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Abstract

Directly observing exoplanets with coronagraphs is impeded by the presence of speckles from aberrations in the
optical path, which can be mitigated in hardware with wave front control, as well as in post-processing. This work
explores using an instrument model in post-processing to separate astrophysical signals from residual aberrations in
coronagraphic data. The effect of wave front error (WFE) on the coronagraphic intensity consists of a linear
contribution and a quadratic contribution. When either of the terms is much larger than the other, the instrument
response can be approximated by a transfer matrix mapping WFE to detector plane intensity. From this transfer
matrix, a useful projection onto instrumental modes that removes the dominant error modes can be derived. We
apply this approach to synthetically generated Roman Space Telescope hybrid Lyot coronagraph data to extract
“robust observables,” which can be used instead of raw data for applications such as detection testing. The
projection improves planet flux ratio detection limits by about 28% in the linear regime and by over a factor of 2 in
the quadratic regime, illustrating that robust observables can increase sensitivity to astrophysical signals and
improve the scientific yield from coronagraphic data. While this approach does not require additional information
such as observations of reference stars or modulations of a deformable mirror, it can and should be combined with
these other techniques, acting as a model-informed prior in an overall post-processing strategy.

Unified Astronomy Thesaurus concepts: Coronagraphic imaging (313); Exoplanet detection methods (489);
Exoplanet astronomy (486); Direct imaging (387)

1. Introduction

Specialist high-contrast techniques are required to directly
observe faint astrophysical objects near brighter objects, such
as exoplanets, brown dwarfs, or circumstellar disks orbiting
much brighter central stars. High-contrast observations are
essential for answering scientific questions involving binary
and planetary system population statistics, planet and disk
formation and evolution, planetary atmospheres, and planet
habitability and the search for biosignatures (Traub &
Oppenheimer 2010). Measuring these exoplanet signals is
difficult because they often lie at small angular separations
from their host star and can be many orders of magnitude
fainter. One major obstacle for high-contrast observations is
photon noise from the light of the central star. Practical matters
such as detector saturation aside, if the star is orders of
magnitude brighter than its companion, the photon noise
associated with the outer lobes of the star’s point-spread
function (PSF) can overwhelm any signal from the companion,
even if the on-axis star’s signal is perfectly known. As a result,
instruments to directly suppress starlight, such as coronagraphs
and nullers, are important in increasing the photon signal-to-
noise ratio (S/N) of faint companions.

Another important source of noise is wave front error
(WFE), which distorts the signal of the on-axis point source.
Sources of WFE include atmospheric turbulence, imperfections
in the optics, or thermomechanical changes in the telescope or
instrument. At an instant in time, a perturbation to the wave
front scatters energy from the core of the PSF into speckles
throughout the image that can resemble off-axis sources. If the
magnitude of the WFE electric field is smaller than that of the
underlying electric field from the PSF, then the speckles are
symmetric about zero in detector plane intensity and average
out over time. When the WFE is the larger term, as in the case
of uncorrected atmospheric turbulence, the speckles are
predominantly positive, increasing rather than decreasing the
intensity over most of the focal plane, and averaging out to a
halo that can obscure off-axis signals. Scattered starlight at
larger spatial separations increases the photon noise at those
locations in the detector plane, which can also dominate over
signals from faint companions.
The goal of high-contrast instruments is to separate the

signal of the on-axis star from off-axis sources. Coronagraphs
are passive optical elements that spatially filter the light to
suppress the signal of an on-axis star, reducing its associated
photon noise while letting through off-axis signals (Guyon
et al. 2006). Adaptive optics (AO; Tyson 2000) and focal-plane
wave front control (Groff et al. 2016) actively correct for WFE
to reduce their impact. However, even with suppression from
coronagraphs or nullers, the sensitivity to faint astrophysical
signals is still limited by residual starlight and its associated
photon noise.
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Post-processing techniques can use additional available
information to further mitigate the effects of WFE and increase
sensitivity to real astrophysical signals (see Cantalloube et al.
2022 for a discussion of the state of the art of high-contrast post-
processing in the context of a direct imaging data challenge). For
example, angular differential imaging exploits observations at
different roll angles, taking advantage of azimuthal averaging of
the WFE (Marois et al. 2006; Flasseur et al. 2018). Other
methods rely on performing principal component analysis (PCA)
on reference observations of a calibration star similar to the host
star, but without astrophysical companions, to calibrate out
residual static or quasi-static starlight (Lafrenière et al. 2007;
Soummer et al. 2012; Pueyo 2016). Additional sources of
information on residual WFE include telemetry from wave front
sensing and control (WFSC) systems such as wave front sensor
residuals (Vogt et al. 2011) or focal-plane electric field estimates
(Pogorelyuk et al. 2019), data from a self-coherent camera
(Baudoz et al. 2006), and data at different wavelengths as
exploited in spectral deconvolution (Sparks & Ford 2002).

This work shows that the modeled or measured instrument
sensitivity to WFE can be included as an additional source of
information in the post-processing of coronagraphic data,
information that, in theory, can be combined with the other
techniques discussed. This work examines an approach that
uses this physical optics model to construct a projection
removing the dominant error modes in the appropriate WFE
regime, and it finds that this can improve sensitivity to faint
companions by up to and over a factor of 2.

2. Coronagraphic Signals

2.1. Data Formation

The model used in this work assumes that the light through
the instrument is monochromatic. With a discrete representa-
tion of the optical planes of an instrument, a coronagraph can
be modeled as a linear operator C, a constant 2D matrix
transforming the electric field vector at the pupil plane, Es, into
the electric field vector at the detector plane, Edet. If Es0 is the
electric field vector of the central source (star) at the pupil plane
in the absence of aberrations and ΔEs is a vector of small
perturbations to that electric field, representing wave front
aberrations (which can be variable in time), then the electric
field vector at the detector plane, assuming that the star is the
only source of light, is

D= = +E CE CE C E t . 1s s sdet 0 ( ) ( )
The intensity measured is the element-wise norm squared of

the detector plane electric field (here x indicates the element-
wise complex conjugate of x and ◦ indicates the element-wise
product):
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The vector of the pupil-plane electric field of a binary

companion is given by
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where c is the flux ratio between the planet and the star, k is the
pupil-plane wavevector indicating the companion’s location,
and x is the pupil-plane coordinate vector. Namely, the planet’s
pupil-plane electric field is the star’s electric field, but tilted and

scaled by the square root of the flux ratio. The detector plane
intensity for the planet can be expressed as

D D= + +I CE CE C E C Et t2 Re .
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The total intensity on the detector plane from the star and the
planet is the sum of Equations (2) and (4). However, we can
make two simplifying assumptions. The first assumption is that
the flux of the planet is small relative to the flux of the star, such
that c= 1. The second assumption is that the magnitude of the
WFE is small relative to the total magnitude of the electric field,
namely ΔEs(t)=Es0, which implies ΔEp(t)=Ep0. This is true
if we are both in the “small phase regime” (when there is much
less than one wave of WFE) and the fractional amplitude error is
much less than 1. These assumptions imply that the last two
terms of Equation (4) are small relative to the other terms, so we
can approximate the total intensity as
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The first term, CEs0
2∣ ∣ , is the residual starlight not blocked by

the coronagraph in the case of no aberrations. The second term,
DCE C E2 Re s s0{( ) ◦ }, is linear in the wave front aberration

and corresponds to the interference of the aberration,
propagated to the focal plane, with the underlying residual
starlight from the coronagraph, analogous to speckle pinning
(Bloemhof 2003; Perrin et al. 2003). The third term, DC Es

2∣ ∣ ,
is the quadratic term, corresponding to the norm squared of the
WFE propagated to the focal plane. The last term, CEp0

2∣ ∣ , is
the nominal off-axis signal of interest.
Whether the effects of WFEs at some location in the

detector plane are dominated by the linear term or the
quadratic term depends on the attenuation of starlight by the
coronagraph and the level of the propagated WFE at that
location. If the propagated wave front aberrations are smaller
in complex amplitude than the residual starlight after the
coronagraph with no aberrations, the linear term is dominant.
When a coronagraph is not used, this corresponds to the
speckle pinning regime, in which the aberrations
primarily interfere with the wings of the telescope’s PSF
(Bloemhof 2003). The same phenomenon occurs with a
coronagraph; however, as the amplitudes of the PSF wings are
reduced by the coronagraph, the range of WFE over which
this occurs is much more limited. Otherwise, if propagated
wave front aberrations have relatively larger magnitudes, the
quadratic term is dominant. For a given location in the focal
plane, the local point of transition between the linear and
quadratic regimes occurs when DCE C E2 Re s s0∣ {( ) ◦ }∣=
DC Es

2∣ ∣ , or roughly when CE2 s0∣ ∣= DC Es∣ ∣.
This point of transition is different for each pixel and also

depends on the coronagraph design, as well as the “nominal”
wave front (whether it is flat, as is typical for ground-based
coronagraphs, or the wave front corresponding to a dark hole,
as is planned for space-based coronagraphs). For this work, we
use as an example the Hybrid Lyot Coronagraph (HLC) of the
Coronagraph Instrument of the Roman Space Telescope. With
the dark hole presented in Section 5.1, which has an average
raw contrast (residual stellar intensity divided by unocculted
peak intensity) of 5.6× 10−9, the point at which |CΔEs|>
|2CEs0| for 50% of the pixels in the dark-hole region occurs at
roughly 0.1 waves rms of phase error, on average. This means
that WFEs less than 0.1 waves rms will primarily be in the

2
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linear regime, while WFEs larger than 0.1 waves rms will
primarily be in the quadratic regime, although this is somewhat
dependent on the form of the wave front’s spatial power
spectral density (PSD) that we use in Section 5.4.1.

In this work, robust observables are only formulated for
WFE that is predominantly linear or predominantly quadratic
throughout the entire focal plane. However, it may be possible
to obtain robust observables for when both terms have
comparable contributions, a topic that is left for future work.

2.2. Linear Regime

From Equation (5), if we then assume that the linear error
term is dominant, then we can drop the quadratic contribution
such that the detector plane intensity is approximately

D» + +I CE CE C E CEt2 Re . 6l s s s ptot, 0
2

0 0
2∣ ∣ {( ) ◦ ( )} ∣ ∣ ( )

The contribution of the WFE to the intensity can be
expressed as a linear transformation Al acting on the WFE:

D» + +I CE A E CEt . 7s l s ptot,l 0
2

0
2∣ ∣ ( ) ∣ ∣ ( )

The transfer matrix Al can be calculated semianalytically
from the coronagraph operator and the unaberrated electric
field, as derived from Equation (6):
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The indices i and j label the input basis vectors used to
represent the WFE, and the index k labels the detector pixel.

It is desirable to reduce the term dependent on WFE,
AlΔEs(t), relative to the terms containing astrophysical signals
of interest. This can be achieved by left-multiplying the
measured intensities by a matrix Kl, that projects out the
dominant modes of Al. Section 3 describes the process of
calculating Al and finding from it an appropriate Kl. The
observables obtained using projection matrix Kl are given by

=O K I . 9l l tot,l ( )
When the WFEs are in the linear regime, this projection is

expected to suppress the contribution of WFEs to the measured
data. As long as the measurements retain most of the
astrophysical signal, then the projection will boost its S/N.

2.3. Quadratic Regime

In the quadratic-dominated regime, we can drop the linear
contribution in Equation (5), such that the detector plane
intensity is approximately

D» + +I CE C E CEt . 10q s s ptot, 0
2 2

0
2∣ ∣ ∣ ( )∣ ∣ ∣ ( )

In a discrete numerical model, the contribution of the
quadratic term to each pixel labeled k in the detector plane can
be expressed as
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The indices m, n, i, and j label the input basis vectors used to
represent the WFE (expressed here in terms of perturbation to the
complex electric field), and the index k labels the detector pixel.
The quantity M̂ with elements Mkij is a 3-tensor containing the

second-order partial derivative matrix (Hessian) of each pixel
intensity with respect to the WFE and relates each pairwise
combination of pupil basis vectors to its effect on each detector
plane pixel k. Each entry can be calculated semianalytically from
the coronagraph operator using the following formula derived from
Equation (11):
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Assuming that there are Npix pixels of interest on the detector
and N basis vectors are used to represent the WFE, then, through
a remapping, the 3-tensor M̂ of size (Npix×N×N) can be
expanded into a matrix acting on the space of all pairwise
combinations of pupil basis vectors. Since Hessians are
symmetric because partial derivatives commute (Mkij=Mkji),
the ordering of each pair of segments does not matter, and the
derivatives corresponding to the same pair of original basis
vectors can be consolidated into the same entry. This results in a

vector space of size
+N 1

2
⎛
⎝

⎞
⎠

or the number of pairwise

combinations of pupil basis vectors .
The 3-tensor M̂ can thus be represented as an
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+

N
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2
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matrix Aq of second derivatives, acting

on a vector β of perturbations defined for each pairwise
combination of original basis vectorsD DE Es si j. This results in
the following expression for the quadratic term:

bD =C E A . 13s q
2∣ ∣ ( )

The projection is similar to the linear case: the detector
intensities can be left-multiplied by a matrix Kq that projects
out the dominant quadratic error modes of M. The observables
with the appropriate projection Kq are given by

=O K I . 14q q tot,q ( )

3. Response Matrices and Robust Observables

3.1. Calculating the Response Matrix

This section details the numerical calculation of instrument
response matrices and the projection matrices. In this work, the
response matrix is calculated with the wave front aberrations
represented in the Zernike basis. In this basis, DEZn is the
coefficient of the aberration induced by the nth Noll-ordered
Zernike polynomial (Noll 1976), and N is the total number of
polynomials chosen to construct the response matrix:

D =
D

D
E

E

E
... . 15s

Z

ZN

1

( )⎛

⎝
⎜

⎞

⎠
⎟

We define Npix as the total number of detector pixels of the
optical model and Nbasis as the number of Zernike modes to
include. The coronagraph operator C is the Npix× Nbasis matrix
that, when applied to a vector of Zernike coefficients, gives the
perturbation they induce in the focal-plane electric field. This
operator is typically either already part of the optical model or
obtainable by propagating Zernike modes through the optical
model and using finite differences to populate its columns.
Given the operator C and the initial unaberrated focal-plane
electric field, we can calculate both Al and Aq using
Equations (8) and (12). Note that the term å C Ek kj s0j

( ) in
Equation (8) is simply the initial unaberrated focal-plane
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electric field at pixel k. For more complicated models without
simple analytical solutions (such as those that include
distortion), automatic differentiation, in which arbitrary exact
derivatives can be computed without finite differences, may be
useful (Pope et al. 2021).

The linear transfer matrix poses no computational problems, as
its size is Npix×Nbasis. However, for the quadratic transfer matrix
Aq, the size of the input dimension quickly becomes computa-
tionally burdensome for high Nbasis. For the example system
shown in Section 5, an Nbasis of 528 results in an Aq matrix of

width
+

=
N 1

2
139, 656basis⎛

⎝
⎞
⎠

(the number of pairwise

combinations of pupil basis vectors) and length 5476 (the
number of detector pixels of the model). This Aq matrix, when
represented as (noncomplex) doubles, is over 6 GB in size. As
explained in Section 3, the calculation of the projection matrix
involves a singular value decomposition (SVD) of the response
matrix. Since calculating the SVD of a matrix of this size is too
computationally expensive, we restrict our quadratic transfer
matrix to only include the first Nredu= 100 Zernikes, which

results in an Aq with a width of only
+

=
N 1

2
5050redu⎛

⎝
⎞
⎠

. This

model is valid only in a smaller area closer to the central star—
namely within ∼5λ/D, where λ is the wavelength and D the
telescope diameter. However, in the Appendix, we explore using
an approximation of the quadratic transfer matrix that can extend
the area of applicability while circumventing impractical
computational costs.

3.2. Calculating the Projection Matrix

Once a response matrix A is obtained, an SVD of A=USVT

is performed, revealing its singular modes and corresponding
singular values. Then, a choice of the number of modes to
project out (Nm) is made. The remaining Npix− Nm modes are
kept in the post-processing projection K. Accordingly, K is the
subset of U that contains the m+ 1th and higher left singular
modes of A. A pseudo-code summary of the process to find K
is given in Algorithm 1. The optimal Nm depends on the signal
of interest. For the point-source companion signals explored in
this work, Nm is chosen as the cutoff that results in the best
detection limit at the separation of interest.

Algorithm 1. Calculate projection matrix K

Input: Transfer matrix A
Input: Cutoff mode (number of modes to project out), Nm

Input: Indices of detector plane pixels in region of interest, idx
Output: Projection matrix K

¬ AU S V, , svdT ( )
¬ +K U Ntranspose idx, 1: endm( ( ))

If the linear and quadratic projections are used in the
appropriate regimes to increase S/N, they could, for example,
allow for a binary signal detection with a deeper flux ratio than
using the raw intensity data. Detection tests can be performed
on both projected and unprojected data to quantify this effect.

4. Detection Testing

Detections are typically claimed from a statistical hypothesis
test (see, e.g., Kasdin & Braems 2006; Jensen-Clem et al. 2017;

Ceau et al. 2019). A test statistic T is calculated from the data
and compared to a threshold ξ. A detection is claimed if T� ξ,
and a lack of a detection is claimed otherwise. The fraction of
real companions detected is the true-positive rate (TPR). A
false positive occurs if there is no companion in the data but the
detection test incorrectly claims a detection. The rate at which
this occurs is the false-positive rate (FPR).
As the detection threshold ξ is decreased, detecting real

companions becomes more likely, but false detections also
become more likely (Jensen-Clem et al. 2017). Varying the
threshold and plotting the TPR as a function of the FPR results
in a receiver operating characteristic (ROC) curve, an example
of which is is described in Section 5.4.3. ROC curves
characterize the performance of a detection scheme and are
used in the determination of flux ratio detection limits.
This work uses a simple Delta reduced χ2 ( cD r

2) statistic, or the
difference in the reduced χ2 of the data assuming that it contains
only noise and the reduced χ2 of the data assuming that it contains
noise and the companion signal. The formula for calculating this
test statistic from the data is given by Equation (16) (the bars
indicate vector norm, and the divisions are element-wise):

s s
c

n
D = -

-y y x1
. 16r

2
2 2

( )⎜ ⎟
⎛
⎝

⎞
⎠

In this formula, y is the data, which are the synthetically
generated realizations of Itot, with or without a planet. Meanwhile,
x is the unaberrated model of the planet signal =I CEp p0 0

2∣ ∣
(assuming that it is known, such as through a maximum likelihood
estimation). The estimated uncertainty of the data is denoted by σ,
and ν is the degrees of freedom (the number of data elements
minus the number of free parameters; a binary system’s three free
parameters are the flux ratio, separation, and position angle). This
use of this test statistic is motivated by an assumption that the noise
is Gaussian and uncorrelated, under which this quantity is related
to the relative log-probabilities of the data containing both the
planet signal and noise, versus containing only noise. The noise
being uncorrelated and Gaussian is generically not the case.
However, the effects of the correlation and non-Gaussianity of the
injected noise on the resulting test statistic distributions are
properly simulated and captured by the Monte Carlo methods used
in this work.

5. Example: Nancy Grace Roman Space Telescope Hybrid
Lyot Coronagraph

In this section, the use of robust observables with the Hybrid
Lyot Coronagraph of the Roman Space Telescope is analyzed
through simulation. However, this approach could also be
applied to other coronagraphs, as long as the exposure times are
short enough that WFE has not been averaged out. The optical
model of CGI is shown in Figure 1 (Kasdin et al. 2020). The
optical elements corresponding to the HLC mode (the relevant
mode for this work) are depicted in the top row of the three sets
of instrument configurations .

5.1. Optical Model

The HLC operates around a dark-hole state, which is
obtained using focal-plane wave front control with deformable
mirrors (DMs) to measure and minimize the electric field in the
detector plane. Such focal-plane wave front control signifi-
cantly suppresses the amount of starlight in the dark hole and
allows for much deeper raw contrasts than with just a flattened
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wave front. Before an observation, the dark hole is generated
using a high-order wave front sensing and control loop on a
bright reference star. Then, the DM shapes are fixed, and the
telescope slews to the target star for the observation. During the
observation, WFEs accrue as a result of instrumental
disturbances and drifts. This work aims to mitigate the effects
of those WFEs in post-processing. Note that, as a result of the
dark-hole generation, the nominal electric field Es0 is not a flat
wave front but the pupil-plane electric field obtained at the end
of the dark-hole generation sequence.

A Lightweight Space Coronagraph Simulator (LSCS)9

derived from the HLC model in the Fast Linearized
Coronagraph Optimizer (FALCO; Riggs et al. 2018) toolbox
is used for the following simulations. The LSCS relies on the
HLC numerical model and focal-plane wave front control
algorithm included in FALCO to first generate the initial dark-
hole electric field. The numerical model in FALCO is also used
to calculate C from the finite-difference sensitivities of the
focal-plane electric field to pupil-plane phase error expressed in
the Zernike basis (we have made the assumption that the matrix
transformation is approximately linear in phase, valid when the
phase error is much less than a wave). Although we use finite
differences to calculate C, one could also construct it by
multiplying together all the matrix transformations of the
optical model. These simulations are conducted at a single
wavelength of 546 nm.

The average raw contrast of the initial dark hole is
5.6× 10−9. The LSCS model takes in Zernike coefficients
for phase aberrations, calculates their effect on the focal-plane
electric field, and adds them to the initial dark-hole electric field
to obtain the focal-plane electric field in the presence of WFEs.
The intensity can be calculated as the norm squared of the

focal-plane electric field. Detector noise and photon noise are
not simulated. Since the default LSCS models only the first 136
Zernikes, FALCO is first used to extend the LSCS model to
528 Zernikes in order for the entire dark hole to be sampled.
This results in using 528 Zernikes to sample the entire dark

hole, or an Nbasis of 528. The LSCS models a detector that is
74× 74 pixels, with 3 pixels per λ/D, for a total pixel number
of Npix= 5476. The number of pixels defined to be in the dark
hole is NDH= 2608. This model does not consider the effects of
amplitude errors and only analyzes phase errors, which, from
end-to-end modeling of Roman CGI, are expected to be the
dominant form of dynamic aberrations (Krist et al. 2023).
However, for a system where dynamic amplitude errors are
comparable to dynamic phase errors, both should be included.

5.2. Response Matrices

The Zernike coefficient drift values from the Observing
Scenario simulations (OS 9; Krist 2020), based on physical
modeling of the telescope, indicate that the WFE expected on
Roman will fall within the linear regime of this dark hole.
However, the level of WFE may end up being higher than
currently expected. Additionally, on ground-based telescopes,
WFE from adaptive optics residuals is typically in the quadratic
regime. Therefore, for illustrative purposes, both a linearly
dominated noise model and a quadratically dominated noise
model are examined.
The matrices Al and Aq are calculated according to

Section 3.1. The linear matrix includes all Zernikes present in
the optical model and thus has an input dimension of
Nbasis= 528. The quadratic matrix includes only the first 100
Zernikes and thus has an input dimension of =+ 5050N 1

2
redu( ) .

The relevant dimensions of the objects used in this analysis are

Figure 1. The CGI optical train and wave front sensing and control architecture. The optical elements of the HLC mode of interest are depicted in the top panel. Before
an observation, the high-order wave front sensing and control loop is performed on a bright reference star to generate a “dark hole” (an area where starlight is
suppressed). Then, the DM shapes are fixed, and the telescope slews to the target star for the observation. During the observation, WFEs accrue as a result of
instrumental disturbances and drifts, the effects of which this work aims to mitigate in post-processing. Figure from Kasdin et al. (2020).

9 https://github.com/leonidprinceton/LightweightSpaceCoronagraphSimulator
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listed in Table 1. Note that the cutoff number Nm is a variable to
optimize over.

5.3. Projection Matrices

According to Algorithm 1, an SVD of A=USVT is
performed for each transfer matrix, revealing their singular
modes and corresponding singular values. The singular values
of the transfer matrices are shown in Figure 2. The first 10
singular modes of each transfer matrix as represented in the
detector plane intensity basis (with pixels not in the dark hole
masked) are plotted in Figure 3.

From both the linear and the quadratic transfer matrix,
model-based projection matrices with a range of cutoff modes
are calculated according to Algorithm 1. To rule out the effect
of dimensionality alone on the data set, random projection
matrices of the same size are also generated. This is done by
taking the SVD of a matrix the same size as the A matrices, but
populated with values drawn uniformly from −1 to 1, and then
removing the same number of dominant modes as is done with
A. These matrices are applied to synthetically generated data to
quantify their effect on the detectability of binary companion
signals.

5.4. Synthetic Data Analysis

5.4.1. Synthetic Data Generation

FALCO is used to generate a library of off-axis PSFs
corresponding to the dark-hole state, which can be injected as
binary companions. These off-axis PSFs do not incorporate any
WFE that is added on top of the dark-hole state. However, the
effect of WFE on the off-axis signal is expected to be much
smaller than its effect on the on-axis stellar signal, so not
modeling the effects of WFE on the off-axis signal should have
a negligible impact on the data.
The optical system is first initialized in the dark-hole state.

Two noise models are considered: one in the linear regime, and
one in the quadratic regime. Each data set thus consists of 20
instantaneous frames of independent noise realizations. For
each frame, the spatial PSD given in Equation (17) is used to
generate the WFE:

=n anPSD . 17z z
b( ) ( )

In this equation, nz is the Noll-ordered index of the Zernike
coefficient. The normalization parameter a is chosen to be
10 nm for the linear regime and 130 nm for the quadratic
regime. The power-law exponent b is chosen to be −2. These
PSDs correspond to an average WFE (calculated over 100

Table 1
Quantities and Dimensions for Analysis of the Roman Space Telescope HLC

Quantity Description Dimension (Dependency) Dimension (Value)

Epup Vector of electric in pupil plane Nbasis 528
Edet Vector of detector plane electric field Npix 5476
Idet Vector of detector plane intensity Npix 5476
EDH Vector of detector plane electric field in dark hole NDH 2608
IDH Vector of detector plane intensity in dark hole NDH 2608
Al Linear regime instrument response matrix Npix × Nbasis 5476 × 528
Ul Left singular matrix of Al Npix × Npix 5476 × 5476
Sl Singular value matrix of Al Npix × Nbasis 5, 476 × 528
Vl Right singular matrix of Al Nbasis × Nbasis 528 × 528
Kl Linear regime projection matrix (Npix − Nm) × NDH (Npix − Nm) × 2, 608
Ol Vector of linear regime observables (Npix − Nm) (Npix − Nm)
Aq Quadratic regime instrument response matrix ´

+
N

N 1

2
pix

redu⎛
⎝

⎞
⎠

5476 × 5050

Uq Left singular matrix of Aq Npix × Npix 5476 × 5476
Sq Singular value matrix of Aq ´

+
N

N 1

2
pix

redu⎛
⎝

⎞
⎠

5476 × 5050

Vq Right singular matrix of Aq
+

´
+N N1

2

1

2
redu redu⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

5050 × 5050

Kq Quadratic regime projection matrix (Npix − Nm) × NDH (Npix − Nm) × 2608
Oq Vector of quadratic regime observables (Npix − Nm) (Npix − Nm)

Figure 2. The singular values of Al (left) and Aq (right). Note that the transfer matrices are rectangular and have Npix = 5476 total singular modes, but the singular
values beyond the size of the input dimension are all 0.
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realizations) of about 7 nm (0.013 waves) rms for the linear
regime data and about 110 nm (0.2 waves) rms for the
quadratic regime data. As discussed in Section 2.1, the linear-
quadratic transition occurs at approximately 0.1 waves rms.
Although 110 nm rms of dynamic WFE is unrealistically high
for the Roman HLC, we include this regime for demonstration
purposes, as this level of WFE would be relevant on ground-
based telescopes.

The resulting 528 Zernike coefficients are propagated through
the LSCS to calculate the resulting dark-hole intensities. In order
to create data with an injected companion planet, the off-axis PSF
at the desired separation is scaled by the companion’s flux ratio
and then added to the dark-hole intensity. The separation of the
injected companion is set to be 6.5λ/D in the linear case (which is
the middle of the dark hole) and 4.0λ/D in the quadratic case
(since the model is only valid within∼5λ/D). The position angles
of both are set to be 0. Frames without the injected companion are
used for the control case. Figure 4 shows example data frames: the
initial dark hole, example frames with the aberrations from both

noise models applied, and the same frames with injected
companion signals. The flux ratio of the companion is 2× 10−7

for the frame with linear regime errors and 5× 10−6 for the frame
with quadratic regime errors. These flux ratios correspond to
particularly bright planets chosen to be visible by eye.
It is worthwhile to examine how well the response matrices

calculated in Section 5.2 can reconstruct the intensity errors
present in the synthetic data. Figure 5 compares the intensity
error resulting from WFE as calculated from the optical model
with the intensity error calculated by multiplying the WFE by
the appropriate response matrix, for example, frames in both
the linear and quadratic regimes. In both regimes, the response
matrices largely reproduce the spatial structure of the intensity
error from the optical model.

5.4.2. Processing Synthetic Data

The quantity CEs0
2∣ ∣ is the initial dark-hole intensity without

any extra WFE applied (e.g., as determined from the data at the

Figure 3. Top: the first 10 singular modes of Al as represented in the detector plane intensity basis (linear scale). Bottom: the first 10 singular modes of Aq as
represented in the detector plane intensity basis (linear scale). The HLC design is nearly circularly symmetric, broken only by the six secondary mirror struts (which
can also be seen in the Lyot stop). Because the quadratic transfer matrix depends only on the coronagraph operator C, its singular modes exhibit cosine- and sine-like
azimuthal behavior associated with circularly symmetric operators. However, the linear transfer matrix depends on both C and the focal-plane electric field at the end
of dark-hole creation, which is random and not circularly symmetric. Thus, its singular modes show no such symmetry structures. These singular modes correspond to
the intensity patterns most likely to be attributed to WFE. Meanwhile, the companion’s intensity pattern (the PSF at its location) overlaps very little with these
dominant modes, so its signal is mostly retained when the dominant modes are projected out.
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end of the dark-hole digging sequence on the reference star). This
nominal signal is first subtracted from each frame. Then, the
pixels within the defined dark hole are gathered into the vector
ΔIDH. The data are left-multiplied by the appropriate K matrix to
obtain the observables O=KΔIDH. The data are also left-
multiplied by the random matrix of the same size as K to obtain
data whose dimension has been reduced randomly. For each case,
the average of the data over the 20 frames is used as the final
measurement, while the standard deviation of the frames is used
as the measurement uncertainty. Note that the process outlined
does not rely on reference stars or dithering by deformable
mirrors and can be used even on observations for which reference
observations or wave front diversity is unavailable.

5.4.3. Flux Ratio Detection Limits

Detection tests are applied to these measured intensities and
observables in order to characterize the detectability of a
companion with these measurements. Detection limits are
determined using the Monte Carlo method. One thousand
random data sets are generated for each noise model with a
given flux ratio. Each data set is processed as raw intensity
data, and with each projection matrix with a different cutoff
mode, and the cD r

2 values are calculated for each case.
Figure 6 shows example histograms of the resulting cD r

2

values for a c= 5.4× 10−7 at 4.0λ/D companion with the
quadratic noise model, as well as the corresponding ROC
curves, for the projection matrix with cutoff mode Nm= 70

(which, as shown in Figure 7, is the optimal cutoff at this
spatial separation). The ROC curve shows that while using the
robust observables results in an FPR= 0.01 and TPR= 0.9
detection of the injected companion, both the raw intensity and
the randomly dimensionally reduced data remain very far from
detectability.
This process is repeated for a range of flux ratios (to a

precision of two significant figures). The resulting FPR= 0.01
and TPR= 0.9 detection limits for both regimes, as a function
of cutoff mode Nm, are shown in Figure 7. Note that these flux
ratio detection limits are not based on any statistical
assumptions or extrapolations, but rather real FPRs and TPRs
calculated by analyzing 1000 synthetically generated data sets,
with injected companions of the given flux ratios and
separations. The results show that with the linear regime noise
model the robust observables increase the detectability of a
companion at 6.5λ/D by 28%. With the quadratic regime noise
model, using robust observables increases the detectability of a
companion at 4.0λ/D by over a factor of two, and the
improvement is not particularly sensitive to Nm beyond the first
few modes. For the linear regime, this approach can also easily
be extended to companions throughout the entire dark hole,
though significant computation would be required to optimize
Nm at all separations. For the quadratic regime, our model is
only valid within ∼5λ/D, though the Appendix discusses a
method that can be used to extend the spatial coverage without
incurring impractical computational costs.

Figure 4. (1) Initial dark-hole intensity achieved using electric field conjugation with the HLC. (2) A single snapshot with linear regime wave front aberrations. (3)
The same snapshot with an injected companion with a flux ratio of 2 × 10−7 at 6.5λ/D (indicated with a red circle). (4) A single snapshot with quadratic regime wave
front aberrations. (5) The same snapshot, but with an injected companion with a flux ratio of 5 × 10−6 at 4λ/D (indicated with a red circle). All intensities are shown
in log10 of raw contrast.
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6. Discussion

6.1. Temporally Correlated WFE and Compatibility with Other
Post-processing Techniques

This work aims to characterize the effect of using robust
observables in isolation. Thus, only noise models in which the
WFE is uncorrelated in time are examined, since additional
post-processing techniques are typically used to handle time-
correlated data. Robust observables are compatible with these
other post-processing techniques and can serve as an instru-
ment-motivated prior in the overall post-processing strategy.
For example, random errors can first be reduced by projecting
the data into a subspace that is robust to WFE. Then, reference
observations, along with PCA-based methods such as KLIP
(Soummer et al. 2012), can be used to calibrate static and
quasi-static errors and decorrelate the frames in time. This is
similar to the calibration approach used in nonredundant
aperture masking interferometry or kernel-phase interferome-
try, in which data are projected onto closure phases or kernel
phases, respectively, which are then calibrated based on
reference observations (Martinache 2010; Ireland 2013; Pope
et al. 2021). A more sophisticated approach would be to

formulate post-processing as a statistical inference problem,
where a least-squares fit with the reference frames makes up
one term in the cost function and a prior over the instrumental
modes (e.g., weighted by the singular value spectrum) makes
up another term.
Ygouf et al. (2016) show that for the time-varying WFE

expected on the Roman Space Telescope HLC, classical PSF
subtraction with a reference observation increases the contrast
gain by a factor of a few to about 10, depending on the
scenario. Future work includes investigating how much overall
post-processing gain can be achieved when robust observables
and calibration strategies are combined, as well as which
hybrid strategies maximize the sensitivity that can be obtained
with all available information.

6.2. PSD Engineering

The robust observables derived in this work are agnostic to
the actual temporal or spatial PSD of the static and dynamical
WFEs and are intended to be applied when these PSDs are not
well-known or imperfectly characterized. As of today, this is
the case for all ground-based instruments (as predictions of the

Figure 5. (a) Example linear regime intensity error from the optical model. (b) Corresponding linear regime intensity error reconstructed by response matrix Al, plotted
on the same scale as panel (a). (c) The difference between the response matrix prediction and the optical model prediction, plotted on the same scale as panels (a) and
(b). (d) Example quadratic regime intensity error from the optical model. (e) Corresponding quadratic regime intensity error reconstructed by the response matrix Aq,
plotted on the same scale as panel (d). (f) The difference between the response matrix prediction and the optical model prediction, plotted on the same scale as panels
(d) and (e). Slight differences arise because the model includes both the linear and quadratic error terms while the matrix predictions only include one or the other, i.e.,
the linear matrix prediction neglects the contribution of the quadratic term and the quadratic matrix prediction neglects the contribution of the linear term (as well as
the influence of any Zernikes past the first 100). While the linear matrix prediction is biased low near the peaks and the quadratic matrix prediction is biased high
overall, our method depends only on how well the spatial structure of the errors is reproduced. A relevant metric for characterizing the spatial overlap is the
normalized inner product between the optical model prediction and the transfer matrix prediction, where a value of 1 indicates perfect spatial overlap and a value of 0
indicates perfect spatial orthogonality. In this case, the normalized inner product is 0.936 for the linear regime example and 0.985 for the quadratic regime example,
sufficient for providing a quantifiable improvement in detection sensitivity.
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influence of the atmosphere are quite imperfect) and space-
based missions (as Hubble Space Telescope and JWST
observatory level key metrics for requirements are expressed
in terms of encircled energy, not contrast). However, it has
been proposed that for future space telescope coronagraphs the
telescope WFE PSD must comply with stringent requirements
in order to facilitate exoplanet detection (Nemati et al. 2020).

For instance, the PASTIS approach (Leboulleux et al. 2018;
Laginja et al. 2019) considers the effects of the quadratic
response on the average intensity contrast over the entire dark
hole (or region of interest), calculating which modes the
coronagraph is most sensitive to in order to determine stability
tolerances for the segments accordingly. Calculating robust
observables for post-processing is akin to doing PASTIS
backward, where the modes the coronagraph is most sensitive
to are calculated in order to project them out of the data. For
such telescopes that have PSDs engineered based on the
instrument response, the additional gain from using robust
observables will depend on how well the error modes are
suppressed in hardware, as well as the timescales at which

power in those modes leaks through. To some extent, robust
observables will remain applicable to such future telescopes
and instruments in the spatial and temporal subspaces in which
they do not meet their requirements.

6.3. Model Accuracy

In this analysis, the model used to generate the instrument
response matrices is exactly the same model that is used to
generate the synthetic data. In real observations, the instrument
model will not exactly match the behavior of the actual
instrument, and one future avenue to explore is how well a
model must match the instrument in order for robust
observables to work on real data. This technique’s robustness
can be investigated by first calculating the response matrices
using one model and then changing the parameters of the
model (e.g., the coronagraphic mask size and displacement, the
DM alignment, the detector pixel scale) before generating
synthetic data and examining how well the robust observables
work in the presence of model mismatch.

Figure 6. Detection test results for the quadratic regime noise model. The companion planet considered has a flux ratio of 5.4 × 10−7 and is located at 4.0λ/D. Left:
histograms from using raw intensities compared to those from using quadratic robust observables with the optimal cutoff of Nm = 70. The histograms using raw
intensity overlap significantly, making it difficult to distinguish between a model with a planet and a model without one, while the histograms using the robust
observables are further separated and more distinguishable. Middle: histograms for using raw intensities and a random projection matrix of the same size as the
instrumentally motivated projection. Both sets of histograms overlap significantly, and the random projection does not improve the distinguishability of the two
models. Right: ROC curves corresponding to the histograms. The gray area indicates FPRs that are not well sampled, as they involve fewer than three data sets with
false detections. The ROC curve shows that while using the robust observables results in an FPR = 0.01 and TPR = 0.9 detection of the injected planet, both the raw
intensity and the randomly dimensionally reduced data remain very far from detectability.

Figure 7. Flux ratio detection limits (FPR = 0.01, TPR = 0.90) for a binary companion (to two significant figures) as a function of cutoff mode. Upward-pointing
triangles indicate that a projection matrix with the specified cutoff mode performs worse than using the raw intensity, which occurs when the modes the majority of the
planet signal overlaps with have also been projected out. Left: linear regime with a companion at 6.5λ/D. The optimal cutoff mode is 2727, which results in a
detection limit of 2.8 × 10−9. Unshowable in log−log scale is the detection limit with Nm = 0, which, with observables, is 3.9 × 10−9. This is, as expected from the
fact that no error modes are removed, equal to the raw intensity detection limit. Right: quadratic regime with a companion at 4.0λ/D. The optimal cutoff mode is 70,
which results in a detection limit of 5.4 × 10−7. Unshowable in log−log scale is the detection limit with Nm = 0, which, with observables, is 1.4 × 10−6. This is, as
expected from the fact that no error modes are removed, equal to the raw intensity detection limit.
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For instruments equipped with wave front modulating devices
such as deformable mirrors, however, the instrument response
matrix may also be calculated experimentally. If a perturbation
within the linear regime is applied, the difference in measured
intensity can be directly registered into the appropriate column of
the linear response matrix. The technique for experimentally
building the quadratic response matrices is equivalent to the
approach used for PASTIS (Laginja et al. 2019), with the
difference that the measurements are not averaged over a dark
hole, but rather maintained for every pixel. Additionally, some
wave front and control schemes, such as implicit electric field
conjugation (Haffert et al. 2023), already involve an empirical
measurement of the instrument response, which can be used to
derive linear regime robust observables without having to set
aside additional calibration time. Experimentally building
instrument response matrices circumvents the need to have a
well-matched numerical model and allows for the response
matrices to capture effects in the real instrument.

7. Conclusions

A coronagraph model with linear and quadratic contributions
of WFE to detector plane intensity is developed, and when
either term is dominant, the coronagraph response can be
approximated by a transfer matrix. A useful projection can be
found from this transfer matrix that removes the dominant error
modes, resulting in observables that are more robust to WFE in
the regime of interest. These robust observables are extracted
from synthetically generated data with the Hybrid Lyot
Coronagraph of the Roman Space Telescope in both the linear
and quadratic regimes. The performance of the robust
observables is compared to that of the raw intensity data
through calculations of their respective binary companion flux
ratio detection limits. In these examples, using the robust
observables significantly increases the sensitivity to the signal
of a binary companion. A projection onto a robust subspace can
in theory be combined with other families of post-processing
algorithms. Hybrid post-processing approaches would incorpo-
rate information on the instrument response alongside the other
available information (such as angular diversity, spectral
diversity, reference observations, or WFC telemetry) to fully
maximize the sensitivity to astrophysical signals in corona-
graphic data; however, the approach outlined in this work can
be applied to observational data and result in post-processing
gains even if such additional information is unavailable.
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Appendix
Quadratic Model Approximation and Extension

As explained in Section 3, the calculation of the projection
matrix involves an SVD of the response matrix, but a quadratic
response matrix that includes all 528 Zernikes needed to span the
dark hole would have a size of 5476× 139,656. Since calculating
the SVD of a matrix of this size is too computationally
burdensome, we explore an approximation of the quadratic
response that models only the impact of norm squared of each
input basis vector while neglecting the effects of the pairwise
combinations. Namely, we use an approximate response matrix
¢Aq with elements

¢ =A C C . A1q kj kj
kj

( )*

The index j labels the input basis vector, and the index k
labels the detector pixel. The size of ¢Aq scales linearly with the
number of Zernike models, and in our case it would be of size
5476× 528, which is easily decomposable.
Note that ¢Aq cannot be used to accurately reproduce

quadratic regime intensity error. However, ¢Aq is nevertheless
useful for identifying a subspace robust to quadratic regime
WFEs, leading to increased S/N. We can observe this by
comparing the detection test results with and without using the
approximation for a model with 100 Zernikes. We calculate the
approximation ¢Aq using Equation (A1) and use the original Aq

from Section 5.3. Detection tests on quadratic regime synthetic
data similar to the one from Section 5.4 are performed, using
projection matrices derived from both Aq and ¢Aq. The resulting
flux ratio detection limits as a function of cutoff mode are
shown in Figure A1.
The full matrix achieves the best results with a cutoff mode

of 70, leading to a detection limit of 5.4× 10−7, while the
approximate matrix achieves the best results with a cutoff mode
of 2727, also leading to a detection limit of 5.4× 10−7. These
results show that the approximation performs as well as the full
model.
To understand why this is the case, we analyze the subspaces

spanned by the identified optimal projection matrices. We
define P as the projection onto the dominant modes of Aq, ¢P as
the projection onto the dominant modes of ¢Aq, and Pr as a
random projection matrix the same shape as ¢P . We also define
K as the projection onto the remaining modes (the robust
subspace) of the full model, ¢K as the projection onto the robust
subspace of the approximate model, and Kr as a random
projection matrix the same shape as ¢K . We then calculate the
subspace angles (Jordan 1875) between each of these
projection matrices and P using the function scipy.linalg.
subspace_angles. These subspace angles provide an indication
of how much the subspace spanned by each of these projection
matrices overlaps with the subspace spanned by the dominant
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modes identified by the full model. The results are shown in
Figure A2.

The number of principle angles with value 0 is the dimension
of overlap between the subspaces. As expected, the subspace
angles between P and itself are all 0, meaning that it overlaps
completely with itself. Also as expected, the angles between K

and P are all π/2, as K is orthogonal to P. Both of the random
matrices have a random distribution of angles with P centered
around π/4. Meanwhile, ¢P (the space of dominant modes
derived from the approximate model) overlaps with P (the
space of dominant modes derived from the full model)
significantly more than random. Crucially, ¢K (the robust

Figure A1. Quadratic regime flux ratio detection limits (FPR = 0.01, TPR = 0.90) to two significant figures, as a function of cutoff mode, for a companion at 4.0λ/D.
Only the first 100 Zernikes are used in the model used to calculate the full and approximate quadratic transfer matrices, but WFEs up to 538 Zernikes are included in
the synthetic data. Upward-pointing triangles or spikes indicate that a projection matrix with the specified cutoff mode performs worse than using the raw intensity,
which occurs when the modes the majority of the planet signal overlaps with have also been projected out. The full matrix achieves the best results with a cutoff mode
of 70, leading to a detection limit of 5.4 × 10−7 while the approximate matrix achieves the best results with a cutoff mode of 2727, also leading to a detection limit of
5.4 × 10−7. Unshowable in log−log scale is the detection limit with Nm = 0, which, with observables, is 1.4 × 10−6. This is, as expected from the fact that no error
modes are removed, the same as the raw intensity detection limit of 1.4 × 10−6. These results indicate that the approximation performs as well as the full model.

Figure A2. The subspace angles between various projection matrices (onto dominant modes on the right, onto a robust subspace on the left) and P, the projection onto
the dominant error modes determined from the full quadratic model. The number of principle angles with value 0 is the dimension of overlap between the subspaces.
Angles with value π/2 indicate overlap with the subspace orthogonal to P. ¢P (the space of dominant modes derived from the approximate model) overlaps with P (the
space of dominant modes derived from the full model) significantly more than random. Crucially, ¢K (the robust subspace from the approximate model) overlaps with
the subspace orthogonal to P significantly more than random, which is why data projected onto this subspace is still robust to WFE.
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subspace from the approximate model) overlaps with P
significantly less than random, and with the subspace
orthogonal to P significantly more than random, which is
why data projected onto this subspace are still robust to WFE.
This result shows why the approximate model, despite poorly
predicting the detector intensity response, is nevertheless useful
for identifying a subspace that overlaps significantly with the
robust subspace of the full model.

We can thus use this approximation with all 528 Zernikes in
our model to analyze spatial separations beyond the ∼5λ/D
spanned by the first 100 Zernikes. To demonstrate this, we
build ¢Aq528

according to Equation (A1) and perform detection
tests at a separation of 6.5λ/D. The results are shown in
Figure A3.

Our tests show that the approximation ¢Aq528
can successfully

increase S/N at spatial separations beyond the original regime
of validity of Aq. Thus, even though the input dimension of the
quadratic model scales cumbersomely with the number of basis
vectors, an approximation considering only norm-squared
terms can still be used to find observables that are robust to
quadratic WFE and thus provide detection gains at farther
spatial separations of interest.
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