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Abstract—Most of the traditional alcoholism detection methods 

are developed based on machine learning based methods that 

cannot extract the deep concealed characteristics of 

Electroencephalogram (EEG) signals from different layers. 

Hence, this study aims to introduce a deep leaning-based method 

that can automatically identify alcoholic EEG signals. It also 

explores if a hand-crafted feature extraction method is worth 

applying to deep learning techniques for classification of 

alcoholism. To investigate this, this paper presents two deep 

learning-based algorithms for classification of alcoholic EEG 

signals for comparison. In Algorithm 1, Principal Component 

Analysis (PCA) based feature extraction technique has been 

applied to extract representative components and then the 

extracted features are used as input to Artificial neural network 

(ANN) for classification. In Algorithm 2, the raw EEG data are 

directly used as inputs to a deep learning method: ‘long short-term 

memory (LSTM)’ for detection of alcoholism. The proposed 

algorithms were tested on a publicly available UCI Alcoholic EEG 

dataset. The experimental results show that the proposed 

Algorithm 2 could achieve an average classification accuracy of 

93% while this accuracy is 86% for the proposed Algorithm 1. The 

comparative evaluations with the state-of-the-art algorithms 

indicate that Algorithm 2 also outperforms other competing 

algorithms in the literature. Thus deep learning algorithm when 

applied to raw data, can produce better performance than the 

combination of the hand-crafted feature method and the deep 

leaning algorithm. Our proposed system can be used to determine 

the extent of alcoholism-related changes in EEG signals and the 

effectiveness of therapeutic plans. 

 
Index Terms— Alcoholism; Electroencephalogram (EEG); Feature 

extraction; Principal Component Analysis (PCA); Artificial 

neural network (ANN); Long short-term memory (LSTM) 

network; deep leaning method.  

I. INTRODUCTION 

LCOHOLISM is a severe disorder that affects the 

functionality of neurons in the central nervous system and 

alters the behaviour of the affected person [1]. The most 

common negative effects of excessive alcohol consumption on 

health are cardiomyopathy, stroke, high blood pressure, 

cirrhosis, and increased risk of cancer. Alcohol can affect many 

parts of the body but, it particularly affects the brain, heart, 

liver, and the immune system. According to the World Health 
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Organization (WHO), globally, 3.3 million deaths every year 
result from the harmful use of alcohol [2]. It is the third highest 

risk factor for causing diseases as reported by the World Health 

Organization (WHO) [3]. Alcoholism causes neurological 

deficiencies like impairment of decision making, learning and 

memory deficits, and behavioral changes [4, 5, 6] and may also 

cause serious accidents while driving or operating machines 

where alertness and appropriate judgments are required. Long-

term consumption of alcohol impairs the development of the 

human brain [7], whereas short-term consumption causes a 

number of issues, including of memory impairment, black outs, 

recklessness, and impaired decision making. According to the 

national institute on alcohol abuse and alcoholism, chronic 
consumption of alcoholism causes diminished ability to think, 

loss of visuospatial abilities, Wernicke–Korsakoff syndrome, 

memory loss, and loss of attention span [8]. 

The identification of alcohol in subjects is a challenging task 

because the standard devices are based on the smell of drink, 

which is not always accurate. Electroencephalography (EEG) is 

a powerful and popular technique for measuring brain activity, 

which reflects the condition of the brain. Recently, it has been 

demonstrated that EEG signals can be used as a diagnostic tool 

in the evaluation of subjects with alcoholism. EEG signals 

provide a record of electrical activity of the brain from the scalp. 
The measurements given by an EEG are used to confirm or rule 

out a condition such as alcoholism. Drinking alcohol appears to 

be related to a specific pattern of brain electrical activity in 

adults and the brain activity of alcoholics and non-alcoholics 

differs in some characteristic ways that may reflect the future 

development of alcoholism [9]. EEG recordings contain huge 

volumes of data with dynamic characteristics. So far, the EEG 

data are visually analysed to identify and understand 

abnormalities within the brain and how they propagate [10]. 

This manual approach to analysing huge data is an inefficient 

and inaccurate procedure: it is time and resource-consuming, 

and human error contributes to reduced decision-making 
reliability. As yet, there is no reliable way of identifying 

alcoholism from EEG data automatically, rapidly and 

accurately. Thus, there is increasing demand for an automatic 

and efficient EEG data analyser that can produce accurate, up-

to-date and robust scientific evidence for reliable decision-

making. 
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In recent years, many research works have been undertaken 

on the identification of alcoholism using EEG signals. For 

example, Bajaj et al. [11] reported a method based Short Time 

Fourier Transform (STFT) and non-negative least squares 

classifier (NNLS) for identification of alcoholic EEG signals. 
In [12] Kousarrizi et al. used Wavelet Transform (WT) based 

features with Support vector method (SVM) for classification 

of normal and alcoholic EEG signals. Sun et al.  [13] employed 

Principal Component Analysis (PCA) to preprocess the original 

data to reduce the dimension of EEG signals. They used WT 

based features for analysis of alcoholic and control EEG 

signals. In [14], Correlation dimension based features were 

used as measures to discriminate alcoholic and normal EEG 

signals. In [15] Kannathal et al. introduced chaotic measures 

like correlation dimension (CD), largest Lyapunov exponent 

(LE) and Hurst exponent (HE) and entropy used as features to  

classify alcoholic EEG signals  from normal EEG signals. 
Supriya et al. [16] proposed  a data analysis method for 

recognizing alcoholic EEG signals from control signals 

combining complex network (CN) and machine learning 

techniques (e.g. Naive Bayes (NB), Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), 

SVM ). In [17] Acharya et al. proposed a method where the 

nonlinear features were used as input to the SVM classifier for 

classification of alcoholic and normal EEG signals. Faust et al. 

[18] reported a method based on energy measures which were 

extracted from wavelet packet decomposition with various 

machine learning classifiers for identification of alcoholic EEG 
signals. [19], the fast Fourier transform (FFT) and auto 

regressive (AR) method based power density were used as 

features with a machine learning technique for classification of 

alcoholic and control EEG signals.   

From the above literature review, it may be observed that 

most of the existing research in alcoholism detection from 

EEGs has been performed in the machine learning area and we 

could not find any research related to alcoholism detection in 

the deep learning area. The existing methods are based on hand-

crafted feature extraction methods which are manually chosen 

based on the expert knowledge of the researcher (e.g. WT, 

Fourier Transform, PCA, CN, Entropy, LE, CD) and traditional 
machine learning techniques (e.g. SVM, k-nearest neighbour 

(k-NN), LDA, NB). Existing feature extraction methods cannot 

extract the deep concealed characteristics of EEG signals from 

different layers. Again, in the current process, it is hard to select 

appropriate and effective feature extraction methods for 

different EEG data and in addition this is both labour-intensive 

and time-consuming. Traditional machine learning methods 

consist of shallow architectures having at most one layer of 

non-liner feature transformation (e.g. SVMs use a shallow 

linear pattern separation model) [20], which requires more 

computational elements and hard to model complex concepts 
and multi-level abstractions. Due to their single layer 

construction, traditional machine learning methods are unable 

to detect abnormal points from the deep hidden layer 

effectively. Moreover, existing methods are limited in their 

ability to balance the efficiency and accuracy of alcoholism 

detection. 

This study aims to develop a deep learning based data mining 

algorithm to classify EEG signals into two classes: alcoholic 

and non-alcoholic, as accurately as possible. This study also 

intends to explore the significance of the application of hand-

crafted feature extraction method (which is manually chosen by 

the researcher) on applying the deep learning method. For this 

purpose, this study proposes two deep learning-based 

algorithms. Algorithm 1 is based on Principal Component 
Analysis (PCA) (hand-crafted feature extraction method) and 

Artificial Neural Network (ANN) (deep learning method). In 

this algorithm, the PCA method is used to extract important 

feature values from EEG data which are used as input to the 

ANN method.  Algorithm 2 is based on the Long Short-Term 

Memory (LSTM) network where the raw EEG data are directly 

used as input to LSTM network method. Then the performance 

of these two algorithms is compared. A comparative study with 

the proposed method and the existing methods is also reported 

for the same data set that is used in this study. The experimental 

results demonstrate that applying raw EEG data to the LSTM 

network method (Algorithm 2) yields a better performance 
compared to the combined application of the hand-crafted 

feature extraction method (e.g. PCA) and ANN) (Algorithm 1) 

and also existing machine learning based methods. 

The main contributions of this study are: (1) Design and 

validate a new framework for automatic identification of 

alcoholic and non-alcoholic  subjects as accurately as possible; 

(2) Explore knowledge of the significance of the application of 

the feature extraction method on applying a deep leaning 

algorithm; (3) Investigate a sustainable classification model for 

the proposed features to differentiate the subject groups; (4) 

Improve classification accuracy compared to existing methods 
as the deep learning method automatically optimizes the 

parameters and requires less prior expert knowledge for the 

feature extraction procedure to perform effectively;  (5) Build a 

low cost time model. To the best of our knowledge, this is the 

first work to apply the deep leaning technique with a feature 

extraction method and without a feature extraction method for 

classification of alcoholic and non-alcoholic subjects from EEG 

data. 

The rest of the paper is organized as follows: Section II 

describes dataset used in this study and presents the description 

of the proposed approach. The experimental procedure and 

results are discussed in Section III. Finally, Section IV draws 
the conclusions of the study.  

II. DATA AND METHOLOGY 

A. Data 

The dataset for the current research is from UCI [21], the EEG 

dataset is from the Neurodynamic Laboratory at the State 

University of New York. It has a total of 122 subjects with 77 

diagnosed with alcoholism and 45 control subjects. For every 
subject 120 separate trials were performed. If the subject was 

alcoholic all the trials were labelled as alcoholism. All trials 

were sampled at 256Hz with 64 electrodes placed on the 

subjects’ scalps for 1 second. The classification method needs 

to identify whether the subject has been diagnosed with 

alcoholism or is a control subject. Fig.1 shows the raw data for 

alcoholic and non-alcoholic participants; for this visualization 

only one third of the electrodes are displayed. As we see in the 

plot the data are noisy, with a sudden departure from the mean 

value. At a brief look there is no obvious difference between 

alcoholic and non-alcoholic participants. 
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B. Proposed Methodology 

This paper proposes two algorithms based on the deep learning 

method for classifying alcoholic EEG signals from control 

signals. Algorithm 1 is based on the ANN method and 

Algorithm 2 is based on the LSTM method. The block diagram 
of the proposed deep learning methods is shown in Fig.2. In 

Algorithm 1, firstly Principal component analysis (PCA) is 

employed on the raw EEG data to extract important components 

and also to reduce the dimension of data from the signals. Then, 

the extracted components are used as input to the ANN model 

for classifying alcoholic signals from control signals. In 

Algorithm 2, directly the raw EEG signals are used to the 

LSTM deep learning model which extracts important features 

from different layers of the data and then applies those features 

as input in the model for classification. 

 

  
Fig.1. A sample of data for Control participant (left) and alcoholic participant 

(right)– First 20 channels 

 

The description of the proposed methods with implementation 
procedure are provided below: 

 
Fig. 2: Block diagram of the proposed methodology for alcoholic EEG signal 

classification 

 Dimension reduction using PCA 

Principal component analysis (PCA) is a type of signal analysis 

method that determines the main components of a multi-

dimensional data set and the method uses the principal 

components to reduce the features of the original data [22]. The 

main components hold statistically significant insight about the 
original data and can be defined as the variance in data or the 

method to identify the components that cover the most variance, 

and they can recreate the original data set.  The result of PCA 

is that the contribution of the principle components is ranked 

from high to low, so for example the first component holds the 

maximum information to the variance in the data. The reason of 

considering PCA method in this study is that EEG data are 

always complex and high dimensional that is inappropriate 

directly to use as input to a classification model. The purpose 

of reducing the dimension is to allow minimal information loss.  

After applying PCA, the most of the data come to in the lower 

dimensional space that is suitable to use them as an input source 
to a deep learning or a machine learning classifier. In other 

words, since EEG data contains recordings from multiple 

locations on the human scalp and the signal recorded consists 

of mixed brain activity, this method is used to calculate the 

independent components to help observe the original features 

of the neuron activity. An essential part of the principal 

component analysis method is finding how many components 

are needed to explain the original data [22]. The original data 

have 64 columns, based on the result of variance ratio analysis, 

so we use the first 30 components and project 64 from the 

original data to 30 dimensions. After applying the PCA method 

and obtaining a new dimension, there is no specific meaning 
assigned to each principal component. One of the most 

important applications of the principal component analysis 

method is increasing the speed of the classifier technique. This 

study consider these 30 components as the valuable features for 

representing the characteristics of the original EEG signals. In 

the following sections, we will look at the implementation of 

EEG classification that is built on 30 main components. 

 ANN for classification 

Artificial neural network (ANN) is a brain-inspired system and 

consists of input layer, intermediate layer and output layer. The 

nodes in the middle layer can transform the input into 

something that the output layer can use, so the layers can extract 

different features until the network recognizes what it is looking 

for. The process of the ANN training process is relatively faster 

than other types of deep learning methods. In time series data 

like EEG signals one of the most common issues with the ANN 

network is the over-training and the sensitivity to the number of 
hidden neurons.  

ANNs are usually classification methods comprising large 

numbers of simple interconnected neurons which perform 

computation tasks. There are several neural network topologies. 

In this research ANN and LSTM are used in the classification 

of EEG signals. The Multilayer neural network ( MLP) with 

two or more layers is the most commonly used technique in 

feedforwarding architecture due to its fast training process and 

ease of the implementation [23]. The MLP consists of three 

sequential layers: input layer, hidden layer and output layer 

(Fig.3) the number of nodes in the first layer (input) is 
dependent on selected dimensions. This study used 30 principal 

components from the result of PCA method and then 64 

channels from raw EEG dataset in two separate experiments.  

The number of neurons in the output layer depends on the 

number of desired classes. In this study we need to determine if 

a person is alcoholic or not, so the number of the class is 1. 

Intermediate or hidden layers are useful to increase the ability 

of the network; and MLP can have multiple intermediate layers 

and there are no rules on the number of layers and nodes 

needed. Large numbers of hidden layers and neurons increase 

the complexity of the network and execution time and small 

numbers of layers and nodes lead to errors and low performance 
and poor generalization. As there are no rules to determine the 

best topology, therefore, it is only found by trial and error. In 
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this study we experimented with shallow and deep ANN with 2 

and 4-layers topology, using PCA as input and raw data and 

compared the results of classification in terms of performance 

and accuracy. 

 
Fig. 3. The structure of MLP model 

 Implementation of PCA and ANN proposed method 

In this paper, the proposed methods are implemented with the 

UCI alcoholic EEG data [21]. As discussed in Section 2.1, the 

UCI EEG data has 64 channels of data with a total of 122 

subjects with 77 diagnosed with alcoholism and 45 control 

subjects. Every channel consists of 2,831,104 data points 

sampled at 256Hz.  In this part of the study, for the classification 
of two-class EEG signals, ANN is used as a classifier in two 

separated experiments to distinguish the 30 features obtained 

through the PCA method and 64 channels from the raw data set. 

Model A  

The model is combination of the result of PCA plus a simple 

multi-layer ANN. The first layer contains 30 principal 

components as input neurons, and there is one intermediate 

layer containing 50 neurons to learn from the input, with the 

nodes utilizing a tangent activation function. Finally, there is an 

output layer with 1 node corresponding to the 1 possible class 

of alcoholic or not. A sigmoid output layer was used to perform 
this classification. 

Model B 

The model is a simple two-layer ANN, feeding from raw EEG 

data The first layer contains 64 channels as input neurons, and 

there is one intermediate layer containing 100 neurons to learn 

from the input, with the nodes utilizing a Relu activation 

function. Finally, there is an output layer with 1 node 

corresponding to the 1 possible class of alcoholic or not. A 

sigmoid output layer was used to perform this classification. 

Model C 

The model is a four-layer ANN, feeding from raw EEG data. 
The first layer contains 64 channels as input neurons, and there 

are three intermediate layers containing 100, 50, or 32 neurons 

to learn from the input, with the nodes utilizing a Relu 

activation function. An output layer with 1 node corresponded 

to the 1 possible class of alcoholic or not. A sigmoid output 

layer was used to perform this classification. The main reason 

for using a sigmoid function for the last layer is because the 

result of this function exists between zero and one, so it is useful 

for the models where the probability has to be predicted as the 

result. For the middle layers, ReLU functions perform better 

overall in our ANN models than tanh as it is less 

computationally expensive than tanh and Relu accelerates the 
convergence of the model better compared to the tanh function 

in this architecture. After setting up the skeleton of the network 

architecture for each model, we have to define how data flows 

through out network. The four models are defined and trained 

in four following stages. 

o Split Data into Training and Test Sets 

Typically, the train test split is 20% test and 80% training data. 

For the above 3 models we select 0.8 ratio for splitting the EEG 

dataset. The training set contains a known output as a label 

which is zero or one, and the model learns from this data in 
order to be generalized to other data later on. So, we fit the ANN 

models on the training set only. 

o Forward Propagation 

In this step, activations are calculated at each layer by 
calculating the two steps shown below. These activations flow 

in the forward direction from the input layer to the output layer 

in order to generate the final output. 

z = weight * input + bias 

a = Activation Function (z) 

So, for the first layer we calculate activation of hidden layer: 

z1 = X*W1 + b1 

a1 = Tangh(z1) 

And for the second layer which is output layer  

z2 = a1*W2 + b2 

output = Sigmoid (z2) 

o Loss Computation 

In this step, the loss or error is calculated in the output layer. A 

simple error function can tell the difference between the actual 

value and the predicted value. Later, we look at different loss 
functions available in deep learning framework. 

o Backpropagation 

The goal of this step is to reduce the error in the final or output 

layer by making marginal changes in the bias and the weights. 
These changes are computed using the derivatives of the error 

term. Based on the Calculus principle of the Chain rule, the 

delta changes are back passed to hidden layers where 

corresponding changes in their weights and bias are made. This 

leads to an adjustment in the weights and bias until the error is 

minimized. 

o Updating the Parameters 

Finally, the weights and bias are updated using the delta 

changes received from the above backpropagation step. When 

these steps are executed for a number of epochs with a large 

number of training examples, the loss is reduced to a minimum 

value. The final weight and bias values are obtained and can 

then be used to make predictions on the unseen data. When the 

maximum number of epochs is reached, which is 100 for our 

experiments, the training ANN process is stopped, and the 
model converged, and the goal is reached. 

 LSTM for classification 

A Recurrent Neural Network (RNN) is a type of multi-layer 

neural network, used to predict sequential data, such as speech 

recognition. The method relies on weighted memory and a 

feedback loop. Exploding or vanishing gradients are a problem 
with RNN where a large error accumulates in the training 

process resulting in a very large update to the weights. The 

Long Short-Term Memory (LSTM) technique is a type of RNN 

and is very powerful when working with timeseries data such 

as EEG signals. The motivation behind using the Long Short-
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Term Memory (LSTM) in this study is that this model can save 

important information about previous states and exploit the 

time dependencies between the data using a memory cell. The 

ability of LSTM to remember previous data makes this network 

ideal for EEG tasks. The LSTM is the most successful type of 
RNNs as this method overcomes the problems of overfitting a 

recurrent network and has been used on a wide range of 

applications. 

In regular ANN, information flows from one layer to another 

layer. The layers are stateless, so they do not have any memory 

of previous states. Loops are introduced by RNNs by allowing 

output nodes to feedback as input nodes. This make RNNs very 

effective networks for time series problems, although RNNs are 

very hard to train and most of the time the model becomes 

overfit very fast. The LSTM technique is a type of Recurrent 

neural network, used in order to overcome the problem of long-

term dependency and gradient explosion in recurrent networks; 
this technique was introduced by Hochreiter and Schmidhuber 

in 1997 [26]. Exploding or vanishing gradients are a problem 

where a large error accumulates in the training process resulting 

in very large updates to the weights. Thus, the model is not 

stable and is not able to learn from data during training 

processes. As a result, the values of weights can become very 

large and grow exponentially. Exploding gradients can be 

reduced by using the LSTM. 

The LSTM technique is very powerful when working with 

timeseries data such as EEG signals, as the model can save 

information about previous states and exploit the time 
dependencies between the data using memory cell. These cells 

decide which information should be save in the memory and 

which should not, so, the cell memory added to the model 

enables it to remember previous steps. We assessed different 

LSTM architectures by testing several parameters on a sample 

of data such as changing number of layers, nodes per layer, 

changing loss of function, drop out value and batch size. 

 Implementation of the LSTM based method 

In this paper, the LSTM deep learning is applied to raw EEG 

signals of 122 participants to assess whether or not they are 

alcoholic. Each participant has a matrix of data and labels. 

Label vector represents the class of each subject by one 

(alcoholic) or zero (non-alcoholic). Fig. 4 shows the proposed 

deep learning neural network model. The model consists of two 

fully connected LSTM layers, one dropout layer, and one dense 

layer.  

 
Fig.4. LSTM Neural network model 

 

Dropout works are based on probability. They are constructed 

by removing inputs to a layer; these may be input features in the 

first layer from raw data set or activation nodes from a previous 

layer. This has the impact of transforming a large network to a 

different, smaller, network structure and, at the result, making 

the neurons in the network more robust. The LSTM and dropout 

layers are used to learn 64 features from raw EEG signals and 
the dense layer is used for final classification.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Detailed proposed LSTM model 

 

Each piece of participant data consists of 64 channels and is 

sampled for one second. The topology of the network in this 

study consists of the input layer, the first LSTM layer, a dropout 

layer with a probability of 0.4, a many to one LSTM layer, and 

a dense layer for classification as shown in Fig.5. The LSTM 
model is trained on 80% of the data using 100 epoch iterations 

and tested on 20% of the EEG data. ADAM optimization used 

with learning ratio of 1e-4. Pytorch [25] library is used to 

develop the proposed deep learning method. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

As mentioned before, we used a UCI EEG dataset [21] for this 

study where EEG signals are recorded from 122 subjects. With 

UCI EEG data, 2,831,104 vectors of 64 dimensions for each 
method used, where 2,264,883 vectors are utilized as the 

training set and 566,220 vectors of the same dimensions are 

utilized as the testing set. For this dataset, five experiments are 

carried out using different type of deep learning networks. All 

models are trained with the training set and performance is 

assessed with the testing data set for different hyper-parameters 

setting. 

A. Classification Performance Evaluation Metrics 

We estimated the success of the proposed algorithms, by 

calculating the classification accuracy, sensitivity and 

specificity, and tuned the hyperparameters of each model 

accordingly. Such hyper-parameters include hidden layers, 

activation function, number of neurons, learning rate, number 

of epochs to train, batch size and dropout probability. The 

description and formulas of accuracy, sensitivity and specificity 

are available in references [27-31]. 

B.  Increase hidden Layers 

One of the first features we tried to increase the number of 

hidden layers as it has been established that many of the 

functions will converge in a higher level of abstraction. So, it 

Raw EEG signals [64 neurons] 

LSTM layer 1(Relu) [100 neurons] 

Dropout layer (0.4) 

LSTM layer 2 (sigmoid) 

Dense layer 

Output 
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seems with more layers we have better results; we started from 

2 layers of ANN and then increased to 4 layers of architecture. 

C. Change Activation function 

Changing activation function can be a deal breaker. Firstly, we 

have tested results with tanh and sigmoid. Most of the time we 

use sigmoid function. Compared to sigmoid, the gradients of 

ReLU does not approach zero when x is very big. Our 

experiment shows that ReLU converges faster than other 

activation functions. For both ANN (Algorithm 1) and LSTM 

(Algorithm 2) we carried out experiments with these functions. 

D. Increase number of neurons 

The number of neurons is very important as the network will be 

unable to model complex data if there are not enough nodes in 

every layer, and the resulting fit will be poor. In the other way 

the training time may become excessively long, if too many 

neurons are used, and the network may overfit the data. When 

overfitting occurs, the network will begin to model random 
noise in the data. As the result, the model fits the training data 

very well with a high accuracy rate, but in fact it is not good to 

the new and unseen data. There is not any specific rule to 

choose the number of neurons, but there are two common 

approaches, and we defined the hidden nodes using these rules 

for all the networks: 

Number of hidden neurons = the size of the output layer + 
2

3
× 

the size of the input layer 

Number of hidden neurons < size of the input layer × 2 

E. Experiment results 

We trained LSTM with 100 hidden units. We used Mean Square 

Error loss function and Adam function as an optimizer (shown 

in Table 3); we tested different learning rates from 0.0001-0.1 

and trained the model in 100 epochs (shown in Table 2). All 

experiments were performed using the Python and Pytorch 

package and run on an Intel Core (TM) i7 CPU @ 2.5Gz, 2.59 

GHz machine with 16 GB of RAM. The operating system on 

the machine was Microsoft Windows 10. 

Table 1 presents the performance comparison of a proposed 
deep learning method for different hyper-parameters of two-

class EEG signals from UCI for detecting alcoholic and non-

alcoholic participants. In most of the cases, the proposed LSTM 

(Algorithm 2) approach achieves higher classification 

accuracy, compared to the classic machine learning method in 

the previous study [24] and ANN proposed (Algorithm 1)  in 
the current study. The average classification accuracy is 

calculated using all accuracy values for all epoch. The epoch 

number tested from 50-500 for ANN and 50-100 for LSTM 

(shown in Table 2). In this study, the highest classification 

accuracy was obtained a 93% in the alcoholic EEG signals for 

the LSTM technique (Algorithm 2) and while it was 

approximately 86%  for Algorithm 1 (seen in Table 1) that was 

same as the previous study (seen in Table 4). 

For each experiment, the execution time of all methods was 

compared as shown in Table 1. The average execution time was 

around 8.5 hours for the whole dataset for the LSTM method 

while it was 6 hours for the ANN method. A longer execution 
time was shown when we increased the hidden layers in ANN. 

The LSTM network is not faster than ANN, although it is hard 

to compare architecture from a time perspective in time series 

application, as EEG data sets are usually large data sets and 

have complex structure, so many factors such as a very small or 

high learning rate, number of epochs to train the model, 

network depth and batch size could impact the execution time. 

The batch size is always dependent to the available memory and 

CPU/GPU. These factors can lead to a slow convergence and 

increase the overall execution time. As our training process is 

dependent on the error, accuracy and precision metrics, when 
we achieved the lowest error, highest accuracy and precision, 

we took down the training process.  

For the LSTM model we identified a reducing learning rate 

when the model stopped so the convergence has benefits and 

we have seen more improvements in performance when the 

learning rate is reduced. We also noticed in the LSTM model 

that increasing the dropout from 0.2 to 0.4 led to better 

execution time and avoided over fitting. In our study, LSTM 

models take longer than even deep ANN to train and score and 

LSTM could not do that significantly faster than ANN. The 

results of these experiments are summarized in Table 1. 

 
 

Table 1. Best Results from ANN and LSTM Models

Proposed 

algorithm 

Model Loss function 

error 

Accuracy 

(%) 

Execution 

time 

Sensitivity 

(%) 

Specificity 

(%) 

Algorithm 1 PCA + ANN 0.4 75.00 02:44:00 76.00 74.00 

ANN-2 0.35 80.00 03:36:00 81.00 79.00 

ANN-4 0.28 86.00 06:00:00 85.00 84.00 

Algorithm 2 LSTM-1 0.25 91.00 08:50:00 90.00 89.00 

LSTM-2 0.23 93.00 08:35:00 95.00 92.00 

Table 2. ANN, LSTM architecture 

Proposed 

algorithm 

Model Layers Activation 

Function 

Topology Epoch Dropout learning ratio 

Algorithm 1 PCA + ANN 2 Tanh, Sigmoid 30-50-1 50-500 0 0.001-0.4 

ANN-2 2 Relu, Sigmoid 64-100-1 50-500 0 0.001-0.4 

ANN-4 4 Relu, Sigmoid 64-100-

50- 32-1 

50-100 0 0.001-0.4 

Algorithm 2 LSTM-1 2 Relu, Sigmoid 64-100-1 100 0.0-02 0.0001-0.1 
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LSTM-2 3 Relu, Sigmoid 64-100-

32-1 

100 0.2-04 0.0001-0.1 

 

Table 3. ANN, LSTM architecture-hyper-Parameters 

Proposed 

algorithm  

Model Optimizer Batch Size Loss function 

Algorithm 1 PCA + ANN Adam 

 

250 Mean Squared Error, Binary Cross 

entropy 

ANN-2 Adam 

 

250 Mean Squared Error, Binary Cross 

entropy 

ANN-4 Adam 

 

250 Mean Squared Error, Binary Cross 

entropy 

Algorithm 2 LSTM-1 Adam, SGD 50-150 Mean Squared Error, Binary Cross 

entropy 

LSTM-2 Adam, SGD 50-150 Mean Squared Error, Binary Cross 

entropy 

Based on our results, simple ANNs (by Algorithm 1) proved 

not to be more powerful than the non-deep learning model 
developed prior to this study. However, the LSTM model 

(Algorithm 2) did prove to be more powerful than the regular 

ANN. Not surprisingly, the ANN  (by Algorithm 2) feed-

forward on raw EEG signals did manage to outperform the 

ANN on principal components ((by Algorithm 1)) and the 

accuracy increased when we fed the classifier with more input 

feature from 75% to 86% with the best ANN model. As can be 

seen in Table 2, both the Relu activation function and Adam 

optimization performed better than the Tanh function and 
adding more hidden layers plus more neurons in intermediate 

layers to the ANN proved to be more powerful. Considering the 

results shown in Table 1, one can observe that proposed LSTM 

method (Algorithm 2) is more capable of classifying the two-

class EEG signal than the proposed ANN based method 

(Algorithm 1) and also the classic machine learning. 

 

 

Table 4. Summarization of 3 machine learners over UCI EEG dataset-Previous study [24] 

Classifiers 10-fold cross validation accuracy (%) Averaged 

Bagging 72.8 63.2 64.9 67.5 65.8 69.3 70.2 66.7 63.2 64.0 66.7 

Random Forest 86.8 78.9 89.5 81.6 91.2 83.3 87.7 87.7 87.7 85.6 86.0 

Adaboost 78.1 71.1 71.9 69.3 68.4 71.9 79.8 79.8 75.4 73.0 73.9 

 
 

Fig.6. Loss and accuracy for Algorithm 1 (PCA+ANN) model 

 
Fig.7. Loss and accuracy for Algorithm 2 (LSTM model) 

 

Fig. 7 shows the progression of the loss function during 

epoch iteration. The data were averaged for the LSTM model. 

The loss function started from 0.420 and at the end of 100 epoch 
decreased to 0.236 and the accuracy of the model start from 

54% in epoch 1 and converged to achieve 93% at the end of the 

iteration. As can be seen from Fig. 6 and Fig. 7, the proposed 

LSTM method is more effective for classifying alcoholism 

EEG signal compared to the proposed PCA and ANN based 

method. 

In ‘Introduction’ section, we have already provided a 

discussion about some research works in the literature [11-19] 

that were performed on the identification of alcoholic EEG 

signals in UCI database. In order to further examine the 

efficiency of our proposed LSTM based algorithm (Algorithm 

2), a report of comparative study for the same dataset is 

presented in Table 4. From Table 4, it is clear that the proposed 

LSTM based algorithm yields the better classification 

performances (93.00%) in terms of accuracy criteria compared 

to the reported existing methods in the literature. 
 

Table 5. A comparative report for our proposed approach with the existing 

methods 
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Authors  Methods Reported 

Accuracy 

Ehlers et al. [14] Correlation dimension (CD) based 

discriminant analysis 

88.00% 

Kannathal et al. 

[15]  

CD, Lyapunov exponent, entropy, 

Hurst's exponent features with 

Discriminant analysis classifier 

90.00% 

Acharya et al. [17]  Approximate entropy, SampEn, 

Lyapunov exponent, Higher order 

spectra (HOS) features with SVM  

(poly kernel) classifier 

91.70% 

 

Faust et al. [32] HOS based  Fuzzy Sugeno classifier 

 

92.40% 

Proposed approach 

for Algorithm 2  

Long short-term memory (LSTM) 

based deep learning algorithm 

93.00% 

IV CONCLUSION 

This paper aimed to develop an efficient approach that can 

classify EEG signals into two classes: alcoholic and non-

alcoholic as accurately as possible. This study proposed two 

deep learning-based methods: Algorithm 1 is based on PCA 

and ANN algorithm and Algorithm 2 is based on LSTM 

networks. The performances of the proposed algorithms were 

assessed on UCI Alcoholic EEG dataset in terms of Accuracy, 
sensitivity and specificity. Each model was trained and tested 

with two different architectures. Our study showed that 

significant improvements have been gained with the LSTM 

method (Algorithm 2) (93.00% accuracy) and show that LSTM 

is a robust and reliable classifier for EEG signals. The result for 

the ANN approach (Algorithm 1) is clearly worse (86.00% 

accuracy) than the results for the LSTM approaches 

(Algorithm 2); however, the LSTM was not quicker than ANN 

and its run time was highest among all the models.  The 

experimental results also revealed that it is not worth applying 

a deep learning technique with a hand-crafted feature extraction 
method. This study provides necessary knowledge to apply the 

hand-crafted feature extraction method with the deep leaning 

algorithms and also give practical suggestions on the selection 

of hyperparameters in the deployment of deep learning. It will 

help researcher in other application of EEG signal processing 

and analysis in future study. There are two limitations in this 

study that can be compensated in our future studies: (1) binary 

classification (2) selection of hyper-parameters of the proposed 

methods through empirically. 
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