrid 

CNN-BiLSTM and ensemble technique including different hybrid deep learning 

algorithms has more accurate than a simple deep neural network. The obtained results 

from the third algorithm as HSV-TCN demonstrated TCN were more efficient than the 
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BiLSTM for video sequence and training time of the TCN algorithm faster than 

BiLSTM. The accuracy and effectiveness of the TCN was significant as well. These 

obtained results and comparison results have been elaborated in Chapter 4,5, and 6 to 

answer RQ4: “How effective were the developed enhanced deep learning models to 

recognize pain from facial expression?”,  and RQ5: “How efficient were the developed 

enhanced deep learning models to recognize pain from facial expression?”.  

In chapter 4 an enhanced joint hybrid deep learning model EJH-CNN-BiLSTM was 

developed. This model consists of a new feature extraction algorithm connected to new 

deep learning classifier as a joint and hybrid CNN-BiLSTM classifier was used to 

classify pain levels. To train and test the algorithm two pin databases which contained 

facial pain video images with labels including the UNBC-McMaster Shoulder Pain 

and the MIntPAIN database were utilized. The contributions of this aspect of the 

research were as follows: 

• Contribution 2: It is concluded that the proposed EJH-CNN-BiLSTM classifier is 

an effective and accurate model in detecting pain level from facial video images. 

In chapter 5, the proposed model in chapter 4 is extended by applying the hybrid joint 

CNN-BiLSTM in an ensemble deep learning model. three CNN-BiLSTM models 

varying in architectures and parameters were designed in a stack ensemble learning 

model in which their outputs merged into a single model. This proposed model was 

also trained and tested in the UNBC-McMaster Shoulder Pain and the MIntPAIN 

databases. By analyzing the results and comparing them with the state-of-the-art 

results, the following contributions were made: 

• Contribution 3: The proposed ensemble deep learning model, which integrated 

three independent CNN-RNN deep learners with varying weights and structures, 

outperformed baseline models and the state-of-the-art methodologies in accuracy.  

• Contribution 4: The proposed EDLM model is the optimum deep learning method 

resulting in a low qualified error compared with the other target models. 

In chapter 6, a new deep learning model based on convolutional neural networks and 

temporal neural networks was designed. Since, RNNs has exploding and vanishing 

gradient problems and the difficulties associated with parallel training and separation 

tasks, different types of deep learning models were applied for this algorithm. The 
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TCNs is a feedforward convolution model which can be superior to the RNNs. a deep 

dilated TCN algorithm is modified for this task. TCNs were previously applied in 

different tasks successfully but never applied for pain recognition tasks. In this 

experiment the input color space was also changed to the HSV due to its effectiveness 

in facial expression recognition and transferred into the same feature extraction 

proposed in chapter 4 as VGGFace-PCA. The contribution of the proposed TCNs pain 

recognition model is: 

• Contribution 5: The proposed TCN algorithm advances automated system design 

and applications for the health informatics area.  

• Contribution 6: The experimental results indicate that there is a considerable 

improvement from the baseline LSTM model and the state-of-the-art deep learning 

models and the proposed model achieved high performance in terms of accuracy 

and complexity.  

• Contribution 7: The newly proposed algorithm is a good choice as an automate 

device to monitor the pain levels of individual faces since its learning time is faster 

when compared to other deep learning algorithms. 

In conclusion, the newly developed deep learning methodologies discussed in this 

thesis can be used as an artificial intelligence tool, especially as part of an automated 

pain assessment software applications, including its importance in medical diagnostic 

areas to support clinicians and other medical researchers in detecting and classifying 

pain from human facial expressions. applying automated pain detection tools can 

improve clinicians’ proficiency by reducing time and cost and increasing accuracy and 

safety in collecting and analyzing patients’ data in both diagnosis steps and treatment 

procedures. AI pain detection tools could improve patients’ symptoms diagnosis and 

facilitate their recovery progress which is an important achievement for healthcare 

systems. 

7.2 Current Limitations 

There were some limitations in this project and in automatic pain detection systems 

from facial expression development and evaluation which were listed in this section 

including: 
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1. In this research PhD thesis, new algorithms developed and evaluated to pain 

recognition systems only from facial expression video images. The vocal, body 

movement, and other patients’ behaviors data were not considered in this 

research. 

2. This research project focused on enhancing deep learning models although the 

obtained results were compared with the most important literature review 

results, other machine learning techniques improvements were not discussed 

in this research work. 

3. In this research two popular and bid databases including UNBC-McMaster 

Shoulder Pain database and MIntPAIN database used to train and evaluate the 

presented algorithms. However, one of the challenges was that most of the 

research into facial expressions, especially in facial pain detection, currently 

lacks a standard database. Accessing the patients’ original images was not 

possible in the most pain databases. Most of database labels were not complete 

and missed labeling at the frames levels. This made it challenging for 

modelling of  pain recognition. 

7.3 Suggestions for Future Work 

This thesis has resolved several challenges regarding the use of automatic pain 

recognition systems from facial expressions. However, extensive future investigations 

were still required, including the following: 

1.  Future work can use different frameworks for pain recognition such as 

techniques introduced in Zhang, Wang et al. (2017) which firstly recognize the 

general facial expression, then if it is pain, use fine-grained pain level 

classification. Deep metric learning methods, such as Siamese networks, may 

also be used to achieve better performance (Liu et al., 2017).  

2. Future work may also consider the loss functions method that performs well 

on imbalanced datasets (Bi & Zhang, 2018; Lin et al., 2017; Zhang, Bi, et al., 

2017; Zhang, Bi, et al., 2019; Zhang, Liu, et al., 2017). 

3. The promising results achieved with the newly developed TCN method in this 

study indicate significant potential for practical applications in future works, 

including the developing of a real-time approach using a TCN; and exploring 

the TCNs for other facial expression tasks such as emotion detection. 
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4. Future study may advance this algorithm in different types of pain face images 

and video frame databases to further accelerate the speed and accuracy of 

feature extracting of images for broader real-time applications in health 

informatics and medical diagnosis areas. 

5. In the future, a comprehensive algorithm may be designed to train and test 

algorithms in automatic pain recognition systems based on all pain behaviors 

such as facial expressions, vocalizations, body movements and physiological 

responses. This may complement current assessment methods to achieve better 

pain management. More knowledge about factors influencing pain would help 

automatic recognition, as it may allow to better leverage context information. 

Currently, most of the databases only provide pain image information without 

additional knowledge about the patients’ background. 

6. As discussed in the limitation section, one of the big challenges in pain 

recognition from face data is the limited number of databases that provide 

access to real patients’ pain information and video frames. Future work should 

be validated on multiple datasets to show consistent performance across 

diverse data and how well a system generalizes to other conditions, medical 

populations, and pain types. 

7. The FACS and PSPI labelling systems were the most valid and popular pain 

labeling system for facial expression. Feature studies may consider new facial 

expression coding systems. 

8. In future work, we expect to test and compare the current presented research 

with a color constancy algorithm. 
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