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A B S T R A C T

In this research, a novel explainable multi-level ensemble learning framework has been developed to accurately 
monitor the greenhouse gas (GHG) emission drivers of the Atlantic Canada’s potato crop system i.e., Carbon 
dioxide (CO2), nitrous oxide (N2O), and water vapour (H2O). For this purpose, alongside the GHG emission 
drivers, the hydro-meteorological and soil properties information was collected from three Canadian sites, two in 
Prince Edward Island (PEI) and one in New Brunswick. This advanced framework includes a transparent multi- 
level pre-processing module and a Runge-Kutta optimizer (RUN), integrated with an eXplainable gradient- 
boosted decision Tree (GBDT) machine learning (ML) technique. The preprocessing scheme meticulously se
lects the most effective input combinations from the hydro-meteorological and soil properties datasets using 
hybridization of Boruta-GBDT for feature selection, Best Subset Lasso Regression (BSLR), and Weighted Aggre
gated Sum Product Assessment (WASPAS). The optimal combinations were then analyzed using the GBDT-RUN 
and compared against two algorithms: LightGBM coupled with RUN optimizer (LightGBM-RUN) and classical 
GBDT. The explainability of the primary model was enhanced using SHapley Additive exPlanations (SHAP). 
Model validation employed various metrics, such as the correlation coefficient (R), squared deviation (SquD), 
and a range of sophisticated statistical graphics. Results demonstrated that the GBDT-RUN model exhibited 
superior performance in monitoring GHG emissions (CO2|R = 0.8431, SquD=17.1759, WASPAS=1.88E-07; N2O| 
R = 0.8431, SquD=17.1759, WASPAS=1.88E-07; H2O| R = 0.8431, SquD=17.1759, WASPAS=1.88E-07), 
outperforming both LightGBM-RUN and classical GBDT. Furthermore, the explainability analysis identified dew 
point and soil temperature as the most influential factors in the CO2, N2O, and H2O emissions scenarios.

1. Introduction

Anthropogenic greenhouse gas (GHG) emissions have increased 
significantly over the last several years as a result of changing land use, 
deforestation, and increased usage of fossil fuels. Around the world, 
there has been an increase in the temperature of the atmosphere. Global 
climate variability has severely impacted all spheres of life, making it 

necessary to study and comprehend future climate variability at a site- 
specific and regional scale to minimize and adapt to these changes 
[1]. The IPCC has highlighted the effects of greenhouse gas emissions, 
specifically those of carbon dioxide (CO2), nitrous oxide (N2O), tropo
sphere ozone (O3), methane (CH4), and chlorofluorocarbons (CFCs) on 
climate change [2,3]. Over the past 50 years, average global GHG con
centrations have increased more than in any other year [4]. Due to 
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intensification and changes in land use, anthropogenic activities in the 
forestry and agricultural sectors have produced GHG emissions that 
have upset the ecosystem’s equilibrium [5]. This is particularly evident 
on the Canadian continent, where agriculture is one of the primary 
sources of greenhouse gas emissions [6,7].

All over the world, potatoes are grown under a wide range of alti
tude, latitude, and climatic conditions; studies have suggested that no 
other food crop can match the potato’s yield of food energy and food 
value per unit area [8]. For instance, potatoes, when compared to other 
vegetable crops, have one of the highest input requirements for fertil
izer. Furthermore, the proportion of nitrogen (N), phosphorous (P), and 
potassium (K) required for potato cultivation in comparison to tomato or 
pepper production are, respectively, 100 %, 100 %, and 33 % higher [9]. 
Every province in Canada grows potatoes as the main crop, and the 
nation is in the top ten exporters of both fresh potatoes and potato seeds 
[10]. In terms of overall potato production by area, Atlantic Canada 
produces 39.9 % of all potatoes produced in Canada, followed by 
Western Canada (37.9 %) and Central Canada (22.2 %) [11]. Approxi
mately 34,803 hectares of potatoes are farmed in the PEI, accounting for 
25 % of all potatoes grown in Canada [11]. Additionally, with over 1.3 
billion in revenue generated annually for the province, potato cultiva
tion is the main driver of the PEI economy [10].

Determining greenhouse gas emissions from soil is a well-known and 
urgent environmental issue because soil degassing is responsible for 
significant CO2, N2O, and N2O emissions [12]. The frequent soil dis
turbances due to tillage techniques, excessive nutrient inputs, cover 
crops (CC) or crop type in rotation systems, and irrigation account for 
approximately 14 % of all GHG emissions [13]. In addition to agricul
tural intensification and management due to the world’s growing need 
for food, soil and climate factors have been the main regulators of 
greenhouse gas emissions. Temperature, humidity, air pressure, pre
cipitation, and other climatic factors change soil’s biological, chemical, 
and physical characteristics, which in turn affects the hydrological and 
biogeochemical cycles and, ultimately, the greenhouse gas emissions 
from agricultural fields [14].

Greenhouse gas emissions and sinks can both occur in agricultural 
soils [15]. Reducing greenhouse gas emissions is facilitated by 
climate-smart agronomic practices, which include appropriate use of 
irrigation, tillage, drainage, and fertilization; bulk density, microbial 
activity, and organic matter in the soil; and environmental factors like 

soil temperatures and precipitation. A more creative approach to 
lowering greenhouse gas emissions is needed in agriculture, given food 
security, population increase, and climate change concerns. Flux towers 
and confined chambers are typically used to measure soil emissions 
[16]. Several biophysical models, including the 
Denitrification-Decomposition model (DNDC), the Root Zone Water 
Quality Model (RZWQM2), the daily version of the CENTURY model, 
and the Decision Support System for Agrotechnology Transfer, have 
been effectively designed to simulate greenhouse gas emissions [17]. 
Despite their effectiveness and widespread use, these biophysical models 
have certain limitations, such as (i) the need for skilled and knowl
edgeable users with agro-environmental expertise, knowledge, and 
skills; (ii) pre-procedures and protocols for model calibration and vali
dation; and (iii) the availability of various site-specific input parameters 
(such as forests, savannahs, rangelands, and agricultural fields).

Due to recent advancements in computer-assisted models, statistical 
techniques are often employed to examine and/or summarize the results 
of large-scale simulations involving complicated cropping system 
models [18,19]. Finding patterns in huge datasets is a strong fit for 
machine learning (ML)-based algorithms. Four kinds of ML-based 
algorithms—neural networks, kernel models, ensemble models, and 
evolutionary models have been identified throughout the literature re
view for the topic of greenhouse gas emissions (Fig. 1). ML-based models 
have mainly been used to analyze data with several associated incident 
variables, diverse data types, data interactions, and small or unbalanced 
datasets. This variability is used by regression and classification trees to 
group classes of predictors that are significant for a desired result; many 
such trees can be computed through random subsampling from a pop
ulation. The literature evidence several attempts on the utility of ML 
models for GHG emissions of plants [20–24]. In particular for potato 
GHG emission, there are limited number of researches established 
recently confirmed the potential ML models including hybrid random 
forest (RF) model [25], standalone RF model [26]. Predicting green
house gas emissions from potato farms based on climate variability is the 
ultimate objective of the current research. Since numerous factors in the 
crop system play crucial roles, it is currently challenging to develop 
mitigation and adaptation techniques to maximize crop productivity 
and GHG emissions [27]. In light of the exhibited literature, the devel
opment of computer aid models is remarkably interested in predicting 
GHG emissions for different crops.

Addressing the limitations of existing ML models for crop greenhouse 
gas (GHG) emission prediction, such as learning process restrictions, 
difficulty in explaining predictor significance, and feature selection 
challenges, this research introduces an innovative, optimized ML model. 
By hybridizing Gradient Boosted Decision Tree (GBDT) and LightGBM 
models with a Runge-Kutta optimizer (RUN), we developed a robust 
prediction model for GHG emissions in Atlantic Canadian Potato 
production.

Our study’s main objectives are: 

• To pioneer the application of an advanced ML model combining 
GBDT and LightGBM with a RUN algorithm for GHG emission pre
diction in Atlantic Canadian Potato production.

• To conduct a comprehensive feature selection investigation using 
various algorithms, including Boruta, Best Subset Lasso Regression, 
and Weighted Aggregated Sum Product Assessment, to identify the 
most effective input combinations.

• To incorporate SHapley Additive exPlanations (SHAP) as an 
explainer to address the critical need for interpreting the physical 
significance of predictors in relation to output parameters, a crucial 
step in ML modeling.

This intelligent framework effectively filters the most significant 
features from extensive datasets, reducing computational time costs 
while improving prediction accuracy and providing valuable insights 
into GHG emission drivers in potato production.

Fig. 1. The primary ML-based model’s versions applied for crops GHG emis
sions; (i) neural network: e.g., Artificial neural network 50,51 and Deep Learning 
52, (ii) ensemble models e.g., random forest 53,54, (iii) kernel model: e.g., Sup
port vector machine 16, (iv) evolutionary model: e.g.: gene expression pro
gramming 55.
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2. Materials and methods

2.1. Study area

The research was conducted across two distinct provinces in Atlantic 
Canada, Prince Edward Island (PEI) and New Brunswick (NB), 
leveraging their unique climatic and soil conditions conducive to potato 
cultivation. PEI is characterized by its surrounding Atlantic Ocean, 
contributing to a predominantly humid climate, and experiencing an 
extended winter season, contrasted with relatively short summers. The 
winters are marked by frequent snow and blizzard events driven by 

weather systems from the Atlantic Ocean and the Gulf of Mexico. Spring 
brings moderate coolness, aiding in winter’s snow and ice dissipation. 
Summer months are characterized by warmth, with temperatures often 
soaring above 30 ⸰C during the day. The autumn season is notably rainy. 
The soil is primarily sandy loam and is derived from forest soils, making 
it suitable for potato cultivation. Two fields were selected within PEI for 
the study: Jordan Visser Farm (JVF) and St. Peter’s Farm (SPF), spanning 
33 ha and 6 ha and located at coordinates 46.2219◦ N, 63.5150◦ W and 
46.4210◦ N, 62.5793◦ W, respectively.

Meanwhile, the NB, positioned along Canada’s eastern coast, expe
riences a humid continental climate heavily influenced by the Atlantic 

Fig. 2. Study area map and geographical field coordinates of Prince Edward Island (right) and New Bruswick (left).
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Ocean and varied topography. NB stands as one of the warmer areas 
within Canada, maintaining an average daily high temperature of 
approximately 11 ◦C like Central European climates. It experiences a 
predominantly cold and wet climate, with a brief period of warmer 
summer months. The Mclean Farm (MF) field in Woodstock, NB, 
covering 11 hectares and situated at 46.1106◦ N, 67.6574◦ W, features 
silty loam soil, differing from the sandy loam observed in PEI. Tradi
tional farm management practices were employed for potato cultivation 
in each of the selected fields. The soil parameters, CO2 and N2O flux 
rates, H2O concentrations and climatic data were meticulously gathered 
throughout the growing season of 2023, observing different potato 
growth stages from planting to harvesting. Fig. 2 exhibits the study areas 
and the coordinates of the filed investigation in PEI and NB.

2.2. Data collection and exploration

Data collection commenced with the analysis of soil samples from 
each field before potato planting. These samples were analyzed from the 
PEI Analytical Lab (PEIAL) for texture analysis, facilitating a detailed 
understanding of the soil composition within the study areas. To 
monitor the soil’s GHG emissions effectively, we used a LI-COR survey- 
based soil gas flux system that includes a smart chamber connected to a 
laser-based Trace Gas Analyzer, which precisely facilitated the mea
surement of GHG fluxes. This system employs Optical Feedback-Cavity 
Enhanced Absorption Spectroscopy (OF-CEAS) for accurate GHG emis
sions from the soil, as outlined in the studies of [28,29]. Twenty-four 
PVC soil collars were strategically placed between the plants and on 
the ridges of the potato crops [30]. Following the recommendations by 
LI-COR Biosciences (2022), these collars were inserted at a depth of 9 cm 
with an offset height of 2 cm above the soil surface, considering the 
field’s topography to encompass top hill, mid-slope, and depression 
areas. Additional parameters such as soil moisture (SM), soil tempera
ture (ST), and electrical conductivity (SEC) were measured using Ste
ven’s hydra probe, which was connected to the smart chamber.

The LI-COR Trace Gas Analyzer followed a comprehensive calibra
tion procedure, utilizing zero or baseline calibration gas and air- 
balanced gases of known volumes for CO2 and N2O span calibration. 
This process, detailed in the LI-COR TGA Manual (2022), was essential 
for accurate GHG emissions measurements from the soil. Furthermore, a 
HOBO RX3000 weather station [31] was installed in each field to record 
critical weather parameters, including air temperature (AT), precipita
tion (P), relative humidity (RH), wind speed (WS), and dew point (DP). 
This data was instrumental in conducting a statistical analysis of the 
collected datasets (Table 1), providing insights into the environmental 
conditions impacting potato growth in PEI and NB.

Table 1 presents a detailed statistical analysis of soil and weather 
parameters measured from PEI and NB fields influencing GHG emis
sions. The standard deviation (Std. D) reflects the amount of variability 
from the mean. It is 1.614 for CO2, suggesting the fluctuations of CO2 
emissions due to varying agricultural practices, soil conditions and 
environmental factors, 1.472 for N2O, highlighting the potential for 

periodic emissions events influenced by soil management practices, SM 
and ST, and 4.689 for H2O reflecting considerable fluctuations in water 
vapor concentrations due to changing weather patterns, SM and plant 
transpiration rates. Kurtosis describes the shape of a distribution’s tails 
concerning its overall shape by comparing the peakedness or flatness of 
the data with normal distribution. For CO2, it is 0.401, indicating that 
CO2 emissions data does not have tails and is relatively balanced around 
the mean. It is 13.290 for N2O, which is slightly higher than the normal 
distribution and indicates the presence of outliers and extreme emission 
events, which are crucial to understanding the overall impact of agri
cultural practices. H2O is calculated as − 1.060, representing a flatter 
distribution to the normal distribution with lighter tails that suggest 
variations in H2O vapor concentrations. These insights are vital for 
understanding the dynamics of GHG emissions and water vapor in 
agricultural soils, informing strategies for mitigation and management.

3. Computational and mathematical aspects

3.1. Gradient-boosted decision trees (GBDT)

The gradient-boosting decision tree (GBDT) is a repetitive tree 
approach that integrates a sequential set of weak prediction models, 
commonly called classification and regression trees (CART). During the 
iterative procedure, the CART is trained using the residuals obtained 
from the preceding tree [32]. The output is determined by aggregating 
the regression outcomes of all trees [33]. The GBDT algorithm’s 
fundamental principle is to approximate the basic model’s loss value to 
the loss function’s negative gradient value to construct the basic model 
for the subsequent round [34]. The primary objective of GBDT is to 
compile the outcomes of all trees into a single final result. GBDT will 
continually reduce the residual by fitting an additional regression tree in 
the general direction of the gradient of the previous residual reduction in 
each iteration [35].

In the context of the GBDT approach, x was designated to represent a 
collection of predictor variables. F(x) is a function that denotes the 
anticipated values. The objective of the model is to minimize the loss 
function L(y,F(x)) = [y − F(x)]2. This is achieved by utilizing the FM(x)
function and M decision trees, which are based on the training set T =

{(x1,y1),⋯, (xN,yN)}. The function FM(x) is defined as follows: 

FM(x) =
∑M

m=1
fm(x) =

∑M

m=1
θmt(x; μm) (1) 

The symbol μm represents the average number of split locations and 
terminal nodes in a single tree t(x; μm). The value of θm was established 
by minimizing the loss function. The optimization approach started with 
the consideration of the following function: 

f0(x) = γ = argminγ

∑N

i=1
L(yi, γ). (2) 

The value of the iteration count m was adjusted within the range of 1 

Table 1 
Detailed statistics analysis of collected datasets.

Parameter Symbol Minimum Median Maximum Mean Std. D COV Skewness Kurtosis

Soil Moisture SM [cm3/cm3] 0.009 0.059 0.196 0.068 0.035 52.04 % 1.294 1.595
Soil Temperature ST [◦C] 15.570 22.840 28.520 22.660 2.920 12.88 % − 0.276 − 0.767
Soil EC SEC [S/m] 0.001 0.003 0.015 0.003 0.002 65.12 % 2.327 6.561
Air Temperature AT [◦C] 12.300 16.900 24.440 18.240 3.361 18.43 % 0.228 − 0.907
Precipitation P [mm] 0.000 0.000 7.600 0.567 1.656 292.1 % 3.653 12.620
Relative Humidity RH [%] 69.500 86.000 99.000 84.390 7.681 9.101 % − 0.118 − 0.590
Wind Speed WS [m/s] 0.400 1.100 17.000 3.336 4.738 142.0 % 1.887 2.261
Dew Point DP [◦C] 7.200 16.000 21.000 15.280 3.973 25.99 % − 0.427 − 1.079
CO2 CO2 [µmol/m2/s] 0.757 3.468 9.726 3.602 1.614 44.81 % 0.681 0.401
N2O N2O [nmol/m2/s] 0.014 0.313 10.280 0.895 1.472 164.6 % 3.358 13.290
H2O H2O [mmol/mol] 13.200 23.460 33.240 23.420 4.689 20.02 % − 0.022 − 1.060
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to N, and the direction of the boosting steps was dictated by the negative 
gradient gim for each individual data sample i. 

− gim = −

[
∂L(yi, f(xi))

∂f(xi)

]

f(x)=fm− 1(x)
(3) 

In order to minimize the squared error, the regression tree t(x; μm)

was set up to predict the negative gradient gim. The step length θm was 
then computed according to the following formula: 

θm = argminθ

∑N

i=1
L(yi, Fm− 1(xi)+ θt(x; μm)) (4) 

Consequently, the optimization method may be altered in accor
dance with the following Equation: 

F(x) = Fm− 1(x) + θmt(x; μm). (5) 

Fig. 3 (above) shows the structure of the GBDT model. When utilizing 
GBDT, it is crucial to consider three primary hyperparameters: the 
learning rate, the maximum depth of the individual regression estima
tors (max_depth), and the number of iterative learning cycles (n_esti
mators). Since gradient boosting is not susceptible to overfitting, many 
iterative learning cycles frequently enhance performance. The 
maximum depth restricts the number of nodes in the tree. The optimi
zation of efficacy can be achieved through the adjustment of this 
parameter. The interaction of the input variables determines the optimal 
value. The rate of learning diminishes the contribution of each tree. In 
general, smaller values are preferred as they enhance the model’s ability 
to generalize by increasing its resistance to the individual properties of 
the tree [36].

Fig. 3. Structure of gradient boosting decision tree (GBDT) (above) LightGBM (bottom) models.
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3.2. Light gradient-boosting machine (LightGBM)

LightGBM is one of the newest and most widely used ML techniques 
based on the gradient-boosting decision tree model [37]. Microsoft 
developed it in 2017 and it stands out as a highly efficient ML algorithm 
for addressing classification, regression, and sorting problems [38]. 
LightGBM mainly uses an advanced histogram algorithm, making it a 
powerful tool for predictive modelling in various domains [39]. Its 
ability to reduce memory usage for its computational speed without 
sacrificing the accuracy in handling large datasets outperforms other 
gradient-boosting decision tree models like extreme gradient boosting 
(XGBoost) and stochastic gradient boosting (SGB) [37]. LightGBM op
timizes decision tree construction through leaf-wise splitting and data 
binning, efficiently managing computational resources by organizing 
feature data into histograms that capture gradient information and 
instance counts [40,41]. The key parameters that enhance the perfor
mance of LightGBM include learning_rate, number of trees (num_itera
tions), number of leaves per tree (num_leaves), max_depth, 
bagging_fraction, and a subset of features on each iteration (feature_
fraction). Fig. 3 (bottom) illustrates the creation of a LightGBM pre
diction model by training successive decision trees, each informed by 
the error gradients of prior ones, and combining them with respective 
accuracy-based weights to form an ensemble model with enhanced 
predictive capability.

3.3. RUN optimization

The Runge-Kutta method served as the basis for the development of 
the RUN optimization algorithm [42]. The RUN employs a logical and 
promising seeking mechanism for global optimization, utilizing the logic 
of slope changes computed by the Runge-Kutta technique. The Runge 
Kutta technique is a widely used procedure for solving ordinary differ
ential equations. This method can be implemented to develop a nu
merical technique with high precision by employing functions that do 
not necessitate their high-order derivatives [43,44]. The two operators 
comprising the algorithm are the Runge-Kutta search mechanism (SM) 
and the enhanced solution quality operator. The primary stages of the 
RUN algorithm are detailed in the subsequent subsections.

3.3.1. Update solutions
The RUN algorithm uses the search method SM to update the solu

tions at each generation and generate a new solution (xnew1) using Eq. 
(6). 

xnew1 =

{
(xn1 + μ.AF .b.xn1) + AF.SM + ρ.randn.(xn2 − xn1) if rand < 0.5
(xn2 + μ.AF .b.xn2) + AF.SM + ρ. randn.(xc1 − xc2) otherwise

(6) 

The variable μ represents an integer with a value of either 1 or − 1. 
The variable b represents a random number between 0 and 2. The 

Fig. 4. Schematic work path of the multi-level preprocessing-based inspired intelligent framework to monitor the GHG emission drivers.
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variables xc1 and xc2 are two randomly selected positions within the 
solution space are chosen from the interval between 1 and Np. Np rep
resents the size of the population. AF represents an adaptive coefficient, 
and ρ represents a random number. The formulation of SM is as follows: 

SM =
1
6
(VRK)Δx (7) 

VRK = u1 + 2 × u2 + 2 × u3 + u4 (8) 

u1 =
1

2Δx
(rand.xwt − σ.xbst) (9) 

σ = round(1+ rand).(1 − rand) (10) 

u2 =
1

2Δx
(rand.(xwt + a1.u1.Δx)− (σ.xbt + a2.u1.Δx)) (11) 

u3 =
1

2Δx

(

rand.
(

xwt + a1.

(
1
2
u2

)

.Δx
)

− (σ.xbt + a2.

(
1
2
u2

)

.Δx
)

) (12) 

u4 =
1

2Δx
(r.(xwt + a1.u3.Δx)− (σ.xbt + a2.u3.Δx)) (13) 

The variables xwt and xbt represent the worst and best locations 
determined during each generation, respectively. The variables a1and a2 

represent two random integers chosen from the range of values between 
0 and 1. The calculation of Δx is determined using the following 
equations: 

Fig. 5. The normalized distribution of datasets (above) correlogram (bottom) of all the datasets aims to model the CO2, N2O, and H2O drivers.
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Fig. 6. Outcomes of Boruta-GBDT feature selection based on the Z-score values aim to the first stage filtering the most influential features for each GHG emis
sion drivers.
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Δx = 2.rand.|γ| (14) 

γ = rand.((xbt − rand.xm)+ τ) (15) 

τ = rand.(xk − rand.(U − L)).exp
(

− 4.
g

Maxg

)

(16) 

The symbol γ represents the step size used in each generation. L and 
U represent the lower and upper bounds of the issue. g represents the 
current generation number. Maxg represents the maximum number of 
generations. xm represents the average location at each generation. The 
values of xwt and xbs are calculated using the following Equation: 

if f(xk) < f
(
xbs,k

)

xbt = xk

xwt = xbs

else
xbt = xbs,k

xwt = xk

end

(17) 

xbs,k represents the optimal solution obtained from three randomly 
selected places (xc1, xc2, and xc3). AF is expressed in the following 
manner: 

AF = 2.(0.5 − rand) ×ω (18) 

ω = 10 × exp
(

− 12.rand.
(

g
Maxg

))

(19) 

The values of xn1 and xn2 are determined using the following 
formulae: 

xn1 = β × xk + (1 − β) × xc1 (20) 

xn2 = β × xbst + (1 − β) × xcbst (21) 

β represents a random value between 0 and 1. xbst represents the best 
position found so far, and xcbst represents the best position attained in 
the current generation.

3.3.2. Enhanced solution quality
The RUN algorithm enhances the quality of solutions and avoids 

becoming stuck in local situations. The suggested approach utilizes the 
enhanced solution quality (ESQ) to generate a new solution (VESQ), 
which is formulated as follows: 

if rand < 0.5

if ψ < 1

VESQ = xnew2 + χ.η.|(xnew2 − xm)+randn|

else
VESQ = (xnew2 − xm) + χ.η.|(2.rand.xnew2 − xm)+randn|

end

end

(22) 

η = rand(0, 2).exp
(

− a.
(

g
Maxg

))

(23) 

xm =
xc1 + xc2 + xc3

3
(24) 

xnew2 = θ × xm + (1 − θ) × xbst (25) 

θ represents a random number between 0 and 1. a represents a random 
number that is equal to 5 times a randomly generated number. χ rep
resents an integer value that can be either 1, 0, or − 1.

In order to explore the possibility of finding a better location, a new 
solution called xnew3 is developed, given that the fitness function of the 
solution VESQ may not be superior to the present solution xk (i.e., 
f(VESQ) > f(xk)). 

Table 2 
The second stage of the pre-processing outcomes uses the BSLR-WASPAS schemes to exhibit the CO2, N2O, and H2O drivers.

Tar Num Input combination CP Ad-R2 MSE AIC WASPAS

CO2 1.0000 ST+RH+WS+DP 1.4055 0.4636 1.3837 172.9650 0.6090
2.0000 SM+ST+RH+WS+DP 1.4109 0.4625 1.3837 174.9650 0.4965
3.0000 Combo 1: ST+AT+RH+DP 1.4281 0.4549 1.4060 181.0950 0.3414
4.0000 ST+AT+RH+WS+DP 1.3993 0.4669 1.3723 170.7700 0.6263
5.0000 SM+ST+AT+WS+DP 1.4020 0.4659 1.3749 171.7450 0.6119
6.0000 ST+WS+DP 1.4116 0.4602 1.3952 175.1680 0.5389
7.0000 Combo 2: SM+ST+WS+DP 1.4171 0.4591 1.3952 177.1680 0.4175
8.0000 Combo 3: ST+RH+DP 1.4251 0.4551 1.4085 179.9840 0.3755
9.0000 ST+AT+WS+DP 1.3966 0.4670 1.3749 169.7450 0.6592
10.0000 SM+ST+AT+RH+WS+DP 1.4047 0.4659 1.3723 172.7700 0.5602

N2O 1.0000 Combo 1: ST+AT+RH+WS 1.9014 0.1278 1.8719 326.4910 0.1984
2.0000 Combo 2: SM+ST+AT+RH+WS 1.9087 0.1261 1.8719 328.4910 0.2012
3.0000 Combo 3: ST+AT+RH+WS+DP 1.9087 0.1261 1.8719 328.4910 0.2014
4.0000 SM+ST+AT+RH+WS+DP 1.9161 0.1243 1.8719 330.4910 0.2625
5.0000 ST+SEC+AT+RH+WS 1.9087 0.1261 1.8719 328.4910 0.2012
6.0000 SM+ST+SEC+AT+RH+WS+DP 1.9235 0.1226 1.8719 332.4910 0.3587
7.0000 ST+SEC+AT+RH+WS+DP 1.9161 0.1243 1.8719 330.4910 0.2625
8.0000 ST+AT+RH 1.9284 0.1137 1.9059 333.6300 0.8179
9.0000 ST+RH+WS+DP 1.9313 0.1141 1.9014 334.4350 0.7962
10.0000 SM+ST+SEC+AT+RH+WS 1.9161 0.1243 1.8719 330.4910 0.2625

H2O 1.0000 ST+SEC+AT+RH 6.013 0.7281 5.92 911.39584 0.499542
2.0000 ST+AT+RH+WS+DP 5.667 0.7442 5.558 881.33076 0.519603
3.0000 ST+AT+RH 5.99 0.7286 5.92 909.39584 0.519891
4.0000 Combo 1: ST+RH+WS+DP 6.0777 0.7251 5.9835 916.8149 0.4939
5.0000 ST+AT+RH+DP 6 0.7286 5.907 910.31522 0.501138
6.0000 Combo 2: ST+SEC+RH+WS+DP 6.1013 0.7246 5.9835 918.8149 0.4804
7.0000 ST+SEC+AT+RH+WS+DP 5.689 0.7437 5.558 883.33076 0.506871
8.0000 Combo 3: ST+SEC+AT+RH+DP 6.0237 0.7281 5.9074 912.3152 0.4817
9.0000 ST+AT+RH+WS 5.703 0.7421 5.615 884.49718 0.533646
10.0000 ST+SEC+AT+RH+WS 5.725 0.7416 5.615 886.49718 0.518341
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Fig. 7. The spider plots of second-stage preprocessing using the BSLR-WASPAS scheme among the top-ten possible input combinations of the GHG emission drivers 
aim to obtain the three best optimal candidate ones.
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if rand < ψ
xnew3 = (VESQ − rand.VESQ) + AF.(rand.VRK + (2.rand.xbst − VESQ))

End
(26) 

3.4. Boruta-GBDT

Feature selection (FS) is a critical component of ML-based prediction 
models, as it is necessary to identify the most relevant features or vari
ables that contribute to prediction accuracy. Boruta has garnered 
attention among the numerous feature selection algorithms due to its 
ability to identify statistically significant features and manage large data 
sets [45]. The Boruta algorithm, which serves as a robust feature set 
wrapper, was initially derived from the RF, which derives its name from 
a mythical Slavic god associated with forests [46]. In order to assess the 
significance of the features involved in classification and regression 
tasks, the fundamental concept behind this algorithm is to incorporate 
additional randomization into the original system and combine them 
[47]. In recent times, the development of open-source frameworks for 
ensemble ML has enabled the formulation of this algorithm utilizing 
novel robust ensemble tree-based techniques, including XGBoost, Cat
boost, and decision tree. Instead of RF, the GBDT algorithm was utilized 
in this study to prioritize the significant features in order to input the ML 
models by eliminating the insignificant features iteratively.

The following is a comprehensive protocol for Boruta FS [48]: 

1- The feature set may be enhanced by introducing randomization by 
creating scrambled duplicates, known as shadow features, of all the 
features. These shadow features can then be combined with the 
original features to produce an expanded feature set.

2- Develop a GBDT model using the expanded feature set and assess the 
significance of each feature by calculating the average decreased 
accuracy (Z value). The shadow feature’s biggest Z value, written as 
Zmax, corresponds to a larger Z value, indicating its greater 
importance.

3- In every iteration, if the Z value of the feature exceeds Zmax, the 
feature is deemed significant and retained. Alternatively, if the 

feature is considered to be of minimal significance, it will be elimi
nated from the feature set.

4- The aforementioned procedure concludes when either all features 
have been verified or rejected or when the Binary Feature Set (Boruta 
FS) reaches its maximum number of repetitions.

3.5. Best subset lasso regression (BSLR)

The best subset regression (BSR) is a method for selecting models in 
which, following the evaluation of every potential combination of pre
dictor variables in the initial preprocessing phase, the optimal model is 
determined using statistical criteria [49]. Here, the classical linear 
regression has been replaced with the least absolute shrinkage and se
lection operator (Lasso) regression 36 to efficiently capture the 
non-linearity between inputs and targets. As this scheme is constructed 
in the Python platform,

The optimal subset selection for k independent variables can be 
briefly described as follows: 

1. Evaluate any potential model comprising one, two, or more vari
ables, up to a maximum of k variables.

2. Thereafter, the optimal model of size k is chosen, followed by the 
optimal model of sizes one and two. In the end, the model with the 
highest overall quality is chosen from the finalists. In the end, the 
optimal subset selection chooses one model from a set of 2k alter
native models. For optimal subset selection, statistical criteria, 
including Mallow’s coefficient (Cp) [50], mean square error (MSE), 
adjusted R2

adj, Akaike’s Information Criterion (AIC) [51], and deter
mination coefficient (R2) are applied. The conventional BSR core 
regression is simple linear regression but in the current research, 
lasso regression [52], as a robust regression technique, is used as a 
core regressor. The aforementioned criteria may be computed uti
lizing the subsequent equations [53]: 

Cp =
RSSk

MSEm
+ 2k − N, m > k (27) 

Table 3 
Superior hyperparameters of all the predictive inspired RUN-based models and GBDT to simulate the GHG emission drivers.

Tar Model/ 
Combo

Combo 1 Combo 2 Combo 3 RUN setting

CO2 GBDT-RUN n_estimators=100; Max depth=4; 
learning_rate=0.024; subsample 
value=0.90

n_estimators=100; Max depth=4; 
learning_rate=0.024; subsample 
value=0.90

n_estimators=115; Max depth=4; 
learning_rate=0.02; subsample 
value=0.90

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.2; 
beta_max=1.2

GBDT n_estimators=100; Max depth=3; 
learning_rate=0.1; subsample 
value=0.90

n_estimators=100; Max depth=3; 
learning_rate=0.1; subsample 
value=0.90

n_estimators=100; Max depth=3; 
learning_rate=0.1; subsample 
value=0.90

–

LightGBM- 
RUN

n_estimators=100; 
learning_rate=0.47; num_leaves=2; 
Max depth =18

n_estimators=40; 
learning_rate=0.12; num_leaves=25; 
Max depth =8

n_estimators=32; learning_rate=0.50; 
num_leaves=30; Max depth =3

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.20; 
beta_max=1.2

N2O GBDT-RUN n_estimators=435; Max depth=6; 
learning_rate=0.045; subsample 
value=0.10

n_estimators=1000; Max depth=14; 
learning_rate=0.01; subsample 
value=0.10

n_estimators=1000; Max depth=15; 
learning_rate=0.024; subsample 
value=0.10

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.20; 
beta_max=1.2

GBDT n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.9

n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.9

n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.9

–

LightGBM- 
RUN

n_estimators=100; 
learning_rate=0.44; num_leaves=4; 
Max depth =11

n_estimators=98; 
learning_rate=0.44; num_leaves=10; 
Max depth =3

n_estimators=98; learning_rate=0.48; 
num_leaves=4; Max depth =9

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.20; 
beta_max=1.2

H2O GBDT-RUN n_estimators=888; Max depth=14; 
learning_rate=0.0; subsample 
value=0.10

n_estimators=940; Max depth=4; 
learning_rate=0.01; subsample 
value=0.90

n_estimators=328; Max depth=3; 
learning_rate=0.06; subsample 
value=0.90

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.20; 
beta_max=1.2

GBDT n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.90

n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.90

n_estimators=100; Max depth=3; 
learning_rate=0.10; subsample 
value=0.90

–

LightGBM- 
RUN

n_estimators=10; 
learning_rate=0.49; num_leaves=9; 
Max depth =13

n_estimators=10; 
learning_rate=0.48; num_leaves=29; 
Max depth =8

n_estimators=10; learning_rate=0.50; 
num_leaves=27; Max depth =20

Population size=15; Epoch=15; 
pr=0.50; beta_min=0.20; 
beta_max=1.2
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AIC = 2p + N.ln

(
1
N
∑N

i=1
êi

2

)

(28) 

The variables denoted as N, p, and k represent the number of data, 
model parameters, and variables, respectively, the residual (êi) and the 
residual sum of squares (RSSk). AIC, Cp, and MSE values with the lowest 
values are optimal [54].

3.6. WASPAS scheme

The "weighted aggregated sum product assessment" (WASPAS) 
method, which was introduced by Zavadskas et al., has proven to be a 
functional method for Multi-Criteria Decision Making (MCDM) in a 

variety of domains [55]. This method is a combination of the Weighted 
Product Model (WPM) and the Weighted Sum Model (WSM). The 
WASPAS approach is more precise than WPM and WSM [55,56]. This 
approach has been implemented in numerous decision-making scenarios 
and circumstances [57–59]. This method’s widespread adoption and 
swift growth can be attributed to its easy and straightforward compu
tation, which yields reasonably precise outcomes when evaluating and 
selecting specific options in opposition to conflicting criteria. The sub
sequent procedures constitute the mathematical description of the 
WASPAS method [60]: 

1- During the initial phase, the criteria 
(
Cj
)

and alternative (Ai) are 
selected for assessment. Given the set i = 1,……m and j = 1,……n.

Table 4 
Goodness-of-fit metrics related to understudy GHG emission components using three ensemble ML schemes to validate the robustness of the main hybrid model (GBDT- 
RUN).

Target Model Combo Phase R RMSE MAE MAPE NSE U95 % SquD

CO2 GBDT-RUN Combo 1 Training 0.8741 0.8097 0.5974 19.8317 0.7440 2.2460 30.9405
Testing 0.8431 0.9337 0.7006 25.2936 0.6758 2.5847 18.1759

Combo 2 Training 0.9353 0.6262 0.4790 16.7307 0.8469 1.7368 20.1629
Testing 0.8201 0.9518 0.7216 26.1152 0.6631 2.6400 19.0841

Combo 3 Training 0.8699 0.8277 0.6171 20.6314 0.7325 2.2959 32.2480
Testing 0.8240 0.9525 0.7209 26.7216 0.6626 2.6373 19.3806

GBDT Combo 1 Training 0.9067 0.6851 0.5041 16.6430 0.8167 1.9005 22.7022
Testing 0.7942 1.0047 0.7150 25.0560 0.6246 2.7791 20.2269

Combo 2 Training 0.9262 0.6220 0.4628 15.4295 0.8490 1.7252 19.0727
Testing 0.8107 0.9627 0.7044 25.3297 0.6553 2.6715 19.2386

Combo 3 Training 0.9018 0.7034 0.5225 17.4432 0.8069 1.9510 24.2502
Testing 0.8117 0.9658 0.7408 26.4020 0.6531 2.6708 19.4553

LightGBM-RUN Combo 1 Training 0.8091 0.9417 0.6875 22.1463 0.6538 2.6122 40.1141
Testing 0.8105 0.9708 0.7247 24.9808 0.6495 2.6810 18.9495

Combo 2 Training 0.8843 0.7544 0.5542 17.6424 0.7778 2.0926 25.3662
Testing 0.8049 0.9737 0.7180 25.6911 0.6474 2.7027 19.9187

Combo 3 Training 0.8305 0.8929 0.6464 20.7984 0.6888 2.4768 36.0346
Testing 0.8121 0.9669 0.7157 25.1301 0.6523 2.6707 18.8564

N2O GBDT-RUN Combo 1 Training 0.9153 0.5569 0.2992 75.7307 0.8338 1.5447 35.8082
Testing 0.8633 0.8585 0.4339 84.3531 0.7403 0.7600 27.6479

Combo 2 Training 0.9378 0.4864 0.2462 66.5599 0.8732 0.9622 24.7464
Testing 0.8071 1.0074 0.5308 104.2082 0.6424 0.8693 32.2075

Combo 3 Training 0.9357 0.4908 0.2513 70.1303 0.8709 0.9618 26.2942
Testing 0.8534 0.8861 0.4493 93.0211 0.7233 0.9075 27.1144

GBDT Combo 1 Training 0.9631 0.3807 0.2247 67.9726 0.9223 0.9779 19.9047
Testing 0.6634 1.2823 0.5630 122.4798 0.4206 0.7908 39.7093

Combo 2 Training 0.9781 0.2973 0.1916 69.2825 0.9526 0.9870 17.1551
Testing 0.6370 1.3073 0.5754 130.5415 0.3978 0.7504 42.3224

Combo 3 Training 0.9614 0.3856 0.2247 67.3268 0.9203 0.9775 20.3497
Testing 0.6621 1.2822 0.5685 126.7158 0.4206 0.7891 39.9863

LightGBM-RUN Combo 1 Training 0.8818 0.6478 0.3468 98.1628 0.7751 0.9292 46.3923
Testing 0.6926 1.2229 0.5244 82.5732 0.4730 0.7740 36.1169

Combo 2 Training 0.9036 0.5921 0.3305 115.7939 0.8121 0.9418 52.3001
Testing 0.6721 1.2576 0.5699 103.5138 0.4426 0.7640 41.4100

Combo 3 Training 0.8630 0.6931 0.3630 100.7754 0.7426 0.9168 45.4727
Testing 0.7160 1.1837 0.5185 81.2189 0.5062 0.7949 34.0221

H2O GBDT-RUN Combo 1 Training 0.9908 0.6214 0.4518 2.0262 0.9816 1.7237 3.1020
Testing 0.9763 1.0665 0.7864 3.4579 0.9526 2.9604 3.8300

Combo 2 Training 0.9952 0.4551 0.3514 1.5755 0.9901 1.2624 1.6352
Testing 0.9691 1.2087 0.8434 3.7421 0.9391 3.3550 4.8535

Combo 3 Training 0.9955 0.4383 0.3464 1.5447 0.9908 1.2158 1.5151
Testing 0.9735 1.1251 0.8106 3.5815 0.9473 3.1223 4.2232

GBDT Combo 1 Training 0.9908 0.6214 0.4518 2.0262 0.9816 1.7237 3.1020
Testing 0.9688 1.2143 0.8671 3.8503 0.9386 3.3714 4.9380

Combo 2 Training 0.9867 0.7537 0.5637 2.5527 0.9729 2.0905 4.6361
Testing 0.9680 1.2310 0.8945 3.9636 0.9369 3.4160 5.0505

Combo 3 Training 0.9879 0.7207 0.5523 2.4748 0.9752 1.9990 4.1012
Testing 0.9684 1.2227 0.8754 3.8996 0.9377 3.3942 5.0086

LightGBM-RUN Combo 1 Training 0.9747 1.0281 0.7170 3.2317 0.9496 2.8517 8.4892
Testing 0.9720 1.1529 0.8398 3.7271 0.9446 3.2008 4.4654

Combo 2 Training 0.9807 0.8995 0.6572 2.9053 0.9614 2.4951 6.2328
Testing 0.9713 1.1699 0.8610 3.8288 0.9430 3.2459 4.6545

Combo 3 Training 0.9800 0.9128 0.6563 2.9100 0.9603 2.5319 6.5052
Testing 0.9707 1.1893 0.8679 3.8032 0.9411 3.2975 4.7106
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2- One of the MCDM methodologies is employed to calculate the 
weights of the criteria in the second phase. In this investigation, the 
weights of the criteria were quantified utilizing SWARA.

3- In Step 3, the decision matrix is normalized by employing Eqs. (29)
and (30). To optimize the benefit for the beneficiary, 

Xij = Xij
/
maxXij (29) 

For minimum optimum value (non-beneficiary) 

Fig. 8. Ribbon plot of metric performances for each ML model’s variant input combinations to predict the GHG emission’s CO2, N2O, and H2O components. C denotes 
the Combo.
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Xij = minXij
/
Xij (30) 

4- The "Weighted Sum Model" is employed in the fourth stage to 
compute the initial total relative significance value 

(
Q(1)

i
)

by utiliz
ing Eq. (31). 

Q(1)
i =

∑n

j=1
XijWj (31) 

5- In Step 5, the "Weighted Product Model (WPM)" is executed to 
compute the second total relative significance value 

(
Q(2)

i
)

utilizing 
Eq. (32). 

Q(2)
i =

∏n

j=1

(
Xij
)Wj (32) 

6- In Step 6, the aggregate total relative significance value (Qi) is 
calculated using Eq. (33), where λ represents the coefficient value of 
Qi. 

Qi = λQ(1)
i + (1 − λ)Q(2)

i (33) 

The multi-level pre-processing technique to filter out the best 
possible input combination of all the scenarios has been comprised of the 
BSLR and WASPAS (BSLR-WASPAS). More details are comprehensively 
presented in the following sections. More details on application of 
WASPAS in feature selection are comprehensively presented in 3.9 
section.

3.7. SHapley Additive exPlanations (SHAP) explainer

SHAP is a model-agnostic tool that Lundberg & Lee (2017) devel
oped, representing a significant advancement in ML interpretability. It 
draws upon the concept introduced by Shapley in 1953, utilizing game 
theory principles to assess the impact of individual features on model 
predictions. The essence of SHAP values lies in their ability to quantify 
how observing a particular feature shifts the model’s output, thus 
providing a nuanced understanding of feature importance and its effects 
across the dataset. This method distinguishes itself by examining each 
input parameter’s contribution to the ML model’s output through an 
explanation model (EM) selected based on the problem [61]. SHAP’s 
versatility and model-agnostic nature have facilitated its successful 
application across various domains, underscoring its utility in enhancing 
the performance and interpretability of several ML algorithms [62,63]. 
Mathematically, SHAP is defined as: 

M = φ0 +
∑N

i=1
φiti (34) 

Where φi is the attribute of the feature i, ti represents the coalition 
vector, i.e., if the feature is present (ti=1) or absent (ti=0), and N denotes 
the number of input features. SHAP values are the Shapley values of a 
conditional exception function fx, and can be calculated as follows: 

ϕi =
∑

S⊆Z\{i}

|S|!(N − |S| − 1)!
N!

[fx(S ∪ {i}) − fx(S)] (35) 

Where S denotes a subset of features, Z represents the set of all input 
features, and N indicates the number of input features. Furthermore, the 
Python SHAP library offers tools for visualizing the importance of fea
tures in tree-based models from Scikit-learn, facilitating the interpreta
tion of ML model outcomes [64].

3.8. Goodness-of-fit indicators

To examine the robustness of provided ML-based frameworks, seven 
goodness of fit statistics were utilized including the coefficient of cor
relations (R), root mean square error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe effi
ciency (NSE), uncertainty coefficient with 95 % confidence level (U95 %), 
and squared deviation (SquD). The mathematical definitions of the 
mentioned indices are defined as Equations [65–67] (36 to 42): 

R =

∑N
i=1
(
Xm ,i − Xm

)(
Xp ,i − Xp

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(
Xm ,i − Xm

)2∑N
i=1
(
Xp ,i − Xp

)2
√ (36) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
Xm ,i − Xp ,i

)2

√
√
√
√ (37) 

MAE =
1
N
∑N

i=1

⃒
⃒Xm,i − Xp,i

⃒
⃒ (38) 

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
Xm ,i − Xp ,i

Xm ,i

⃒
⃒
⃒
⃒ (39) 

NSE = 1 −

∑N
i=1

(
XP,i − Xm,i

)2

∑N
i=1
(
Xm,i − X

)2 (40) 

U95% = 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
StDe

2 + RMSE2
√

(41) 

SquD =
∑N

i=1

(
Xm,i − Xp,i

)2

Xm,i + Xp,i
(42) 

where N is the number of data points, Xm and Xp are the measured and 
predicted values of the model outcomes, respectively. Xm and Xp are 
the mean values of measured and predicted outcomes of the model, 

Table 5 
Multi-criteria decision-making (WASPAS)-based assessment of model performance to predict the GHG emission components.

Combo CO2 N2O H2O

Model Waspas Rank Waspas Rank Waspas Rank

GBDT-RUN Combo 1 1.88E-07 1.0000 1.29E-07 1.0000 1.23E-07 1.0000
Combo 2 2.12E-07 5.0000 2.48E-07 8.0000 2.27E-07 6.0000
Combo 3 2.21E-07 8.0000 1.72E-07 4.0000 1.60E-07 2.0000

GBDT Combo 1 2.16E-07 6.0000 2.37E-07 6.0000 2.47E-07 7.0000
Combo 2 2.02E-07 3.0000 2.42E-07 7.0000 2.75E-07 9.0000
Combo 3 2.24E-07 9.0000 2.48E-07 9.0000 2.59E-07 8.0000

LightGBM-RUN Combo 1 2.02E-07 4.0000 1.48E-07 2.0000 1.90E-07 3.0000
Combo 2 2.17E-07 7.0000 2.14E-07 5.0000 2.15E-07 4.0000
Combo 3 2.00E-07 2.0000 1.50E-07 3.0000 2.24E-07 5.0000

Grey and cream colour hatches denote the 1st and 2nd ranks, respectively.
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respectively, and StDe is the standard deviation error.

3.9. Computational configuration and scenarios

In this research, along with the experimental investigation on the 
GHG emission drivers of potatoes in PEI and New Brunswick, Canada, a 
novel explainable multi-level intelligent framework comprised of the 

new pre-processing technology integrated with the inspired ML scheme 
has been designed. For this aim, the Boruta-GBDT feature selection 
incorporated with the BSLR and WASPAS-MCDM to accurately ascertain 
the optimal input combination of three scenarios of the CO2, N2O, and 
H2O GHG emission drivers. All the gathered input data are introduced as 
the SM, ST, SEC, AT, P, RH, WS, and DP. The computational modelling 
performed in the Python environment and the implemented libraries 

Fig. 9. Scatter plot of CO2, N2O, and H2O variables in the testing phase to compare the compatibility of computed and measured values of targets using all the 
understudy models considering the candidate input combinations extracted with the multilevel pre-processing.
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were Scikit-learning, Boruta, SHAP, and MEALPY for the ML models, 
feature selection, and optimization algorithm, respectively. Here, a PC 
system supported by the Intel(R) Core (TM) i9–9900 K CPU @ 3.60 GHz 
and 16.00 GB RAM has been used to arrange the computational efforts. 
This corporation was developed for the first time in this research to solve 
highly non-linear environmental problems. Fig. 4 shows the schematic 
work path of a multi-level preprocessing-based inspired intelligent 
framework to monitor the GHG emission drivers.

In the first stages, the normalized distribution of all features in form 
of a viloin plot shows in Fgure 5 (up). Then, all the linear correlation 
interaction between inputs and targets has been assessed using the 
Pearson correlation coefficient-based correlogram depicted in Fig. 5
(bottom). According to the linear analysis, in the CO2, N2O, and H2O 
scenarios, (DP and AT), (SEC and ST), (ST and AT) have the highest 
linear interaction, respectively. To ascertain the optimal input combi
nations for each scenario, the Boruta-GBDT feature selection based on 
the Z-score and Max-Shadow criteria was implemented, and its out
comes are shown in Fig. 6. The green, yellow, and red colors demon
strate the accepted, tentative, and rejected features, while the dark blue 
color shows the Max-Shadow criteria. Here, tentative features were 
considered as the selected feature aims for more assessment in the sec
ond pre-processing stage. According to (upper panel)-Fig. 6, the CO2 
scenario reveals that the AT, DP, ST, SM, RH, and WS are identified as 
the most influential parameters, whereas the ST, AT, DP, SEC, RH, WS, 
and SM considering (middle panel)-Fig. 6 and ST, AT, RH, WS, DP, and 
SEC considering (bottom panel)-Fig. 6 likewise are designated for N2O 
and H2O scenarios, respectively.

In the subsequent stage of pre-processing, the BSLR-WASPAS method 
was utilized to compute the most favorable input combinations given 
the pre-selected feature in every scenario. Previous research suggests 
that specific criteria, such as the lowest values of MSE, Cp, AIC, and PC, 
as well as the highest values (Adj-R2), play a crucial role in identifying 
the best combinations. However, there is no definitive rule for deter
mining which criteria are more influential. To address this gap, the BSLR 
scheme, which has a high potential for capturing non-linearity between 
the datasets, was combined with an MCDM scheme, WASPAS. Based on 

the criteria above, the second pre-processing stage’s outcomes are re
ported in Table 2. The role of WASPAS is to introduce three superior 
candidate input combinations by singularization of the metrics 
mentioned above. In the WASPAS setting, all weight values were set to 
have a unit mean equality across all the BSLR metrics effects.

Essentially, the minimum values of WASPAS indicate the superior 
candidate input combinations. To facilitate the evaluation of ML models, 
the three best input combinations with 4–7 features were identified 
using the WASPAS values in the CO2, N2O, and H2O scenarios. The 
outcomes computationally reveal that for the CO2 scenario, 
[ST+AT+RH+DP], [SM+ST+WS+DP], and [ST+RH+DP] given the 
lower values of WASPAS (0.3414, 0.4175, and 0.3755, respectively) are 
considered to aim at more ML-based assessment. In contrast, in the N2O 
scenario, [ST+AT+RH+WS|0.1984], [SM+ST+AT+RH+WS|0.2012], 
and [ST+AT+RH+WS+DP|0.2014] and in the H2O scenario 
[ST+RH+WS+DP|0.4939], [ST+SEC+RH+WS+DP|0.4804], and 
[ST+SEC+AT+RH+DP|0.4817] have been ascertained to feed the novel 
intelligent frameworks. Fig. 7 shows the spider plot of the BSLR- 
WASPAS pre-processing ascertaining the optimal candidate input com
binations of CO2, N2O, and H2O GHG emissions drivers by the yellow 
color box indicator.

Tuning hyperparameters is one of the most challenging stages in ML- 
based schemes for solving engineering linear problems. Negligence of 
ML hyperparameters might lead to decreased accuracy even in advanced 
paradigms. In this research, a state-of-the-art optimization algorithm, 
well-known RUN, has been employed to compute GBDT and LightGBM 
hyperparameters to overcome this defect. The objective hyper
parameters of GBDT-RUN and LightGBM are n_estimators, learning_rate, 
subsample value, and n_estimators, learning_rate, num_leaves, and Max 
depth, respectively. Also, the setting parameters of RUN are population 
size, Epoch, pr, beta_min, and beta_max. The default values have been 
utilized for the classical GBDT hyperparameters. Table 3 lists all the 
setting hyperparameters of all the provided intelligent frameworks to 
predict the CO2, N2O, and H2O scenarios.

To construct the models, the whole dataset was divided into training 
and testing parts using an 80 % to 20 % ratio. Then, a k-fold cross- 

Fig. 9. (continued).
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validation has been adopted, avoiding overfitting during the training 
procedure by (k = 5). In addition, before feeding the ML model, all the 
inputs and output variables were scaled into a range of zero to one to 
handle different units and distributions, improve convergence, and void 
feature domination.

4. Application results and accuracy assessment

The experimental results and accuracy assessment have been thor
oughly discussed in three scenarios of input combination Combo 1, 
Combo 2, and Combo 3. The primary hybrid GBDT-RUN model was 
compared against LightGBM-RUN and GBDT models to predict CO2, N2O 
and H2O using R, RMSE, MAE, MAPE, NSE, U95 %, and SquD assessment 
metrics in both training and testing periods for Atlantic Canada Prov
inces, PEI and NB.

Table 4 provides the performance accuracy of the GBDT-RUN, 
LightGBM-RUN and GBDT models for Combo 1, Combo 2, and Combo 
3 to predict CO2. By examining, the hybrid GBDT-RUN model shows 
higher efficiency in terms of (R = 0.8741, RMSE = 0.8097, MAE =
0.5974, MAPE = 19.8317, NSE = 0.7440, U95 % = 2.2460, SquD =

30.9405) and (R = 0.8431, RMSE = 0.9337, MAE = 0.7006, MAPE =
25.2936, NSE = 0.6758, U95 % = 2.5847, SquD = 18.1759) in training 
and testing phases respectively based on the Combo 1 (best input 
combination) followed by Combo 3, and Combo 2. For LightGBM-RUN 
and GBDT, Combo 3 appeared to be the optimum choice for input 
combination to predict CO2. However, the GBDT-RUN model achieved 
the highest performance with Combo 1 (in all three combinations of 
inputs) compared to LightGBM-RUN and GBDT models in predicting 
CO2.

To predict N2O, again, the GBDT-RUN model turns out to be the best 
and most accurate choice with Combo 1, followed by Combo 3 and 
Combo 1 using R, RMSE, MAE, MAPE, NSE, U95 %, and SquD. When 
compared, the GBDT-RUN model provides better prediction in both 
training and testing phases against the LightGBM-RUN and GBDT 
models to predict N2O. Analyzing the performance individually, the 
LightGBM-RUN model is better with Combo 3 against Combo 1 and 2. In 
contrast, the GBDT model appeared good with Combo1 to predict N2O 
but could not surpass the GBDT-RUN model

Considering H2O prediction, the GBDT-RUN model displays higher 
assessment metrics values such as R = 0.9908, 0.9763; RMSE = 0.6214, 

Fig. 10. Physical trend expectations related to the CO2, N2O, and H2O variables in the best input combination potential to assess the robustness of the main model 
(GBDT-RUN) and other comparative models in the testing phase.
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1.0665; MAE = 0.4518, 0.7864; MAPE = 2.0262, 3.4579; NSE = 0.9816, 
0.9526; U95 % = 1.7237, 2.9604; SquD = 3.1020, 3.8300 when using 
Combo 1, followed by Combo 3 and Combo 2. The LightGBM-RUN and 
GBDT models are reasonably good in predicting H2O but could not 
exceed the GBDT-RUN model. Thus, overall, the GBDT-RUN model is 
better at predicting CO2, N2O, and H2O with Combo 1 than the 
LightGBM-RUN and GBDT models.

It is easily understood that the GBDT-RUN model reports higher 
precision for all Combo 1, Combo 2, and Combo 3 input combinations 
but outperformed Combo 1, achieving maximum R = 0.8301, NSE =
0.6758 values and MAPE = 25.2936 and SquD = 18.1759. The GBDT- 
RUN is again positioned in 2nd place with Combo 2, followed by the 
Combo 3 input combination to predict CO2. The comparison of model 
GBDT with Combo 2 and LightGBM-RUN with Combo 3 is reasonably 
good in all input combinations for predicting CO2 of GHG emission. 
However, the GBDT-RUN model exceeds all the models with Combo 1 
compared to other models in predicting CO2. Similarly, the GBDT-RUN 
with Combo 1 model acquired the top performance by obtaining the 
highest R, NSE and lowest MAPE and Squd magnitudes values to predict 
N2O and H2O of GHG emission against comparing models and input 
combinations Combo 2 and Combo 3.

Fig. 8 represents the ribbon plot of compatibility (R and NSE) and 
diagnostic performance (MAPE and SquD) of all the models in each 
scenario. Substantially, the GBDT-RUN with Combo 1 in compatibility 

assessment has been recognized as the best model in all the scenarios. 
However, in the diagnostic analysis of CO2, N2O, and H2O scenarios, the 
LightGBM-RUN in Combo 1, LightGBM-RUN in Combo 3, and GBDT- 
RUN in Combo 1 have superior performance.

In order to recognize the best predictive models in all the scenarios 
based on all the metric indicators considering equity weight, Table 5
classifies these models in ranking to determine the most precise model 
based on Combo 1, Combo 2, and Combo 3 using the WASPAS-MCDM 
method. Looking at Table 5, the GBDT-RUN model ranked 1st in pre
dicting CO2, N2O, and H2O components of GHG emission using the input 
combination Combo 1 compared to LightGBM-RUN and GBDT models. 
Further, Combo 1, based on the WASPAS method, appeared to be an 
optimal combination of inputs to predict all three components of GHG 
emission. The GBDT-RUN with Combo 3 attained 2nd position for H2O 
prediction, whereas the LightGBM-RUN model placed 2nd ranking for 
the prediction of CO2 (with Combo 3) and N2O (with Combo 1) com
ponents of GHG emission. Thus, the WASPAS scheme established that 
Combo 1 is an optimal choice of input combinations with GBDT-RUN for 
accurately predicting CO2, N2O, and H2O components of the GHG 
emission.

Fig. 9 examines the competence of the GBDT-RUN, LightGBM-RUN, 
and GBDT model between the predicted and measured CO2, N2O, and 
H2O components of the GHG emission in terms of scatter plots using 
Combo 1, Combo 2, and Combo 3. The scatter plots further intricately 

Fig. 11. Taylor diagram to reveal the robustness of three models in corresponding optimal performance aims to estimate the GHG emission components, CO2, N2O, 
and H2O, in the testing phase.
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measure the models’ prediction capability by counting the R metric and 
the 33 % upper and lower bounds limits. The GBDT-RUN model utilizing 
Combo 1 portrayed the highest precision with R = 0.8431, followed by 
GBDT-RUN with Combo 3 (R = 0.8240) and Combo 2 (R = 0.8201) as 
compared to LightGBM-RUN, and GBDT model to predict CO2 compo
nent. Likewise, the GBDT-RUN model with Combo 1 again appeared 

superior in predicting the GHG emission’s N2O and H2O components. 
Thus, Fig. 9 affirmed that the GBDT-RUN based on Combo 1 is a 
competitive predictive model for GHG emissions’ CO2, N2O, and H2O 
components.

Fig. 10 exhibits the Physical trend expectations between the 
measured and predicted CO2, N2O, and H2O components of GHG 
emission in the best input combination to assess the robustness of the 
main GBDT-RUN and other comparative models. The GBDT-RUN model 
with Combo 1 is proficient in better accuracy by showing parallel and 
consistent trends against the measured CO2, N2O, and H2O components 
compared to the LightGBM-RUN and GBDT models Combo 1 and Combo 
3. The physical trend expectation plots further prove the higher pre
diction accuracy of the GBDT-RUN model during CO2, N2O, and H2O 
prediction than other models.

4.1. Further discussion and explanation of models

The Taylor diagrams in Fig. 11 elaborate the GBDT-RUN, LightGBM- 
RUN and GBDT model’s performance more palpably and concretely 
between the observed and predicted CO2, N2O, and H2O in Combo 1, 
Combo 2, and Combo 3 scenarios. Taylor diagrams are depicted as a 
complete inclusive assessment to examine the models’ comparison 
depending on standard deviation and correlation coefficient. The GBDT- 
RUN model with Combo 1 is slightly closer to the measured CO2, N2O, 
and H2O, with a correlation coefficient between 0.80 and 0.95. 
Comparing LightGBM-RUN and GBDT models are reasonably okay but 
could not surpass the GBDT-RUN model, and this established the suit
ability of the GBDT-RUN model to predict the CO2, N2O, and H2O 
components of GHG emission.

Fig. 12 compares the Ridgeline chart of the relative deviation per
centage of GBDT-RUN, LightGBM-RUN and GBDT models with the op
timum input combinations to predict the GHG emission components. 
Ridgeline charts accurately compare the models’ prediction capacity 
and relative deviation (RD range) values for each model in Combo 1, 
Combo 2, and Combo 3 scenarios. From Fig. 12, it is noticeable that the 
GBDT-RUN model offered higher precision with RD-range = 172.6 
(CO2), 628.8 (N2O), and 35.4 (H2O) using the optimal Combo 1 as 
compared to other models. Thus, based on Ridgeline plots, GBDT-RUN 
models achieve accurate CO2, N2O, and H2O prediction of GHG emis
sion components.

Fig. 13 describes the explainability and interpretability of the GBDT- 
RUN model prediction using the SHAP waterfall plot at the splitting 
point (a) and SHAP summary plot (b) to predict CO2, N2O, and H2O 
components of the GHG emission. The SHAP explainer in Fig. 13 eval
uates the influence and effect of the input predictor on the GBDT-RUN 
models’ prediction. The SHAP waterfall plot at the splitting point 
specifies that the input predictors DP in blue have significantly 
contributed to the model’s output prediction with magnitude = − 0.48, 
which appeared to be the most negatively contributed factor whereas 
the predictor ST = +0.36 is contributing positively to the model’s pre
diction. The predictors AT, and RH in blue demonstrate lower feature 
values, negatively impacting the model’s prediction. For N2O, ST is 
again the main contributing predictor, followed by RH with +1.59 and 
+0.24 scores, respectively. Similarly, ST, WS, and RH are the main 
components of the model’s prediction of H2O.

The red dots in summary plots (b) exhibit that the corresponding 
predictors (i.e., ST, DP, AT, and RH) have a high and positive impact on 
the model’s output prediction. In contrast, the blue dots label lower and 
adverse effects during the prediction. For CO2, the input predictor DP 
shows a higher impact corresponding to the feature value bar, followed 
by ST than other predictors. Similarly, the ST input depicts a higher 
positive contribution to predicting N2O and H2O components of the GHG 
emission.

Fig. 12. Ridgeline chart relative deviation percentage associated with the su
perior operation of each model to predict the GHG emission components for the 
testing phase.
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4.2. Applications and future work

The developed GHG prediction model in potato farming will be a 
valuable tool for improving farm management and promoting sustain
able agriculture. The model will provide farmers with actionable in
sights to optimize irrigation and soil management, reducing emissions 
while maintaining productivity by analyzing key emission drivers such 
as soil moisture and temperature. This approach supports climate-smart 
farming by promoting efficient use of resources like fertilizers and 
water, ultimately minimizing the environmental impact of potato 
cultivation. Additionally, the model will serve as a decision-support tool 
for agricultural advisors, facilitating data-driven recommendations, and 
its insights can guide regional planning and policymaking to promote 
sustainable practices across the potato industry, reducing the sector’s 

carbon footprint.
Future research should focus on testing this model in diverse 

geographic locations and climates, particularly in other major potato- 
producing provinces in Canada and globally, to enhance its general 
applicability. These regions should encompass a variety of soil types, 
different temperature regimes, moisture levels, and diverse climates, 
such as arid, temperate, tropical and cold regions, to assess the robust
ness and adaptability of the GHG prediction model. Expanding the 
model to include additional GHGs and environmental factors for various 
crops and utilizing advanced data fusion techniques and satellite data 
will further strengthen its predictive capacity. Furthermore, integration 
with process-based models like DNDC (Denitrification-Decomposition) 
could also support the development of best management practices to 
reduce GHG emissions. Long-term studies will be crucial to track 

Fig. 13. SHAP waterfall plot at the splitting point (a) and SHAP summary plot (b) related to the best model (GBDT-RUN) to predict the GHG emission components 
for the training phase.
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emissions trends and refine the model over time. Additionally, the cre
ation of a user-friendly app or web-based platform will enable farmers to 
input field data and access real-time GHG emissions predictions, facili
tating sustainable practices. Future work should also focus on improving 
machine learning algorithms for enhanced accuracy, transparency, and 
practicality, with interdisciplinary collaboration being key to addressing 
agricultural challenges in the context of climate change.

5. Conclusion

This paper proposed a meticulous multi-level explainable inspired- 
ensemble algorithm for experimental and computational monitoring of 
greenhouse gas emission components (i.e., to predict CO2, N2O, and 
H2O) in Atlantic Canada during potato production. The modelling 
strategy adopted Boruta-GBDT feature selection based on the Z-score 
values in the first stage to filter the most influential features. The BSLR 
and WASPAS schemes are implemented to decide the best optimal 
combination of inputs among the top-ten possible subsets of the inputs to 
obtain the three best optimal candidate sets, namely Combo 1, Combo 2, 
and Combo 3. Next, these input combinations were used in the GBDT- 

RUN, LightGBM-RUN and GBDT models to predict CO2, N2O, and H2O 
components. Here, the RUN algorithm played an important role in the 
optimization technique. Finally, the SHAP method was implemented to 
explain the GBDT-RUN model’s predictions. Using several goodness-of- 
fit metrics, the GBDT-RUN with Combo 1 discloses the highest perfor
mance in predicting CO2, N2O, and H2O against LightGBM-RUN and 
GBDT models.

The GBDT-RUN model displays maximum accuracy [R = 0.8431, 
RMSE = 0.9337, MAE = 0.7006, MAPE = 25.2936, NSE = 0.6758, U95 
% = 2.5847, SquD = 18.1759] and [R = 0.9763, RMSE = 1.0665, MAE 
= 0.7864, MAPE = 3.4579, NSE = 0.9526, U95 % = 2.9604, SquD =
3.8300] with Combo 1 as compared to LightGBM-RUN and GBDT 
models to predict CO2, and H2O. Similarly, the GBDT-RUN model with 
Combo 1 surpasses the comparing models in predicting N2O components 
of GHG emission. This modelling strategy can be applied in other sec
tors, namely agronomy, water monitoring, environment, and renew
ables, to extend the scope and help authorities make intelligent, on-time 
decisions.

Fig. 13. (continued).
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