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A B S T R A C T   

Background: Hypertension is a crucial health indicator because it provides subtle details about a patient’s cardiac 
health. Photoplethysmography (PPG) signals are a critical biological marker used for the early detection and 
diagnosis of hypertension. 
Objective: The existing hypertension detection models cannot explain the model’s prediction, making it unreliable 
for clinicians. The proposed study aims to develop an explainable and effective hypertension detection 
(ExHyptNet) model using PPG signals. 
Methods: The proposed ExHyptNet model is an ensemble of multi-level feature analyses used to detect and 
explain hypertension predictions. In the feature extraction stage, recurrence plots and EfficientNetB3 architec-
ture are employed to extract deep features from the PPG signals. Then, features are explained using a Gradient- 
weighted Class Activation Mapping (Grad-CAM) explainer in the explainable stage. In the last stage, XG-Boost 
and extremely randomized trees (ERT) classifiers are used to make the qualitative and quantitative analysis 
for evaluating the performance of the proposed ExHyptNet model. 
Results: The performance of the ExHyptNet model is evaluated on two public PPG datasets: PPG-BP and MIMIC-II, 
using holdout, stratified 10-fold cross-validation, and leave-one-out subject validation techniques. The developed 
model yielded a 100% detection rate for the classification of normal and multi-stage hypertension classes using 
three validation techniques. The proposed work also demonstrates a detailed ablation study using hyper- 
parameters, pre-trained models, and the detection of several PPG categories. 
Conclusion: The developed ExHyptNet model performed better than the existing automated hypertension 
detection systems. Our proposed model is practically realizable to clinicians in real-time hypertension detection 
as it is validated on two public PPG datasets using different validation techniques.   

1. Introduction 

Blood pressure (BP) is an important cause of death and morbidity 
globally. Hypertension termed a silent killer is a key risk factor along 
with other (Cardiovascular diseases) CVDs like atrial fibrillation (Bas-
siouni et al., 2018) and other risk factors like high cholesterol (Loh et al., 
2022; W.H. Organization, 2013; Al-Zaben et al., 2018). Untreated or 

delayed hypertension may arouse risk factors linked to heart, brain (El- 
Dahshan & Bassiouni, 2018), and kidney diseases (Hall, 2003; Drozdz & 
Kawecka-Jaszcz, 2014) Timely diagnosis and medication of hyperten-
sion can avoid the risk factors of many diseases, saving many lives(Zhu 
et al., 2019). Measurement of BP in millimeters of mercury (mmHg) 
involves three vital parameters namely: mean arterial pressure (MAP), 
systolic blood pressure (SBP), and diastolic blood pressure (DBP), 
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respectively (Azadifar et al., 2022). A healthy individual’s DBP and SBP 
of less than 120 mmHg and 90 mmHg are considered normal. The SBP 
and DBP in 120–139 and 80–89 mmHg are categorized as pre-
hypertension. SBP between 140 and 159 and DBP between 90 and 99 
mmHg is termed stage 1 hypertension, while SBP higher than 160 and 
DBP higher than 100 mmHg is stage 2 hypertension, respectively 
(Maqsood et al., 2021). 

Photoplethysmography (PPG) is a promising technique for hyper-
tension detection (Almarshad et al., 2022). PPG devices access the 
changes in blood volume in the microcirculation of an accessible body 
part e.g. wrist or pulp of fingertip, using a light-emitting diode and 
photodetector. PPG works by shining light onto the skin and measuring 
the changes in light absorption caused by the pumping of blood through 
the underlying blood vessels. The signal is used to study many physio-
logical parameters such as heart rate, blood pressure, and blood flow. 
The advantage of PPG acquisition is that the measurement of PPG sig-
nals offers cost-effective, fast, non-invasive, and easy solutions. Wear-
able smartwatches and smartphones have been developed that can 
measure BP using PPG (Azadifar et al., 2022). However, these devices 
are mostly consumer-grade and are not clinically accepted due to their 
limited accuracy for BP measurement compared with standard cuff- 
based and invasive methods (Scheer et al., 2002; Tjahjadi & Ramli, 
2020) Nevertheless, PPG remains promising for classifying the different 

stages of BP (Tjahjadi & Ramli, 2020). Its widespread availability makes 
it a cost-effective technique for broad population screening of hyper-
tension. Its ability for continuous signal tracking offers efficient remote 
monitoring in diverse clinical Applications, e.g. cardiac rehabilitation. 

2. Related work 

Many PPG-based automated hypertension stage classification sys-
tems have been developed (Table 1). Most models are developed on a 
single PPG dataset, either on the public or private dataset.  

i. The existing HYPT detection systems use random validation 
strategies limited to either holdout or k-fold Cross-validation 
(CV) techniques.  

ii. The models have limited performance due to limited qualitative 
and quantitative analysis.  

iii. Clinicians resist the existing automated systems due to a lack of 
explainability. 

Due to the limitations mentioned above of the existing hypertension 
detection systems, the following research questions (RQs) are still open: 

RQ1. Generalization: The model must be robust to deploy the auto-
mated systems in the clinical setting. 

Table 1 
Summary of works done on PPG-based machine learning algorithms for hypertension classification.  

Study Dataset Subjects Feature Validation Classifier Acc 
(%) 

Sen 
(%) 

Spe 
(%) 

Hettiarachchi and 
Chitraranjan (2019) 

Public 
clinical 

51 HC, 39 PH, 28 HT, 9 
DM, 16 DPH, 7 DHT 

Skewness signal quality index 10-fold CV Decision tree 83 – – 

Mousavi et al., 2019 MIMIC-II 441 subjects; 1323 
records 

Whole-based feature 10-fold CV SVM – – – 

Yao and Liu, 2021 Public 
clinical 

51 HC, 39 PH, 28 HT, 9 
DM, 16 DPH, 7 DHT 

Complete ensemble empirical mode 
decomposition with adaptive noise 

10-fold CV SVM 89 81 85 

Cano et al., 2021 MIMIC-III 50 subjects; 635 records CWT Holdout CNN – 93.1 76.0 
Nour & Polat, 2020 PPG-BP 219 subjects; 657 

records 
Physiological features 5-fold CV Random forest 99.5 – – 

Khan et al. (2021) Private 121 subjects; 700 HT 
records, 709HC records 

Empirical mode decomposition 20-fold CV K-nearest 
neighbors 

99.7 99.2 99.4 

Evdochimet al., 2022 PPG-BP  219 subjects Signal morphology – Decision tree 69.9 66.7 71.1 

MIMIC-III 140 subjects SVM 72.9 71 67.5 
Gupta et al. (2022) PPG-BP 219 subjects; 657 

records 
Filtering – CNN-LSTM 

(Long-short 
67.8 68.4 66.6 

Khan et al. (2022) PPG-BP 219 subjects; 657 
records 

Variational mode decomposition 10-fold CV Gradient boosting 
classifier  

99.3 98.7 100 

Ranjan et al., 2022 PPG-BP 219 subjects; 657 
records 

Filtering – CNN 74.5 73.4 75.7 

Sadadet al., 2022 PPG-BP  219 subjects; 657 
records 

Heart rate k-fold CV Decision tree 99.5 – – 

PPG- 
DaLiA 

2 subjects – Holdout CNN-LSTM 97.6 – – 

Tanc and Ozturk (2022) MIMIC-II 150 records Synchrosqueezing transform Holdout GoogLeNet – 95.8 96.0 
Gupta et al. (2022) MIMIC-I 39 subjects Tunable q-factor wavelet transform – Random forest – – – 

MIMIC-II 120,000 records 
MIMIC-III 510 subjects 

Wu et al., 2021 MIMIC-III 30,000 subjects; 67,830 
records 

CWT Holdout CNN 90 – – 

Liang et al., 2018 MIMIC 121 subjects CWT Holdout CNN 92.6 – – 
Yen et al., 2021 PPG-BP 219 subjects; 657 

records 
– Holdout ResNetCNN 73 – – 

Nafisi and Shahabi (2018) Private 10 subjects Statistical features 10-fold CV AdaBoost 96.6 94.9 97.4 
Mejía-Mejía et al. (2021) MIMIC-II 32,536 subjects Nonlinear features 10-fold CV SVM 70 50 75 
Lee et al. (2021) VitalDB 3301 subjects Physiological parameters Holdout CNN  80.7 80.7 
Ardinyet al., 2015 WESAD 17 subjects – Holdout CNN 96.7   
Sannino et al., 2020 MIMIC-II 526,906 instances – Holdout Random forest 99.4 – – 
Lan et al., 2018 Private 43 Subjects Physiological parameters based on SDNN 

of HRV features 
Holdout MIL 85.4 – – 

Acc-Accuracy; Rec-Recall; Spe-Specificity; CV-cross-validation; CNN-convolutional neural network; CWT-continuous wavelet transforms; DM-diabetes; DHT- diabetic hypertension; 
DPH-diabetic prehypertension; HC-healthy control; HT-hypertension; LOOCV-leave-one-out cross-validation; LSTM-long short-term memory; PH-prehypertension; SVM-support 
vector machine; VMD- variational mode decomposition; SST-Synchrosqueezing transform; Standard deviation of NN, MIL- Multiple-Instance Learning.  
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RQ2. Explainability: Due to the lack of explainability, clinicians find 
it difficult to trust the predictions given by the existing ML and DL 
models. 

In this paper, we have tried to narrow the above-mentioned research 
gaps by developing a robust, effective, accurate, explainable, and ver-
satile model. Our developed automated and explainable hypertension 
detection (ExHyptNet) model developed using PPG signals has the 
following contributions:  

i. The ExHyptNet combines recurrence plots (RP), EfficientNetB3, 
and an extremely randomized tree (ERT) classifier tested on two 
public PPG datasets.  

ii. The model is developed using three validation techniques: 
holdout, stratified 10-fold CV, and leave-one-out subject valida-
tion (LOOSV) techniques.  

iii. The model explains the regions of the RP responsible for the 
prediction of hypertension.  

iv. The accuracy of the model is tested by qualitative (performance 
measures) and quantitative (Taylor, Box, and Spider plots) 
analyses. 

The remainder of the paper is organized as follows: Section 3 pre-
sents the proposed methodology, results are presented in Section 4, 
Discussion on the results is given in Section 5, and finally, the paper 
concludes in Section 6. 

3. Methodology 

A novel methodology is proposed to diagnose hypertension based on 
PPG signals based on a set of phases. The first phase is based on data 
acquisition, and in this phase, the PPG signals are obtained from two 
main datasets: PPG-BP (Photoplethysmography- Blood pressure dataset) 
and the MIMIC database. The second phase relies on converting the 1D 
PPG signals into 2D images based on the RP (Marwan et al., 2007). The 
third phase is the feature extraction phase, and in this phase, the PPG 
recurrence images are fed to a pre-trained model based on Effi-
cientNetB3 for feature extraction. The fourth phase relies on explaining 
the important features and components in the PPG RP images using 
explainable AI techniques. In the fourth phase, the Grad-CAM technique 
(Selvaraju et al., 2017) is used. Finally, the fifth phase is the 

classification phase which is done using Extreme Gradient Boosting (XG- 
Boost) (Chen et al., 2015) and ERT (Geurts et al., 2006) classifiers. It is 
important to mention that several qualitative and quantitative mea-
surements are provided on the results obtained from the entire meth-
odology. Fig. 1 shows the overall methodology used for diagnosing 
hypertension based on PPG signals. 

3.1. PPG datasets 

We downloaded PPG signals from 2 public databases: PPG-BP (Liang 
et al., 2018) and MIMIC (Lee et al., 2011). Table 2 shows a full 
description of the two datasets. The first dataset consists of four main 
classes: normal, pre-hypertension, stage1 hypertension, and stage2 hy-
pertension. The number of subjects in this dataset is 219 adults, and the 
subjects are aged 21–86 years. Also, for each subject 8 main features are 
defined, such as sex, age, height, weight, systolic blood pressure, dia-
stolic blood pressure, heart rate, and body mass index (BMI). Each 
subject consists of 3 signals forming a total of 657 signals. The second 
dataset is the MIMIC database, an available online dataset. It consists of 
thousands of patients. Several physiological signals exist in this dataset: 
atrial blood pressure (ABP), electrocardiogram (ECG), and PPG. Some 
signals hold noisy, unclean, missing peaks, and pulse bisferiens. There-
fore, these signals are removed completely and not selected. 121 sub-
jects are collected, each with a single PPG signal. The subjects are 
divided into three categories: normal, prehypertension, and hyperten-
sion. In the PPG-BP and MIMIC-II datasets, the Systolic and Diastolic 
Blood Pressures are calculated for each PPG category. Table 3 shows the 
average of the systolic and diastolic blood pressure values for each 
category in the two datasets. In the PPG dataset, each signal is assigned 
to a specific blood pressure value and to a group category (normal, 
hypertension, and prehypertension). For instance, subject number two is 
a female and all its signals are assigned to level 2 hypertension. 

3.2. Preprocessing using recurrence plots 

The PPG signals from both datasets are de-noised using a 9th-order 
Butterworth low pass filter with a cut-off frequency of 500 Hz and the 
signals are smoothed using a Savitzky–Golay filter with a smoothing 
value of 5. Each record in the PPG-BP and MIMIC-II datasets consists of 
2100 and 8200 samples, respectively. One of the powerful tools used for 

Fig. 1. Proposed ExHyptNet for automated detection of hypertension using PPG signals.  
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analyzing the data is the RPs. RPs do not visualize the structure of the 
time series, but they estimate the invariants resulting in them (Lee et al., 
2019). Also, these plots can analyze the non-stationary data and quan-
tify any hidden structures in the data. These plots are very beneficial in 
linear dynamic systems analysis, even when combined with non-linear 
features. An RP can be used to analyze physiological signals that can 
be electrical, chemical, mechanical, hormonal, and neural (Roh & Shin, 
2021). The main aim of the RP is to visualize the recurrence state in 
phase space. This procedure permits the representation of a 1D-dimen-
sional PPG signal in a 2D dimension based on its recurrence. The 
recurrence between time i and time j is defined using a two-dimensional 
array (Jan et al., 2019). Let us consider the PPG signal in the following 
sequence: 

S = {S1, S2, S3,⋯..Sn} (1)  

Then, based on the sequence there exists a d-dimensional vectors ak that 
can be constructed using a time-delay procedure embedding. The vec-
tors of ak are defined using the following equation: 

ak =
{

Sk, Sk+τ, Sk+2τ,⋯.., Sk+(d− 1)τ
}

(2)  

where τ is the delay parameter and d is defined as the embedding 
dimension. The parameter d is optimized using the false nearest neigh-
bour’s (FNN) method. Each dimension has a time unit with values of 1 
and 0. The recurrence between time i and time j is represented using the 
following equation: 

Ri,j = Θ
(
εi −

⃒
⃒
⃒
⃒Si+k − Sj+k

⃒
⃒
⃒
⃒
)
, Si∊Rm, i, j = 1,⋯⋯,N (3)  

The number of states Si are represented by N, εi and ‖.‖ represent the 
threshold distance and the norm, respectively. m refers to m-dimensional 

phase space trajectory through a two-dimensional representation of its 
recurrences. ε is the threshold distance parameter and its value must be 
greater than the separation performed on each pair of coordinates in the 
series. Finally, Θ(.) is known as the unit step function. In this study, each 
PPG signal was converted to an RP to produce a two-dimensional image 
that can be input into CNN architecture. Since each PPG signal can have 
a different number of samples the produced RPs are interpolated using a 
bicubic interpolation (Barroso-García et al., 2020). The aim is to obtain a 
fixed recurrence image dimension for each PPG signal of size 124 x 124. 
Fig. 2(a, b, and c) shows the RP obtained for normal, prehypertension, 
and hypertension, respectively. It is also important to mention that in 
the PPG-BP each PPG signal is 2.1 s long, while for the MIMIC-II dataset, 
each PPG signal is 120-second-long. Then, each PPG signal in each 
dataset is entirely converted from the 1D signal to obtain one 2D RP 
image. Finally, it is important to mention that the characteristic topol-
ogy of the presented RPs is periodic and contains periodic recurrent 
structures (vertical and horizontal lines) representing the main 
variances. 

3.3. Features extraction using pre-trained EfficientNetB3 

(Tan & Le, 2019) conducted a study to establish the relationship 
between the depth and width of CNN models. The outcome was the 
creation of EfficientNet CNN models, which can achieve high classifi-
cation accuracy with fewer parameters. These models range from 
EfficientNet-B0 to EfficientNet-B7 and outperform pre-trained models in 
terms of parameters and top-1 accuracy on the ImageNet dataset. Effi-
cientNet scales each dimension uniformly, but balancing the dimensions 
can improve overall performance. The EfficientNetB3 CNN model is 
used as it strikes a balance between accuracy and computational re-
sources. The Mobile Inverted Bottleneck Convolution (MBConv) block is 

Table 2 
Description of PPG-BP and MIMIC-II datasets.  

Dataset 
Name 

No of Subjects No PPG Signal Segment Sample Age Sampling Rate Time duration 

PPG-BP 219 657 
Each Signal consists of 3 PPG 
segments 

Each segment is 
2100 sampling 
point 

21–86 
48 % of them are 
male 

1 kHz, with 12 bits ADC 
conversion precision 

Each PPG segment is 
2.1 Seconds 

MIMIC-II 26,870 
121 subjects have PPG 
signals 

67,830 
121 Signals 
Has hypertension 

Each signal is 
8200 sampling 
point 

65–80  125 Hz with 12 bits ADC 
conversion precision 

Each PPG signal is 120 s 
in length  

Table 3 
Average systolic and diastolic blood pressure values for each category in the two PPG datasets.  

Dataset Name Normal Prehypertension Stage 1 
Hypertension 

Stage 2 
Hypertension  

SBP DBP  SBP DBP  SBP DBP SBP DBP 

PPG-BP 128 72  129 70  145 86 162 98 
MIMIC-II 129 75  129 79  142 88 165 96  

Fig. 2. Typical RPs: (a) normal, (b) prehypertension, and (c) hypertension.  
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the backbone of the EfficientNet family, which is derived from the 
MobileNet pre-trained model. The MBConvBlock comprises five aspects: 
depth-wise separable convolution layers, inverted residual connections, 
linear bottlenecks, squeeze-and-excitation, and swish activation func-
tions. The MBConvBlock is defined by two types: MBConv6 and 
MBConv1, with different input feature map sizes and filter sizes. The 
EfficientNetB3 model is trained on two PPG datasets, with the data split 
into 60 % training, 20 % validation, and 20 % for testing. 

3.4. Explainable AI (XAI) using gradient class activation mapping (Grad- 
CAM) 

Explainable artificial intelligence (XAI) (Kashevnik and Ali, 2022) 
refers to the processes and methods that enable humans to understand 
and trust the results and outputs produced by machine learning algo-
rithms (Ganesh et al., 2021; Angelov et al., 2021). XAI aims to provide 
insight into an AI model’s potential biases, expected impact, accuracy, 
fairness, transparency, and outcomes in decision-making. One type of 
XAI is Grad-CAM, proposed by (Selvaraju et al., 2017; Selvaraju et al., 
2016). Grad-CAM can produce high-resolution and class-discriminative 
Guided Grad-CAM visuals to explain how deep learning models generate 
their most discrete features. This is achieved by combining current pixel- 
space gradient visualizations, revealing significant parts of an image 
that correspond to any decision of interest. Grad-CAM helps understand 
and identify the attention of a CNN model for classification. It computes 
weights generated from each feature map concerning the scores ob-
tained from the classification process to produce an attention or heat 
map (Chen et al., 2015). Grad-CAM is an advanced version of class 
activation mapping (CAM), with the attention map of CAM serving as 
the starting point for Grad-CAM. It’s worth noting that the CNN model 
needs to be trained before applying Grad-CAM (Loh et al., 2022). The 
primary advantage of Grad-CAM is that the model’s main structure does 
not affect the process, as it relies on feature maps and classification 
results. 

3.5. Classification 

To make accurate decisions based on a proposed methodology sys-
tem, classification is necessary. There are various classifiers available for 
this purpose, but this study focuses on two main ones: XGBoost and ERT 
learning. These classifiers will be used to classify the proposed 
methodology. 

3.5.1. Extreme Gradient boosting (XGBoost) classifier 
XGBoost is a powerful and scalable machine learning system for tree 

boosting that has been widely utilized in various fields to achieve state- 
of-the-art results in many data challenges (Friedman, 2001). Chen and 
Guestrin introduced XGBoost in 2016 to enhance classification perfor-
mance. In the 2015 Kaggle machine learning competition, XGBoost was 
the most commonly used method, and it was employed in 17 of the 29 
winning solutions. The features of the EfficientNetB3 were trained using 
XGBoost because of its excellent performance in supervised machine 
learning. The XGBoost classifier is an ensemble of trees that combines 
multiple classification and regression trees. 

3.5.2. Extremely randomized trees (ERT) classifier 
ERT is a classifier that is similar to random decision forests, but it 

introduces randomness during the training process (Saeed et al., 2021). 
ERT uses an ensemble of highly random trees that are induced on the 
learning set of sub-windows to perform the classification. At each node 
in the tree creation process, ERT follows three steps. Firstly, it selects K 
distinct features randomly from the entire feature vector. Secondly, it 
computes one random split for each feature. Finally, it chooses the split 
that maximizes a score measure based on a normalized version of the 
Shannon information gain (Sharaff & Gupta, 2019). K is a parameter 
that determines the degree of randomization used in tree induction, and 

a high value of K filters out irrelevant variables, making the tree clas-
sification process more accurate. However, it also introduces more 
correlation between trees in the forest. Two other parameters, n esti-
mators and nmin, affect the performance of the extra-trees. The number 
of trees in the ensemble, L, affects the intensity of variance reduction, 
while nmin governs the strength of averaging output noise. These pa-
rameters can be adjusted automatically or manually to suit the unique 
characteristics of the input features. 

4. Results 

The experimental setup, hyperparameters used, classifier selection, 
the model used, and classification results are presented below. 

4.1. Experimental setup 

The experiments were implemented in the MATLAB R2022a pro-
gramming environment on a laptop computer with an Intel Core i7- 
8565 central processing unit, 12 Gigabyte random access memory, and 
an NVIDIA GeForce MX 130 M 2 GB graphical processing unit. In total, 6 
experiments were performed for multi-class (2) and binary (4) classifi-
cations, evenly divided between the PPG-BP (3) and MIMIC-II (3) 
datasets. The training: validation: and test data split in each experiment 
was 60 %: 20 %: 20 %, respectively. Standard metrics were used to 
evaluate performance: true (TP) and false positive (FP) rates, precision 
(Pre), recall (Rec), Matthew’s correlation coefficient (MMC), receiver 
operating characteristic analyzed area under the curve (ROC), perfor-
mance curve (PRC), (García et al., 2009) kappa statistic (ĸ), and accu-
racy (Acc %). Confusion matrices were constructed. Finally, t- 
distributed stochastic neighbor embedding (t-SNE) (Van der Maaten 
2008) was applied to the multi-class classification experiments to depict 
how separable the PPG features were by the various classifiers. 

4.2. Hyperparameters and classifiers settings 

Hyperparameter settings of the EfficientNetB3 deep learning model 
used in the study were set after preliminary experiments using the 
adaptive moment estimation optimizer (Adam) and are shown in 
Table 4. The parameters of the classifiers are defined in Table 5. 

Algorithm 1 shows the main stages and steps of the ExHyptNet in 
terms of RP calculation, EfficientNetB3 feature extraction, XAI using 
Grad-CAM, and classification using ERT and XG-Boost classifier.  

Algorithm 1: ExHyptNet 

Input: Xv,n the number of PPG signals that hold (Normal tension, Hypertension, Pre- 
hypertension, v is the number of PPG signals in each dataset, while n is the number 
of samples. 

Output: L the labels of the test features extracted from the ExHyptNet proposed model. 
Stage1: RP Calculation 

Step 1.1: Resize the Xv,n to have the same number of samples in each PPG signal. 
Step 1.2: Calculate the RP for each PPG signal in Xv,n 

For k = 1 to v 
Rk = Θ(ε − ||Xkt − Xku| | )t,u = 1,⋯⋯⋯,N 

(continued on next page) 

Table 4 
Hyperparameters of EfficientNetB3 model.  

Training parameters optimizer Adam optimizer 

Initial learning rate 0.001 
Learning rate schedule Piecewise 
Learning rate drop factor 0.7 
Learning rate drop period 10 
Maximum number of epochs 50, 15 
Mini-batch size 16 
Gradient threshold method L2 norm 
Gradient threshold value Inf 
L2 regularization 1 x 10− 3 

Verbose 1  
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(continued ) 

Algorithm 1: ExHyptNet 

Where k is the index that represents the current PPG signal, Θ is the Heaviside 
function,ε is a predefined threshold nearly equal to zero,||| | is a norm, t and u 
are the time units in which any sample in the PPG signal is situated at times t 

and u. 
End 

Step 1.3: Obtain R for each PPG signal and as an input to the deep learning model. 
Stage2: EfficientB3Net Feature Extraction 

Step 2.1: Resize each RP in Rk to size of 224 x 224 x 3. 
Step 2.2: Divide the RPs R into 60 % training RT, 20 % validation RV, and 20 % 
test RE images. 
Step 2.3: Extract the features using the efficientNetB3 deep-learning model for the 
RT using the 

following: 
YT = EfficientNetB3(RT) 

Step 2.4: Save the training model result in terms of net N. 
Step 2.5: Get the features from the entire RPs R obtaining features Y. 

Stage3: Explain the features using XAI 
Step 3.1: Prepare the net N and all the RPs of the PPG signals R. 
Step 3.2: 
For k = 1 to m 
XRk-= Grad-CAM(Rk) 

Where XRk is the generated image of the RP after explaining the 
main important features in it using some colored spots on it. 

End 
Step 3.3: Save the generated images using the Grad-CAM XRk.

Stage4: Classification 
Step 4.1: Apply three types of cross-validation classification (Holdout, LOOCV, and 
SKCV) on the entire feature Y. 
Step 4.2: Get the training features set Ytrain , testing feature set Ytest from the features 
Y. 
Step 4.3: Apply the ERT to the training data Ytrain generating a subset node S 

Start splitting the node S 
If splitting == true 

Select v attributes from S known as { a1, a2, a3,⋯⋯..av} from node S.
Perform many v splits from {s1, s2, s3,⋯⋯..sv}

sv = Pick a random split (S, av), where i is the number of splits returned 
Obtain the maximum score between max score (sv, Ytest), where Ytest is the 

testing 
data 

Return L label corresponding to the maximum score reached using the ERT 
classifier 

Else 
The node S cannot split anymore 
Return nothing 

End 
Step 4.4: Apply the XG-Boost on the training features Ytrain , given the 
LossXGBoost(Ytest, f(x)), and the total number of sub-trees M, where f(x) is the tree 
model of the XG-Boost classifier 

Do 
Initialize the m − th tree fm(xi)

Calculate gi = ∂ŷ(m− 1)
i

LossXGBoost(yi, ŷ
(m− 1)
i )

Calculate hi = ∂2
ŷ(m− 1)

i
LossXGBoost(yi, ŷ

(m− 1)
i )

Where g and h are the first and the second derivatives of the loss function 
LossXGBoost , yi and ŷ are the true value and the estimated value of each feature 
vector in Ytest, and LossXGBoost is the difference between the true and the 
estimated values 

Start greedily growing the tree using the following objective function 

obj(m) =
1
2
∑M

j=1

g2
j

hj + λ
+ γM 

Where λ is the penalty coefficient, and γ is a hyperparameter that controls the 
the complexity of the model 

(continued on next column)  

(continued ) 

Algorithm 1: ExHyptNet 

Add the best tree fm(xi) into the current model 
While all the M are processed correctly 
Get a strong classification tree relying on the weak classification sub-trees 
Output the estimated probability of Ytest based on the produced strong 

classification 
tree in terms of L  

4.3. Classification results 

Model performance was validated using three different validation 
strategies: (1) splitting the data into 60 % training and 40 % test sets 
after excluding the validation data; (2) LOOCV; and (3) stratified k-fold 
cross-validation (SKCV), with k = 10. Through internally splitting the 
data more than once, sampling bias was mitigated with the latter two 
approaches. 

4.3.1. Classification results based on the PPG-BP dataset 
The PPG-BP dataset comprised 657 PPG signals: 262 normal, 159 

hypertension, and 236 prehypertension. The three Scenarios involved 
the classification of (1) normal vs. hypertension vs. prehypertension 
(training: validation: test data split 394:131:132); (2) normal vs. hy-
pertension (training: validation: test data split 252:84:85); and (3) 
normal vs. prehypertension (training: validation: test data split 
298:99:100). In all experiments, the number of epochs was set at 15. 

Excellent results were obtained by splitting the data into 60 % 
training and 40 % test sets after excluding the validation data, LOOCV, 
and 10-fold CV (Table 6), with the ERT classifier attaining 100 % ac-
curacies in all three Scenarios across all validation strategies. Confusion 
matrices in the respective cases demonstrate zero misclassification with 
the ERT classifier and low rates of misclassification with the XGBoost 
classifier (Figs. 3 to 5). 

4.3.2. Classification results based on the MIMIC-II dataset 
The MIMIC-II dataset comprised 120 PPG signals: 46 normal, 41 

hypertension, and 34 prehypertension. The three experiments involved 
the classification of (1) normal vs. hypertension vs. prehypertension 
(training: validation: test data split 72:24:24); (2) normal vs. hyper-
tension (training: validation: test data split 48:16:16); and (3) normal vs. 
prehypertension (training: validation: test data split 53:16:18). In all 
experiments, the number of epochs was set at 50. 

Like with the PPG-BP dataset, perfect classification rates have been 
obtained with the ERT classifier by splitting the data into 60 % training 
and 40 % test sets after excluding the validation data, LOOCV, and 10- 
fold CV (Table 7), in all 3 experiments across all validation strategies, 
and the XGBoost classifier attaining 100 % accuracies in the second 
experiment, (normal vs. hypertension classification) with the 60 %: 40 
% data split validation strategy. Confusion matrices in the respective 
cases demonstrate zero misclassification with the ERT classifier and low 
rates of misclassification with the XGBoost classifier (Figs. 6 to 8). 

4.4. t-distributed Stochastic neighbor embedding (t-SNE) 

We applied t-SNE (Van der Maaten & Hinton, 2008) on both raw PPG 
signals and the feature maps extracted by EfficientNetB3, to perform the 
unsupervised randomized reduction of the high-dimensional data to 
lower dimensional spaces (two-dimensional graphs in our case), facili-
tate visualization of nonlinear clustering of similar data points using 
parameter-base skewed Student’s t probability distributions (Huang 
et al., 2019). For both PPG-BP and MIMIC-II datasets, the t-SNE plots of 
the raw PPG signals appear scattered before feature extraction. In 
contrast, the extracted feature maps show separated clusters corre-
sponding to the normal, hypertension, and prehypertension groups 
(Fig. 9). Assuming that neighboring points in the low-dimensional t-SNE 
plots are also likely to be neighboring points in the input high- 

Table 5 
Parameters of the XGBoost and ERT Classifiers.  

Parameters XG-Boost Parameters ERT 

Evaluation Matrix Logistic Function estimators 50 
Booster “gbtree” for multi-class 

“glinear” for binary class 
Criterion or 
function of split 

“log-loss” 

Iteration 10 Iteration 15 
Maximum Depth 5 Maximum Depth 10 
Eta 0.1 nmin split 2.5 
Gamma 0 nmin leaf 1.5  
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dimensional space, we could surmise that the feature maps extracted by 
EfficientNetB3 from the RPS were discriminative for the different classes 
in both datasets. 

4.5. Results of explainable-AI using Grad-CAM 

Grad-CAM allows visualization of the gradients of the classification 
scores relative to the final convolutional feature maps. The parts of the 

map with high values on the Grad-CAM map signify those with the most 
impact on the network score for that class. By differentiating the reduced 
output of the reduction layer concerning the features in the feature 
layer, Grad-CAM automatically selects the reduction and feature layers 
to use when computing the map. In our study, Grad-CAM readouts ob-
tained after PPG RPs trained by the EfficientNetB3 model were back 
propagated on the RPs as heat maps highlighting areas of the plots that 
contributed the most to the network classification decisions for the 

Table 6 
Model performance on the PPG-BG dataset stratified by validation strategies, classification categories, and classifiers.  

Classifier TP FP Pre Rec F1 MMC ROC PRC ĸ Acc (%) 

60 % TRAINING AND 40 % TEST DATA SPLIT  
Normal vs. Prehypertension vs. Hypertension 

XGBoost 0.99  0.01  0.99  0.99  0.99  0.99  0.99  0.99  0.99  99.24 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Hypertension 
XGBoost 0.95  0.08  0.96  0.95  0.95  0.90  0.94  0.93  0.90  95.29 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Prehypertension 
XGBoost 0.95  0.06  0.95  0.95  0.95  0.90  0.95  0.93  0.90  95.00 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00 
LEAVE-ONE-OUT CROSS-VALIDATION  

Normal vs. Prehypertension vs. Hypertension 
XGBoost 1.00  0.00  1.00  1.00  1.00  0.99  1.00  0.99  0.99  99.64 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Hypertension 
XGBoost 0.99  0.01  0.99  0.99  0.99  0.99  1.00  0.99  0.99  99.43 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Prehypertension 
XGBoost 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  99.76 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00 
10-FOLD CROSS-VALIDATION  

Normal vs. Prehypertension vs. Hypertension 
XGBoost 1.00  0.00  1.00  1.00  1.00  0.99  1.00  0.99  0.99  99.64 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Hypertension 
XGBoost 1.00  0.00  1.00  1.00  1.00  0.99  1.00  1.00  0.99  99.72 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Normal vs. Prehypertension 
XGBoost 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  99.76 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  100.00  

Fig. 3. Confusion matrices were obtained for 3 experiments using PPG-BP dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hypertension; 
N, normal; P, prehypertension. In this work, we used 60% training and 40% test data split. 
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individual classes. The RP and the Grad-CAM have provided vital in-
formation that could provide assistance and guidance to the physicians. 
The vertical and horizontal planes in the RP images are the key results of 
hypertension detection. It can be seen how they indicate slowly 
changing or completely steady states. The Grad-DCAM allows re-
searchers and clinical experts to identify potential regions in the RP 
responsible for detecting HC or HYPT. Therefore, our model helps to 
detect and identify the portion of the RP which contributes to the 
decision-making. In the future, we will include clinical features and 
explore model explainability on these features. It will help the clinical 
experts to detect the potential reasons for hypertension. 

The coloured regions presented in the RP obtained from the Grad- 
CAM are due to the trained network features obtained from the Effi-
cientNetB3 on the RP images. Grad-CAM contributed to visualizing and 
converting these solid features into several coloured regions with 

different shapes on the RP images. It can be visualized that the coloured 
regions provided are the vital features and components in the RP images 
that helped the classifier to differentiate between different types of hy-
pertension. It is important to mention how the Grad-CAM chooses or 
draws these regions on the RP to provide a perfect explanation of the 
proposed model. The Grad-CAM method employs the gradients of the 
classification score concerning the last convolutional feature map. This 
is done to pinpoint the coloured regions within an input image (RP) that 
have the greatest influence on the classification score. These regions 
with significant gradient values precisely indicate where the classifica-
tion outcome is most influenced by the data. 

Fig. 10 shows the RP images in the left column and the Grad-CAM 
obtained from three RP images representing (normal, prehypertension, 
and hypertension) in the right column. 

Each image in the right column has three different regions (bright, 

Fig. 4. Confusion matrices were obtained for 3 experiments using PPG-BP dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hypertension; 
N, normal; P, prehypertension. In this work, we employed a leave-one-out cross-validation strategy. 

Fig. 5. Confusion matrices were obtained for 3 experiments using the PPG-BP dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hy-
pertension; N, normal; P, prehypertension. In this work, we used a 10-fold cross-validation strategy. 
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medium dark, and dark). The dark and the medium dark regions 
represent the most significant and salient parts in the RP images that 
affected the classification performance, while the bright regions show 
the less important feature parts in the RP images. 

5. Ablation study 

We have conducted an ablation study on the block of the pre-trained 
model and by increasing the number of categories on the PPG-BP 
dataset. 

Hyperparameters: Several values are assigned to the hyper-
parameters for the EfficientNetB3 to obtain the optimal values for the 

Table 7 
Model performance obtained using the MIMIC-II dataset for various validation strategies, classification categories, and classifiers.  

Classifier TP FP Pre Rec F1 MMC ROC PRC ĸ Acc (%) 

60 % TRAINING AND 40 % TEST DATA SPLIT  
Normal vs. Prehypertension vs. Hypertension          

XGBoost 0.96  0.02  0.96  0.96  0.96  0.94  1.00  1.00 0.94  96.00 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Hypertension          
XGBoost 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Prehypertension          
XGBoost 0.89  0.09  0.91  0.89  0.89  0.80  1.00  1.00 0.78  88.88 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
LEAVE-ONE-OUT CROSS-VALIDATION  

Normal vs. Prehypertension vs. Hypertension          
XGBoost 0.95  0.02  0.95  0.95  0.95  0.93  0.98  0.96 0.93  95.14 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Hypertension          
XGBoost 0.99  0.01  0.99  0.99  0.99  0.97  0.99  0.98 0.97  98.53 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Prehypertension          
XGBoost 0.97  0.02  0.97  0.97  0.97  0.95  1.00  1.00 0.95  97.26 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
10-FOLD CROSS-VALIDATION  

Normal vs. Prehypertension vs. Hypertension          
XGBoost 0.98  0.01  0.98  0.98  0.98  0.97  0.99  0.97 0.97  98.06 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Hypertension          
XGBoost 0.99  0.01  0.99  0.99  0.99  0.97  0.99  0.98 0.97  98.53 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Normal vs. Prehypertension          
XGBoost 0.99  0.02  0.99  0.99  0.99  0.97  0.99  0.98 0.97  98.63 
ERT 1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Fig. 6. Confusion matrices were obtained for 3 experiments using MIMIC-II dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hyper-
tension; N, normal; P, prehypertension. In this work, we used 60% training and 40% test data split. 
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deep learning model. As mentioned before, three different experiments 
are performed on each dataset. Table 8 shows the values assigned to the 
hyperparameters. 

Different pre-trained model: The current pre-trained model used in 
the proposed study is the EfficientNetB3 on both datasets. Several ver-
sions of EfficientNet exist, therefore EfficientNetB4 was tried on several 
experiments using two datasets. It was discovered that the Effi-
cientNetB4 with ERT classifier achieved perfect performance using PPG- 
BP and MIMIC-II datasets. Table 9 shows the performance of the ERT 
classifier using EfficientNetB4 with holdout data using PPG-BP and 
MIMIC-II datasets. 

Finally, it is important to mention that EfficientNetB4 is more com-
plex than EfficientNetB3. EfficientNetB3 has approximately 12 million 
parameters, while EfficientNetB4 has around 19 million parameters 

(Koonce & Koonce, 2021). The increase in model complexity allows 
EfficientNetB4 to capture more intricate features and potentially ach-
ieve better performance on certain tasks (Zhang et al., 2020). However, 
it also comes with increased computational requirements during 
training and inference. The training time required using EfficientNetB4 
on the PPG-BP dataset is 50 mins and 1 h &15 min for binary and multi- 
classes, respectively. Similarly, the training time using EfficientNet B3 
on the PPG-BP dataset is 16 mins and 37 mins for binary and multi- 
classes, respectively. 

Increasing the number of classes: Three experiments are per-
formed using two datasets. These experiments are (i) (Normal vs Hy-
pertension vs prehypertension), (ii) (Normal vs Hypertension) and (iii) 
(Normal vs Prehypertension). In the multi-class experiment, the hyper-
tension stage classes in the PPG-BP are divided into two main stages 

Fig. 7. Confusion matrices were obtained for 3 experiments using MIMIC-II dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hyper-
tension; N, normal; P, prehypertension. In this work, we used a leave-one-out cross-validation strategy. 

Fig. 8. Confusion matrices were obtained for 3 experiments using the MIMIC-II dataset with XGBoost classifier (top row) and ERT classifier (bottom row). H, hy-
pertension; N, normal; P, prehypertension. In this work, we used a 10-fold cross-validation strategy. 
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(Stage 1 Hypertension and Stage 2 Hypertension). Therefore, it is 
decided to split the data and perform the experiment based on (Normal, 
vs Prehypertension vs Stage 1 hypertension vs Stage 2 hypertension) 
using the proposed methodology with ERT classifiers based on 10 fold 
cross-validation strategy. The final accuracy of 98 % is obtained for 4 
classes using the PPG-BP dataset with the ERT classifier. Table. 10 shows 
the model performance after dividing the hypertension into two stages 
(Stage1 Hypertension and Stage 2 Hypertension). 

6. Discussion 

Our ExHyptNet model outperformed existing hypertension classifi-
cation models developed using PPG-BP and MIMIC-II datasets 
(Table 11). It is evident from Table 11 that most of the models developed 
previously for hypertension detection have used a single dataset to test 
their model. In addition, the models have been developed either using k- 
fold cross-validation or holdout validation techniques. The highest ac-
curacy obtained on the PPG-BP dataset has been reported to be 99.5 % 
using fivefold and k-fold cross-validation (Nour & Polat, 2020; Sadad 
et al., 2022). Similarly, the highest accuracy obtained on the MIMIC-II 
dataset has been reported to be 99.4 % using the holdout validation 
technique (Sannino et al., 2020). In addition, only one study has used 
both datasets to validate their model performance and obtained an ac-
curacy of 69.9 % and 72.9 % on the PPG-BP and MIMIC-II datasets, 
respectively (Evdochim et al., 2022). The models developed using 
holdout validation techniques are susceptible to overfitting due to the 
bias in the train and test split. 

Similarly, the models developed using k-fold cross-validation may 
not find real-time clinical acceptance. Also, there can be scenarios, 
where a model developed on one dataset with a fixed system setting may 
not produce the desired performance if the same model is tested on 
another dataset with a different system or setting. Similarly, the existing 

models did not discuss the model explainability, which clinicians may 
find difficult to accept the high performance of the model (Khare & 
Acharya, 2023). Our developed model addresses these shortcomings as 
it has been tested on two public datasets using different validation 
techniques and explores model explainability. Our developed model has 
achieved a perfect classification rate with an Acc of 100 % using 
holdout, SKCV, and LOOCV techniques on both datasets. 

The combination of RP images on PPG signals and EfficientNetB3 has 
resulted in a robust feature extraction. RPs are a powerful tool for 
several reasons. Firstly, they can analyze the periodicity of the PPG 
signal. Secondly, they can deal with the non-stationarity present in the 
PPG signals. Thirdly, they can identify any hidden patterns and irregu-
larities in the PPG signals. The usage of EfficientNetB3 is advantageous 
for two main reasons. Firstly, it can achieve high accuracy compared to 
other pre-trained models. Secondly, it can achieve fast throughput and 
meet the requirements of a quick response in the diagnosis of 
hypertension. 

It is worth mentioning that the implementation of Grad-CAM was 
vital for three main reasons. Firstly, it can generate a visual explanation 
that makes the combination of the RP and EfficientNetB3 more trans-
parent. Secondly, it produces a location map that highlights the main 
regions on the RP image that were affected by the classifiers. Thirdly, it 
can guide the system in the direction of learning the model better. 

The proposed model performed three main experiments on both 
PPG-BP and MIMIC-II datasets. These experiments included multi-class 
(Hypertension vs Normal vs Prehypertension) and two binary-class 
(Hypertension vs Normal) and (Hypertension vs Prehypertension), and 
they were applied to explore the efficiency of the extracted features. 
Additionally, two main classifiers (ERT and XG-Boost) were applied to 
validate the performance of the proposed model. It was observed that 
ERT outperformed XG-Boost in all experimental scenarios. 

The complexity of the ExHyptNet model is influenced by multiple 

Fig. 9. t-SNE of input PPG signals (left column) and EfficientNetB3 output feature maps (right column) from the PPG-BP (top row) and MIMIC-II (bottom row) 
dataset. The axes in the plots hold no particular meaning. 
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elements, including the duration of learning, data volume, model layers, 
and the quantity and dimensions of filters within each layer. The 
assessment of the model’s intricacy is conducted by estimating learning 
duration, deriving features from the fully connected layers, and cate-
gorizing the evaluation data. The training time of the ExHyptNet model 
on the three experiments on the PPG-BP dataset is 17.2, 13.7, and 12.3 

min, while the training time of the ExHyptNet model on the three ex-
periments on the MIMIC-II dataset is 32.3, 23.2, and 24.4 min. Most of 
the learning time is spent on training the EfficientNetB3 model, while a 
little time is spent on the Grad-CAM, ERT, and XG-Boost classifiers. The 
time necessary to obtain the RP images from the entire PPG-BP dataset is 
5.6 min, while the time for the MIMIC-II dataset is 15.2 min. The time 

Fig. 10. Example of RPs (left column) in the normal (top row), prehypertension (middle row), and hypertension (bottom row) classes. The same plots are overlayed 
with Grad-CAM heat maps generated after training with EfficientNetB3 (right column) using the ERT classifier. The Grad-CAM enables visualization of parts of the 
RPs that exert the most impact on the network classification decision for each class. 
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required to extract features from the EfficientNetB3 model is 5.2 min. 
The time taken to classify the features from the Vgg16-GRU model in the 
experiment is 2.1 min. 

The advantages of our developed model are listed below:  

i. Versatile: The ExHyptNet model has been developed using two 
public PPG datasets with three validation techniques. Hence the 
generated system is versatile for different scenarios.  

ii. Accurate: Our model has yielded the highest multi- and binary- 
class classification performance without misclassification.  

iii. Reliable: The ExHyptNet model highlights the region in RP 
responsible for hypertension detection, making it reliable.  

iv. Robust: The developed model has proven effective for qualitative 
and quantitative analysis, making it robust for data-balanced and 
unbalanced scenarios.  

v. XAI: Proposed unique Grad-CAM heat maps for each class to 
develop trust in researchers and clinicians. In this work, we have 
obtained unique heatmaps for normal, prehypertension, and hy-
pertension classes.  

vi. To the best of our knowledge it is the first work to use two public 
databases and obtain 100 % classification performance with XAI. 

The limitations of our model are: 

Table 8 
Hyperparameter values assigned to the EfficientNetB3 pre-trained model.  

Training parameters 
optimizer 

Adam Adam Adam Adam  Adam 

Initial learning rate 0.001 0.0001 0.005 0.0003  0.002 
Learning rate drop 

factor 
0.7 0.4 0.8 0.5  0.2 

Learning rate drop 
period 

10 12 19 8  4 

Mini-batch size 16 8 32 30  64 
L2 regularization 1 x 

10− 3 
1 x 
10− 5 

1 x 
10− 6 

1 x 
10− 2  

1 x 
10− 4 

Validation Accuracy 99.5 % 97.7 % 98.2 % 97.9 %  98.3 %  

Table 9 
Model performance obtained using MIMIC-II and PPG-BP datasets using the proposed methodology of EfficientNet B4 coupled with ERT classifier.   

TP FP Pre Rec F1 MMC ROC PRC ĸ Acc (%) 

60 % TRAINING AND 40 % TEST DATA SPLIT   
Normal vs. Prehypertension vs. Hypertension          

MIMIC-II           
PPG-BP  1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00   

1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
Normal vs. Hypertension           
MIMIC-II  1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
PPG-BP  1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
Normal vs. Prehypertension           
MIMIC-II  1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00 
PPG-BP  1.00  0.00  1.00  1.00  1.00  1.00  1.00  1.00 1.00  100.00  

Table 10 
Model performance obtained using our proposed method with ERT classifier for the PPG-BP dataset.   

TP FP Pre Rec F1 MMC ROC PRC ĸ Acc (%) 

10-FOLD CROSS-VALIDATION   
Normal vs. Prehypertension vs. Stage 1 Hypertension vs Stage 2 Hypertension          

PPG-BP  0.98  0.01  0.98  0.98  0.98  0.98  1.00  1.00 0.98  98.00  

Table 11 
Comparison of our model with state-of-the-art methods developed for hypertension classification using the PPG-BP and MIMIC-II datasets.  

Study Dataset Subjects Features Validation Classifier Acc (%) Rec (%) Spe (%) 

Mousavi et al., 2019 MIMIC-II 441 Subjects Whole-based features 10-fold CV SVM – – –   
1323 records       

Nour & Polat, 2020 PPG-BP 219 Subjects Physiological features 5-fold CV RF 99.5 – –   
657 records       

Evdochimet al., 2022 PPG-BP, 219 Subjects Signal morphology – Decision tree 69.9 66.7 71.1  
MIMIC-II 140 Subjects   SVM 72.9 71 67.5 

Gupta et al., 2022 PPG-BP 219 Subjects Filtering – CNN-LSTM 67.76 68.4 66.6 
Khan et al. (2022) PPG-BP 219 Subjects VMD 10-fold CV Gradient boosting 99.3 98.7 100   

657 records       
Ranjan et al., 2022 PPG-BP 219 Subjects Filtering – CNN 74.5 73.4 75.7   

657 records       
Sadadet al., 2022 PPG-BP 219 Subjects Heart rate k-fold CV Decision tree 99.5 – –   

657 records       
Tanc and Ozturk (2022) MIMIC-II 150 records SST Holdout GoogLeNet – 95.78 95.96 
Yen et al., 2021 PPG-BP 219 subjects – Holdout ResNetCNN 73 – –   

657 records       
Mejía-Mejía et al. (2021) MIMIC-II 32,536 Subjects Nonlinear features 10-fold CV SVM 70 50 75 
Sannino et al., 2020 MIMIC-II 526,906 instances – Holdout RF 99.4 – – 
Our study PPG-BP, 219 Subjects RPs, EfficientNetB3 Holdout ERT 100 100 100   

657 records        
MIMIC-II 120 Subjects  10-fold CV  100 100 100     

LOOCV  100 100 100  
Spe-Specificity; CV- cross-validation; CNN– convolutional neural network; LSTM- long short-term memory; RF- random forest; SVM- support vector 
machine; VMD- variational mode decomposition; SST- Synchrosqueezing transform.  
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i. Offline system: The model is developed for the offline system; 
hence, the effects of online training are unknown.  

ii. Our developed model is generated in a noise-free environment. 
But in the real-world scenario, the generated model may not yield 
the same high performance.  

iii. Dataset: The proposed model has been generated using two small 
public datasets. More diverse datasets obtained from various 
centres need to be used. 

In the future, we plan to validate our model using the dataset ob-
tained from many centres and also evaluate the performance of the 
model in a noisy environment using uncertainty quantification (UQ) in 
concept (Seoni et al., 2023). 

7. Conclusion 

In summary, the timely detection of hypertension is critical for 
preventing heart-related problems. Our ExHypNet model narrows down 
the gaps in the current PPG-based automated hypertension detection 
systems. Our model has obtained the highest performance on two public 
PPG datasets using different validation strategies. The quantitative and 
qualitative analysis shows that our developed model is accurate, effec-
tive, and versatile as it is tested on two independent datasets using multi- 
and binary-class classification for both balanced and unbalanced data 
distributions. To the best of our knowledge, we are the first to develop a 
versatile and easily understandable hypertension detection system for 
offline use. Our developed ExHypNet model is ready to be deployed in 
the clinical setting for real-time hypertension detection. Furthermore, 
our ablation study demonstrates that using EfficientB3Net and Effi-
cientB4Net with the ERT classifier results in 100 % accuracy. However, 
we propose using EfficientB3Net due to its simpler structure, fewer 
learning parameters, and faster feature extraction, especially when 
classifying four different categories. In the future, our research will 
explore uncertainty quantification in diverse noise scenarios and aim to 
develop an online classification model to effectively detect various 
cardiovascular diseases. 
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