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ABSTRACT For bifacial solar photovoltaic panels, surface albedo plays a crucial role in estimating the
radiant energy. Since land surfaces are heterogeneous, the actual albedo of the surface where the solar
photovoltaic panel is placed can vary widely and its temporality and sparsity present a significant challenge
for renewable energy engineers. This paper develops a new image super-resolution deep learning model
based on convolutional neural network to generate high resolution spatial representations of surface albedo
from coarse resolution remote sensing-based data. For selected Australian locations, we generated a higher
resolution surface albedo using imagery from PROBA-V/SPOT Earth Observation satellites. We proposed a
Deep Downscaling Spectral Model with Attention (DDSA) with the capability of processing 10-day albedo
images captured at a relatively low (≈ 1 km) resolution. The proposed DDSAwas then applied to downscale
observed surface albedo and generate predicted albedo at 500 m, 333 m and 250 m resolutions. The proposed
model was benchmarked with alternative deep learning, super-resolution approaches: Super-Resolution
Convolution Neural Network (SRCNN), Enhanced Deep Super-Resolution network (EDSR), Efficient Sub-
Pixel Convolutional Neural Network (ESPCN) and Residual Dense Network (RDN). The results showed
that the proposed DDSA model outperformed all comparative models in terms of the mean square error
(MSE) ≈ 0.0041, signal-to-noise ratio (PSNR) ≈ 39.471, Structural Similarity Index (SSIM ) ≈ 0.999 vs. an
MSE ≈ [0.0140-0.0387], PSNR ≈ [29.761-33.850], SSIM ≈ [0.9994-0.999]). We also cross-validated the
downscaled images with satellite imagery and ground-based observations, which reaffirmed the proposed
DDSA model’s ability to produce high resolution surface albedo maps and its potential applications for
granular scale tracking and mapping solar energy where bifacial solar photovoltaic panels are placed.

INDEX TERMS Surface albedo downscaling, image super resolution, depth-wise separable convolution,
bifacial solar photovoltaic system.

I. INTRODUCTION
As global efforts to achieving the formidable goal of net
zero emission by 2050 accelerates, sustainable production
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and consumption of energy has come under intense focus.
Responsible for more than 75% of greenhouse gas emissions
globally, a quadrupling of solar and wind capacity annually
on 2020 figures is required to achieve sustainable energy
production by 2050 [1]. Similarly, our cities where more
than 66% of the global population live [2] and currently
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consume more than 78% of energy [3], curbing the effects
of land usage change on local climate, and hence on energy
consumption [4], has become amatter of urgency. Influencing
both the production and consumption of energy, the role of
surface albedo is now gaining attention [5], [6]. As an indi-
cator of the radiative surface energy and its responsiveness to
the land surface characteristics, surface albedo varies both in
space and in time. In its nascent stage, the harvesting of this
solar radiative surface energy through innovations in solar
technology, such as bifacial solar panels [7], has produced
increases in solar energy yields of up to 40% when compared
with the equivalent monofacial panels from simulation stud-
ies [8], [9]. At the same time, curbing the effects of radiative
surface energy through greening of urban environments and
cooling measures is set to reduce building cooling energy
requirements, which currently amounts to 22% of electric-
ity consumption [10], [11]. Despite the dual role of surface
albedo, both as a novel energy source and also as a driver
of energy consumption, the inability to represent its variabil-
ity at the degree of temporal and spatial precision required
for critical applications such as energy gains and energy
consumption modelling is proving to be a major hindrance
for its adoption [12]. Therefore, developing novel means of
modelling surface albedo, especially at a granular spatial
scales, to harness remote sensing capabilities is valuable to
increase the solar energy intensity per square meter, thereby
enabling cities to mitigate its negative impact and fulfill net-
zero commitments.

Identified by the Global Climate Observing System
(GCOS) as an Essential Climate Variable (ECV) [13], surface
albedo represents the solar radiation reflected by the surface
of the Earth. It can be broadly classified into black-sky albedo
(the focus of this paper), and white-sky albedo. The former is
measured when the sun is at apogee with the assumption that
all energy is directly received from the sun, while the latter
assumes a part of the energy received through diffusion [14].
Influencing the biophysical state of the earth, albedo, is a
unit-less quantity that ranges from 0 to 1 with 0 = perfect
absorbance, and 1 = perfect reflectance. As a key driver
in energy exchange between the surface and atmosphere,
mapping of surface albedo at a granular scale from a nominal
4 km (National Solar Radiation Database) spatial resolution
has a strong potential to provide precise albedo inputs for
bifacial energy gain modeling of solar farms [15], [16], [17].
This would help accelerate the uptake of bifacial photovoltaic
power from the present 20% market share [8] and spur inno-
vative energy generation models such as AgriPV [8]. Higher
resolution albedo data can also help urban planners and policy
makers to device precise interventions tomitigate the undesir-
able effects of surface albedo on energy consumption, as the
anthropogenic land use effects continues to accelerate. The
objective of this research is to develop a novel deep downscal-
ing approach utilising image-super resolution method with
an aim to generate higher resolution black-sky albedo obser-
vations for mainland Australia. The outcomes are expected

to benefit energy modelling applications dependent on high
spatial precision surface climatic observations.

II. BACKGROUND AND RELATED WORK
Several studies have attempted to generate granular scale
atmospheric features, at a wide range of spatial scales such
as from 10 km low resolution maps to 1.25 km high res-
olution maps. The study in [18] evaluated Ordinary Least
Squares, Elastic-Net, State Vector Machines (SVM) and Bias
Corrected Spatial Disaggregation (BCSD) against Multitask
Sparse Structure Learning (MSSL), BCSD coupled with
MSSL and CNN to downscale daily precipitation datasets.
Their study found that a linear methods outperformed state-
of-the-art machine learning models in capturing anomalies
including extreme events or large-scale climate shifts. In a
study on uncertainties inherent in statistical downscaling
models [19], the authors found that an Artificial Neural
Network (ANN) model performed poorly compared with
Weather Generator and Statistical Downscaling (SDSM)
method evidenced by a greater variability and uncertainty in
estimated means and variances of temperature and precipi-
tation. The works [20] and [21] downscaled global climate
model predictors to conclude that their Bayesian method
produced a high accuracy in downscaling large-scale vari-
ables. Adopting a stacked super-resolution image processing
method for statistical downscaling of Earth System Model
(ESM) in NASA’s Earth Exchange research, the study of [18]
found that deep-SD model outperformed ANN, SVM, BCSD
and SRCNNmodel. The study in [22] utilized theU-Net CNN
algorithm for hyper-local precipitation forecasting, showing
that their model outperformed the High-Resolution Rapid
Refresh (HRRR), which was a numerical climate model for
a 1-hr window forecast. Although these studies have pro-
vided a strong promise of deep learning in hyper localisa-
tion of precipitation against parametric models, the utility
of image-super resolution approach against ground obser-
vations of ECV (e.g., black-sky albedo) is yet to be fully
explored. An augmentation of the predictive skill of such
models with applications in denoising approach and attention
mechanisms, as utilised in this paper to achieve a good level
of spatial precision competitive to ground-based observa-
tions, is a useful way to support critical applications in the
solar energy industry and global warming mitigation efforts.

Despite being able to simulate macro-scale climatic phe-
nomenon, the current climate models are somewhat unable to
represent the ground conditions at high spatial, temporal and
probabilistic precision as required in critical solar energy or
other applications. The lack of granularity in spatial datasets
either from ground observations or remote sensing satellites
and associated uncertainties when attempting to downscale
such variables is particularly challenging [23]. This is espe-
cially true when granular scale predictions are heavily relied
upon to adapt the critical infrastructure, such as weather
dependent solar power generation or urban scale transfor-
mations, to address the energy demand variations caused by

VOLUME 11, 2023 5559



S. Karalasingham et al.: Downscaling Surface Albedo to Higher Spatial Resolutions

biophysical drivers such as surface albedo. Added to such
uncertainties is the sparsity (or lack) of land-based radiation
monitoring capabilities, or the inaccessibility of ground mon-
itoring infrastructure, which also means that ground-based
observations generally lack the required granularity to be
widely adopted.

The above-mentioned challenges are currently being
addressed with better remote sensing capabilities such as
utilising satellite-based data platforms. Several studies such
as [24], [25], [25], [26], [27] coupled remote sensing variables
with machine learningmethods to reliably estimate the global
solar radiation. In fact, the study of [24] and [25] has explored
both solar and wind energy resources with Communication,
Ocean and Meteorological Satellite (COMS) Meteorological
Imager (MI) geostationary satellite and numerical weather
prediction reanalysis datasets where a pixel-based physical
model was optimized and a cloud masking was performed to
discriminate between the clear and the cloudy area. The cloud
simulations were also performed using a cloud factor and
clear areas were studied by the atmospheric parameterization
method to estimate the surface solar radiation compared with
pyranometer observations.

Despite advances in remote sensing platforms, the tem-
poral and spatial coverage and regional data availability
imposes restrictions on surface albedo modelling. Though
Landsat-8 has a higher spatial accuracy, its 16-day revisit
times limit its temporal representation. Similarly, Sentinel-
2A and Sentinel-2B launched in 2016 and 2017 provides
higher spatial resolution from 5 to 10 days revisit times.
Yet, the acquisition capacity was limited over South-eastern
Australia in the early phases of operationalisation, increasing
revisit times to between 10-20 days, limiting the length of the
data available for certain regions [28]. In recent years, new
research efforts by NASA have focused on harnessing recent
advances in sensor capability from disparate remote sens-
ing platforms, Landsat and Sentinel-2 to generate seamless
timeseries of satellite observations. The ongoing Harmonized
Landsat and Sentinel-2 (HLS) project develops a series of
algorithms for cross-sensor atmospheric correction, cloud
masking, view geometry and spectral adjustments to derive
surface reflectance of higher temporal and spatial resolution
for recent years [29]. With variations within 11% of the
MODIS 5km surface reflectance product is hampered by
sub-optimal cloud masking.

However, both energy modelling and climate mitigation
efforts stands to benefit from the development of super-
resolution-based approaches for the harmonisation of spa-
tial resolution of surface albedo data from existing coarse
sensor platforms. It would provide the ability to model sur-
face albedo over longer time series which would enhance
trend-driven decision-making. Further, it would enable the
use of multiple remote sensing platform to pick highly rep-
resentative surface albedo estimations or used in combina-
tion in ensemble modelling for more accurate estimations.
In addressing this gap, we consider, SPOT/PROBA-V with

similar orbital characteristics to Sentinel-2, which provides
a 10-day composite at 1 km resolution since 1998 [30].
Launched by the European Space Agency (ESA) the onboard
sensors were specifically tasked with the mapping of land
use and vegetation growth every 2 days. Capable of sensing
across spectral bands blue, red, Near-Infrared (NIR) and
Shortwave Infrared (SWIR) the sensors provide a ground
sampling distance of 200 m at nadir over SWIR and 100 m at
nadir over visual and NIR bands. It has demonstrated com-
parative performance to MODIS and validated against the
Surface Radiation Budget (SURFRAD) Network, European
Eddy Fluxes Database Cluster (EFDC) and FluxNet [30].

Since each pixel of this remotely sensed multi-spectral
imagery is expected to reflect the spectral characteristics
that capture the interactions between climate and physical
surface characteristics, in this paper, we have advanced the
previous research adopting deep learningmethods to generate
surface albedo maps at granular spatial scales. The research
performed in our paper aims to test the proposed downscaling
method across the vast surface area such as the Australian
mainland, which can be used as climate-based inputs into
solar energymodelling ormapping exercise, especially where
higher spatial resolution surface albedo data are required.

To build upon the previous research in computer
vision [31], as well as super resolution of natural images
with Deep Convolutional Neural Network (DCNN) meth-
ods [32] and deep learning statistical downscaling meth-
ods [18], we couple the remote sensing data with deep
learning to capture relationships between spectral observa-
tions at high spatial scales in this study. Proposed by [31],
image super-resolution approach employ the DCNNs to learn
the mapping between low and high-resolution sky images.
It operates by utilising a given low-resolution image to recon-
struct features synonymous with a high-resolution image
that is closer to ground truth. The steps of learning the
mapping involves image patch extraction, learning non-linear
mappings and reconstruction of learnt patches into a single
high-resolution output. As the study of [31] states, which is
also evidenced by many other super-resolution methods later
e.g., [33], modifications in the model architecture such as
up-sampling, improved network design, enhanced learning
approaches and feature enhancement methods are warranted
to elevate the predictive skill of a basic super resolution
framework that can be tailored to address domain-specific
applications [33].

This study, therefore, focuses on developing image super
resolution approaches to enhance real world imagery and
attain higher perceptual accuracy for the surface albedo map-
ping. To the best of the authors’ knowledge, this paper is
the first of its kind to introduce a novel deep downscal-
ing approach (referred to as DDSA hereafter) to this end.
As shown in Figure 1, the proposed DDSA model extends
the deep image-super resolution model by using the Depth
wise Separable Convolution, Residual in Residual dense
blocks (RRDB) and Convolutional Block Attention (CBAM)

5560 VOLUME 11, 2023



S. Karalasingham et al.: Downscaling Surface Albedo to Higher Spatial Resolutions

FIGURE 1. Architecture of proposed Deep Downscaling Spectral model with Attention (DDSA) that features Depth Separable Convolution (DSC)
Block, Residual in Residual Dense Block (RRDB) and Convolutional Block Attention Module (CBAM) used to develop high spatial resolution surface
albedo maps for solar energy applications.

to enhance its effectiveness in efficiently downscaling remote
sensed black-sky albedo imagery. Our primary goal is to
perform the downscaling of surface albedo from the coarse
spatial resolution (e.g. 1 km) images to a more granular scale
(e.g. 500 m, 333 m, and 250 m) resolutions. Driven by the
intuition that spatially and temporally consistent secondary
images could be utilized to learn the missing feature repre-
sentations arising from casual factors, the proposed DDSA is
developed to learn from multiple images representing differ-
ent spectral bands to extract the features maps that are then
used to enhance the downscaled imagery.

More precisely, the study harnesses the decomposed spec-
tral imagery from the Near-Infrared ([0.7µm-4µm]), Visible
([0.4µm-0.7µm]) and total shortwave ([0.3µm4µm]) bands
as a proxy to represent biophysical parameters of surface
classes which gives rise to the variations in radiative surface
energy. Further, we explicitly avoid the use of auxiliary
datasets on land cover and instead rely on deep learning
implicit representation of the land cover from the raw spectral
imagery. In this regard, the integration of grouped RRDB
blocks is performed to facilitate the learning of hierarchi-
cal features while mitigating the noise, contributing to an
enhanced quality output. The addition of CBAM further
refines the learning, to focus on essential feature representa-
tions, thereby enhancing the high-resolution representation.
The computational intensity of the end-to-end super reso-
lution process is also addressed through the replacement of
standard convolutions with computationally less costly i.e.,

the Depth wise Separable Convolutions and the learning of
mapping between low resolution and high-resolution imagery
in the low-resolution space with Sub-pixel Convolutions.

Therefore, the main contributions of this work are:
(i) the development of deep downscaling approach based
on image-super resolution to harness remote sensed coarse
spectral imagery, learn across spectra features and generate
the higher resolution black sky albedo; (ii) the combina-
tion of de-noising and attention mechanisms to mitigate and
reduce the noise contributions that usually occur at higher
resolutions while enhancing the predictive accuracy of the
final albedo map; (iii) the correct utilization of computation-
ally efficient approach for end-to-end super resolution pro-
cess, while outperforming the competing benchmark models:
Super-Resolution Convolution Neural Network (SRCNN),
Enhanced Deep Super-Resolution network (EDSR), Effi-
cient Sub-Pixel Convolutional Neural Network (ESPCN) and
Residual Dense Network (RDN); and (iv) the elicitation of
scientific utility of newly proposed deep image super res-
olution approach for deep downscaling remote sensed sky
imagery to enhance the spatial granularity.

The remainder of the paper has been structured in the
following way: next section presents the proposed DDSSA
model and its building blocks. Section IV describes the
materials and methods used to assess the performance of
the proposed approach, including the study area, model
design and performance criteria metrics. Section V describes
the experimental part of the work, where we evaluate the
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proposedmodel in real data inAustralia. SectionVI closes the
paper with some final conclusions, remarks and future lines
of research.

III. THEORETICAL OVERVIEW
We now present the details of the proposed image-super
resolution DDSA model shown in Figure 1. The proposed
model is based on four distinct methods: Depth wise Separa-
ble Convolution, Residual in Residual dense blocks (RRDB),
Convolutional Block Attention Module (CBAM) and
sub-pixel convolution algorithms. For theoretical details of all
benchmarkmodels, readers can consult references elsewhere:
e.g., SRCNN [31], EDSR [32], ESPCN [34] and RDN [35].

A. DEPTH WISE SEPARABLE CONVOLUTION
It is imperative to mention that Convolutional Neural Net-
works (CNN) as the standard convolutions made up of convo-
lution layers that employ kernels to extract features to build a
compact representation in form of feature maps [36]. In such
convolution algorithms, the underlying channel (or the depth)
and the spatial computation is carried out simultaneously
to produce an output feature map as shown in Equation 1
resulting in a rather computationally expensive [37] [38] or
a time intensive process [39]. Assuming that an image is a
multidimensional matrix (I) with a channels or depth (C) of
sizeW ×H×C , applying a filter (K ) of sizeM×M×C×N
on an input feature (F) of size D×D×C , we can produce a
feature map (O) of size D× D× N [38], [40]:

Ok,l,n =

∑
i,j,m

Ki,k,m,n · Fk+i−1, l+j−1, m (1)

By contrast, in a depth wise separable convolution algo-
rithm, the process is usually decomposed into a sequential
step of depth wise convolution which is performed on each
channel followed by a point wise convolution which com-
bines the channel wise feature maps into a combined out-
put [41]. Consistent with our aim in this paper, this can now
occur at a lesser computational cost due to the reduced num-
ber of parameters [37] [42]. Accordingly, firstly by applying
filter (K ) of sizeM ×M depth wise on input feature (F) and
channel wise (C), we obtain

Ôk,l,n =

∑
i,j

K̂i,k,m,n · Fk+i−1, l+j−1, m (2)

By applying a filter (K ) of size 1 × 1, which is performed
point-wise on the depth wise output from the above, one
obtains

Ok,l,n =

∑
m

K̃m,n · Ôk−1,l−1,m (3)

It is noteworthy that the computational complexity can
actually make it impractical to adopt any image-super res-
olution method in resource-constrained environment [43].
Therefore, the significantly reduced computational cost and
associated time efficiency attained in the proposed DDSA
approach using depth wise separable convolutions is of great

significance in deep learning image-super resolution applica-
tion for future solar energy monitoring, forecasting and fea-
sibility studies. However, the use of the depth wise separable
convolution is also of significance as hypothesized by [41]
where combining depth and spatial correlations is expected to
be far less efficient than a similar process carried out indepen-
dently. The underlying premise is that the independent pro-
cess of depth correlation and spatial correlation is expected
to lend itself to the learning of high level and low-level
features separately and the sharing of low level features across
different image domains in visual space [40]. We therefore
leveraged this in spectral space to feed through spectral wise
broadband albedo imagery that encompasses different surface
characteristics across vast geography of Australian mainland.
Hence, our method helps to learn the high and the low-level
features as well as combining the cross spectral features for
improved downscaling of surface albedo.

B. RESIDUAL IN RESIDUAL DENSE BLOCKS
The proposed DDSA model is configured in such a way
that it uses residual dense blocks as a means to enhance the
accuracy of the downscaled high resolution surface albedo
map. As deeper networks are employed for image restoration
enhancement and denoising tasks, the lack of hierarchical
features from low resolution inputs can be a major shortcom-
ing that contributes to poor restoration capability of mod-
els [35] [44]. We therefore address this shortcoming by com-
bining residual and dense layers into residual dense blocks
(RDB) that extracts feature representation locallywhile learn-
ing from preceding RDB layers [35]. The residual in Residual
blocks (RRDB) further extends the capability to use RDB
blocks of varying depths and adjusting the magnitude of
residual contributions through a scaling factor bounded by
[0, 1] [45], thereby achieving a higher perceptual quality
such as that attained by enhanced super-resolution Genera-
tive Adversarial Networks. Similarly, grouped RDB blocks
can also achieve higher denoising of the images [44] so the
proposed DDSAmodel, we have used such image restoration
capabilities to mitigate the noise and further improve the fea-
ture representations locally through grouped RRDB blocks
with attention methods.

C. CONVOLUTIONAL ATTENTION BLOCKS
The design of the DDSA model is further inspired by the
role of attention in prioritizing visual processing of essential
information in visual space [46] given that attention mecha-
nism can enable feature representations through refinements,
and discarding the less important information [47] [48] [49].
The Convolutional Block Attention Module (CBAM) used
in designing the proposed DDSA model has enabled feature
refinements by extracting essential information on spatial and
channel dimensions [48]. We therefore exploited the added
advantage of lightweight nature of the CBAM especially in
terms of the computational costs and by adding the CBAM
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after the RDB blocks in the RRDB layer to refine the spectral
features prior to generating the RRDB-based outputs.

D. SUB-PIXEL CONVOLUTION
In traditional deep learning image-super resolution, the map-
ping between low resolution (LR) input and high resolution
(HR) outputs is learnt in the HR space with the help of
an upscaled LR image [31]. However, to alleviate the com-
putational complexity, the authors in [34] have proposed a
sub-pixel convolution or a specialized case of deconvolution
where mapping is learnt in the LR space with the upscaling
[HR] carried out in the last layer. The proposed DDSAmodel
therefore adopts a variation of the sub-pixel convolution as
proposed in an earlier study [50]. This step is expected to
address the checkerboard artifacts while also reducing the
computational costs of the super resolution process.

IV. MATERIALS AND METHODS
A. STUDY AREA
The proposed DDSA model was constructed using remotely
sensed, 10 day directional-hemispherical reflectance imagery
for mainland Australia (25.2744◦S, 133.7751◦E). The
directional-hemispherical reflectance imagery from
PROBA-V and SPOT satellites has provides the broad-
band albedo observations at 1 km resolution across the
spectral bands over visible (0.4µm-0.7µm), near-infrared
(0.7µm-4µm) and total shortwave (0.3µm-4µm). Launched
in 1998 and 2014 respectively, SPOT and PROBA-V pro-
vides a global coverage with a synthesized Directional and
Hemispherical Albedo product generated at 10 day interval.
Spectral band imagery for the summer period from 2001 to
2019 were extracted from biophysical data on earth energy
budget provided by Copernicus Global Land Service [51] and
incorporated as model inputs.

Ground-based observations (GBOV) were extracted from
European Commission Joint Research Centre [52] for Valida-
tion. Representing diverse surface characteristics from mixed
forests to shrub lands as well as evergreen broadleaf and
woody savannas, the study area encompasses 6 micromete-
orological monitoring sites of the OzFlux network [53] and
global FluxNet which are used as ground-based observation
sites in this study. Ground observations from 50-m high
tower-mounted albedometer was considered to represent the
observations of 500 m radius around the tower according to
its Field of View (FOV) [54]. To ensure spatial representa-
tiveness of tower based surface albedo observations, as per
previous studies into ground validation of MODIS surface
albedo (1 km and 500 m products) [55], tower locations
with homogenous surface characteristics were chosen except
1 location for comparative purposes. Table 1 shows the geo-
graphic surface classification and elevation information for
OzFlux micro-meteorological monitoring Tower locations
where the proposed DDSA model was validated for surface
albedo mapping and Figure 2 plots the validation study sites.

FIGURE 2. A spatial map of OzFlux ground based observation validation
(GBOV) towers providing ground truth to evaluate the proposed DDSA
model adopted for downscaling surface albedo dataset.

Further validations were carried out with MODIS 500 m
surface albedo product (MCD43A3) using bands 1-7 against
the PROBA-V/SPOT surface albedo downscaled to 500 m by
the DDSA model.

B. MODEL DESIGN
The proposed DDSA, and all benchmark models were devel-
oped on Pytorch machine learning framework and trained
on dual NVidia RTX 3090 (24Gb) GPU cloud Service.
Pytorch provides a low-level Application Programming Inter-
face offering flexibility in experimenting novel algorithmic
approaches with a rich set of libraries to tackle application
scenarios (https://pytorch.org/). QGIS, a Geospa-
tial data analysis application was used along with Geospatial
Data Abstraction Library (GDAL) and netCDF Kitchen Sink
(ncks) to process remotely sensed data in netCDF format.

As the primary objective of the proposed DDSA model
design was to augment the resolution through a learn-
ing of non-linear spectral relationships in surface albedo,
we first extracted broadband albedo across spectral bands,
visual, near-infrared and shortwaves for Australian main-
land and ground-based validation stations. Followed by a
conversion to 16-bit tiff images as a lossless image format
with GDAL translation, the images were split into training
(2001-2010) and validation (2011-2015 and 2017-2019) sets,
and used to generate model inferences for 2016 for each
ground-based validation locations. To improve the perfor-
mance of super-resolution method in recovering original HR
images, they were subjected to colour space conversion from
red-green-blue (RGB) to YCbCr to separate the Luminance
(Y) and Chrominance (Cb, Cr) components [56]. Converted
images were interpolated using bi-cubic interpolation as a
synthetic LR image pair, prior to being normalised in [0, 1]
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TABLE 1. Geographical surface classification and elevation information for the OzFlux micro-meteorological monitoring Tower locations where the
proposed Deep Downscaling Spectral model with Attention (DDSA) model was validated for surface albedo mapping.

range as per Equation (4):

x ′
=

x − xmin
xmax − xmin

(4)

Following data preparation, the proposed DDSA and the
benchmark models SRCNN, EDSR and ESPCN together
with CNN and RDN with residual dense layers were devel-
oped as per model architecture details listed in literature to
evaluate the efficacy of the proposed model. Other than the
model-specific hyperparameters, a common set of hyperpa-
rameters were selected across models, which were as follows:

(a)
1) Activation Function: Tangent Hyperbolic (tanh)

delivered a comparatively better image enhancement
through experimentation than Rectified Linear Unit
(ReLU ) or Leaky Relu for all except the output layer.

2) Optimizer: The Adaptive Moment Estimation (Adam)
was adopted as an optimizer after comparative test-
ing with Stochastic Gradient Descent (SGD) and
AdaBound method.

3) Hybrid Loss function: Hybrid loss function [Equa-
tion 5] used to jointly minimize Mean Square Error
(MSE) loss while maximizing Structural Similarity
Index (SSIM ) [57] applied to simultaneously optimise
the objectives by minimising MSE and maximising
signal-to-noise-ratio (PSNR).

Unlike traditional metrics such as MSE and closely related
PSNR, the SSIM quantifies the similarity between ground
truth and compares an image with emphasis on structural
information inherent in respective images [57]. This in fact a
perceptual metric quantifying the image quality degradation
caused by the processing such as data compression and losses
in data transmission, for example, in our case, the downscal-
ing of surface albedo images from 1 km to 250 m resolution.
Our experiments noted that the SSIM was quite sensitive to
distortions in original images while the MSE and the PSNR
presented similar or higher values that did not represent the
perceptual image quality [57]. With its scaling parameter α,
the hybrid loss function is:

α = (1 − α) ·MSE + α · SSIM (5)

C. PERFORMANCE CRITERIA
In context of visual modelling frameworks such as image
super-resolution used in this study, performance measures

utilisingMSE, PSNR and SSIM are used to evaluate similarity
between predicted and referenced images at high resolutions.
We also carried out an ablation study to analyse the con-
tributions of model architecture components to the overall
model’s performance. Mathematically, the performance eval-
uation metrics are:

Mean Squared Error,MSE :

MSE =

D∑
i=1

(xi − yi)2 (6)

Signal to Noise Ratio, PSNR:

PSNR =
10 log10

(
max (max(x),max(y))2

)
|x − y|2

(7)

Structural Similarity Index Measure, SSIM :

SSIM =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(8)

Note that the mean is represented by µ, Cx is a stability
constant when denominator is set to 0, whereas x and y are
the observed (lower resolution) and the predicted (higher
resolution) image pixels.

V. EXPERIMENTS AND RESULTS
In this section, we now appraise the performance of the newly
proposed deep learning image super-resolution approach for
downscaling surface albedo at higher spatial resolutions for
solar energy and global warming mitigation applications.
The proposed DDSA model is quantitatively and qualita-
tively evaluated to highlight its merits over comparative
models (such as SRCNN, EDSR, ESPCN and the RDN
method) employed in this problem of deep downscaling of
multi-spectral broadband albedo to produce high resolution
maps. A comparative assessment on the validation sets are
followed by an integrated analysis of visual and quantita-
tive image evaluation metrics on tested data using ground
validation stations located at 500 m, 333 m and 250 m
resolution.

A comparative evaluation of all prescribed models based
on their capability to achieve the lowest MSE, highest PSNR
and SSIM shows that the objective model DDSA appears to
outperform all of the other models. This yielded an MSE ≈

0.0041, PSNR ≈39.471, SSIM ≈ 0.999. These contrasted an
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FIGURE 3. Training performance of DDSA model against benchmark models utilizing super-resolution Convolution Neural Networks (SRCNN), Enhanced
Deep Super-Resolution Network (EDSR), Efficient Sub-Pixel Convolutional Neural Network (ESPCN) and Residual Dense Network (RDN) used to produce
high spatial resolution albedo maps. The mean square error (MSE), signal to noise ratio (PSNR) and structural similarity index (SSIM) are presented for
several training epochs.

FIGURE 4. Training and validation performance of the proposed DDSA model used to generate high spatial resolution surface albedo maps measured by
MSE, PSNR and SSIM vs. epochs.

MSE value ≈ [0.0140 - 0.0387], PSNR ≈ [29.761 – 33.850],
and SSIM ≈ [0.9994 – 0.999]). Figure 3 plots these findings.
In accordance with these findings, the newly proposed

DDSA model achieved a sustained high performance after
50 epochs while comparative models require longer training
horizons to achieve stable performance as shown in Figure 4.
In translating superior quantitative performance to achieve

higher qualitative outcomes, Figure 5 shows the proposed

DDSA model reaching the closest visual representation in
respect to ground truth using predictions for OzFlux ground
station region, Calperum, Australia as an example. As there
is no effective standard for assessment of the perceptual
accuracy, we present the comparative visual model predic-
tions for the benchmark models (SRCNN, EDSR, ESPCN
and RDN). Notably, the RDN model, despite its lower MSE
and PNSR compared with the objective model, achieved a
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FIGURE 5. Visual and quantitative model prediction accuracy assessment of the objective DDSA model vs. the benchmark
models i.e., SRCNN, EDSR, ESPCN and RDN tested for Calperum FluxNet Tower site. Interpretive note: the optimal method,
i.e., the DDSA model, is expected to attain the highest PSNR and/or the SSIM metric and the lowest MSE value.

FIGURE 6. Evaluating the proposed DDSA model against the benchmark models across the 16-Quantile values (unit-less)
for Calperum FLUXNET Tower site sub-region’s remotely sensed Broadband Directional Albedo captured by PROBA-V/SPOT
imagery ground truth.

better structural similarity congruent with the ground truth
images. The lower PSNR scores despite the higher perceptual
performance of RDN is consistent with literature ([58], [59]),

on the effects of brightness and pixel shifts in lowering the
score. Further, the high perceptual performance was perhaps
due to the architecture of the RDN model enabling it to
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FIGURE 7. Side-by-side comparison of error maps (third row) representing the differences between ground truth (first row) vs
model predictions (second row) of the proposed DDSA model, SRCNN, EDSR, ESPCN and RDN models for Calperum FluxNET
Tower sub-region site. Lighter shades of red indicate the least difference between ground truth and model predictions. Note
that the ground truth remote sensing Broadband Directional Albedo is obtained from PROBA-V/SPOT (first row).

FIGURE 8. Side-by-side comparison of error maps (third row) representing the differences between ground truth (first row) vs the
proposed DDSA model predictions (second row) for FluxNET Tower subregions - a) Calperum, b) Cape Tribulation, c) Cumberland
and d) Tumbarumba, Australia. Lighter shades of red indicate the least difference between ground truth and model predictions.
Note that the ground truth remote sensing Broadband Directional Albedo is obtained from PROBA-V/SPOT (first row).

harness the residual dense blocks. Hence, it will now be used
in further analysis, alongside the objective model developed
in this study.

We now revert to the 16-quantile intensity analysis of a
portion of ground truth pixel distribution ofmodel predictions

across all models to reveal if the best reproduction of
ground truth is attained by the DDSA model (Figure 6).
It is clear that the objective model closely resembles the
ground truth image although the RDN model also appears
to generate a close enough image similar to the ground
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FIGURE 9. Side-by-side comparison of error maps between ground truth and high spatial resolution surface albedo
predictions of objective model (DDSA) (first row) and benchmark model RDN (second row) for the FluxNET Tower subregions
- a) Calperum, b) Cape Tribulation, c) Cumberland and d) Tumbarumba, Australia. Lighter shades of red indicate the least
difference between ground truth and model predictions. Note that the ground truth remote sensing Broadband Directional
Albedo is obtained from PROBA-V/SPOT (first row).

FIGURE 10. Applying the proposed DDSA model predictions of surface albedo contrasted against FluxNet locations:
(a) Cumberland and (b) Cape Tribulation, Australia Station predictions and Satellite observations (PROBA-V/SPOT).

truth image. Notably, the quantile plots reveal the transi-
tion between pixel subsets in the RDN, which does display
grid artefacts in higher value regions while the proposed

DDSA model is more effective in removing such artifacts
and to further generating a more natural looking predicted
image.

5568 VOLUME 11, 2023



S. Karalasingham et al.: Downscaling Surface Albedo to Higher Spatial Resolutions

FIGURE 11. Applying the proposed DDSA model predictions of surface albedo contrasted against FluxNet locations:
(a) Wombat Stringbark and (b) Tambarumba, Australia Station predictions and Satellite observations (PROBA-V/SPOT).

We also evaluate all the developed models in terms of
errors captured in generating most representative prediction
at high spatial resolutions. As a result, we note that the
proposed DDSA model produces lowest error in comparison
with the other counterpart models. Error maps, as shown in
Figure 7 presents the visual distribution of the magnitude of
error between the ground truth and the model prediction for
OzFlux ground station region of Calperum. A side-by-side
comparison reveals that the proposed DDSA model outper-
forms all, with excellent capability to generate the predictions
closer to the ground truth in comparison with the SRCNN,
EDSR, ESPCN or the RDN model.

Although producing the next best results, the RDN model
is consistent with earlier findings that displayed a larger error
possibly due to artefacts as highlighted earlier. A considera-
tion of the proposedDDSAmodel predictions across different
ground-based observation station regions reveals the model’s
capability to generate consistent and natural-looking map
that is closer to ground truth predictions. With the aid of
error maps we calculate the predicted error between ground

truth and DDSA predictions at selected stations, Calperum,
Cape Tribulation, Cumberland and Tumbarumba encompass-
ing a variety of surface classes (Figure 8). The process was
repeated against RDN model predictions. A side-by-side
comparison as in Figure 9, shows that in comparison with
RDN model, the proposed DDSA model minimises the pre-
dictive error quite significantly, across FluxNet Tower sites.

After establishing the fact that the proposed DDSA model
outperforms all other models (i.e., SRCNN, EDRS, ESPCN
and RDN) in terms of qualitative and quantitative metrics
we now assess its predictive capability against the PROBA-
V/SPOT observation and ground station readings for summer
period in 2016. Contrasting the deep downscaled DDSA
model prediction at 500 m, 333 m and 250 m against the
ground observations and at 1 km PROBA-V/SPOT for the
Cumberland station, both the 500m and the 250mpredictions
respectively are within 0.010 – 0.024 and 0.005 – 0.031 of
ground observations [Figure 10a]. In contrast, the PROBA-
V/SPOT observations slightly deviated from ground obser-
vation results between 0.041 and 0.055.
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FIGURE 12. Applying the proposed DDSA model prediction of surface albedo contrasted against FluxNet locations (a) Calperum;
(b) Litchfield, Australia Station predictions and Satellite observations (PROBA-V/SPOT).

In accordance with Figure 10b, similarly for Cape Tribu-
lation region, the predictions for 250 m resolution achieved
the lowest absolute deviation (0.00 – 0.26) while that for
the PROBA-V/SPOT deviated between 0.00 – 0.41. Absolute
deviations between 0.00 – 0.12 were observed for the case
of Wombat Stringbark (Figure 11a) with the 333 m predic-
tions in contrast to PROBA-V/SPOTwhich deviated between
0.015 – 0.021. For Tumbarumba region [Figure 11(b] the
closest predictions to ground truth are obtained from the
predictions at 333 m with absolute deviations between
0.00 – 0.29 while the PROBA-V/SPOT observations deviated
further with a range of 0.0 – 0.43.

In contrast, the predictions for Cape Tribulations
[Figure 10b], we note a higher absolute deviation for the
closest prediction 333 m, while PROBAV/SPOT obser-
vations’ absolute deviations are 0.00 – 0.011. Similarly,
in Calperum [Figure 12a] the model deviations were
higher between 0.006 and 0.057 while PROBA-V/SPOT
observations were the closest with absolute deviations
between 0.016 and 0.04. The 250 m predictions showed the
lowest absolute deviations of 0.02 – 0.03 for Licthfield

[Figure 12b] with PROBAV/SPOT observations showing
significant divergence.

The highest absolute deviations for Calperum in South
Australia, were noted on days the region had experienced
temperatures +8 to +9◦C higher than the long term aver-
age (http://www.bom.gov.au/). A similar pattern was
observed for Cape Tribulation, a site with heterogeneous sur-
face characteristics, when the region had experienced higher
than usual mean temperatures (http://www.bom.gov.
au/).

Further, the DDSA model predictions for surface albedo
at 500 m resolution were evaluated against MODIS sur-
face albedo estimates at 500 m resolution. A plot of the
absolute deviations (Figure 13) between ground observations
and DDSA model predictions vs MODIS surface albedo
estimations shows least deviations for DDSA model pre-
dictions while MODIS estimates deviated significantly for
sites Calperum and Cumberland. Both DDSA model predic-
tions and MODIS albedo estimated showed deviations for
both Capte Tribulation with heterogeneous surface charac-
teristics and Wombat Stringbark. A clear trend could not
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FIGURE 13. Comparison of absolute differences between ground observations and DDSA model downscaled prediction for 500 m
and MODIS 500 m surface albedo for FluxNet locations (a) Cumberland; (b) Cape Tribulation; (c) Wombat Stringbark;
(d) Tumbarumba; (e) Calperum; (f) Litchfield, Australia.

be established for remaining sites due to the unavailability
of cloud free pixel observations for MODIS surface albedo
product.

A. ABLATION STUDIES
In this study we assessed the contributions of the differ-
ent neuronal layers incorporated in DDSA model evaluated
through a removal of the convolutional Block AttentionMod-
ule (CBAM) and the Residual in Residual dense blocks
(RRDB) layers with the same data used earlier. The purpose
of this part was to investigate the performance of the arti-
ficial intelligence system by removing certain components
to better understand the contribution of the component to

the overall DDSA system. The performance of the resulting
DDSA model was then evaluated using the average value of
the MSE, PSNR and SSIM metrics. Figures 14 and 15 shows
the ablation study results.

In accordance with ablation studies, we first assessed the
proposed DDSA without the CBAM layer to investigate the
effect of the attention module. Notably, this change has a
major effect on the proposed DDSA model accuracy. It is
evident that the removal of attention layer results in the model
achieving a lower performance based on MSE, PSNR and
SSIM as illustrated in Figure 14 compared with DDSAmodel
trained with CBAM layer. The model with attention achieved
a consistent performance at approximately 50 epochs with
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FIGURE 14. Differences produced by the DDSA model with and without Convolutional Block Attention Module (CBAM) and
Residual in Residual dense blocks (RRDB) showing the MSE, PSNR and SSIM vs. the epoch. Interpretive note: the MSE is relatively
lower and PSNR is higher for the module with attention layer utilizing Residuals in the Residual Dense Block.

FIGURE 15. Differences produced by the DDSA model with and without Convolutional Block Attention Module (CBAM), Residual in
Residual dense blocks (RRDB) and Residual dense blocks (RDB) showing the MSE, PSNR and SSIM vs. the epoch. Interpretive note:
the MSE is relatively lower and PSNR is higher for the module with attention layer utilizing Residuals in the Residual Dense Block.

further improvement in the signal-to-noise ratio at approx-
imately 100 epochs. The comparison highlights the con-
tribution of CBAM in improving the focus on essential
feature representation, which has delivered improved
image quality both on visual and model performance
benchmarks.

In Figure 14, we show the performance with addition of
the CBAM to the RDB variation of the proposed DDSA
model. The addition of attention layer seems to improve the
performance to bring its accuracy to the second best model
in terms of PNSR and as well as the other metrics. The
introduction of RRDB instead of the RDB layer in subse-
quent iteration further improved the performance and there-
fore reinforced the theoretical and experimental evidence in
literature. Overall the combination of CBAM and RRDB
layers contributed to the DDSA model achieving state of the
art performance within 100 epochs in contrast to benchmark

models, as noted earlier, despite pro-longed training under
performed.

By contrast, the removal of both the CBAM and the RRDB
layers while using standard RDB layers, as in Figure 15
demonstrates significantly uneven performance on lower
epochs followed by stable performance well after 100 epochs.
The addition of attention layer to the RDB model improves
the performance to bring its accuracy to the second-best
model in terms of PNSR and as well as the other metrics.
The introduction of grouped RRDB instead of the RDB layer
in subsequent iteration further improved the performance.
Reinforcing the theoretical and experimental evidence in
the literature, RRDB blocks mitigated the noise through the
learning of hierarchical features, contributing to an enhanced
quality output.

Overall the combination of CBAM and RRDB layers
contributed to the DDSA model achieving state of the art
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performance within 100 epochs in contrast to benchmark
models, as noted earlier, which despite pro-longed training
under performed.

VI. CONCLUSION, LIMITATIONS, AND FURTHER
OUTLOOK
A. CONCLUSIONS
This study reported the development and evaluation of novel
deep downscaling methods for surface albedo mapping at
high spatial resolutions (i.e., 500 m, 333 m and 250 m),
from low resolution (1 km) sky images, utilising image super-
resolution models. In the context of solar energy gains and
energy consumption estimations, we require granular scale
surface albedo map including a number of other weather
inputs for instantaneous solar energy monitoring or climatic
inputs for long-term solar energy feasibility studies. However,
the sparsity of current ground monitoring sites, poor spatial
resolution of existing satellite data in their raw form and a lack
of primary data or inadequacy of traditional parametric mod-
els that do not perform well at poor spatial resolutions, war-
rant new scientific methods such as deep learning algorithms
to generate accurate spatial maps at granular scales currently
not available. To address this issue, the present study has
harnessed a deep learning-based image-super resolution algo-
rithm, that is traditionally applied to enhance natural photog-
raphy, and to further test the newly proposed model. Deep
downscaling model with attention, or the DDSA model, has
been constructed by integrating Depth wise Separable Con-
volution, Residual in Residual dense blocks (RRDB), Con-
volutional Block Attention Module (CBAM) and sub-pixel
convolution to efficiently learn from remotely sensed low
spatial resolution (1 km) black sky albedo images. Using the
proposed method, we successfully produced high resolution
representation of surface albedomaps, whose agreement with
ground observations were aptly verified. Evaluated against
benchmark models, and observations from ground valida-
tion sites, the proposed model demonstrated excellent perfor-
mance advantage in terms of producing the surface albedo
maps at high resolutions. The quantitative performance of
standard models such as SRCNN, EDSR, ESPCN and RDN
models lagged behind that of the proposed DDSAmodel. The
main findings of the work are as follows:

• In terms of qualitative evaluations, the DDSA model
achieved the closest visual representation of ground
truth image based on model predictions for the OzFlux
ground stations.

• A 16-quantile intensity analysis of a portion of ground
truth pixel distribution of model predictions across all
models reveal the best reproduction of ground truth
by the proposed model with no perceptible artefacts,
whereas the RDN model generating the closest second
match with grid artefacts.

• Error maps showing the visual distribution of the mag-
nitude of errors between the ground truth and model
predictions showed that the proposed model predictions

were closer to ground truth compared to the benchmark
models

• Contrasting the predictive capability of the DDSA using
deep downscaled 500 m, 333 m and 250 m predictions
against the OzFlux station observation and PROBA-V/
SPOT, we noted that the proposed model registered
lower deviations from ground truth for Cumberland,
Tumbarumba, Litchfield and Wombat Creek having
homogenous land surface classes evergreen broadleaf
and woody savannas. Similarly, the deep downscaled
predictions for 500 m surface albedo showed much
lower deviation from the ground truth than surface
albedo estimates from MODIS 500 m surface albedo
product for Cumberland and Calperum sites with
homogenous surface characteristics. The deviations
showed no clear trends for Cape Tribulation with a
mixed foreest surface and Wombat Stringbark with
Evergreen Broadleaf vegetation.

• In spite of the superior performance elsewhere, the pro-
posed model under performed in its capability when
compared with the OzFlux station observations for
Calperum and Cape Tribulation locations with heteroge-
neous land surface of mixed forest and the latter closed
shrub lands.

• Ablation studies performed on DDSA revealed that the
combination of convolutional Block Attention Module
and the Residual in Residual dense blocks enhanced the
overall model performance without significant impacts
on the overall computational efficiency.

Although this study has validated the method for granular
scale prediction of 10-day black sky surface albedo in Aus-
tralian mainland in the summer period, the proposed DDSA
model could potentially be applied to other locations and
seasons to expand its feasibility more widely. In spite of
the excellent performance obtained, we also note that the
contributions of the attention mechanisms in the proposed
DDSA model can be improved with a combination of the
RRDB and other attention mechanism methods. In terms
of balancing the accuracy and the computational efficiency,
especially when using large kernel sizes such as Extremely
Separated Convolutions (XSeptConv) [60], these networks
could be further researched as a replacement for depth wise
convolution layer in a future study.

B. LIMITATIONS, FURTHER OUTLOOK, AND FUTURE
RESEARCH
The limitations in satellite sensor capabilities and sparsity
of ground-based measurement sensors warrants the need
for weather and climate observations to be generated at
higher granularity, especially in the context of applications
that require higher spatial precision. By demonstrating the
state-of-the-art downscaling capabilities, this work has pre-
sented the proposed DDSA model as excellent scientific
utility with advanced predictive skills compared to the bench-
mark models e.g., SRCNN, EDSR, EPSCN, and RDN for
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generating granular scale albedo observations across time and
space. Assessed against ground observations at six FluxNet
locations, MODIS surface alebdo estimations, and contrasted
against PROBA-V/SPOT observations, the DDSA model
reaffirmed itself as a promising approach to address the chal-
lenge of sparsity in surface albedo observations for critical
applications in solar PV deployment and urban planning
applications. The ability to generate high resolution albedo
observations is expected to aid renewable energy industries
in modelling systems such as the Agri-PV, which combines
food production (in agricultural space) and energy produc-
tion, allowing land to be used for agricultural production
and also in the generation of solar power. In particular,
AgriPV scenarios and transition pathways from the mono
facial to the bifacial solar panels can boost the contributions
of solar renewable energies in the energy mix, while giving
rise to innovative energy monitoring models. Apart from the
immediate application in Agri-PV area, the proposed DDSA
model could also be applied in the context of energy planning
strategies to address the negative effects of surface albedo,
especially in urban settings which is known to contribute to
urban climate phenomena like the Urban Heat Island (UHI)
effect [61]. Especially downscaled surface alebdo predictions
could be combined with equivalent remote sensing platforms
such as MODIS to generate more precise predictions through
ensembling approaches.

In spite of the success of the objective model, its predictive
skills are somewhat limited in terms of the low temporal fre-
quency, spatial resolution and available spectral frequencies
in the dataset. Future research which harnesses the image
datasets with a higher temporal frequency and better spatial
resolution using sources such as Himawari 8/9 satellites,
or utilising hyper-spectral datasets, may improve the model
skill in terms of better spatial and temporal granularity, while
enhancing the robustness of the predictions. Furthermore,
since the scope of this study was limited to some parts of
mainland Australia, limiting the range of surface types and
constrained by the availability of ground validation stations,
different geographical regions and landscapes could pose
challenges in the application of the proposed DDSA model.
Given the nexus between surface types and surface albedo,
future research in evaluating the role of land cover inputs in
enhancing the generalisability of the objective model across
geographical regions in addition to spectral inputs is under
investigation.

The lack of availability of ground observations over better
temporal frequencies and length has limited the evaluation
of the predictive ability of the proposed model, in the con-
text of extreme or unseasonal weather conditions. In the
few instances where data were available, the model pre-
dictions indicated higher deviations from the ground truth.
For instance, deviations between ground observations and
predictions were higher for FluxNet location Cumberland
(see Figure 10a) on 24 January 2016. A review of the weather
conditions preceding immediately before these observations,
as provided by the nearest Australian Bureau of Meteorology

Station Richmond, RAAF indicates that the 4 days of tem-
peratures were exceeded 30◦C, of which the 3 days of tem-
peratures were greater than 35◦C with significant variability.
This period was immediately followed up by a period of
cooler weather with average temperature of 27◦C over the
next observation period. Similarly, FluxNet location Cumber-
land (Figure 10a) also experience a high degree of weather
variability in the period leading up to the observations taken
on 13 January 2016 with temperatures exceeding 40◦C in
the 3 days preceding the observation. The period which fol-
lowed also experienced a high degree of variability. These
findings indicate that the objective model suffers a decline in
predictive skill in conditions of climate extremes and in the
presence of heterogeneous vegetation cover. requiring further
investigation. To address performance declines in climate
extremes the model could potentially be enhanced through
the pairing of remotely sensed image datasets with additional
climate variables such as air temperature, rainfall and wind
speed data from ground stations. However, this too poses a
challenge, given the sparsity of weather stations that could
provide spatially congruent weather observations.

It is noteworthy that the contribution of the attention mech-
anism within the proposed DDSA model was significant in
respect to improved predictions at higher spatial resolutions.
However, this aspect may be further improved with a better
combination of the RRDB and the other types of attention
mechanisms. In terms of balancing the accuracy and the
computational efficiency, especially when using large kernel
sizes, alternative approaches such as the Extremely Separated
Convolutions (XSeptConv) [60] could be further explored as
a replacement for the depth wise convolutions used in the
present model.
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