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Abstract: To develop an accurate and efficient depth of anaesthesia (DoA) assessment technique that could help 
anaesthesiologists to trace the patient’s anaesthetic state during surgery, a new automated DoA approach was proposed. It 
applied Wavelet-Fourier analysis (WFA) to extract the statistical characteristics from an anaesthetic EEG signal and to 
designed a new DoA index. In this proposed method, firstly, the wavelet transform was applied to a denoised EEG signal, and 
a Fast Fourier transform was then applied to the wavelet detail coefficient D3. Ten statistical features were extracted and 
analysed, and from these, five features were selected for designing a new index for the DoA assessment. Finally, a new DoA 
(𝑾𝑭𝑨𝑫𝒐𝑨) was developed and compared with the most popular Bispectral index (BIS) monitor. The results from the testing 
set showed that there were very high correlations between the 𝑾𝑭𝑨𝑫𝒐𝑨 and the BIS index during the awake, light and deep 
anaesthetic stages. In the case of poor signal quality, the BIS index and the 𝑾𝑭𝑨𝑫𝒐𝑨 were also tested, and the obtained 
results demonstrated that the 𝑾𝑭𝑨𝑫𝒐𝑨 could indicate the DoA values, while the BIS failed to show valid outputs for those 
situations. 
. 
 

1. Introduction 

Depth of anaesthesia (DoA) monitoring during surgical 

operation is a very challenging task [1-7]. An accurate 

assessment of the DoA helps correctly deliver anaesthesia 

agents to patients and prevent unintended intraoperative 

awareness [8-14]. After an anaesthetic agent is applied to a 

patient, the drug affects the central nervous system. The 

amplitude and frequency of EEGs change rapidly and are 

reflected the changes of the anaesthetic depth [15]. That is 

why EEG signals have been widely used as a powerful tool 

to capture the information about anaesthetic depth. As a 

result, many techniques for DoA estimation have been 

developed based on EEG signals[16-20].  

Among the many DoA monitoring devices, the Bispectral 

index (BIS), developed in 1992 by Aspect Medical Systems 

[21,22], is the most popular. The BIS index was designed 

using a set of parameters that were derived from different 

transformation techniques, such as the techniques from time 

domain and frequency domain [23-26]. Monitoring the depth 

of anaesthesia accurately can prevent intraoperative 

awareness and overdose. In the past two decades, the BIS has 

been widely used for monitoring the DoA. At the same time, 

many other devices and techniques have been developed. For 

example, Lalitha and Eswaran [1], used non-linear features 

and two neural network classifiers were applied to identify 

the DoA. A correction dimension, a Lyapunov exponent and 

a Hurst exponent were extracted as the key features from the 

EEG data. The extracted features were forwarded to two 

neural networks: a multi-layer perceptron and an Elman 

network, for assessing the DoA. Additionally, Nicolaou et al. 

[27], developed a method for distinguishing two states of 

awake and anaesthetized. In their study, the EEG recordings 

were segmented, and two states: loss consciousness at 

induction and recovery consciousness after ending surgery 

were identified.  A Granger causality method was developed 

to extract the features from each sequential EEG segment. A 

linear discrimination and a support vector machine were used 

in the classification phase. Esmaeili et al. [9], on the other 

hand, developed a fuzzy model to identify the anaesthetic 

depth. In their study, a single EEG channel was analysed in 

the time and frequency domains. The spectrum 

characteristics, such as alpha-ratio, beta ratio and theta-ratio 

were extracted and those features were then analysed and 

tested using a statistical approach to design a cost function for 

a fuzzy classifier.  

Moca et al. [21], proposed an automatic method for assessing 

the DoA based on a multi-feature extraction. A time encoded 

signal processing and recognition (TESPAR) method was 

used to detect the DoA. In their study, an EEG signal was split 

into segments based on zero crossing. The TESPAR was 
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employed to capture the information that was difficult to 

obtain in frequency domain.  The extracted characteristics 

were used as the input to a multi-layer perceptron. Nguyen-

Ky et al.[27], measured the DoA using a wavelet transform. 

The EEG signal was decomposed into different levels to 

extract the desired frequencies. As a result, six bands: θ-band, 

α-band, β-band, δ-band, γ-band and EMG, were extracted, 

and then an eigenvector of wavelet coefficients were 

calculated. An index was designed based on the statistical 

characteristics of the extracted features and was compared 

with the BIS index. Staikou et al.[36], investigated the impact 

of intravenous lidocaine on the DoA. A total of 78 subjects 

were involved in that study. The BIS was used to monitor the 

DoA. The results showed that giving intravenous lidocaine 

during rapid sequence induction did not affect the BIS values. 

Shepherd et al.[33], made a study to assess the clinical 

effectiveness and cost-effectiveness of BIS, E-Entropy and 

Narcotrend by comparing each one with standard clinical 

monitoring, to monitor the DoA in surgical patients 

undergoing the general anaesthesia. Tiren et al. [38], made a 

clinical study in which the BIS and Entropy monitoring were 

compared in patients undergoing heart surgery. Their results 

showed that the BIS indicated deep anaesthesia more 

accurately than entropy. Bankman and Gath [3], applied 

fuzzy logic for the DoA assessment. They applied an adaptive 

segmentation technique to extract nine time frequency 

features from each EEG segment, then a sequential fuzzy 

clustering algorithm was utilized to classify the extracted 

features into one of the anaesthetic states. Shalbaf et al.[31], 

assessed the depth of anaesthesia using EEG signals. A 

permutation entropy and a sample entropy were extracted 

from the denoised EEG signals, and the features then were 

fed to an artificial neural network. The research yielded an 

accuracy of 92.4%.   

More recently, Shalbaf et al. [32], also has proposed a method 

for the DoA identification based on a modified permutation 

entropy. The features were extracted from each 10-s EEG 

segment. All the features were then fed to a linear 

discrimination analysis structure to distinguish different 

anaesthetic states. Shi et al. [34], proposed a predictive model 

for the depth of anaesthesia assessment based on local field 

potentials (LFPs). The LFPs were decomposed into six 

consecutive components using a wavelet transform. The high 

frequency features were selected and a Lempel-Ziv 

Complexity was calculated from LFPs. In the literature, much 

effort has been expended in extracting features from EEG 

signals and in designing DoA indexes using different 

methods, such as neural networks, fuzzy systems, a support 

vector machine, etc.[34,35]. Most of the feature extraction 

methods were related to using a Fourier transform or a 

Wavelet transform to pull out the key characteristics of EEG 

signals [36-38]. Those techniques mainly aim to reduce the 

dimensionality of the EEG data and increase the accuracy of 

the DoA estimation.  

In this paper, the wavelet transform was utilized to de-

compose the denoised EEG signals. The number of the de-

composition levels was empirically determined. As a result, 

the wavelet detail coefficient D3 was chosen for further 

processing using a fast Fourier transform. Then ten statistical 

features were extracted to develop a new DoA index 

(𝑊𝐹𝐴𝐷𝑜𝐴). Finally, the 𝑊𝐹𝐴𝐷𝑜𝐴 was assessed and compared 

with the recorded BIS index.  

2. Material and Method 

2.1 EEG data 

Ethical approval was obtained from the Human Research 

Ethics Committee of University of Southern Queensland (No: 

H09REA029) as well as from Darling Downs Health Service 

District Human Research Ethics Committee (No: TDDHSD 

HREC 2009/016), Australia. The data were collected by the 

attending anaesthetist who documented the time, intravenous 

dosing and significant intraoperative events. All the 

participants signed on the consent forms in advance. A total 

of 37 adult patients, 15 females and 22 males, were involved. 

Subjects were aged from 22-83 years old, weighed between 

55-130 kg, and averaged at 174 cm in height. The 

recommended drug administration consisted of midazolam 

0.05 mg/kg, fentanyl 1.5-3 μg/kg or alfentanil 15-30 μg/kg. 

The EEG data were recorded using four adhesive forehead 

Quatro electrodes sensors, and were stored in a desktop 

computer for off-line processing. The data file obtained 

included the real time log, EEG data, the BIS index and the 

monitor log of errors. The EEG signals were acquired from 

two channels: channel-1 and channel-2. The EEG data from 

channel-2 were selected, as the simulation results showed that 

the frequency characteristics of EEG signals from Channel-2 

were more highly correlated to aesthetic states than those 

from channel-1. The EEG signals from channel-2 were 

sampled at a frequency of 128, and each EEG sample was a 

16-bit signed integer. 

 

2.2 Signal denoising and pre-processing  

Due to contamination from different types of noise, such 

as muscle artefacts and ECG, etc, the EEG signals could not 

be used directly without a denoising technique  A nonlocal 

mean method was used to denoise the collected EEG data. 

The details of the denoising process were introduced in Li et 

al.[17].  

Data with signal quality index (SQI) values of more than 15 

were selected in this study. As a result, subjects 2-5, 7, 8, 11, 

12, 13, 18, 19, 20, 24, 25, 29 and 30 were chosen. The 

remaining subjects were also chosen for the purpose of 

assessing the ability of the proposed DoA index to estimate 

the DoA in the case of poor signal quality. The selected 

subjects were divided into two sets. One set was used for 

selecting the optimum parameters and designing the proposed 

index while the second set was used for testing the proposed 

index.  
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3. Methodology 

The proposed Wavelet-Fourier analysis method started 

with EEG signal segmentation using a moving window 

technique. The window size was 56 s with an overlap of 55 s. 

The statistical features of the EEG signal were then extracted. 

Based on the results, it was found that statistical features 

extracted from EEG signals using the WFA performs were 

better than the others in showing changes in EEG signals 

during the DoA. As a result, the five features (standard 

deviation, entropy, median, root mean square, min) obtained 

using the WFA were selected. Finally, the 𝑊𝐹𝐴𝐷𝑜𝐴 was 

designed using these statistical features. Figure 1 describes 

the methodology of the DoA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Discrete wavelet transform 

The discrete Wavelet transform (DWT) was employed for 

decomposing the EEG signals. The DWT of an EEG signal 𝑥 

was defined [24] as 

       𝐷𝑊𝑇(𝑖, 𝑗) =
1

√|2𝑖|
∫ 𝑥(𝑓)𝜓 (

𝑡 − 2𝑖𝑘

2𝑖
)

 ∞

∞

           (1) 

 

where 𝐷𝑊𝑇 (𝑖, 𝑗)  was wavelet coefficients,  𝑥(𝑓)  was the 

EEG signal, 𝜓(. )  was a wavelet function, and 

2𝑖  𝑎𝑛𝑑  𝑘 𝑤𝑒𝑟𝑒 scaling factors. 

The DWT decomposes a signal into different frequency 

bands. As a result, a set of approximation and details were 

obtained after transforming the EEG signal through a 

sequence of high and low pass filters. 

 Figure 2 shows a signal that is decomposed into a set of 

approximations and details. Two digital filters and two down-

sampled outputs are involved at each decomposition level. At 

the first level, the high pass and low pass filters are produced 

as the detail (D1) and the approximation (A1).  For further 

decomposition, the same process can be performed for the 

approximation A1. This process is continuously repeated to 

obtain a desired output. To choose an appropriate number of 

the decomposition level and a type of wavelet, different 

wavelets were tested in this paper. It was found that the 

Daubechies (db6) produces more acceptable results than 

other wavelet functions. The six sub-bands were D1, D2, D3, 

D4, D5 and A5. A5 is the decomposition approximation 

coefficients and D1-D5 are the decomposition detail 

coefficients. It was observed that the six-level wavelet 

decomposition and Daubechies (db6) yielded better results 

compared to others. Therefore, in this study D3 was chosen 

empirically. 

3.2 Discrete wavelet transform 

FFT is a fast method to compute the discrete Fourier 

transform (DFT). Let 𝑥 (𝑘) refer to a continuous signal. The 

Fourier transform of signal 𝑥 (𝑘) would be described as 

    𝑋(𝑗𝑢) = ∑𝑥(𝑘)𝑒−𝑗𝑢𝑡

∞

∞

       u ∈ (−∞,∞)                   (2)   

The transform pair of the DFT is defined as 

              𝑋(𝑘) = ∑ ℎ𝑘𝑒
𝑗
2𝜋
𝑁

𝑛𝑘

𝑁−1

𝑛=0

                              (3) 

where ℎ𝑘 =
1

𝑁
∑ 𝑥(𝑘)𝑒−𝑗

2𝜋

𝑁
𝑛𝑘𝑁

𝑚=0 . 

 For a periodic signal with N samples, the DFT can be 

depicted as the discrete time Fourier transform. 

   𝑥 =

[
 
 
 
 

𝑥(0)

𝑥(1)
.
.

𝑥(𝑁 − 1)]
 
 
 
 

, 𝑋 =

[
 
 
 
 

𝑋(0)

𝑋(1)
.
.

𝑋(𝑁 − 1)]
 
 
 
 

                (4) 

 

  𝑊 = [𝑊𝑁
𝑘𝑛] =

[
 
 
 
 
1 1  .     .         .                          1 
 𝑊𝑁

.
1

.

.
𝑊𝑁

𝑁−1

 
          .   .               𝑊𝑁

(𝑁−1)(𝑁−1)

]
 
 
 
 

  (5)  

  The relationship between 𝑥 and 𝑋 is described as  

          𝑋 = 𝑊𝑥 ⟷ 𝑥 =
1

𝑁
𝑊𝐻𝑥                                     (6) 

 

3.3 Wavelet Fourier analysis 

The wavelet decomposition was used as a classifier in this 

study, while the FFT was applied to visualize EEG waves to 

obtain more effective features.  In each decomposition stage 

of the DWT, the number of multiplications is divided by two 

due to a down-sampling operation, but wavelet coefficients 

for each level still contain the full information. If the DFT is 

applied to the wavelet coefficients, the frequency information 

De-noising EEG signal  

Segmentation by sliding window technique 

Wavelet Fourier analysis (WFA) 

Statistical feature extraction  

Assessment of the extracted 

features   

Designing the DoA index  

EEG signals  

Fig. 1. Methodology of  DoA identification  
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about the signals can be obtained with a few required 

multiplications [40, 41]. 

  The DWT was applied to the EEG signal as the first step for 

decomposing an EEG signal into different scales and for 

obtaining the wavelet detail coefficients and the 

approximation coefficients.  Then, the FFT was applied to 

each level of the DWT to determine the best level of 

decompositions. As a result, it was found that D3 provides 

specific and individual frequency characteristics for each  

 

 

 

 

 

 

 

 

 

 

 

state of the DoA. The combination of the DWT and the FFT 

was used to extract the final statistical features vector.  The 

following algorithm was used to obtain  the optimum wavelet  

decomposition level for further processing using Fourier 

transform.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ten statistical features were extracted from each EEG 

segment after applying the DWT, FFT and WFT. Based on 

the results, it was found that it was difficult to recognize the 

DoA with the selected statistical features using the DWT and 

the FFT separately. However, it was observed that when the 

WFA was utilized to extract the selected features, the states 

of the DoA could be better identified.  

Table 1 provides a short explanation of the statistical features 

used in this work. The statistical features were extracted after 

applying the WFA to the EEG signals. Ten of them were 

calculated and tested to assess each feature and to determine 

the best combinations for the 𝑊𝐹𝐴𝐷𝑜𝐴 development. The 10 

statistical features were mean, entropy, standard deviation, 

root mean square, variation, mode, skewness, Kurtosis, range, 

and minimum, denoted respectively as XMin, 𝑋𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑋𝑀𝑒𝑎𝑛 , 

𝑋𝑆𝐷,  𝑋𝑅𝑀𝑆, 𝑋𝑉𝑎𝑟 ,  𝑋𝑆𝑘𝑒,  𝑋𝑅𝑎𝑛𝑔,  𝑋𝑀𝑜𝑑,  𝑋𝐾𝑢.  A regression 

technique and Pearson correlation were used to test the 

relationships between the features and the anaesthetic  

 

 

 

 

 

 

 

 

 

 

 

 

 

states. The absolute values of statistical features were 

considered in our paper. Based on the results obtained, the 

standard deviation, min and entropy from β band and the 

median and root mean square from θ band were selected as 

the key features to represent the original EEG signals.  

We noticed that the increasing and decreasing of the BIS 

values corresponded to the changing in the values of the 

selected features, and vice versa. 

3.4 Features extraction 

The ten features (XMin, 𝑋𝑒𝑛𝑡𝑟𝑜𝑝𝑦 , 𝑋𝑀𝑒𝑎𝑛 , 𝑋𝑆𝐷 , 𝑋𝑅𝑀𝑆 , 𝑋𝑉𝑎𝑟 ,  

𝑋𝑆𝑘𝑒,  𝑋𝑅𝑎𝑛𝑔,  𝑋𝑀𝑜𝑑,  𝑋𝐾𝑢 ) were extracted from each of the 

five bands (𝛿, 𝜃, 𝛼, 𝛽, 𝛾).  Total (5 x N) feature vectors 

were obtained from the original EEG signal, where 5 is the 

number of bands and N represents the number of EEG 

segments.  Each feature vector was tested to evaluate the 

correlations with the BIS index. All the features were 

evaluated using the coefficients of determination, R2, which 

is a statistical test to examine how close the data are fitting 

the regression line. It is defined by the following formula. 

       𝑅2 = 1 −
∑ (𝑦𝑖𝑖 − 𝑓𝑖)

2

∑ (𝑦𝑖𝑖 − 𝑦̅)2
          (7) 

where, 𝑦𝑖  is the BIS value, 𝑓𝑖  is the estimated value (in this 

paper it refers to the statistical features) and 𝑦̅ is the mean of 

𝑦𝑖 . The R2 value ranges from 0 to 1. A higher R2 value refers  

to the higher correlation between the extracted features and 

the anaesthetic states, and vice versa. Based on Table 2, the 

set of features of (standard deviation, entropy, median, root 

mean square, min) was selected to represent the original EEG 

data. The selected features were further tested using a scatter 

plot graph. Figures 3-7 show an example of the scatter plot 

graphs of the selected features for subject No.7. The same 

procedure was repeated for all the subjects to select the 

optimum features. 
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Fig. 2. Sub-band decomposition of the DWT procedure  
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The linear relationships between the features and the BIS 

values in Figures 3, 4, 5, 6 and 7 indicate that the features are 

correlated with the BIS. We can notice that the entropy linear 

equation fits to all the data with a relation of 

BIS=0.0214x+3.246. For RMS, min, median and standard 

deviation, the linear equation is fitted to all the data with a 

relation as 0.0167x+3.2236, 0.6235x+15.606, 

0.0193x+3.3403 and 0.8559x+3.9501 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the features (RMS, entropy, standard deviation,  

median, minimum) were selected. Considering the 

relationships with the BIS, we designed the 𝑊𝐹𝐴𝐷𝑜𝐴 for 

assessing the DoA as below:  

            𝑊𝐹𝑇𝐷𝑜𝐴 = 𝑇1 + 𝑇2 
𝐹⁄                             (8) 

where 𝐹  is a threshold (empirically determined), and T1 and T2 

defined as:  

𝑇1 = ∑(0.014 × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 3.246) + (0.193 × 𝑚𝑒𝑑𝑖𝑎𝑛 + 3.3403)  

𝑛

1

 

𝑇2 = ∑(0.6235 × 𝑚𝑖𝑛 + 15.606) + (0.167 × 𝑅𝑀𝑆 + 15.606)

𝑛

1

+ (0.8559 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 + 3.9501)    

 

The formula of the 𝑊𝐹𝐴𝐷𝑜𝐴  was finalized after several 

experiments were conducted and tested with all the subjects. 

We found that some of 𝑊𝐹𝐴𝐷𝑜𝐴values are beyond the BIS 

index range. To resolve this issue a normalization technique 

was used.   𝑊𝐹𝐴𝐷𝑜𝐴 was normalized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      𝐼𝑓 𝑊𝐹𝐴𝐷𝑜𝐴 > 100 → 𝑊𝐹𝐴𝐷𝑜𝐴 = 100                                    (9) 

      𝐼𝑓 𝑊𝐹𝐴𝐷𝑜𝐴 < 0 → 𝑊𝐹𝐴𝐷𝑜𝐴 = 0                                             (10) 

 

 4.1 Agreement of the new Index and BIS Index 

The Bland-Altman was employed to measure the main 

differences and estimate the agreement between the BIS and 

𝑊𝐹𝐴𝐷𝑜𝐴. Firstly, we defined the differences between the BIS 

and the 𝑊𝐹𝐴𝐷𝑜𝐴 as diff = (𝑊𝐹𝐴𝐷𝑜𝐴 – BIS), and then the 

mean and the standard deviation of diff were calculated as 

Mdif=mean (diff), Stdif=std (diff). The Bland-Altman 

Table 1  

Short clarification of statistical features  

No. Feature name Formula 
No

. 
Feature name Formula 

1 Mean 𝑋𝑀𝑒𝑎𝑛 =
1

𝑛
∑𝑥𝑖

𝑛

1

 6 Minimum XMin=min[ 𝑥n] 

2 Entropy 𝑋𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ 𝑝(𝑋𝑖

𝑚

𝑖=1
). 𝑙𝑜𝑔2𝑝(𝑥𝑗) 

 

7 

 

Mode 
𝑋𝑀𝑜𝑑 = 𝐿 + (

𝑓1 − 𝑓0

2𝑓1 − 𝑓2

)𝑋ℎ 

 

3 Standard deviation 𝑋𝑆𝐷 = √∑ (𝑥𝑛 − 𝐴𝑀)
𝑁

𝑛=1
 

2

𝑛 − 1
 8 Range 𝑋𝑅𝑎𝑛𝑔 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

4 Root mean square 𝑋𝑅𝑀𝑆 = √
∑ 𝑥𝑖

2𝑚
𝑖=1

𝑚
 

 

9 

 

Skewness 
𝑋𝑆𝑘𝑒 = ∑(𝑥𝑛 − 𝐴𝑀)

𝑁

𝑛=1

3

(𝑁 − 1)𝑆𝐷3
 

 

5 Variation 𝑋𝑉𝑎𝑟 = ∑(𝑥𝑛 − 𝐴𝑀)

𝑁

𝑛=1

2

𝑁 − 1
 

 

10 

 

Kurtosis 
𝑋𝐾𝑢 = ∑(𝑥𝑛 − 𝐴𝑀)

𝑁

𝑛=1

4

(𝑁 − 1)𝑆𝐷4
 

 

 
Table 2   

The highest  R2 value of the statistical feature in five bands 

Features/Band 𝛿 𝜃 𝛼 𝛽 𝛾 

Range 0.014 0.064 0.0010 0.0021 0.0011 

Standard deviation 0.0113 0.253 0.021 0.2121 0.102 

Min 0.124 0.174 0.042 0.297 0.111 

Median 0.101 0.397 0.130 0.121 0.061 

Mode 0.120 0.015 0.120 0.141 0.213 

Entropy 0.012 0.272 0.110 0.4206 0.012 

Variation 0.012 0.036 0.098 0.087 0.059 

skewness 0.0101 0.0011 0.108 0.0301 0.013 

Kurtosis 0.0041 0.0021 0.008 0.019 0.064 

Root mean square 0.0010 0.3523 0.0107 0.0021 0.001 
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suggested that 95% of data points should lie within (Stdif - 

Mdif ) of the main difference[9]. The main differences were 

calculated and plotted in Fig. 8.  Figure 9 shows the normal 

distribution of the differences between the BIS and the 

𝑊𝐹𝐴𝐷𝑜𝐴for two subjects (No.7 and No.11). From Figs. 8 and 

9, the normal fit matches well with the distribution 

differences. 
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Fig. 8.  Bland Altman plot of  𝑊𝐹𝐴𝐷𝑜𝐴and the BIS 
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Fig. 9.  The normal distribution plot of 𝑊𝐹𝐴𝐷𝑜𝐴and the BIS 
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4.2 Pearson Correlation 

  Further investigations were made to evaluate the ability of 

the proposed index to identify the depth of anaesthesia The  

Pearson correlation technique was also used to evaluate the 

relationships between the BIS and the 𝑊𝐹𝐴𝐷𝑜𝐴. It describes 

the strength of a linear relationship between two populations 

(in this work, the two populations are the BIS and the 

𝑊𝐹𝐴𝐷𝑜𝐴). For example, if the two populations have a straight 

line relationship in the positive direction, the value of the 

correlation will be positive (> 0), If the linear relationship has 

negative value (<0), it means there is a negative relationship 

between the two samples. However, the zero value refers to 

the absence of relationships between the two populations. 

The proposed method was implemented using the selected 

subjects and then the correlation method was applied to test 

the obtained results.   

Fig. 10 shows examples of experiments from the 16 subjects. 

The obtained results from subjects Nos: 2, 11, 12 and 18 were 

chosen as the examples. It demonstrated that there are very 

high correlations between the 𝑊𝐹𝐴𝐷𝑜𝐴and the BIS during the 

awake, light and depth anaesthetic stages. When the BIS 

value goes up or drops down, the 𝑊𝐹𝐴𝐷𝑜𝐴values also change. 

The Pearson coefficients were also calculated between the 

BIS and the 𝑊𝐹𝐴𝐷𝑜𝐴for all the subjects. Figure 11 shows the 

Pearson correlation coefficients for the chosen subjects. It can 

be seen there is a very strong relationship between the 

𝑊𝐹𝐴𝐷𝑜𝐴 and the BIS values. This reflects the strong 

agreement between the 𝑊𝐹𝐴𝐷𝑜𝐴and the BIS. The average of 

correlation coefficients between the 𝑊𝐹𝐴𝐷𝑜𝐴and the BIS was 

0.798 for the 16 subjects. 

4. Discussion 

  In this paper, a new approach for depth of anaesthesia 

assessment was presented. The following four steps were 

considered to assess the DoA in this paper: 

1. The EEG signals were filtered to obtain high quality 

denoised EEG signals. In this phase the nonlocal mean 

denoising method was used to remove artefacts such as 

Electromyographic (EMG) and electrocardiograms 

(ECG) from EEG signals. Because if any ECG and 

EMG are not removed from EEG signals then EEG 

epochs are considered unusable in the index designing, 

and also, the Signal Quality Indicator (SQI) is 

decreased. The NLM was applied to simulated EEG 

signals with Gaussian white noise, spiking noise and 

specific frequency noise before being applied to the 

real EEG signal from hospitals. 

2. In the segmentation phase, different experiments were 

carried to choose the window size due to the window 

length was an important factor that could affect the 

performance of the proposed index and the efficiency 

of the extracted features. In this paper, a fixed length 

sliding window of 56s was adopted for reading and 

processing the EEG data. An overlapping of 55 s was 

adopted after different values of the window 

overlapping were tested with ranging from 1s to the 

maximum value 55s.   

3. A combination of wavelet Fourier transforms were 

utilized to analyse EEG signals so that the 

representative features could be extracted to design the 

DoA index.  Our findings showed that when the 

discrete Wavelet transform and fast Fourier transform 

method were integrated and applied to EEG signals, the 

important characteristics of EEG signals were revealed.  

4. A new index (V 𝑊𝐹𝐴𝐷𝑜𝐴  ) was designed after a 

thorough investigation was made to select the most 

powerful features. The developed index was tested and 

assessed using different statistical metrics and the 

results showed that the ability of the proposed index to 

trace the DoA efficiently. To determine whether the  

𝑊𝐹𝐴𝐷𝑜𝐴 has similar distribution shape and similar tail 

behavior as the BIS, the quantile-quantile plot (Q-Q 

plot), which is a graphical approach used to determine 

the validity of two methods, was used for further 

investigation. In Q-Q plot, a reference line is plotted. If 

the 𝑊𝐹𝐴𝐷𝑜𝐴  and the BIS index have the same 

distribution, their points should fall approximately 

along this reference line. Fig.12 shows the Q-Q plot of 

the 𝑊𝐹𝐴𝐷𝑜𝐴 and the BIS index for four subjects of ID 

Nos: 18, 11, 7 and 2. From the obtained results in Fig. 

12, we can observe that the 𝑊𝐹𝐴𝐷𝑜𝐴 and the BIS have 

a similar distribution.   

The BIS monitor shows a signal quality index as well as a real 

time EEG signal, BIS values, EMG, and burst and 

suppression ratio [34-36]. The BIS index is considered an 

efficient method to trace the depth of anaesthesia. However, 

the main concern of using the BIS index is that it could fail to 

display the values on the screen and may not fully reflect the 

anaesthetic states when the signal quality is lower than 15. 

The signal quality of an EEG channel is  

measured by using a signal quality indicator (SQI) and it is 

calculated based on different variables, such as artefacts, 

impedance data etc. A higher SQI number (SQI>15) refers 

that the BIS values are reliable and more accurate while a  

lower SQI number (SQI<15) indicates that the BIS values 

could not be displayed on screen along with other variables 

and parameters. In this paper, the 𝑊𝐹𝐴𝐷𝑜𝐴was tested using 

the same poor quality signals. The results showed that the 

proposed index can generate and display the index values 

correctly. Fig. 13a shows the poor signal quality case for 

subjects Nos. 27 and 37. The information include the time and 

the medication type. For subject No. 27, as an example, the 

surgery started at 10:31:33 am, and continued to 10:52:26 am. 

From 100 to 400 seconds (10:31:33 am to 10:34:33am), the 

BIS could not show the DoA values. In this case the state of 

the subject cannot be estimated.  In Fig 13b, we can also 

observe that the BIS also failed to display the DoA values 

from 200 to 500 seconds while the 𝑊𝐹𝐴𝐷𝑜𝐴  was able to 

estimate the DoA. Table 3 provides the details of the drug 

administration for both subjects.  For the sake of evaluation,  
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Table 3 

Details of aesthesia medications for Subject 27 and 37 

Subject 

Number 

Drug Time 

Subject 27 Midazolam 4 10:31:35 am 

Alfentanil (100 ug) 10:31:55 am 

Parecoxib (40 mg)  10:32:55 am  

Propofol (160 mg) 10:33:30 am 

Desflurane and 

nitrous oxide 

10:33:35 am 

Subject 37 Midazolam 3 10:13:15 am 

Alfentanil (100 ug) 10:13:35 am 

Parecoxib 40 10:16:30 am 

Morphine 5 10:19:00 am 

Propofol 60 10:19:05 am 

Morphine 5 10:40:53 am 

 

a.Q-Q plot of subject 7 b.Q-Q plot of subject 2 

c.Q-Q plot of subject 11 
d.Q-Q plot of subject 18 

Fig. 12.  Q-Q plot of subject 2, 7, 11 and 18 
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the proposed method was compared to a previous study which 

was developed by Li et al., 2016.  All EEG recordings were 

used in this comparison. The characteristics of second order 

difference plot were considered to trace the DoA in that study.  

Li et al., 2016 used the same dataset as we did in our study to 

evaluate their proposed DoA index.  Fig.14 shows 

comparisons between our proposed index with SODP against 

the BIS.  From Fig.14 it can be observed that the proposed 

index has a high correlation with the BIS than the SDOP 

index during the anaesthetic states. The results showed our 

proposed index values rose or dropped when the BIS values 

changed, while the SDOP index did not produce highly 

correlated values with the BIS. 

 

To choose the level of decomposition in wavelet transform, 

we investigated each level of decomposition by repeating the 

same procedures in sections 2.3.3, 2.3.4, 2.3.5 and section 3. 

It was found that there was a good relation between a patient 

clinical state and the extracted features with level 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

decomposition.  The values of the features were high during 

the conscious state and lower during the unconscious states.  

In this study, five features from ten extracted features were 

selected and used based on statistical analysis. The 𝑊𝐹𝐴𝐷𝑜𝐴 

was designed using those features. The results showed that 

the index can measure the DoA with a high accuracy 

compared with the BIS index. In future work, we will work 

to decrease the number of features used and to extend this 

method to other application areas, such as detecting seizures, 

sleep stages classification etc.  

 

5.Conclusion  

A robust approach for the DoA assessment based on the WFA 

and statistical features is proposed.  In this method, ten 

statistical features were extracted from each EEG segment 

using the WFA. These features were then tested, and five 

features was selected based on their coefficients of 

determination as the key features to design the 𝑊𝐹𝐴𝐷𝑜𝐴. The 

𝑊𝐹𝐴𝐷𝑜𝐴was then evaluated, and the results showed that the 

index can measure the DoA with a higher degree of accuracy 

than the BIS index. Furthermore, the 𝑊𝐹𝐴𝐷𝑜𝐴was also tested, 

and performed well and better than the BIS. In future, we will 

a. Subject No. 27 b. Subject No. 37 

Fig. 13.  Examples of poor signal quality cases (subjects No. 27 and No. 37) 

Fig. 14.  Comparisons between the proposed index with DODP index 

a. Subject No. 17 
b. Subject No. 11 
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work to decrease the number of features used and to extend 

this method to other application areas, such as detecting 

seizures, sleep stages classification, and other similar areas of 

application. 
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