
�������� ��	
���
��

Drought forecasting in eastern Australia using multivariate adaptive regression
spline, least square support vector machine and M5Tree model

Ravinesh C Deo, Ozgur Kisi, Vijay P Singh

PII: S0169-8095(16)30450-1
DOI: doi:10.1016/j.atmosres.2016.10.004
Reference: ATMOS 3805

To appear in: Atmospheric Research

Received date: 5 July 2016
Revised date: 4 October 2016
Accepted date: 10 October 2016

Please cite this article as: Deo, Ravinesh C, Kisi, Ozgur, Singh, Vijay P, Drought
forecasting in eastern Australia using multivariate adaptive regression spline, least
square support vector machine and M5Tree model, Atmospheric Research (2016),
doi:10.1016/j.atmosres.2016.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.atmosres.2016.10.004
http://dx.doi.org/10.1016/j.atmosres.2016.10.004


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Drought forecasting in eastern Australia using 

multivariate adaptive regression spline, least square 

support vector machine and M5Tree model 

Ravinesh C Deo1 *, Ozgur Kisi2, Vijay P Singh3  
1 School of Agricultural Computational and Environmental Sciences  

International Centre of Applied Climate Sciences (ICACS) 

University of Southern Queensland, Springfield, AUSTRALIA  

*Corresponding Author: ravinesh.deo@usq.edu.au  

2 Canik Basari University, Architecture and Engineering Faculty 

Civil Engineering Department, 55080 Samsun, TURKEY 

3 Department of Biological and Agricultural Engineering and Zachry Department of Civil Engineering,  

Texas A&M University, 2117 TAMU, College Station, TX 77843-2117, USA 

Abstract 

Drought forecasting using standardized metrics of rainfall is a core task in hydrology and water 

resources management. Standardized Precipitation Index (SPI) is a rainfall-based metric that 

caters for different time-scales at which the drought occurs, and due to its standardization, is 

well-suited for forecasting drought at different periods in climatically diverse region. This study 

advances drought modelling using multivariate adaptive regression splines (MARS), least square 

support vector machine (LSSVM), and M5Tree models by forecasting SPI in eastern Australia. 

MARS model incorporated rainfall as mandatory predictor with month (periodicity), Southern 

Oscillation Index, Pacific Decadal Oscillation Index and Indian Ocean Dipole, ENSO Modoki 

and Nino 3.0, 3.4 and 4.0 data added gradually. The performance was evaluated with root mean 

square error (RMSE), mean absolute error (MAE), and coefficient of determination (r
2
). Best 

MARS model required different input combinations, where rainfall, sea surface temperature and 

periodicity were used for all stations, but ENSO Modoki and Pacific Decadal Oscillation indices 

were not required for Bathurst, Collarenebri and Yamba, and the Southern Oscillation Index was 

not required for Collarenebri. Inclusion of periodicity increased the r
2
 value by 0.5–8.1% and 

reduced RMSE by 3.0–178.5 %. Comparisons showed that MARS superseded the performance 

of the other counterparts for three out of five stations with lower MAE by 15.0–73.9% and 7.3–

42.2%, respectively. For the other stations, M5Tree was better than MARS/LSSVM with lower 

MAE by 13.8–13.4% and 25.7–52.2%, respectively, and for Bathurst, LSSVM yielded more 

accurate result. For droughts identified by SPI  -0.5, accurate forecasts were attained by 
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MARS/M5Tree for Bathurst, Yamba and Peak Hill, whereas for Collarenebri and Barraba, 

M5Tree was better than LSSVM/MARS. Seasonal analysis revealed disparate results where 

MARS/M5Tree was better than LSSVM. The results highlight the importance of periodicity in 

drought forecasting and also ascertains that model accuracy scales with geographic/seasonal 

factors due to complexity of drought and its relationship with inputs and data attributes that can 

affect the evolution of drought events. 

Keywords Standardized precipitation index, drought forecasting, multivariate 

adaptive regression spline, least square support vector machine, M5 Tree 

model  

1.0 Introduction 

Drought is an insidious natural hazard that occurs as a normal, yet a recurrent feature in an arid, 

semi-arid, desert or rain-forested region (Wilhite et al., 2000a; Keyantash and Dracup, 2002; 

Vicente-Serrano, 2016). Drought impacts are exacerbated by shifts to warmer and drier 

conditions, leading to increased water demand compounded by population growth and 

consequent expansion of industrial, agricultural and energy sectors (McAlpine et al., 2009; 

IPCC, 2012). As a critical environmental issue, challenges posed by drought elicit increased 

alertness among hydrologists, agriculturalists and resource planners in strategic decision-making 

(Bates et al., 2008; Mishra and Singh, 2011). Meteorological drought that transforms in a 

hydrological, agricultural and socio-economic events, onsets with a marked reduction in rainfall 

sufficient to trigger hydrometeorological imbalance for a prolonged period (Wilhite and Hayes, 

1998; Mishra and Singh, 2010; Deo et al., 2016a). Drought is a costly hazard on socio-economic 

dimension, occurring on a year-to-year and season-to-season basis with detrimental outcomes 

due to its persistent effect on groundwater reservoirs, leading to water scarcity, crop failure, 

disturbed habitats and loss of social/recreational opportunities (Riebsame et al., 1991; Wilhite et 

al., 2000a; Mpelasoka et al., 2008). Effective strategies to forewarn drought are thus important 

for risk management.  

Effective mitigation and relief strategy for requires a careful consideration of pertinent 

models to provide quantitative data on future drought (Wilhite and Hayes, 1998; Wilhite et al., 

2000a; UN/ISDR, 2007; Şen, 2015). Despite the complexities associated with the understanding 

of drought itself, perhaps no other natural hazard lends itself quite as much to being able, to 

predict its progression, given its slow onset where rainfall, evapotranspiration and ground water 

data can be monitored ahead of time (Cancelliere et al., 2007; UN/ISDR, 2007). Drought 

monitoring is achieved by studying future changes in drought indices with historical and current 
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hydrological data (Stahl and van Lanen, 2014; Joaquín Andreu et al., 2015; Deo et al., 2016a). 

However, an understanding of future drought requires an evaluation of predictive models that are 

reliable enough to forewarn drought possibility (Mishra and Singh, 2011). Construction of a 

forewarning systems require action-oriented models that are implemented in a risk management 

program (Wilhite et al., 2000b; IPCC, 2007; Sheffield and Wood, 2008; Mishra and Singh, 

2011). 

Due to the complexity of drought that embeds localised, yet stochastic features and non-

linearities between predictors and objective variable, modellers remain puzzled in adopting a 

model for all regions. Spiralling nature of drought makes it impossible to adopt a ‘one-size-fits-

it-all’ so a deficiency in drought mitigation arises from inability to forecast the conditions well in 

advance (Mishra and Desai, 2005; Almedeij, 2015). Critical issues in drought modelling are: the 

inability to adopt a universal model, input selection, choice of index that sufficiently represents 

drought monitoring over different regions and the disproportionally areal and geographic impact 

that results in different model accuracy (Mishra and Desai, 2005; IPCC, 2012). In some regions, 

a model may not reflect the reality, thus, a rigorous testing of different models must be facilitated 

to establish a versatile framework that fits a prediction system. As drought evolves from 

meteorological to hydrological to agricultural to socio-economic dimensions (Wilhite et al., 

2000b; Mpelasoka et al., 2008), the response of a predictive model also varies by the region and 

timescale, as does the need to select different predictors that best align with the model (Joaquín 

Andreu et al., 2015). A comparison of different approaches is a paramount task for achieving a 

robust forecasting model. 

According to Lincoln Declaration by World Meteorological Organization (Hayes et al., 

2011), Standardized Precipitation Index (SPI) (McKee et al., 1993) was embraced globally as a 

drought monitoring index. In addition to other region-specific indices, SPI was profusely 

adopted by National Meteorological and Hydrological Services to characterize meteorological 

droughts (McKee et al., 1993; Hayes et al., 1999; Yuan and Zhou, 2004; Cancelliere et al., 2007; 

Svoboda et al., 2012; Jalalkamali et al., 2015; Choubin et al., 2016). SPI is a powerful, yet, a 

simple and enigmatic-free index that analyses water scarcity situations based on a statistical 

distribution of rainfall for an aggregation length from one to 48 months. A normalized metric is 

generated in terms of the standard deviation of rainfall relative to the climatology (McKee et al., 

1993; Hayes et al., 1999; Yuan and Zhou, 2004). Due to the normalization of rainfall surpluses/ 

deficits, SPI model can be applied to investigate drought possibility in climatologically diverse 

regions (Svoboda et al., 2012; Almedeij, 2015; Choubin et al., 2016). SPI has the ability to 

describe short and long-term drought at different time scales in a probabilistic manner that makes 
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it possible to monitor soil moisture conditions that respond to precipitation anomalies on a 

relatively short timescale, and hydrological reservoirs that reflect long-term rainfall anomalies 

(Svoboda et al., 2012). SPI is thus an ideal metric for management of not only hydrological but 

also agricultural drought events (Guttman, 1999).  

Drought forecasting based on SPI and data-driven models where drought indicators are 

used for forecasting, has been researched attentively in different geographic locations. 

Cancelliere et al. (2007) designed an SPI-based methodology for computing drought transition 

probabilities for Sicily (Italy). Jalalkamali et al. (2015) compared a multilayer perceptron 

artificial neural network (MLP ANN), adaptive neuro-fuzzy inference systems (ANFIS), support 

vector machine (SVM), and autoregressive integrated moving average (ARIMAX) multivariate 

model to forecast SPI for Yazd (Iran). Shirmohammadi et al. (2013) used ANFIS, ANN, 

Wavelet-ANN and Wavelet-ANFIS model for forecasting SPI for Azerbaijan (Iran). Santos et al. 

(2009) generated SPI-based forecasts using ANN for San Francisco and Marj and Meijerin 

(2011) incorporated satellite-based images and climate indices in ANN to demonstrate drought 

predictions using North Atlantic and Southern Oscillation Index. Cancelliere et al. (2006) 

employed a non-parametric method to forecast SPI for Sicily and Belayneh and Adamowski 

(2012) compared ANN, SVR and wavelet neural network models for SPI forecasting in Awash 

River (Ethiopia). Choubin et al. (2016) developed SPI forecasts by ANFIS, M5 model tree 

(M5Tree) and an MLP algorithm.  

In eastern Australia where this study is focussed, there are synergetic pressures and 

environmental stress driven by climate shift to warmer temperature, exacerbated by strong El 

Nino with frequent to severe droughts (McAlpine et al., 2007; Deo et al., 2009; McAlpine et al., 

2009; Verdon‐Kidd and Kiem, 2009). Drought has become hotter since 1973 with 2002/03 event 

being >1.0 degree hotter than previous droughts (Nicholls, 2004). Drought poses consequences 

for runoff that reduces stream flow in agriculturally-sensitive Murray Darling Basin (Cai and 

Cowan, 2008) with significant economic costs (Wittwer et al., 2002; Dijk et al., 2013). Thus, 

accurate models can assist with the management of risk and promote economic returns (Timbal 

and Hendon, 2011; Koehn, 2015; Williams et al., 2015; Qureshi et al., 2016). Consequently, 

drought has been forecasted using many approaches, for example, with hydrological models 

(Brown et al., 2015), Markov chain (Rahmat et al., 2016), Bayesian space–time models 

(Crimp et al., 2015) and recently, data-driven models (Abbot and Marohasy, 2012, 2014; 

Deo and Şahin, 2015b, a, 2016; Deo et al., 2016b). Notwithstanding this, other than 

Rahmat et al. (2016) who applied a Markov chain model for SPI modelling, to the best of our 
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knowledge, there is not any published work on SPI modelling for this important socio-

economic region.  

Considering the foresaid, this paper illuminates the use of multivariate adaptive 

regression spline (MARS), least square support vector machine (LSSVM) and M5Tree 

models for SPI forecasting in drought-prone region of eastern Australia using predictors 

for five meteorological sites (Figure 3). Except for the far-eastern (Yamba) station, all 

other sites are situated in Murray Darling Basin that hubs Australia’s agricultural belt. 

The purpose of this paper is threefold. (I) To determine best variables for drought forecasting 

and test the relative contribution of input variables applied as predictors for the future evolution 

of SPI. (II) To elucidate the importance of periodicity in drought models and seasonal behaviour 

of drought. (III) To compare the performances of data-driven models using MARS, LSSVM and 

M5Tree algoirthms for SPI-forecasting.  

 

2.0 Theoretical Overview   

2.1 Multivariate Adaptive Regressions Spline 

Introduced by Freidman (1991), MARS  has previously been applied hydrology (Abraham and 

Steinberg, 2001; Sharda et al., 2008; Cheng and Cao, 2014; Deo et al., 2015; Kisi, 2015; 

Waseem et al., 2015) but its application for SPI forecasting is yet to be undertaken. MARS has 

an ability to analyze the contributions of each input where interactive effects from exploratory 

terms are utilized to model the predictand (Cheng and Cao, 2014). It explores complex and non-

linear relationships between response and objective variable (Deo et al., 2015) without 

assumptions on the relationships between inputs and objective variable (Friedman, 1991; Butte et 

al., 2010). Instead, MARS generates forecasts based on learned relationships from training data 

partitioned into splines over an equivalent interval (Friedman, 1991). For each spline, inputs, x, 

are split into subgroups and knots so that they are located between the x and the interval in the 

same x to separate the subgroups (Friedman, 1991; Sephton, 2001). The knots are 3–4 times the 

number of basis functions (Sharda et al., 2008) but this limit is deduced by a trial-and-error to 

avoid over-fitting using shortest distance between neighboring knots (Sephton, 2001; 

Adamowski et al., 2012).  

Fig. 1a shows a schematic view of MARS. In this study MARS utilizes predictors, X 

defined by [P, SOI, EMI, IOD, PDO, Nino3.0SST, Nino3.4SST and Nino4.0SST] whose time-

series evolution are intrinsically related to drought patterns in the objective variable, Y ( SPI). 

First, basis functions, BF(x) are determined and, second, they are projected on the objective 

vector (Sharda et al., 2008). Suppose X is the vector (x1, x2… xN),  
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 )(XY g           (1) 

where  is the distribution of model error (Deo et al., 2015; Kisi, 2015) and N is the number of 

training data points.  

MARS approximates g(.) by applying respective BF(x) with piecewise linear functions: 

max (0, x – c) where a knot occurs at the position c (Zhang and Goh, 2013). The equation max (.) 

means that only the positive part of (.) is used, otherwise it will be given a zero value concordant 

with:  

 


 


otherwise

tcifcx
cx

,0

,
,0max        (2) 

Thus, g(X) is constructed as a linear combination of BF(x): 

 )()(
1

XX BFg
N

n

no 


         (3) 

where  is a constant estimated using the least-square method. 

As MARS is data-driven, g(X) is applied in a forward-backward stepwise method to 

input data to identify the location of the knots where the function value is found to vary 

(Adamowski and Karapataki, 2010). At the end of the forward phase, a large model which, in 

fact, may over-fit the trained input data is achieved so a backward deletion phase is engaged 

where the model is simplified by deleting one least basis function according to the Generalized 

Cross Validation, GCV, as a form of regularisation, is given by (Craven and Wahba, 1978): 

 21 N
CM

MSE
GCV


          (4) 

where MSE is mean squared error of the evaluated model and CM is the penalty factor: 

  CM = M + dM         (5) 

Eq. (5) estimates how well the MARS model performs on new (forecasted) data (Deo et al., 

2015). If several basis functions are chosen, an over-fitting can occur so some basis functions are 

deleted in the pruning phase (Samui, 2012; Kisi, 2015) to select the “best” model with the lowest 

GCV. 

< Fig. 1a-c> 

2.1 M5Model Tree 

M5Model Tree, introduced by Quinlan (1992), is a hierarchical model based on binary decision 

framework. It utilizes linear regressions at terminal (leaf) nodes that develop relationships 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

between inputs/output variable (Mitchell, 1997). A dual stage process is applied for constructing 

an M5Tree (Rahimikhoob et al., 2013) where input/output data are split in subsets to create a 

decision tree. Consider N-sample training matrices characterized by (input) patterns/attributes 

associated with a predictand. M5Tree constructs a model relating a target value of training case 

to the input attributes (Bhattacharya and Solomatine, 2005). In context of drought modelling, 

M5Tree maps the relationships between inputs and SPI based on matched attributes. Fig. 1b 

shows a schematic view of the M5Model Tree. 

Using ‘divide-and-conquer’, a model is constructed where N points are associated with a 

leaf or a test criterion that splits them into subsets corresponding to a test outcome. This process 

is applied recursively where subsets created from N points follow a criterion depending on the 

standard deviation of class values and calculating the reduction in error, R (Bhattacharya and 

Solomatine, 2005; Kisi, 2015): 

 












 )()( i

i
R         (6) 

where  is a set of examples that reach the node and i is the subset of examples that have the i
th

 

outcome of the potential set.  

When maximum splits (including patterns/attributes and splits) are attained, M5Tree 

selects them to maximize R to select a model with the lowest R. Splitting ceases when the class 

value of all instances reaching a node do not vary or that just a few instances remain. It so turns 

out that the perpetual division rule applied to input data can lead to very large, over-elaborate 

network of structures that must be pruned back. If a model is constructed from a smaller number 

of training points, a smoothing process needs to be applied to compensate for the abrupt 

discontinuities that can occur between adjacent linear models at the leaves of the pruned tree 

(Bhattacharya and Solomatine, 2005; Kisi, 2015). This improves the accuracy of the fine-tuned 

model. During the smoothing, the linear equations are updated so that the forecasted output for 

the input vectors corresponding to different equations become close to each other. For detailed 

discussion on M5Tree, readers can refer to Quinlan (1992) and Witten and Frank (2005). 

 

2.3 Least Square Support Vector Machine 

LSSVM is based on structural risk minimization (Vapnik and Vapnik, 1998) with a 

regularization constraint on the model’s weight. It alleviates convex quadratic programming 

associated with support vector machines (SVM) (Suykens et al., 1999; Suykens and Vandewalle, 

1999). In SVM, “slackness” is set by an inequality constraint. However, LSSVM avoids this 
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(and solves the regression problem as a set of linear equations). This is an advantage, as it can 

provide faster training and higher stability and accuracy (Sadri and Burn, 2012). It yields global 

solutions to error function that it minimizes, exhibiting merits over gradient based models (e.g. 

artificial neural network) (Bishop, 1995; Cherkassky and Mulier, 2007). In LSSVM, a kernel 

function (K) and its parameters are optimised so that a bound on Vapnik–Chervonenkis 

dimension is minimized to yield stable solutions (Müller et al., 1997). 

If X is a time-series (x1, x2… xN) and intakes any training variable: (P, SOI, EMI, IOD, 

PDO, Nino3.0SST, Nino3.4SST and Nino4.0SST), and Y ( SPI) is the objective variable, the 

LSSVM model is: 

 )()()( XBXY Twf         (7) 

where w,  and  = weight vectors, mapping functions and bias terms, respectively (Suykens et 

al., 1999; Suykens et al., 2002). 

Based on the function’s estimation error, the LSSVM model is normally designed using 

structural risk minimisation applied to the J term, written as:  

 



m

i

i

T e
C

wwewJ
1

2

22

1
),(min        (8) 

where 2

ie is the quadratic loss term, W is the weight vector, and C is the cost (or regularization) 

parameter (a positive constant).  

Eq. (8) is subject to the following constraint (Kisi, 2015): 

 )...,,2,1()( miexwy ii

T

i        (9) 

To solve for the model parameters, a Lagrangian multiplier (i  R
N
) is adopted (Kisi, 

2015): 

   



m

i

iii

T

i yebxwewJCew
1

)(,),,,(     (9) 

The conditions which prove optimal in solving the parameters are determined by taking 

the partial-derivatives of the extended loss function (i.e. (W, , e, )) with respect to each term 

(i.e. W, , e, ) (Kisi, 2015): 
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1

1
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m

i

i

m

i

ii

yexw
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        (11) 

where (x) is a nonlinear mapping function related to kernel function.  

In matrix form, these are expressed as (Suykens et al., 1999): 

 









































I
C

I
Y

Y

T

T

0
0

        (12) 

where },,{},1,,1{,)(,,)(},,,{ 1111 lm

T

m

T

m IyxyxyyY   .  

Note that  is used to represent the kernel function satisfies Mercer’s theorem (Okkan 

and Serbes, 2012). Finally, LSSVM model is expressed as: 

  


m

i

ii xxxf
1

,)(         (13) 

In this study we applied the radial basis kernel function (RBF): 




















2

2

2
exp),(

i

i

xx
xx         (14) 

Here, the  as the kernel width. Both the C and  are determined by a grid search process (Goyal 

et al., 2014; Deo et al., 2016b; Deo et al., 2016c).  

 

2.4 Standardized Precipitation Index  

In order to develop a drought forecasting model for the study region, the monthly Standardized 

Precipitation Index (SPI) was first computed following McKee et al. (1993). In general, 

computing SPI involves fitting the gamma probability density function to the given distribution 

of monthly rainfall (P) data. The gamma distribution function is defined by its probability 

density function, g (P):  



 

/1

)(

1)( xePPg 


         (15) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

where parameters,  and , can be estimated using the maximum likelihood solution: 

 3
41

4
1 1 A
A

          (16) 

_

P


             (18) 

and   NPPA /)ln()ln(
__

 , and N = the number of rainfall observation months. The 

cumulative probability can be given by  

dPexdPPgPG
P

P
P







0

/1

0 )(

1
)()( 

 
       (19) 

Letting t = P /, Eq. (19) becomes an incomplete gamma function: 

dtetPG
t

t







0

1

)(

1
)( 


         (20) 

As the gamma function is undefined for P = 0, the cumulative probability becomes:  

H (P) = q + (1- q) G (P)        (21)  

where q is the probability of zero. The cumulative probability H (P) can be transformed into the 

standard normal random variable with mean zero and variance of one. This yields the monthly 

value of SPI, viz:  
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In Eq. (22), t is given by: 
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In Eq. (23), the constants are as follows: c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 

1.432788, d2 = 0.189269 and d3 = 0.001308 (McKee et al., 1993). The ‘drought’ part of the SPI 

range can be split into the ‘moderately dry’ (−1.5 < SPI ≤ 1.0), ‘severely dry’ (−1.5 ≤ SPI < 

−2.0), and ‘extremely dry’ (SPI ≤ −2.0) categories. 

< Fig. 2 > 

Fig. 2 illustrates a practical applicability of SPI for monitoring the progression of drought 

using the drought monitoring data for Bathurst Agricultural Station for part of the Millennium 

Drought event (January 2002 – April 2003). Following the running sum approach of Yevjevich 
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(1967, 1991), the onset of drought can be taken the month when the SPI value declines below 0 

and the termination of drought when the SPI first returns to positivity. Within this drought period 

that is consistent with a significant reduction in the cumulative monthly rainfall, the duration of 

drought event can be taken as the sum of all months with SPI < 0 and the peak intensity when the 

SPI value is at its minimum value.       

 

3.0 Materials and Method 

3.1 Study Area and Data 

In this study a set of drought forecasting models, based on the SPI time-series, were employed 

for five meteorological sites (Fig. 3). The sites are located in eastern Australia (state of New 

South Wales) where drought is a common occurrence and leads to consequences for agricultural 

activities in the Murray Darling Basin (Deo et al., 2009; Helman, 2009; McAlpine et al., 2009). 

Table 1 lists the geographical and hydrological statistics for annual data averaged over a period 

from 1915–2012. The sites depict diverse climatic features with elevations from 29–713 m year
-1

 

and mean annual rainfall from 279.77–750.35 mm year
1 

with a standard deviation of 23.93–

50.83 mm year
-1

. The climatologically averaged minimum rainfall is 1.06 mm year
-1

 

(Collarenebri) and maximum rainfall is 9.39 mm year
-1

 (Bathurst Agricultural Station). Apart 

from Yamba Station which is located in the coastal end of eastern Australia, the other stations 

(Bathurst Agricultural, Collarenebri, Peak Hill, Barraba and Yamba) are situated in Murray 

Darling Basin. Therefore, drought modelling in this region is considered as a novel task for the 

management of drought-risk to the agricultural sector.      

< Table 1> 

< Fig. 3> 

A set of models based on MARS, LSSVM and M5Tree algorithm was developed using 

monthly rainfall (P) from 1915–2012. The P-data were acquired from Australian Bureau of 

Meteorology’s high quality (HQ) archives (Lavery et al., 1997; BOM, 2008) which had been 

quality-checked using standard normal homogeneity tests. Accordingly, the recorded rainfall had 

been adjusted for inhomogeneity caused by external factors, such as station relocations, 

instrumental errors, and adverse exposure to the measurement site (Alexandersson, 1986; Torok 

and Nicholls, 1996). The process detects and removes gross single-day errors in data. Rather 

than making inhomogeneity adjustments in mean values, daily records were adjusted for 

discontinuities at the 5, 10… 90, 95 percentiles. Missing data were deduced by generating 

artificial rainfall based on cumulative rainfall distributions (Haylock and Nicholls, 2000). 
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Consequently these data have since been used for climate studies (Suppiah and Hennessy, 1998; 

Alexander et al., 2006; Deo and Şahin, 2015b, a; Deo et al., 2016a; Deo et al., 2016b). 

As data-driven models rely on predictive features in historical data to forecast future 

drought, climate indices and sea surface temperature (SST) were used as regression covariates to 

feed in such attributes and data patterns for the respective drought model. The climate of eastern 

Australian responds to oceanic phases, defined by the Southern Oscillation Index (SOI), Pacific 

Decadal Oscillation Index (PDO), Indian Ocean Dipole (IOD) and ENSO Modoki Index (EMI) 

and Nino 3.0, Nino 3.4 and Nino 4.0 SST (Nicholls, 2004; Helman, 2009; Ummenhofer et al., 

2009; Dijk et al., 2013). In earlier studies, the PDO and IOD phases were associated with 

drought (McKeon et al., 2004; McAlpine et al., 2009), and rainfall and streamflow patterns in 

central and southern parts of Murray Darling Basin exhibit significant perturbations due to SOI, 

PDO and IOD phases (Verdon and Franks, 2006; McGowan et al., 2009). When central eastern 

Pacific region’s SST is warm and PDO is in positivity, eastern Australia is generally warm and 

dry (Jones et al., 1996; Power et al., 1999; Ummenhofer et al., 2009). Similarly, EMI moderates 

austral autumn rainfall (Ashok et al., 2007; Cai and Cowan, 2009). Considering this, no single 

index can fully explain how the future drought will evolve (Helman, 2009). Therefore, the study 

utilised the SOI and IOD data (Australian Bureau of Meteorology) (Trenberth, 1984), PDO 

(Joint Institute of Study of Atmosphere and Ocean) (Mantua et al., 1997; Zhang et al., 1997), 

EMI (Japanese Agency for Marine Earth Science and Technology) (Ashok et al., 2007; Weng et 

al., 2007; Weng et al., 2009), and SST (National Prediction Centre) as the predictor variables for 

MARS, LSSVM and M5Tree models.    

<Table 2> 

3.2 Drought Model Development 

To validate the potential utility of data-driven algorithms for drought modelling at five 

study sites in eastern Australia, the drought models were developed using MATLAB software. 

The predictor variables (x) comprised monthly observations of rainfall, sea surface temperature 

(Nino 3.0, Nino 3.4 and Nino 4.0 SST), and climate indices (SOI, PDO, IOD and EMI) for the 

period 1915–2012 (Table 2). The data were partitioned in the 50:25:25 ratios to create the 

training (01/1915–12/1963) and validation/testing sets (01/1964–12/2012), respectively (Table 

3).  

<Table 3> 

In the case of data-sparse situations, a drought modeller must have the knowledge of the 

relevant predictors or input(s) to develop a parsimonious forecasting model. As the drought 

phenomenon is complex and has poorly understood relationships that exist between target (SPI) 
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and predictor variable (x) (Mishra and Singh, 2010, 2011), determining the appropriate set of 

inputs to provide an accurate and reliable forecast model is challenging (Abbot and Marohasy, 

2014). A useful preliminary step is to examine the individual relationships between x and the 

target output (i.e. SPI). Therefore, in this study, the cross correlation coefficient, rcross, between 

objective (y  SPI) and predictor variable (x) in the training period was acquired to check the role 

of predictor in modelling the drought index. The magnitude of rcross which measures similarity 

between y and shifted (lagged) copies of xi = (x1, x2... xM – 1) and y = (y1, y2... yN – 1) was given by 

the covariance: 






 
)1,1min(

),0max(

, )1(,...,0),...,1(,
NkM

kj

kjkxy NMkx      (24.1) 

)0()0(

)(
)(

yyxx

xy

cross

t
tr




         (24.2) 

where )(trcross  is expected to vary between -1 and 1 for any t (lagged timescale). Table 4 shows 

the cross correlation of inputs (versus SPI) where statistically significant correlation at the 95% 

level of confidence is indicated. The strongest and statistically significant correlation coefficient 

with 897.0833.0  crossr is obtained for rainfall as a predictor variable for SPI followed by SOI 

( 247.0211.0  crossr ) and Nino 4.0 SST ( 131.0159.0  crossr ). The value of rcross for the 

case of Nino3.4 SST as a predictor variable was also statistically significant, albeit the strength 

of correlation was relatively weaker. According to this result, the study utilized rainfall as a 

mandatory input variable for SPI forecasting.     

<Table 4> 

In order to develop MARS, the most appropriate basis functions (Eq. 3) were deduced for 

each study site by developing regression trees to attain the optimal model. For M5Tree model, a 

tree-based forecasting model was constructed using the ‘divide-and-conquer rule’ (Rahimikhoob 

et al., 2013; Kisi, 2015), which was later fine-tuned. An example of regression trees for optimum 

MARS and M5Tree models for Bathurst Agricultural Station is given in Appendix (Table A1 

and A2). For designing the optimum LSSVM model, a grid search procedure (Hsu et al., 2003; 

Lin and Lin, 2003) was applied to determine the optimum regularisation constant (Eq. 8) and 

RBF kernel width (Eq. 14). As an example, the variation of root mean square error (RMSE) 

attained versus the range of regularisation constants and kernel widths tested for Bathurst 

Agricultural Station is shown in Fig. 3. In accordance with literature (Hsu et al., 2003; Lin and 
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Lin, 2003; Hsu et al., 2008), it is evident that for a given combination of C and , the RMSE 

value for the model obtained is unique. Thus, for all stations considered, the magnitude of 

LSSVM model parameters were optimised to reduce model error. The drought models were 

evaluated according to the agreement between forecasted and observed SPIs within the 

validation period.  

 <Fig. 3> 

3.3 Model Evaluation Criteria 

In the model evaluation phase, one must not rely on a single statistical metric but rather should 

utilise a range of performance indicators to validate the drought modelling skills from different 

perspectives (Krause et al., 2005; Dawson et al., 2007). In this study, the accuracy of MARS, 

LSSVM and M5Tree was evaluated primarily using the root mean square error (RMSE), mean 

absolute error (MAE) and coefficient of determination (r
2
) (Krause et al., 2005), viz: 
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where N (=294) was the number of test samples, SPIo and SPIf were the i
th

 value of the observed 

and forecasted SPIs in validation/testing period.  

As a widely adopted model evaluation metric, RMSE and MAE were able to assess the 

forecasting capability of the data-driven models where RMSE deduced the goodness-of-fit 

relevant to high SPI values, whereas MAE was not weighted towards high(er) magnitude or 

low(er) magnitude events, but instead evaluated all deviations of forecasts from the observed 

values, in an equal manner and regardless of sign (Deo et al., 2016b). It should be noted that r
2
, 

which was bounded by [-1, 1], described the proportion of statistical variance in the observed 

values of SPI that was explained by the drought forecasting model. The equation, however, was 

based on a consideration of linear relationship between SPIf and SPIi and was, therefore, limited, 

as it standardized to the observed and modelled values of mean and variance (Deo et al., 2016b). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

In this study, drought models were developed and tested for geographically diverse sites 

in eastern Australia that exhibit different climatic patterns. To compare results for different sites, 

the normalised form of MAE, represented as the percentage inaccuracy of the forecasted relative 

to the observed SPI, was computed viz: 
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The Willmott’s Index (WI), which in fact resolves the potential bias issues in RMSE, was 

also determined (Willmott, 1981; Krause et al., 2005):  
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It is noteworthy that the WI is advantageous over the RMSE and the R
2
 value where the 

differences in monthly SPI from observed and forecasted data are described as squared values, 

hence larger values of the forecasted SPI are overestimated, whereas smaller values are 

neglected (Legates and McCabe, 1999). However, WI was able to overcome this insensitivity of 

model error (Willmott, 1981), as the ratio of mean square error is considered rather than the 

square of the error differences (Willmott, 1984). 

 

4.0 Results and Discussion    

In this section, results attained from MARS, LSSVM and M5Tree for forecasting monthly SPI in 

eastern Australia are assessed to validate their adequacy in drought modelling study. The SPI 

forecasted using MARS was analysed where the importance of input variables was checked in 

terms of the predictive accuracy. Then, MARS, LSSVM and M5Tree were compared, based on 

statistical performance criteria (Eq. 25–29), including a seasonal analysis of model accuracy.  

Table 5 shows the forecasting accuracy of MARS in training, validation and testing 

periods with a single input variable (rainfall) and gradually added inputs (with climate indices 

and sea surface temperature) as the supplementary predictor variables. Although rainfall data 

were utilised as the mandatory input variable subject to highest cross correlation with observed 

SPI (e.g. Table 4), the order of the other input combinations was not decided upon apriori but 

rather how the MARS model responded to the forecasted value of SPI in the training, validation 

and testing periods. Accordingly, the magnitude of RMSE, MAE and R
2
 between forecasted and 
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observed SPIs were examined for each site and the respective input combinations to generate a 

total of nine modelling scenarios (M1–M9) (see Table 5). 

<Table 5> 

According to the results presented in the testing period, a significant dependence of the 

model accuracy on the geographic distribution of stations was demonstrated where different 

input combinations were necessary for attaining the most accurate predictive model. Consider, 

for example, the case of Bathurst Agricultural Station; the MARS model utilised rainfall, all of 

the three SSTs data, SOI and the month to yield the lowest value of RMSE/MAE and the highest 

R
2
 value of approximately 0.159, 0.159 and 0.976, respectively, whereas for Collarenebri, the 

most accurate result was attained without SOI as a predictor variable (Table 5a). A closer 

examination of this result also showed that if redundant variables were included in the MARS 

model, the performance either remained stationary or declined for some study sites. This was 

true for the case of the Bathurst Agricultural Station, where the model M5 exhibited a value of 

R
2
 = 0.957 and RMSE/MAE = 0.222/0.174 with rainfall, SSTs and SOI as the predictor variables, 

but the inclusion of PDO, IOD and EMI did not improve the model’s forecasting accuracy.  

<Fig. 5> 

It is important to note that an inclusion of the month (that indicates periodicity) as a 

predictor variable for all five stations led to a marked improvement in the MARS model’s 

performance. This has also been illustrated in Fig. 5 with a scatterplot of the forecasted value of 

SPI (SPIF) relative to the observed (SPIO) in the testing period. In accordance with this, the 

degree of scatter was reduced and the correspondence of linear agreement between SPIF and 

SPIO was improved for all test stations. Consistently, the r
2
 value was also increased by about 

2.0% and RMSE was decreased by about 28.4% for Bathurst Agricultural Station. A similar 

deduction was made for Collarenebri station, where virtually no improvement was noted in the 

models denoted as M5, M6 and M7 relative to the model denoted as M4 when SOI, PDO and 

IOD were included as predictor variables (Table 5b). In fact, for the Yamba station, there was a 

dramatic improvement in the accuracy of M5 relative to M1, M2, M3 and M4, with RMSE of 

about 0.298 compared to 0.304, 0.335, 0.346 and 0.358, respectively. However, when the time 

series of PDO, IOD and EMI were added gradually into the models M6, M7 and M8, 

respectively, the RMSE value increased from 0.302–0.314 and the r
2
 value decreased from 

0.910–0.896. On the other hand, the exclusion of PDO, IOD and EMI as the model inputs led to 

a marked improvement in the overall performance, with a reduction in RMSE by 64.1% and an 

increase in r
2
 by 9.1% (Table 5e). This result was consistent with other studies (e.g. (Lyon et al., 

2012)), where the SPI prediction was improved by using seasonality as a predictor variable.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

While it is unambiguous that the optimum MARS model for Bathurst Agricultural 

Station, and Collarenebri and Yamba stations did not require the PDO, IOD and EMI data as 

input variables, the forecasted results for Peak Hill and Barraba stations were in fact significantly 

dependent on these data (including SOI) as a predictor variable (Table 4c-d). Despite a certain 

degree of variation in terms of how each of the input variables acts to moderate the r
2
 and 

RMSE/MAE values, an overall improvement in model performance was evident when all nine 

predictor variables for Peak Hill and the eight predictor variables for Barraba station were 

incorporated in the MARS model. Clearly, this indicated that the optimum MARS model 

responded quite differently to the different input variables used as predictors (Table 5). Likewise, 

the accuracy of the MARS model exhibited a significant variability in its overall performance 

based on the geographic distribution of the present study sites (Fig. 2). It is noteworthy that the 

role of periodicity in drought forecasting was clearly demonstrated by the MARS model, where 

an improvement in performance was evident for the sites with month as a predictor variable.   

<Fig. 6> 

In Fig. 6 the forecasting error, E = SPIF – SPIO, deduced in the last five years of testing 

data for MARS, LSSVM and M5Tree models is shown, where the month (periodicity) was 

utlilised as a predictor variable in addition to the other variabales (Table 2). To also demonstrate 

the model’s statistical performance with and without periodicity, Table 6 compares the results 

for MARS, M5Tree and LSSVM models with only the optimum input combinations. In terms of 

the agreement between observed and forecasted SPIs for the best model, the time-series plot of 

error values depicted the MARS and M5Tree models as being more accurate than the LSSVM 

model, especially for Bathurst Agricultural Station, and Collarenebri and Yamba stations, where 

the amplitudes of E were generally smaller for majority of the test points. However, when 

RMSE, MABE and r
2
 values were compared in the testing period (Table 6), the MARS model 

performed better (RMSE = 0.132, r
2
 = 0.980) than the other two counterparts for the case of Peak 

Hill and Yamba stations, whereas the M5Tree model yielded better performance for the case of 

Collarenebri and Barraba stations (RMSE = 0.174, r
2
 = 0.971 and RMSE = 0.179, r

2
 = 0.974, 

respectively). For the case of Bathurst Agricultural Station, LSSVM produced modestly better 

forecasts (RMSE = 0.159, MAE = 0.109, r
2
= 0.977) than the MARS (RMSE = 0.159, MAE = 

0.150, r
2
= 0.976) and M5Tree ((RMSE = 0.244, MAE = 0.150, r

2
= 0.948) models. Consistent 

with the MARS model (Table 5; Fig. 6), for all stations considered the LSSVM and M5Tree 

models also yielded significantly better results where periodicity was utilized as a predictor 

variable.     

<Table 7> 
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As the geographic locations of study sites are diverse (Fig. 2), as also stipulated by 

distinct hydrological conditions (Table 1), comparison of the relative forecasting errors should be 

made in order to assess the model’s accuracy for one site relative to another (Krause et al., 2005; 

Dawson et al., 2007; Deo et al., 2016c). Thus, Willmott’s index of agreement (WI) and the mean 

absolute percentage error (MAPE) (%) deduced in accordance with Eq. 28 and 29 for the MARS, 

LSSVM and M5Tree models were made. Table 7 lists the values of WI and MAPE. For the case 

of Bathurst Agricultural Station, it was interesting to note that in contrast to the conclusion 

reached on the basis of RMSE, MAE and r
2
 where LSSVM was better than MARS and M5Tree 

models (Table 6), the model evaluation based on WI and MAPE suggested that the MARS model 

was more accurate (WI = 0.989, MAPE = 29.05%) than LSSVM and M5Tree (0.988, 34.164% 

and 0.977, 50.86%, respectively) (Table 7). However, without ignoring the fact that the 

differences between MARS and LSSVM was marginal (Table 6), it can be construed that both 

MARS and LSSVM models appear to be suitable for SPI-based forecasting Bathurst Agricultural 

Station.  

For the cases of Peak Hill and Yamba stations, the MAPE and WI clearly stipulate the 

superiority of MARS over LSSVM and M5Tree models. When the values of MAPE and WI were 

evaluated for the case of Collarenebri and Barraba stations, the results in Table 7 revealed a 

dramatically better performance of M5Tree with MARS and LSSVM models being significantly 

erroneous. That is, the magnitude of MAPE was approximately 46.77 and 39.18% (for 

Collarenebri) and 43.833 and 79.30% (for Barraba) relative to 29.098 and 37.94% generated by 

the M5Tree model. This indicated that an SPI-based drought forecasting model using M5Tree 

model should preferentially be adopted over the MARS and LSSVM models. However, the 

M5Tree model should incorporate the monthly cycle as a predictor variable so that the drought 

evolution over time is considered to yield more accurate and reliable forecasting performance.  

<Fig. 7> 

In Figure 7 the frequency distribution of MARS, LSSVM and M5Tree model’s 

forecasting error in an increment of 0.10 has been shown where the percentage of the months in 

the test period with an error magnitude of ±0.10 has been collated. It was evident that the 

frequency of forecasting errors yielded by the MARS model within the smallest error bracket 

(±0.10) was recorded to be the highest for the case of Bathurst Agricultural Station (62.6%) and 

Yamba (76.9%) station. This indicated the superiority of MARS over LSSVM and M5Tree 

models. On the other hand, for the case of Collarenebri, Peak Hill and Barraba stations, the 

M5Tree model was seen to perform with greater accuracy when the cumulative percentages of 

model errors in the smallest error bracket were evaluated. Although this result appeared to 
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accede the deduction made according to the mean absolute percentage error for Collarenebri and 

Barraba (Table 7), it contrasted the results for Peak Hill station where the MAPE value was the 

lowest for the MARS model. This showed that although the overall performance with the MARS 

model was better for Peak Hill, the MARS model could produce a majority of the forecasting 

errors in the test period with small error magnitudes (Fig. 7).    

<Table 8> 

So far, an evaluation of the prescribed data-driven models was restricted to the 

assessment of the forecasted and observed SPI values in the entire test dataset (1998–2012), 

including the cases of negative SPI (dry condition) and positive SPI (wet condition). However, in 

real-time drought forecasting, it is vital to clearly establish whether the prescribed MARS, 

LSSVM and M5Tree models are accurate enough to be able to simulate the drought segment of 

the SPI, as such information is more useful for drought-risk and water resources management. 

The exclusion of non-drought part of SPI for drought model assessment is also important as it 

provides the modeler crucial information on whether the model is able to represent future 

drought cases adequately. Table 8 shows a closer analysis of forecasting results of the drought 

part of SPI within the test period, where the relative forecasting error (%) in respect of the 

observed SPI ≤ -2.0 (extreme drought), -1.5 ≤ SPI < -2.0 (severe drought) and -0.5 ≤ SPI < 1.5 

(moderate drought) is summarized.  

It is evidenced that M5Tree and MARS were highly accurate, compared to the LSSVM 

model for all study sites considered as well as the different category of drought events that were 

forecasted (Table 8). Considering the case of forecasting moderate drought events (Table 8a), the 

M5Tree model yielded a relative error of between 5.90–13.6% for at least four (Collarenebri, 

Peak Hill, Barraba and Yamba) out of five stations, whereas the MARS and LSSVM models 

yielded errors of 10.9–17.7%, and 16.5–19.3%, respectively. Similarly, for severe drought 

forecasting, the M5Tree model was dramatically better with the relative errors of about 3.0–5.2% 

for at least three stations (i.e. Collarenebri, Peak Hill and Barraba) than with 5.9–21.2% (MARS) 

and 11.4–27.1% (LSSVM) models. Likewise, for extreme drought forecasting, the M5Tree 

model was better than LSSVM and MARS, with relative errors of 4.9–11.8% for Bathurst, 

Collarenebri, Barraba and Yamba compared with about 9.1–30.9% (MARS) and 16.0–37.2% 

(LSSVM). It is imperative to note that the LSSVM model generated the largest magnitude of 

forecasting error for all five stations tested within the severe and extreme drought categories 

(MAPE = 7.6–30.6% and 16.0–37.2%, respectively). The results thus indicate that the LSSVM 

model was unsuitable for modelling drought events in the study area. 
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While M5Tree was found to be relatively superior to the MARS and LSSVM models for 

a majority of the sites, there appeared to be a significant dependence of the respective model 

performance on the geographic distribution of sites. For example, in the case of extreme drought 

forecasts, M5Tree was more accurate than MARS for all sites except Peak Hill. In fact, for the 

latter station, MARS outperformed the M5Tree model, where relative forecasting errors of 

0.20% compared with 4.9% (M5Tree) and 37.2% (LSSVM) were recorded (Table 8a). The 

model developed for severe and moderate drought forecasting found M5Tree as being more 

accurate than MARS when tested for Collarenebri, Barraba and Yamba stations (MAPE  3.0–

5.2%) compared to 6.6% and 1.3% for Bathurst and Yamba stations (Table 8b). Accordingly, it 

can be concluded that the drought models exhibited a strong geographic behavior in their 

accuracy, which shows the complexity of drought behavior and the different data attributes and 

patterns in the predictor variables used to forecast SPI. Notwithstanding this, it is perceived that 

while MARS exhibited an overall better performance for a number of stations when evaluated 

for the entire test data (Tables 6 and 7), the M5Tree model resulted in much better accuracy 

when the drought segment of the test signal was analyzed (Table 8).  

By an analysis of the monthly values of the forecasted and observed SPI data, the model 

errors generated by MARS, M5Tree and LSSVR over different seasons were also checked in the 

austral summer (December-January-February), autumn (March-April-May), winter (June-July-

August) and spring (September-October-November) periods (Table 9). Results showed that the 

MARS and M5Tree models were generally more accurate in SPI forecasting than the LSSVM 

model. In fact, for the Collarenebri station, M5Tree exhibited the lowest value of MAPE for all 

four seasons and for Barraba, the model errors were the smallest for the DJF, MAM and SON 

periods. For the JJA period, the M5Tree model yielded an error whose magnitude was very close 

to that of the MARS model (29.5% compared to 29.2%). This showed that for Collarenebri and 

Barraba stations, M5Tree was more appropriate for drought modelling over the LSSVM and 

MARS models. Whereas the relative seasonal errors generated by the M5Tree model for Yamba 

station were approximately 42.19–37.78% lower than those of the MARS model for DJF and 

SON seasons, the error for MAM and JJA periods was approximately 15.05–75.75% larger. It 

was noteworthy that for Bathurst Agricultural Station, the MARS model was the most accurate 

model for SPI forecasting. Interestingly, except for the SON season for Bathurst Agricultural 

Station, the forecasted and observed values of SPI generated by LSSVM had a very poor 

agreement for all study sites, as confirmed by the elevated values of MABE. This was consistent 

with earlier results (Table 6, 7 & 8; Figures 4, 6 & 7) by means of statistical and visual 

agreements between the values of SPIF and those of SPIO. 
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Table 9> 

5.0 Further Discussion, Limitations and Future Work   

The results acquired for modelling monthly SPI using the MARS, LSSVM and M5Tree 

algorithms highlighted a pivotal role of periodicity as a crucial driver of model accuracy, among 

other predictors in order of their relative importance. This was clearly evident by the improved 

performance of models with monthly cycle as an input, which yielded lower RMSE, MAE and 

larger r
2
 (Tables 5 and 6) compared to the forecasts without applying the periodicity factor. 

These results also resonate with those of other investigations (e.g. (Kane and Trivedi, 1986; 

Kane, 1997; Almedeij, 2015; Moreira et al., 2015)), where periodicity in the drought behavior 

was found to be associated with the seasonality of input variables and the respective phases of 

atmospheric-oceanic oscillation, such as the quasi-biennial oscillation (QBO), solar activity, 

ENSO, Inter-decadal Pacific Oscillation (IPO) and intensification of subtropical ridge (Verdon 

and Franks, 2006; Verdon‐Kidd and Kiem, 2009; Timbal et al., 2010; Gallant et al., 2013; 

Almedeij, 2015). Although climate indices, including SOI, PDO, IOD, EMI and SSTs, were 

utilized in different combinations to model the SPI time-series, the greater importance of SST 

and the respective month in the model’s training period as a predictor was evident. Lyon et al. 

(2012) showed a significant improvement in SPI prediction using seasonality in precipitation as 

an important characteristic of the local climate. In general, seasonality in the precipitation 

variance was seen to appreciably enhance the predictive skills derived from the drought indicator 

with substantial variation, depending on the location and season considered. In our study, the use 

of seasonality was very important for accurately modelling SPI at all study sites, leading to a 

marked improvement in model performance (Tables 5, 6 and 7). Therefore, our results reinforce 

the importance of periodicity as an important determinant of drought modelling accuracy. 

Comparison of  model accuracies using the relative percentage error (MAPE) for MARS, 

LSSVM and M5Tree showed that MARS was more accurate than LSSVM and M5Tree for 

Bathurst Agricultural Station, and Peak Hill and Yamba stations, whereas for Collarenebri and 

Barraba, M5Tree was more accurate than other models (Table 7). In fact, the testing of models 

with and without periodicity found significant differences in the predictive skills, where MAPE 

was recorded to be lower by about 35.93% (Bathurst Agricultural Station), 23.56% 

(Collarenebri), 64.24% (Peak Hill), 26.21% (Barraba) and 75.45% (Yamba). This demonstrated 

that the relative contribution of data patterns and attributes in respect to periodicity of SPI-based 

models varied greatly by the geographic location (Fig. 2). In particular, stations Yamba and Peak 

Hill were found to be highly responsive to the periodicity as an input variable with a marked 

improvement in model accuracy, and, therefore, revealed a better potential with greater accuracy 
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of models at these stations compared to Bathurst, Collarenebri and Barraba. Although the exact 

cause of this is not known, it is possible that the changes in rainfall and other drought indicators 

(e.g. SOI) were more closely linked to the cyclic behavior of ocean and atmospheric phases. 

Earlier studies that developed data-driven models based on a combination of climate indices, 

SSTs and rainfall found similar variability of the model accuracy over large, sparsely distributed 

areas (Abbot and Marohasy, 2012, 2014; Deo and Şahin, 2015b, a; Deo et al., 2016b). Therefore, 

the importance of identifying the most appropriate predictor variable for monthly SPI forecasting 

remains a paramount task for accurate modelling of drought behavior. 

The distinct geographic behaviour of the drought model accuracy was clearly consistent 

with an earlier study that developed an ANN model for the prediction of the Standardized 

Precipitation and Evapotranspiration Index (Deo and Şahin, 2015a) and the Effective Drought 

Index (Deo and Şahin, 2015b). The former study, which also employed rainfall, climate indices 

and SST data, reported better estimation accuracy for Yamba than for Bathurst Agricultural 

Station. Therefore, it is perceived that the accuracy of drought models at different study sites is 

expected to vary in view of the high variability established in the relationships between climate 

indices, SSTs and rainfall data over different spatial and temporal domains (Nicholls, 2004; 

Schepen et al., 2012). The evaluation of models over monthly and seasonal scales showed that 

LSSVM was generally inferior to MARS and M5Tree (Table 9). While the exact cause of this is 

not known as the models adopt a black-box approach for extracting predictive features in the 

training dataset, other studies in evaporation modelling (Kisi, 2015, 2016) also found similar 

results. Importantly, when drought cases (for months with SPI < 0) were analysed in the test 

period, the M5Tree model showed dramatically better performance for a majority of the stations 

in moderate, severe and extreme drought categories.  

While our study has demonstrated the potential use of MARS, LSSVM and M5Tree 

algorithms in SPI modelling, there are limitations of this paper that create opportunities for a 

follow-up work. One limitation was that selection of the best predictor variables based on an 

individual model’s response for accurately predicting the SPI value (Table 5). However, in 

addition to the original input signal, the lagged combinations of the inputs that are expected to 

represent the antecedent behaviour of the respective variable over historical time horizon can be 

applied. If this is done, the drought model is likely to incorporate the important role of serial 

correlation (or historical persistence) arising from the respective contributory factor, that may 

also encapsulate the possible interactions and feedbacks from rainfall, climate indices and SSTS 

into the soil moisture, groundwater storage, recharge and other hydrological parameters for 
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developing the drought model. Owing to the elusive definition of drought and its insidious and 

complex nature where the effect of a predictor is not known a priori, the information deduced 

from serial correlation of the inputs could incorporate the inherent persistence characteristics, 

and therefore, help extract predictive information to improve the future drought warning (Lyon 

et al., 2012). In fact, the cumulative, time-integrated nature of drought events (resulting in 

persistence from one month to the next) was shown to be an important time-lagged driver with 

characteristics valuable for drought monitoring and warning (Redmond, 2002; Nicholls, 2005; 

Sen and Boken, 2005).  

In this study, we did not adopt a pre-processing technique for input data for developing 

the respective drought models. One criticism of data-driven models without a pre-processing 

technique is their inability to account for the physics of the hydrological processes (Aksoy et al., 

2007) that are necessary for accurate prediction of drought behavior. As the predictors of drought 

also exhibit nonlinear and non-stationary phenomenon, the presence of non-stationarity features 

(e.g. trends, seasonal variations, periodicity and jumps in input data) can influence the model 

accuracy (Tiwari and Chatterjee, 2010; Tiwari and Adamowski, 2013). Also, the relationships 

between inputs (e.g. rainfall, SOI) and the objective variable is generally non-linear (Montanari 

et al., 1996), so the non-stationarities caused by trends and seasonal variation can produce a 

negative impact on model performance (Adamowski et al., 2012; Deo et al., 2016b; Deo et al., 

2016c). However, if a pre-processing technique (e.g. wavelet transformation) is adopted, it can 

extract the time-frequency information and capture the data attributes and patterns to reflect the 

stochasticity of input variables (Daubechies, 1990). Wavelet transformation is used as an 

ancillary tool for analyzing stochastic variations, periodicity and trends (Kim and Valdés, 2003; 

Wang and Ding, 2003; Adamowski and Sun, 2010; Kisi, 2010; Kisi and Cimen, 2011; Nalley et 

al., 2012; Deo et al., 2016b; Deo et al., 2016c) but is yet to be tested for drought forecasting 

using MARS, LSSVM and M5Tree. In a follow-up study, wavelet transformation or an 

alternative data pre-processing tool can be applied to enhance the performance of the prescribed 

drought models. Additionally, the importance of, and the relationship between, oceanic-

atmospheric drivers (e.g. SST) and the respective drought index (e.g. SPI) could potentially be 

identified by incorporating nonlinear input variable selection (May et al., 2008; Salcedo-Sanz et 

al., 2014; Seo et al., 2014; Quilty et al., 2016), providing an alternative pathway for deducing the 

most relevant input variables for improved performance of SPI models.  

6.0 Conclusion 
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Drought forecasting that can yield a numerical evaluation of drought using standardized rainfall 

deficits and surpluses, and therefore, is an essential task for implementing drought mitigation 

strategies. A drought poses multi-dimensional, pernicious and detrimental impacts, so the 

forecasting of SPI which is a universally-acceptable statistical metric for drought assessment, can 

assist in decision-making for agriculture, water management and water demand, pricing and 

policy for managing the risks associated with the evolution of a current drought in the future. In 

this study, the capability of MARS, LSSVM and M5Tree models for SPI modelling was 

validated for a set of five study sites in drought-prone, eastern Australia. The models were 

developed using predictor variables defined by rainfall, climate indices and SSTs over the period 

1915–2012, that were partitioned in the 50% (training) and 25-25% (cross validation and testing) 

subsets. In order to test the relative importance of predictor variables for SPI-forecasting, the 

number of inputs in the MARS model was incremented one by one and the model’s performance 

was assessed using RMSE/MAE and r
2
 between forecasted and observed SPI in training, 

validation and testing sets. Results revealed that MARS required rainfall and periodicity as 

mandatory input for all stations, however, the order of importance of SST and climate indices 

was unique among the different stations. This confirmed the superior role of a given predictor 

variable over others, in respect of SPI modelling at the respective study site. Comparison of the 

data-driven models revealed that MARS and M5Tree can be successfully adopted for SPI 

forecasting, although there was a significant geographic variation in the performance of models. 

While MARS exhibited the highest accuracy for Bathurst and Peak Hill stations with MAPE = 

29.05% and 25.79%, respectively, the M5Tree accuracy exceeded MARS and LSSVM for 

Collarenebri, Barraba and Yamba with MAPE = 29.098%, 37.94% and 20.89%, respectively. 

Importantly, the assessment of drought cases in the test data showed that M5Tree was highly 

qualified for modelling drought part of the SPI data. In the case of forecasting moderate drought 

in the range -1.5  SPI -0.5, the mean absolute percentage error for M5Tree was between 5.9–

13.6% for the four study sites (Collarenebri, Peak Hill, Barraba and Yamba). For severe drought, 

the accuracy of MARS exceeded LSSVM and M5Tree for Collarenebri, Peak Hill and Barraba, 

whereas for severe drought cases, MARS was more accurate than the other two models for 

Bathurst, Collarenebri and Barraba and Yamba stations. It is noteworthy that LSSVM was 

generally inferior for SPI forecasting when drought segment of SPI was considered although the 

model’s hyperparameters (kernel width and regularization constant) were optimized using grid-

search procedures to enhance the forecasting accuracy. No doubt, our study showed the 

complexity of drought modeling in eastern Australia, where no single forecasting model was 

seen to be universally better than the other for all study sites considered. Therefore, it is 
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advocated that the selection of drought models based on a given data-driven techniques is not 

achievable without challenges, thus, drought modelling may be tackled appropriately by 

enhancing the understanding and complexity of model inputs (predictor variables) in relation to 

the drought behavior and how these patterns and attributes are extracted to develop the actual 

drought forecasts. Finally, a drought model accuracy is expected to be only dependent on the 

considered model’s mathematical and computational frameworks but also on the interactions of 

the predictive features within the input variables utilized and the non-linear associations with the 

respective response variable (drought index).    
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Figure Captions 

Fig. 1.  Structures of MARS, M5Tree and LSSVM models.  

Fig. 2 Monthly standarized precipitation index with drought characteristics and rainfall 

data for millennium drought (January 2002–April 2003) for Bathurst Agricultural 

Station. 

Fig. 3 Location of study sites in eastern New South Wales (NSW).  

Fig. 4 The variation of test root mean square error (RMSE) versus regularisation 

constant (C) and kernel width () for LSSVR model for Bathurst Agricultural 

Station.  
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Fig. 5 Scatterplot of forecasted (SPIF) and observed (SPIO) standardized precipitation 

index (SPI) using the MARS model with and without periodicity (i.e. month) as 

an input parameter with a linear regression equation.   

Fig. 6 Forecasting error, E = SPIF – SPIO for MARS, LSSVM and M5Tree (with periodicity 

as an input variable) in the last 5 years of testing period. 

Fig. 7 Frequency distribution of forecasting error encountered by optimum MARS, 

LSSVM and M5Tree models. 

 

Table Captions 

Table 1: Descriptive statistics of the study sites. 

Table 2: Input variables used for monthly SPI forecasting. 

Table 3: The partitioning of input data into training, validation and testing sets. 

Table 4: Cross correlation of inputs (with SPI). rcross in boldface are statistically significant 

with 95% confidence. 

Table 5: Influence of input combinations for forecasting of SPI using a MARS model 

measured by root mean square error (RMSE), mean absolute error (MAE) and 

coefficient of determination (R2). Note: optimum model for each site is 

boldfaced (blue). 

Table 6: Comparison of MARS, M5 Tree and LSSVM models with optimum inputs with and 

without periodicity.  

Table 7: Comparison of optimum MARS, LSSVM and M5Tree according to Willmott’s index 

(WI) and mean absolute percentage error (MAPE, %) with and without 

periodicity. 

Table 8: Forecasting skill of optimum MARS, M5Tree and LSSVM in terms of mean 

absolute percentage error, MAPE (%) for different categories of drought events 

within the test period.  

Table 9: Analysis of mean absolute percentage error, MAPE (%), over seasonal scales. 

Table A1 The regression tree for the optimal MARS models in modeling SPI-Bathurst 
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Table A2 The regression tree for the optimal M5Tree models in modeling SPI-Bathurst. 
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Fig. 1. Structures of MARS, M5Tree and LSSVM models.  
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Fig. 2 Monthly standarized precipitation index with drought characteristics and rainfall 

data for millennium drought (January 2002–April 2003) for Bathurst Agricultural 

Station. 
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Fig. 3 Location of study sites in eastern New South Wales (NSW).  
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Fig. 4 The variation of test root mean square error (RMSE) versus regularisation 

constant (C) and kernel width () for LSSVR model for Bathurst Agricultural 

Station.  
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Fig. 5 Scatterplot of forecasted (SPIF) and observed (SPIO) standardized precipitation 

index (SPI) using the MARS model with and without periodicity (i.e. month) as 

an input parameter with a linear regression equation.   
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Fig. 6 Forecasting error, E = SPIF – SPIO for MARS, LSSVM and M5Tree (with periodicity 

as an input variable) in the last 5 years of testing period. 
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Fig. 7 Frequency distribution of forecasting error encountered by optimum MARS, 

LSSVM and M5Tree models. 
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Tables 

 

 Table 1: Descriptive statistics of the study sites. 

 

 

 

 

Table 2: Input variables used for monthly SPI forecasting. 

 

 

Variable 

 

Acronym 

Monthly Rainfall P 

Sea Surface Temperature Nino3 SST 

Sea Surface Temperature Nino3.4 SST 

Sea Surface Temperature  Nino4 SST 

Southern Oscillation Index SOI 

Pacific Decadal Oscillation Index PDO 

Indian Ocean Dipole Index IOD 

Name of Station 

  

Geographic Characteristics 
Hydrological Statistics (1915 - 2012) 

Rainfall (P) mm year-1 

 

ID 

 

Long. 

 

Lat. 

 

Elevation (m) 
Mean 

Standard 

Deviation Minimum Maximum 
Skewness Flatness 

Bathurst Agricultural Station 63005 149.56°E 33.43S 713 645.57 36.39 9.39 131.06 1.30 4.40 

Collarenebri (Viewpoint) 48031 148.59°E 29.55°S 145 279.77 23.93 1.06 79.38 4.16 23.45 

Peak Hill Post Office 50031 148.19°E 32.73°S 285 517.90 43.57 2.42 142.43 2.19 7.90 

Barraba Post Office 54003 150.61°E 30.38°S 500 572.74 37.15 5.36 128.58 1.54 5.28 

Yamba   58012 153.36°E 29.43°S 29 750.35 50.83 6.22 174.18 1.27 4.26 
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ENSO Modoki Index EMI 

 

 

 

 

 

 

Table 3: The partitioning of input data into training, validation and testing sets. 

 

  Number of Data Points Period % of Data 

Total 1176 1915-2012 100 

Training 588 01/1915 to 12/1963 50 

Validation 294 01/1964 to 06/1988 25 

Testing 294 07/1988 to 12/2012 25 

 

 

 

Table 4: Cross correlation of inputs (with SPI). rcross in boldface are statistically significant 

with 95% confidence. 

 

Station P Nino3SST Nino3.4SST Nino4.0SST SOI PDO IOD EMI 

Bathurst Agricultural Station 0.897 -0.060 -0.094 -0.142 0.238 -0.095 -0.118 -0.130 

Collarenebri 0.882 -0.041 -0.093 -0.131 0.247 -0.041 -0.102 -0.141 

Peak Hill 0.833 -0.046 -0.093 -0.139 0.222 -0.064 -0.070 -0.159 

Barraba 0.884 -0.046 -0.112 -0.159 0.236 -0.084 -0.087 -0.159 

Yamba 0.854 -0.051 -0.088 -0.142 0.211 -0.035 -0.091 -0.143 
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Table 5: Influence of input combinations for forecasting of SPI using a MARS model 

measured by root mean square error (RMSE), mean absolute error (MAE) and 

coefficient of determination (R2). Note: optimum model for each site is 

boldfaced (blue). 

(a) Bathurst Agricultural Station 

 

Model 

Input Combination Training Validation Testing 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

M1 Rain 

 

0.259 0.223 0.935 0.277 0.238 0.937 0.272 0.237 0.931 

M2 Rain,Nino3SST 0.220 0.177 0.953 0.269 0.212 0.941 0.239 0.196 0.946 

M3 Rain,Nino3SST,Nino3.4SST 0.216 0.172 0.955 0.259 0.200 0.945 0.232 0.185 0.950 

M4 Rain,Nino3SST,Nino3.4SST,Nino4SST 0.210 0.163 0.957 0.255 0.189 0.947 0.237 0.181 0.951 

M5 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.205 0.161 0.959 0.243 0.184 0.952 0.222 0.174 0.957 

M6 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO 0.206 0.161 0.959 0.243 0.184 0.952 0.222 0.174 0.957 

M7 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.203 0.159 0.960 0.244 0.185 0.951 0.224 0.174 0.957 

M8 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.203 0.159 0.960 0.244 0.185 0.951 0.224 0.174 0.957 

M9 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI + month 0.152 0.102 0.978 0.198 0.129 0.968 0.159 0.159 0.976 

 

(b) Collarenebri 

M1 Rain 

 

0.276 0.216 0.907 0.287 0.212 0.904 0.286 0.207 0.911 

M2 Rain,Nino3SST 0.265 0.209 0.915 0.282 0.215 0.907 0.281 0.209 0.915 

M3 Rain,Nino3SST,Nino3.4SST 0.235 0.181 0.933 0.267 0.208 0.917 0.270 0.206 0.922 

M4 Rain,Nino3SST,Nino3.4SST,Nino4SST 0.236 0.180 0.932 0.257 0.197 0.923 0.271 0.202 0.923 

M5 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.233 0.180 0.934 0.262 0.203 0.920 0.272 0.201 0.923 

M6 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO 0.233 0.180 0.934 0.262 0.203 0.920 0.272 0.201 0.923 

M7 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.231 0.177 0.935 0.261 0.200 0.920 0.274 0.201 0.922 

M8 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.221 0.168 0.941 0.263 0.202 0.920 0.257 0.191 0.928 

M9 Rain,Nino3SST,Nino3.4SST, Nino4SST + month 0.205 0.150 0.949 0.232 0.167 0.938 0.234 0.172 0.941 

 

(c) Peak Hill 

M1 Rain 

 

0.297 0.252 0.903 0.310 0.256 0.895 0.298 0.250 0.899 

M2 Rain,Nino3SST 0.289 0.240 0.908 0.310 0.254 0.895 0.299 0.243 0.898 

M3 Rain,Nino3SST,Nino3.4SST 0.271 0.228 0.919 0.302 0.243 0.902 0.281 0.222 0.910 

M4 Rain,Nino3SST,Nino3.4SST,Nino4SST 0.260 0.215 0.926 0.284 0.224 0.912 0.270 0.204 0.927 

M5 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.257 0.211 0.928 0.282 0.223 0.914 0.265 0.202 0.929 

M6 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO 0.257 0.211 0.927 0.278 0.222 0.916 0.263 0.200 0.931 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

M7 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.255 0.208 0.928 0.280 0.224 0.916 0.268 0.204 0.930 

M8 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.246 0.200 0.934 0.281 0.220 0.916 0.251 0.198 0.929 

M9 Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI, PDO, IOD, EMI + month 0.130 0.096 0.981 0.148 0.107 0.976 0.132 0.096 0.980 

 

(d) Barraba 

M1 Rain 

 

0.213 0.162 0.955 0.244 0.163 0.946 0.218 0.167 0.951 

M2 Rain,Nino3SST 0.203 0.153 0.959 0.249 0.166 0.944 0.213 0.162 0.953 

M3 Rain,Nino3SST,Nino3.4SST 0.197 0.147 0.962 0.238 0.157 0.949 0.212 0.159 0.953 

M4 Rain,Nino3SST,Nino3.4SST,Nino4SST 0.196 0.145 0.962 0.242 0.156 0.947 0.217 0.160 0.952 

M5 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.195 0.145 0.962 0.238 0.156 0.949 0.209 0.156 0.955 

M6 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO 0.195 0.145 0.962 0.238 0.156 0.949 0.209 0.156 0.955 

M7 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.193 0.143 0.963 0.238 0.155 0.949 0.208 0.157 0.955 

M8 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.193 0.143 0.963 0.238 0.155 0.949 0.208 0.157 0.955 

M9 Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI, PDO, IOD + month 0.188 0.136 0.965 0.233 0.145 0.951 0.202 0.146 0.958 

 

(e) Yamba 

M1 Rain 

 

0.374 0.331 0.862 0.369 0.329 0.867 0.358 0.316 0.862 

M2 Rain,Nino3SST 0.351 0.300 0.878 0.360 0.304 0.874 0.346 0.294 0.871 

M3 Rain,Nino3SST,Nino3.4SST 0.322 0.271 0.898 0.356 0.294 0.878 0.335 0.271 0.880 

M4 Rain,Nino3SST,Nino3.4SST,Nino4SST 0.312 0.253 0.904 0.320 0.256 0.900 0.304 0.242 0.905 

M5 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.308 0.251 0.907 0.314 0.253 0.904 0.298 0.239 0.907 

M6 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO 0.306 0.250 0.908 0.317 0.258 0.903 0.302 0.245 0.910 

M7 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.304 0.245 0.909 0.318 0.261 0.903 0.307 0.249 0.909 

M8 Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.294 0.240 0.915 0.333 0.265 0.893 0.314 0.253 0.896 

M9 Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI + month 0.108 0.083 0.988 0.110 0.081 0.988 0.107 0.081 0.987 

 

Table 6: Comparison of MARS, M5 Tree and LSSVM models with optimum inputs with and 

without periodicity.  

(a) Bathurst Agricultural Station 

Case Model Input Training Validation Test 

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

 MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.205 0.161 0.959 0.243 0.184 0.952 0.222 0.174 0.957 
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Without 

periodicity 

(month) 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.152 0.107 0.978 0.315 0.234 0.919 0.315 0.234 0.927 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.205 0.158 0.959 0.257 0.186 0.947 0.223 0.171 0.958 

 

 

With 

periodicity 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.152 0.102 0.978 0.198 0.129 0.968 0.159 0.159 0.976 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.109 0.062 0.989 0.244 0.150 0.951 0.244 0.150 0.948 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.124 0.086 0.985 0.195 0.126 0.970 0.159 0.109 0.977 

 

(b) Collarenebri 

 

 

 

Without 

periodicity 

(month) 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST 0.236 0.180 0.932 0.257 0.197 0.923 0.271 0.202 0.923 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST 0.166 0.117 0.967 0.288 0.207 0.903 0.288 0.207 0.913 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST 0.211 0.157 0.946 0.234 0.172 0.937 0.257 0.180 0.935 

 

 

With 

periodicity 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,month 0.205 0.150 0.949 0.232 0.167 0.938 0.234 0.172 0.941 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,month 0.083 0.054 0.992 0.174 0.106 0.966 0.174 0.106 0.971 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,month 0.150 0.116 0.973 0.171 0.132 0.966 0.203 0.142 0.957 

 

(c) Peak Hill 

 

 

 

Without 

periodicity 

(month) 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.246 0.200 0.934 0.281 0.220 0.916 0.251 0.198 0.929 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.156 0.111 0.973 0.371 0.286 0.850 0.371 0.852 0.852 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,EMI 0.249 0.194 0.932 0.320 0.252 0.891 0.290 0.236 0.906 

 

 

With 

periodicity 

MARS Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI, PDO, IOD, EMI, month 0.130 0.096 0.981 0.148 0.107 0.976 0.132 0.096 0.980 

M5Tree Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI, PDO, IOD, EMI, month 0.087 0.054 0.992 0.209 0.109 0.955 0.209 0.109 0.971 

LSSVM Rain,Nino3SST,Nino3.4SST,Nino4SST, SOI, PDO, IOD, EMI, month 0.175 0.135 0.967 0.283 0.198 0.917 0.279 0.202 0.915 

 

(d) Barraba 

 

 

 

Without 

periodicity 

(month) 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.193 0.143 0.963 0.238 0.155 0.949 0.208 0.157 0.955 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.125 0.080 0.984 0.271 0.176 0.933 0.271 0.176 0.936 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD 0.194 0.136 0.962 0.286 0.187 0.927 0.245 0.177 0.941 
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With 

periodicity 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,month 0.188 0.136 0.965 0.233 0.145 0.951 0.202 0.146 0.958 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,month 0.092 0.060 0.992 0.179 0.113 0.971 0.179 0.113 0.974 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,PDO,IOD,month 0.146 0.100 0.979 0.276 0.179 0.934 0.231 0.171 0.950 

(e) Yamba 

 

 

 

Without 

periodicity 

(month) 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.308 0.251 0.907 0.314 0.253 0.904 0.298 0.239 0.907 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.208 0.149 0.957 0.458 0.361 0.808 0.458 0.361 0.831 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI 0.303 0.246 0.910 0.341 0.274 0.889 0.330 0.267 0.894 

 

 

With 

periodicity 

MARS Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.108 0.083 0.988 0.110 0.081 0.988 0.107 0.081 0.987 

M5Tree Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.095 0.057 0.991 0.194 0.120 0.963 0.194 0.120 0.969 

LSSVM Rain,Nino3SST,Nino3.4SST, Nino4SST,SOI,month 0.112 0.080 0.988 0.177 0.122 0.970 0.165 0.122 0.970 
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Table 7: Comparison of optimum MARS, LSSVM and M5Tree according to Willmott’s index (WI) 

and mean absolute percentage error (MAPE, %) with and without periodicity. 

 

Model 
Without periodicity With periodicity 

WI MAPE (%) WI MAPE (%) 

 Bathurst Agricultural Station 

MARS 0.980 64.98 0.989 29.05 

LSSVM 0.978 64.86 0.988 34.164 

M5 Tree 0.967 63.82 0.977 50.860 

  Collarenebri 

MARS 0.953 55.987 0.969 46.772 

LSSVM 0.956 54.466 0.975 39.186 

M5 Tree 0.951 52.662 0.984 29.098 

  Peak Hill 

MARS 0.962 90.004 0.990 25.768 

LSSVM 0.948 125.159 0.951 98.728 

M5 Tree 0.925 143.911 0.985 33.920 

  Barraba 

MARS 0.978 48.024 0.979 43.833 

LSSVM 0.969 66.187 0.973 79.309 

M5 Tree 0.968 64.151 0.987 37.944 

  Yamba 

MARS 0.955 98.015 0.994 22.565 

LSSVM 0.944 118.632 0.985 56.446 

M5 Tree 0.916 96.837 0.984 20.897 
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Table 8: Forecasting skill of optimum MARS, M5Tree and LSSVM in terms of mean absolute 

percentage error, MAPE (%) for different categories of drought events within the test 

period.  

 

(a) Moderate drought (-1.5  SPI < 0.5). 

Station Number of Events MARS LSSVM M5Tree 

Bathurst Agricultural Station 52 12.9 11.5 15.0 

Collarenebri 70 17.7 16.5 5.9 

Peak Hill 66 11.7 18.5 10.1 

Barraba 69 17.7 19.3 13.6 

Yamba 60 10.9 17.6 8.0 
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(b) Severe drought (-2.0  SPI < 1.5). 

Bathurst Agricultural Station 13 6.6 7.6 19.0 

Collarenebri 8 21.2 27.1 5.2 

Peak Hill 7 10.6 30.6 5.1 

Barraba 11 5.9 11.4 3.0 

Yamba 16 1.3 10.3 2.3 

(c) Extreme drought (-2.0 < SPI). 
Bathurst Agricultural Station 10 11.5 19.2 7.3 

Collarenebri 5 30.9 32.2 11.8 

Peak Hill 1 0.2 37.2 4.9 

Barraba 6 9.1 16.0 8.1 

Yamba 5 12.9 19.3 10.6 
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Table 9: Analysis of mean absolute percentage error, MAPE (%), over seasonal scales.  

 

Season 

MARS LSSVM M5 Tree 

Bathurst Agricultural Station 

DJF 25.4 61.3 25.7 

MAM 17.4 44.0 36.1 

JJA 31.2 66.7 33.6 

SON 39.6 28.7 34.8 

  Collarenebri 

DJF 45.7 45.3 27.3 

MAM 31.2 24.0 23.7 

JJA 33.5 27.7 20.7 

SON 79.6 62.0 45.3 

  Peak Hill 

DJF 27.2 89.7 9.8 

MAM 45.7 80.1 69.4 

JJA 20.0 98.2 41.2 

SON 11.6 131.3 17.9 

  Barraba 

DJF 37.3 61.8 36.6 

MAM 36.7 73.9 27.4 

JJA 29.2 91.4 29.5 

SON 71.3 89.1 59.1 

  Yamba 

DJF 23.7 49.1 13.7 

MAM 17.7 53.8 30.4 
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JJA 18.6 39.1 21.4 

SON 30.7 86.4 19.1 
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Appendix 

 

Table A1 The regression tree for the optimal MARS models in modeling SPI-Bathurst. 

 

if (x6 <= 34) then f1_1 = -(x6 - (43)) 

if (34 < x6 < 65) then begin 

  f1_1 = -0.0042*(x6-(65))^2 – 4.3637e-004*(x6-(65))^3 

end 

if (x6 >= (65)) then f1_1 = 0 

BF1 = f1_1 

if (x1 <= 3) then f2_1 = -(x1 - (4)) 

if (3 < x1 < 8) then begin 

  f2_1 = -0.08*(x1-(8))^2 – 0.024*(x1-(8))^3 

end 

if (x1 >= (8)) then f2_1 = 0 

BF2 = f2_1 

if (x6 <= 11) then f3_1 = 0 

if (11 < x6 < 20) then begin 

  f3_1 = 0.037*(x6-(11))^2 + 0.0014*(x6-(11))^3 

end 

if (x6 >= (20)) then f3_1 = x6 - (16) 

BF3 = f3_1 

if (x6 <= 65) then f4_1 = -(x6 - (86)) 

if (65 < x6 < 1.5e+002) then begin 

  f4_1 = -0.003*(x6-(1.5e+002))^2 – 7.0018e-005*(x6-

(1.5e+002))^3 

end 

if (x6 >= (1.5e+002)) then f4_1 = 0 
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BF4 = f4_1 

if (x6 <= 0.9) then f5_1 = 0 

if (0.9 < x6 < 3.7) then begin 

  f5_1 = 0.3699*(x6-(0.9))^2 – 0.0456*(x6-(0.9))^3 

end 

if (x6 >= (3.7)) then f5_1 = x6 - (1.8) 

BF5 = f5_1 

if (x6 <= 3.7) then f6_1 = 0 

if (3.7 < x6 < 11) then begin 

  f6_1 = 0.167*(x6-(3.7))^2 – 0.009*(x6-(3.7))^3 

end 

if (x6 >= (11)) then f6_1 = x6 - (5.6) 

BF6 = f6_1 

if (x5 <= -25) then f7_1 = 0 

if (-25 < x5 < 8.1) then begin 

  f7_1 = 0.044*(x5-(-25))^2 – 5.8183e-004*(x5-(-25))^3 

end 

if (x5 >= (8.1)) then f7_1 = x5 - (-19) 

BF7 = f7_1 

if (x6 <= 20) then f8_1 = 0 

if (20 < x6 < 34) then begin 

  f8_1 = 0.0663*(x6-(20))^2 – 0.0015*(x6-(20))^3 

end 

if (x6 >= (34)) then f8_1 = x6 - (25) 

BF8 = f8_1 

if (x6 <= 20) then f9_1 = -(x6 - (25)) 

if (20 < x6 < 34) then begin 
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  f9_1 = 0.051*(x6-(34))^2 – 0.0015*(x6-(34))^3 

end 

if (x6 >= (34)) then f9_1 = 0 

BF9 = f9_1 

if (x1 <= 1.5) then f10_1 = 0 

if (1.5 < x1 < 3) then begin 

  f10_1 = 0.6667*(x1-(1.5))^2 – 0.1481*(x1-(1.5))^3 

end 

if (x1 >= (3)) then f10_1 = x1 - (2) 

BF10 = f10_1 

if (x4 <= 27) then f11_1 = -(x4 - (28)) 

if (27 < x4 < 29) then begin 

  f11_1 = 0.25*(x4-(29))^2 

end 

if (x4 >= (29)) then f11_1 = 0 

BF11 = f11_1 

 

y = -8.4 - 0.012*BF1 - 0.28*BF2 - 0.011*BF3 - 

0.013*BF4 + 0.52*BF5 - 0.15*BF6 + 0.0029*BF7 - 

0.35*BF8 + 0.34*BF9 - 0.084*BF10 - 0.13*BF11 

 

 

Table A2. The regression tree for the optimal M5Tree models in modeling SPI-Bathurst. 

 

if x6 <= 42.7 

 if x6 <= 19.85 

  if x6 <= 10.15 

   if x6 <= 4.45 

    if x5 <= -6.45 
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     y = -2.75428571428571 (7) 

    else 

     if x5 <= 1.45 

      y = -2 (7) 

     else 

      y = -2.55156171284635 + 0.0459613769941225*x1 (8) 

   else 

    y = 7.6005572677018 + 0.0311186393304645*x1 + 0.249128501454831*x2 - 0.583489121310296*x4 

+ 0.0772307128297949*x6 (26) 

  else 

   if x1 <= 6.5 

    if x6 <= 12.45 

     y = -1.305 (4) 

    else 

     if x1 <= 2.5 

      y = -1.082 (5) 

     else 

      if x4 <= 28.8 

       if x6 <= 16.3 

        y = -0.83 (6) 

       else 

        y = -0.734285714285714 (7) 

      else 

       y = -0.9525 (8) 

   else 

    if x6 <= 15.95 

     if x6 <= 14.2 
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      y = -1.58555555555556 (9) 

     else 

      y = -1.384 (5) 

    else 

     if x1 <= 8.5 

      y = -1.11 (6) 

     else 

      y = -2.01509601181684 +0.0432078643100904*x6 (14) 

 else 

  if x6 <= 29.7 

   if x1 <= 7.5 

    if x6 <= 23 

     y = -4.9906418424715 +0.16339975807993*x2 (13) 

    else 

     if x2 <= 26.91 

      if x2 <= 25.475 

       y = -0.595 (4) 

      else 

       y = 2.94136136490269 -0.128186361112679*x2 (12) 

     else 

      y = -1.0250676828162 +0.025908183632735*x6 (11) 

   else 

    if x6 <= 22.95 

     y = -1.0625 (8) 

    else 

     if x4 <= 28.485 

      y = -0.832 (5) 
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     else 

      y = -0.732727272727273 (11) 

  else 

   if x2 <= 26.155 

    if x6 <= 39 

     if x1 <= 9.5 

      if x1 <= 3.5 

       y = -0.574285714285714 (7) 

      else 

       if x6 <= 34.9 

        if x3 <= 26.555 

         y = -0.48 (4) 

        else 

         if x4 <= 28.49 

          y = -0.298 (5) 

         else 

          y = -0.426 (5) 

       else 

        if x6 <= 35.8 

         y = -0.278333333333333 (6) 

        else 

         y = -0.136 (5) 

     else 

      y = -1.69505221221408 +0.0328222875807718*x6 (19) 

    else 

     if x1 <= 9.5 

      y = -0.113333333333333 (12) 
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     else 

      y = -0.361666666666667 (6) 

   else 

    if x6 <= 35.25 

     if x4 <= 28.415 

      y = -0.125555555555556 (9) 

     else 

      y = -0.224 (10) 

    else 

     if x1 <= 2.5 

      y = -0.134 (5) 

     else 

      if x5 <= 2.75 

       y = -0.0951622219572619 -0.027771153769723*x5 (9) 

      else 

       y = 0.195 (4) 

else 

 if x6 <= 71.15 

  if x6 <= 59.2 

   if x2 <= 26.29 

    if x1 <= 9.5 

     if x1 <= 1.5 

      if x3 <= 26.32 

       y = 0.0175 (4) 

      else 

       y = -0.125 (4) 

     else 
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      y = -1.09477396421314 +0.0207946091353223*x1 +0.0232968613926662*x6 (31) 

    else 

     y = -1.41947811310633 -0.00265541177638728*x5 +0.0265583293265269*x6 (17) 

   else 

    if x6 <= 46.65 

     y = 0.279851166123848 +0.015308016065288*x5 (11) 

    else 

     if x1 <= 3.5 

      y = 0.295 (6) 

     else 

      y = -0.935799976862525 +0.0276984035168896*x6 (14) 

  else 

   if x1 <= 9.5 

    if x1 <= 2.5 

     y = 0.32875 (8) 

    else 

     if x6 <= 66.85 

      if x1 <= 3.5 

       y = 0.53 (5) 

      else 

       if x2 <= 25.775 

        if x4 <= 28.04 

         y = 0.68 (4) 

        else 

         y = 0.554 (10) 

       else 

        y = 0.74375 (8) 
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     else 

      if x3 <= 26.71 

       y = 0.8875 (4) 

      else 

       y = -3.522795793917 +0.155716895525512*x3 (9) 

   else 

    if x1 <= 11.5 

     y = -0.926616718430315 +0.0189454936190883*x6 (11) 

    else 

     y = -1.19196682216042 +0.0211240106923831*x6 (9) 

 else 

  if x6 <= 105.25 

   if x1 <= 3.5 

    y = -0.913263577756861 +0.15450568679058*x1 +0.0155988481396871*x6 (27) 

   else 

    if x1 <= 9.5 

     if x6 <= 82.8 

      if x6 <= 79.95 

       if x2 <= 26.54 

        y = 5.03526987602692 -0.144862251159137*x4 (10) 

       else 

        y = 1.04666666666667 (9) 

      else 

       y = 1.13 (6) 

     else 

      if x6 <= 92.15 

       if x1 <= 7.5 
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        y = 1.287 (10) 

       else 

        y = 1.2025 (4) 

      else 

       y = 1.50214285714286 (14) 

    else 

     y = 0.386808224487173 -0.115578532673103*x1 +0.0182463170369555*x6 (29) 

  else 

   if x6 <= 153.75 

    if x5 <= 5.4 

     if x1 <= 3 

      y = 1.0175 (4) 

     else 

      y = 1.37428571428571 (7) 

    else 

     if x4 <= 28.36 

      y = 1.48133333333333 (15) 

     else 

      y = 1.915 (4) 

   else 

    if x4 <= 28.535 

     y = 1.9375 (8) 

    else 

     y = 2.3425 (4) 
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Research Highlights 

1. Standardized Precipitation Index was modelled using MARS, LSSVM and M5Tree 

with rainfall, climate indices and SST as predictor variables. 

2. MARS and M5Tree models outperformed LSSVR, and highlighted the importance of 

periodicity as a predictor variable for SPI-modelling. 

3. Drought forecasting was dependent on proper combination of predictor variables and 

scaled with the geographic location of study sites. 


