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ABSTRACT

Seasonal climate forecasts (SCFs) provide opportunities for pastoralists to align production decisions to

climatic conditions, as SCFs offer economic value by increasing certainty about future climatic states at

decision-making time. Insufficient evidence about the economic value of SCFs was identified as amajor factor

limiting adoption of SCFs in Australia and abroad. This study examines the value of SCFs to beef production

system management in northern Australia by adopting a theoretical probabilistic climate forecast system.

Stocking rate decisions in October, before the onset of the wet season, were identified by industry as a key

climate sensitive decision. The analysis considered SCF value across economic drivers (steer price inOctober)

and environmental drivers (October pasture availability). A range in forecast value was found ($0–$14 per

head) dependent on pasture availability, beef price, and SCF skill. Skillful forecasts of future climate con-

ditions offered little value with medium or high pasture availability, as in these circumstances pastures were

rarely overutilized. In contrast, low pasture availability provided conditions for alternative optimal stocking

rates and for SCFs to be valuable. Optimal stocking rates under low pasture availability varied the most with

climate state (i.e., wet or dry), indicating that producers have more to gain from a skillful SCF at these times.

Although the level of pasture availability in October was the major determinant of stocking rate decisions,

beef price settings were also found to be important. This analysis provides insights into the potential value of

SCFs to extensive beef enterprises and can be used by pastoralists to evaluate the cost benefit of using a SCF in

annual management.

1. Introduction

The northern Australian beef industry contributes

substantially to total Australian production ($12 billion;

ABS 2018) with Queensland accounting for 48% of beef

and veal production in 2017–18 (MLA 2018). These

extensive beef enterprises utilize the rangelands across

Queensland, Northern Territory, andWesternAustralia

featuring large paddock sizes, up to 16 000 ha (Oxley

2006), and low stocking rates. These enterprises are

based on native pasture systems where producers aim

to match the feed requirements of the herd to the

availability of pasture to optimize beef production

(O’Reagain et al. 2014). Management of these enter-

prises in many pastoral regions is occurring against a

background of increasing variability in annual precipi-

tation and pasture growth (Cobon et al. 2019).

The production system is seasonal with producers

relying predominately on summer rainfall (November–

April) to drive productivity through the dry season

(May–November). Matching stocking rates through

variable wet and dry seasons is an ongoing challenge

with supplementary feeding of protein and carbohy-

drate being impractical due to the vast size of properties

and cattle herds.

Stocking rate decisions have a major impact on land

resource condition, pasture yield and composition, soil
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loss, pasture burning opportunities, and growth of woody

weeds (Johnston et al. 2000), and hence enterprise prof-

itability (McKeon et al. 2000; Ash et al. 2000; Stafford

Smith et al. 2000). Seasonal climate forecasts (SCFs)

may help to inform adjustments of stocking rates to

match expected seasonal outcomes through minimizing

losses in poor years andmaximizing profits in good years

(Cobon et al. 2017; Crean et al. 2015; Hayman et al.

2007; McIntosh et al. 2005).

In reviewing the value of SCFs in Australian agricul-

ture Parton et al. (2019) found a wide range of values but

the majority were positive. Since the early 1980s, when

the role of SCFs in agriculture was first recognized,

Parton et al. (2019) reviewed a total of 86 studies (8 from

the beef industry that realized a mean farm-level value

of $5.10ha21 yr21) and found that 1) value was associ-

ated with the type of forecast (operational, hypothetical,

experimental), method of estimating value, farm versus

field scale, level of forecast skill, and approaches taken

in defining ‘‘with’’ and ‘‘without’’ forecast scenarios;

2) most of the studies have been on wheat production

(53%) and the level of nitrogen fertilizer to apply,

and that other industries are worthy of further study

incorporating a wider variety of farm decisions; 3) it is

important to develop ways to include risk in analysis of

the value of SCF; and 4) descriptive studies with pro-

ducers should provide more confidence about the ac-

tual, rather than potential, value of SCFs and highlight

some of the issues that are limiting their application in

Australian agriculture.

Previous research into the potential use of SCFs in

northern beef systems has largely focused on stocking

rate decisions (Ash et al. 2000; McKeon et al. 2000;

O’Reagain et al. 2011; Stafford Smith et al. 2000). Other

research attention has been directed to understanding

the management decisions that may be sensitive to SCFs

(Buxton and Smith 1996), how forecasts are related to

production variables such as live weight gain (McKeon

et al. 2000), and the attributes of the forecasts that are

required for decision-making, such as forecast type and

timing (Ash et al. 2000; Keogh et al. 2006).

Quantifying the economic value of the use of SCFs in

stocking rate decisions provides useful information to

drive management change. Studies investigating value

utilize many different methodological strategies. These

include various forecast types (e.g., theoretical, opera-

tional), forecast characteristics (e.g., lead time, length),

and forecast variables (e.g., rainfall, growth days). All

these factors introduce considerable variability between

reported forecast values.

For example, McIntosh et al. (2005) investigated cash

flow implications of using forecast information for a

northern beef production system in Dalrymple shire in

Queensland and found that forecast use increased an-

nual cash flow from the ‘‘without forecast’’ strategy by

$12,785–$29,608.Using a different approach,O’Reagain

et al. (2011) examined five strategies to adjust stocking

rates over a 12-yr field trial. One strategy used the

Southern Oscillation index (SOI) phase forecast to vary

stocking rates in November. The greatest annual accu-

mulated gross margin (AGM) found was $28,490 per

100 ha, which was for a strategy that did not use SOI

forecast information but adjusted stocking rates in

May based on current available pasture. The strategy

that used the SOI forecast recorded a lower AGM

[$26,595 (100 ha)21 yr21] than the strategies that did

not use a forecast to inform decisions. Using another

approach, Stafford Smith et al. (2000) used simulation

modeling to consider the impact of using various fore-

casts on annual cash flow of a cattle station in northeast

Queensland. Their primary finding was that production

benefits of a forecast did not readily translate to eco-

nomic benefit at the whole of enterprise scale.

In this study forecast value was explored over a range

of both environmental and market conditions. This

provides a wider picture of potential value depending on

prevailing conditions. The method uses a theoretical

forecast framework. The main benefit of introducing a

hypothetical forecast rather than relying on operational

forecasts is that key aspects of forecast quality, like skill,

can be systematically valued. The results of the analysis

are then more readily applicable to decisions around

the value of using SCF in annual decision making based

on known forecast skill. The analyses were conducted

using state-contingent theory applied through discrete

stochastic programming (Crean et al. 2013; Crean et al.

2015). The approach explicitly represents activities and

returns in each climate state, captures the trade-offs

between climate states, and reflects the probabilistic

outputs of operational forecast systems which convey

information about the likelihood of each climate state.

The optimal with and without forecast decisions were

estimated using the same optimization process removing

potential bias in the results.

To conduct this analysis a case studywas designed for an

extensive beef production enterprise in northernAustralia.

2. Methods

a. Production system and key decision point

Consultation with industry was undertaken following

the approach of Cashen and Darbyshire (2017) to cap-

ture important features of the northern beef production

system and identify key decision points. A small group

of industry experts and practitioners were invited to
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participate based on industry reputation and experience.

The group defined the production system that best re-

flected local conditions in the area and described key

decision points. Subsequently, each of the decision

points within the system were explored in terms of

sensitivity to various decision drivers including seasonal

climate forecasts. A single key decision point was then

selected for analyses.

The system described by the practitioners focused on a

self-replacingBos indicus herd based in Charters Towers,

Queensland (208050S, 1468160E) with herd and site char-

acteristics shown in Table 1. Stocking rates were set be-

tween 8 and 20 steers per 100ha, which represents typical

limits applied in this production system but does not fully

represent the limits possible in extremewet and dry years.

The hypothetical production system described in-

cluded calving (birthing of calves) from October to

January with two rounds of mustering (rounding up the

cattle into one central location): round 1 in April–July

and round 2 in August–October (Fig. 1). Destocking

decisions are made during these mustering periods.

The key decision identified was ‘‘What stocking rate

should be set prior to the wet season?’’ where ‘‘stocking

rate’’ is the number of cattle per land unit. This decision

occurred in October at the end of round 2 mustering.

Cattle could be sold at this time. A secondary selling

time for cattle was seven months later in April.

For the stocking rate decision in October, three key

decision drivers were identified by the practitioners:

1) Current cattle prices: High prices encourage destock-

ing; low prices discourage destocking.

2) Pasture availability: Low availability encourages

destocking; high feed availability discourages

destocking.

3) SCF of rainfall for October–April: Dry (i.e., poor

pasture growth) encourages destocking; wet (i.e.,

good pasture growth) discourages destocking.

The potential value of SCFs was evaluated through

selecting the optimal stocking rate that maximized

returns. This was repeated under each setting of the

decision drivers (steer prices and pasture availability).

An overview of the methodology is outlined in Fig. 2.

Three key components are provided to the economic

model to evaluate the potential value of SCFs: forecast

probabilities, biophysical production, and economic

settings (costs and prices).

b. Biophysical model

The link between stocking rates, climatic conditions,

pasture, and beef production was captured through using

the Grass Production (GRASP) model (Littleboy and

McKeon 1997; Day et al. 1997). GRASP is a dynamic,

pasture-animal growth model that has been applied to

evaluate the effects of various grazing management prac-

tices in Australia (McKeon et al. 2009) and has been val-

idated for conditions at Charters Towers (Ash et al. 2015).

GRASP was run from 1900 to 2015 to simulate the dif-

ferent stocking rates and pasture levels. Climate data

(1900–2015) were sourced from the Scientific Information

for Land Owners (SILO) patched point dataset (Jeffrey

et al. 2001) for station 34084 (Charters Towers). Three

discrete climate states were identified based on the lower,

middle, and upper tercile of rainfall (October–April) re-

ceived at Charters Towers (1900–2015). Each year was

then classified as belonging to one of these climate states.

A dry state was categorized by rainfall less than 435mm,

average as rainfall between 435 and 630mm, and wet as

rainfall in excess of 630mm (Fig. 3). The output from

GRASP was classified as dry, average, or wet and then

averaged for each state for input into the economicmodel.

The animal production system modeled was based

on young steers (castrated males) assuming an adult

equivalent weight of 401kg in October, the beginning of

the simulation period. Animal performance and average

pasture utilization were assessed in April, seven months

after the start of the simulation. Three levels of initial

pasture growing conditions (low, medium, and high)

were tested. To represent these three levels, five key

parameters were reset annually on 1 October (Table 2)

with the remainingmodeling parameters kept consistent

with those of Ash et al. (2015). Thirteen stocking rates

(from 8 to 20 steers per 100 ha at an increment of 1) were

assessed. In total, 39 scenarios were simulated.

c. Seasonal climate forecasts

A probabilistic climate forecast system was used.

Eleven different levels of probabilistic forecast skill

consisting of 10% increments from 0% to 100% based

on a hypothetical forecast system were created for each

TABLE 1. Key characteristics of the beef cattle production sys-

tem. Values sourced from industry and supported by other industry

relevant case studies, e.g., Holmes (2011), McGowan et al. (2014),

and Ash et al. (2015)

Location Charters Towers

Climate Semi-arid tropics

Mean annual rainfall (mm) 650

Property size (ha) 30 000

Pasture type Native pastures with an open

savanna canopy of trees

Herd size (animal equivalent) 6000

Main target market Store steers and cull heifers

Weaning rate (%) 60

Weaning weight (kg) 180

Growth rate (kg head21 yr21) 127
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of the three climate states (dry, average, wet). These

probabilistic forecasts were incorporated into the dis-

crete stochastic programming economic model by

assigning a probability to the occurrence of each climate

state based on forecast skill. The definition for forecast

skill with reference to without forecast and with forecast

probabilities are defined in Eq. (1):

s5
p

sjf 2p
s

1:02p
s

, (1)

where psjf is the posterior probability of state s given

forecast f (i.e., with forecast) and ps is the prior proba-

bility (i.e., without forecast) of state s. Note that ps was

set to of 0.33 for each tercile, representing the historical

probability of the occurrence of state s.

Forecast skill s was set to predetermined levels and

was rearranged to provide posterior probabilities ac-

cording to each skill level [Eq. (2)]:

p
sjf 5s(1:02p

s
)1p

s
. (2)

Using this definition of forecast skill, 0% skill equates

to climatology where each state has a 33% chance of

occurring. An example, applying this equation to a fore-

cast of a dry state with an assumed skill of 20%, results in

posterior probabilities assigned to dry, average, and wet

states of 47%, 27%, and 27%, respectively [Eq. (3)]:

Dry5p
dryjf 5s(1:002p

dry
)1p

dry

5 0:20(1:002 0:33)1 0:335 0:47,

Avg5Wet5
(1:002p

dryjf )

2
5

(1:002 0:47)

2
5 0:27:

(3)

Table 3 provides the weighting between the climate

states for the 11 skill levels for a dry forecast state.

FIG. 2. Methodological overview. Generation of biophysical data, beef production costs, beef prices, and climate state classifi-

cation of historical data and probabilistic forecasts are used in the economic model to select optimal stocking rate based on

maximizing returns.

FIG. 1. Timing of the annual reproductive cycle, pasture quantity, and management of the beef production system.

Superscript numbers are 1: weaning will occur at one of two times depending on pasture availability; 2: assuming

calves are weaned at the first weaning opportunity; and 3: additional selling or holding of animals may occur in

October, in particular greater selling across animal classes if conditions are poor.
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d. Economic model

The economic model evaluated the profitability of

different stocking rate strategies for different price and

pasture settings. This was achieved by applying a consis-

tent set of prices and costs to the biophysical outputs. The

model was used to investigate the optimum decision and

hence profitability for the three forecast states (dry, av-

erage, wet) and for 10 levels of forecast skill (10%,

20%, . . . , 100%). The same optimization process was

used to evaluate the ‘‘without forecast’’ decision (0%

skill), which assumed climatology with a 33% chance of

each climate state occurring. Value was then determined,

for each forecast state and each forecast skill level, as the

marginal benefit between the farm returns of the optimal

decisions made with and without a forecast. This valua-

tion process was repeated across three market (steer

prices) and three environmental (starting pasture) levels.

1) BEEF PRODUCTION COSTS

The production costs of the system including beef

herd health and selling and feeding costs for the model

were based on values in Martin (2016) with gross

margin details in the online supplemental material

(see Table S1). An annual interest rate of 10% was

applied to production costs.

2) KEY INPUT COSTS

Sensitivity analyses to steer price in October were

conducted to evaluate the value of SCFs under different

price scenarios.Mediumandheavy steer prices inOctober

and April for 2006–15 (MLA 2017) were used and ad-

justed to real prices (ABARES 2015). Sensitivity to the

October price was tested for three possible prices (low,

medium, and high). These were calculated as the 10th,

50th, and 90th percentiles of the price data (Table 4).

Steer prices in April were fixed to the 50th percentile

of April steer prices (196 medium steers, 208 heavy

steers cents kg21 live weight). This was implemented

as prices in April are unknown when the stocking

rate decision in October is made.

3) PASTURE OVERUTILIZATION COST

Within the GRASP model under fixed stocking rate

strategies animals are able to heavily graze pastures.

FIG. 3. Total rainfall for October–April at Charters Towers for 1900–2015 sourced from SILO (Jeffrey et al. 2001). Each year is classified

into one of three terciles (dry, average, and wet).

TABLE 2. Pasture composition attributes used in the GRASP modeling.

Pasture

scenario

Initial total standing dry

matter (kg ha21)

Average daily

regrowth (kg ha21)

Transpiration efficiency

(kg ha21 mm21)

Maximum nitrogen

uptake (kg ha21)

Initial plant density

(% basal area)

Low 385 3 10 10 1

Medium 1448 6 12 12 2.5

High 2153 15 18 25 5
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This would, over time, lead to pasture degradation and

an unsustainable and less profitable system. The analysis

conducted here only considered the implications of

production decisions over seven months, to account for

seasonal decisions, and as such the potential costs of

long-term degradation needed to be captured.

Thus, an overutilization financial penalty was applied.

For each simulation year and scenario, pastures were

assessed for overutilization. Pastures were considered

overutilized if the average pasture utilization from

October to April, the simulation period, exceeded 25%.

Results from O’Reagain et al. (2011) were used to set

the value of the penalty. Using their results, a cost of

$639 per 100ha was applied if pastures were classified as

overutilized (the financial implication between setting a

moderate and high stocking rate).

e. Analyses

Agricultural production levels representing dry,

average, and wet climate states were obtained by

classifying yearly (1900–2015) production outputs

(pasture production, animal weight, pasture over

utilization) according to one of these three climate

states. The years classified each of the three states

were averaged to represent each climate state in the

economic model.

The economic model maximized returns by choosing

the stocking rate that had the highest return weighted

for each three climate states according to the prescribed

forecast skill for each pasture and price setting. The

economic model takes the form of a discrete stochastic

programming problem, as outlined by Crean et al. (2013),

which can be solved through adapting a conventional

linear programmingmodel [Eq. (4)]. Themodel is subject

to normal constraints on the use of land and capital so

that input usage can never exceed availability.

MaxE[Y]5�
s

s51

p
s
y
s
, (4)

where E[Y] is the expected return, ps is the probability

of state s, and ys farm income in state s.

The weighted or expected return (E[Y]) is simply the

sum of economic returns in each state (ydry, yavg, ywet)

multiplied by the probability of each state occurring

(pdry, pavg, pwet). The optimal stocking rate without a

climate forecast is the one which provided the highest

expected return with the probability of each state

occurring set to 33%.

The introduction of a climate forecast with skill

greater than 0% leads to a revision of the probabilities

to reflect the forecast skill (Table 3) and the expected

return is re-evaluated. The change to a climate state

weighting due to different levels of forecast skill may

lead to a change in the stocking rate decision compared

to the without forecast decision (e.g., sell a greater/fewer

number of steers in October) and this creates economic

value from forecast use. The potential value ($ per steer) of

SCFs was calculated as the marginal difference between

returns with and without the forecast [Eq. (5)]. This is

simply a statement that the value of forecast f is equal to the

difference in expected net return with and without the

forecast. The forecast will have no value in the event that

the optimal decision with (ysf*) and without the forecast

(yso* ) is the same:

V
f
5�

3

s51

p
sjf ysf* 2�

3

s51

p
s
y
so
* , (5)

where Vf is the value of forecast f, psjf is the probability

of state s given forecast f, while ysf* is the net return in

state s resulting from implementing the optimal stocking

rate based on forecast f, ps is the probability of state s

(without a forecast), and yso* is the net return in state s

resulting from implementing the optimum stocking rate

without a forecast.

The potential value of SCFs was assessed for all the

decision settings (pasture levels, steer prices) and for 11

levels of forecast skill for each of the three climate

forecasts (dry, average, wet). A total of 297 results were

TABLE 3. Example calculation of weightings of each climate state for a dry forecast state for skill levels 0%–100% that were applied to

the economic model.

Forecast skill

Climate state 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Weighting (%) Dry 33 40 47 53 60 67 73 80 87 93 100

Average 33 30 27 23 20 17 13 10 7 3 0

Wet 33 30 27 23 20 17 13 10 7 3 0

TABLE 4. Stock prices in October sourced from MLA (2017).

Low Medium High

Medium steer 400–500 kg (cents kg21

live weight)

168 192 220

Heavy steer 500–600 kg (cents kg21

live weight)

183 196 226
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produced representing various decision environment

settings, forecasts, and forecast skill levels (Table 5).

The value of the forecast system was calculated for

a 100% skill. This was achieved by multiplying the fore-

cast value for each forecast state by 33%, the likelihood of

each forecast state eventuating [Eq. (6)].

The value of a forecast system is obtained by

weighting the value of each forecast within the system

by the frequency with which each forecast occurs. If F

denotes a forecast system and qf is the frequency

with which each forecast occurs, then the value of a

forecast system with three possible forecasts can be

defined as

V
F
5 �

3

f51

q
f
V

f
, (6)

where VF is the value of the forecast system, f is the

forecast state (dry, average, wet), and Vf is the optimal

value for forecast state f.

3. Results and discussion

a. Biophysical modeling

Data from the GRASP model showed marked

differences between animal weight and pasture

availability, particularly when comparing low pas-

ture availability with medium and high (Fig. 4). This

indicates that it is difficult to reverse a poor start

in October. April steer weights progressively de-

creased as October stocking rates increased as too

did the instances of pasture overutilization, again

this was particularly evident for low initial pasture

conditions (Fig. 4).

b. Economic modeling—Optimal stocking rates

The optimal stocking rate decision was evaluated for

100% skillful forecasts and without a forecast (0%

skillful) for each combination of the decision drivers

(Fig. 5). High pasture availability lead to the same

decision to stock steers at the highest stocking rate

(20 steers per 100 ha) regardless of steer price or fore-

cast state. For medium initial pasture availability, the

stocking rate decision remained the same with and a

without forecast except under a dry forecast state with

high steer prices, where greater destocking was the op-

timal decision (9 steers per 100 ha). The greatest change

in stocking rate from the without forecast decision was

with low pasture availability and this differed between

steer prices.

TABLE 5. Variables and value levels assessed to evaluate

forecast value.

Variable Values tested

October pasture

availability

Low, medium, high

Steer price Low, medium, high

Forecast state Dry, average, wet

Forecast skill (%) 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

FIG. 4. (left) Mean steer weight in April and (right) percentage of years that recorded pasture overutilization (1900–2015) for low,

medium, and high pasture availability for each of the 13 October stocking rates.
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c. Economic modeling—Forecast value

The value of a 100% skillful forecast system and each

forecast state was calculated for each decision environ-

ment setting (Fig. 6). The importance of the decision

driver settings to deliver financial returns is evident with

many settings recording $0 per head value (Fig. 6). No

value was found when pasture availability was high and

all but one result when pasture availability was medium.

The greatest value was found for low pasture availability

with the highest value ($13.90 per head) found for a wet

forecast with medium steer prices.

The overall forecast system value for a 100% skillful

forecast, calculated by multiplying the forecast value by

the probability of that forecast occurring (33%), ranged

between $0 and $6.70 per head, depending on the de-

cision environment settings (Fig. 7). Analyses of forecast

system value with varying levels of skill illustrated that

as skill decreased so too did value (Fig. 7).

The key production decision evaluated to estimate

forecast value was what stocking rate to set for the wet

season. This decision was a trade-off between selling

smaller animals earlier with a lower risk of pasture

overutilization or selling animals later at higher weights

but potentially risk incurring costs associated with pas-

ture overutilization. The degree of the trade-off varied

with different decision environment settings (pasture

availability and steer price). SCF value ranged from $0

to 13.90 per head dependent on decision environment

settings, forecast climate state, and forecast skill. The

value of the overall forecast system operating with 100%

skill ranged between $0 and 6.70 per head (Fig. 7).

Contextualizing for a herd size of 6000, this maximum

value for the farm was $40,200 for one particular set-

ting of the decision environment (low initial pasture

and medium steer prices).

Results found here were similar to previous studies for

northern Australian beef production systems. O’Reagain

et al. (2011) evaluated several strategies to set stocking

rates over a 12-yr field experiment. They found that

the best strategy was to set stocking rates based on

available forage, mirroring the importance of pas-

ture availability found here (Fig. 7). However, the

results here did find forecast value with low pasture

FIG. 5. Optimal stocking rate decision (steers per 100 ha) without (gray) and with a 100% skillful forecast. Steer price is for October.

FIG. 6. A 100% skillful forecast system and forecast state value ($ per head). Steer price is for October.
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availability. Similar to this study, Stafford Smith

et al. (2000) used the GRASP model to evaluate

forecast value in terms of whole farm economics

using a different economic model (Herd-Econ). They

found only modest improvements in cash flow through

incorporating a forecast over their ‘‘without forecast’’

management strategies. In addition they also found that

decisions were sensitive to market settings. The results

found here support their conclusions with modest fore-

cast value found, and steer prices at the time of the

decision found to be important, dependent on pasture

availability.

McIntosh et al. (2005) found more forecast value

in their assessment of a northern beef enterprise also

utilizing the GRASP model. They found that all the

forecast systems assessed improved annual cash flow. A

14%–33% improvement in cash flow above the ‘‘without

forecast’’ scenario was found. The decision point as-

sessed was stocking rate in July and the forecast pe-

riod July–March, which differed from that used here.

FIG. 7. Imperfect forecast system value ($ per head). Three levels of current pasture availability (low, medium, high) are in the three rows

and three steer prices (low, medium, high) in the columns.
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Furthermore, increases to stocking rates were allowable

in their assessment, again an aspect not included in

this study.

Allowable stocking rates were restricted to between 8

and 20 steers per 100ha, which represents typical limits

applied in this production system. This resulted in a hard

boundary for further changes to reduce or increase

stocking rates based on climate forecast state. For ex-

ample, the without forecast stocking rate decision for

low pasture availability at high steer prices was 8 steers

per 100 ha, the lowest possible stocking rate option.

Thus, under a dry forecast scenario further destocking

could not be selected to respond to deteriorating con-

ditions. It should be appreciated that drastic reduction

in stock numbers (e.g., to 0) was not considered as

producers retain base herd numbers for future breeding.

A similar circumstance was reflected for increasing

stocking rates. A fixed upper boundary is a reasonable

assumption as producers do not typically buy stock as a

result of a SCF in this system.

This study explored a range of decision environment

settings and forecast states to provide a landscape of

forecast value. A key finding was that pasture avail-

ability followed by steer price were important influences

on whether forecast value was found. Only 4 of 12 de-

cision environment combinations resulted in forecast

value (Fig. 7). With high and medium pasture avail-

ability, the decision was to stock at the highest allowable

stocking rate, regardless of price settings. These results

reflect that with medium or high pasture availability it is

likely that sufficient feed will be available through the

wet season to avoid pasture overutilization regardless

of the climate state (dry, average, wet). Thus, the

forecasting of these conditions was not valuable. This

highlights that using a subset of the environmental and

economic conditions to assess forecast value will likely

misrepresent overall forecast value, either inflating or

deflating value.

Forecast value was mostly found for dry and wet

forecasts (Fig. 6). Two examples will be used to explore

the different circumstances for which dry and wet fore-

casts had value. With medium pasture availability and

high steer prices, the without forecast optimal decision

was to stock at the maximum of 20 steers per 100 ha.

With a perfect dry forecast the optimal decision changed

to destocking to 9 steers per 100 ha, driven by increased

revenue from selling steers at high prices in October

and a reduction of the costs of pasture overutilization,

which was exacerbated due to dry conditions. A perfect

forecast of a dry state resulted in an improvement in

returns of $11.80 per head under this scenario.

A scenario of low pasture availability and medium

steer prices provides an example of the benefit of a wet

forecast. The without forecast decision was to destock to

14 steers per 100 ha (Fig. 6), largely due to poor initial

pasture conditions. With a perfect wet forecast the op-

timal decision changed to keeping stock at themaximum

20 steers per 100 ha. In this example, a wet forecast

provided greater surety about the occurrence of addi-

tional pasture growth that occurs in a wet state, reducing

the likelihood of pasture overutilization and this in as-

sociation with medium steer prices made holding stock

more profitable. A 100% skillful forecast of a wet state

resulted in an improvement in returns of $13.90 per head

under this scenario.

A climate forecast state of average conditions was

found to be of limited economic value under all settings.

The single instance of value was $1.70 per head for a

100% skillful average forecast. The low value of an av-

erage forecast state is a reflection of the limited change

in conditions compared to the without forecast de-

cision (i.e., based on average conditions). Nil or a small

value with an average forecast state (middle tercile of

climate data) when compared with average conditions

is unsurprising.

The above examples highlight the maximum forecast

value by assuming the forecast was 100% skillful.

However, in reality operational forecasts are imperfect

and different levels of skill were analyzed to assess

forecast value for different levels of skill (Fig. 7). The

use of theoretical rather than operational forecasts was

preferred in this case so that the value of forecast im-

provements could be determined. However, the results

can be used to provide a broad estimate of operational

forecast value once their skill level is determined.

For example, the current accuracy of the Australian

Bureau of Meteorology operational forecasts for the

Charters Towers region for October–December rain-

fall is approximately 70% using percent consistent with

above/belowmedian forecasts (www.bom.gov.au/climate/

ahead/outlooks/skill/). This is equivalent to 40%using the

definition of skill in this study. At this operational skill

level, the forecast system value was $0–$2.00 per head.

The case study presented here used particular pa-

rameter settings within the GRASP production model.

GRASP has been used widely to investigate climate

variability and climate change assessments for northern

beef enterprises (Ash et al. 2000; McIntosh et al. 2005;

McKeon et al. 2000; Stafford Smith et al. 2000) and

limitations outlined (McKeon et al. 2009). The farm

characteristics set in GRASP were developed in con-

sultation with industry to provide a representative

farm. These characteristics will likely be different

from other individual farms. For instance, weaning

and mustering timing may differ. Thus this case study

is simply an example of the potential value of SCF
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not a comprehensive assessment for all possible en-

terprise arrangements.

GRASP uses a steer-only herd in the modeling pro-

cess. In reality a herd will contain males and females in

various age classes. For this application the focus was on

the balance of pasture availability and animal weight

gain not on herd dynamics or breeding strategies (e.g.,

calving time), which operate on time horizons longer

than a season. As such, GRASPwas sufficient to capture

the key linkages between pasture production, beef

production, and climate variability, which were the focus

of this study. Nonetheless, a more complex biophysical

model would allow for more nuanced stocking rate de-

cisions. The Northern Australia Beef Systems Analyser

(NABSA) production model (Ash et al. 2015) was in-

vestigated for this purpose; however, the constraints and

assumptions in the model, which was developed for

multiyear assessments of management decisions and

long-term climate, were not amenable for this applica-

tion. Enduring profitability in northern beef enterprises

is generated by multiyear management; however, fore-

cast value was assessed over a single wet season tomatch

the seasonal scale of climate forecasts. The approach

used here may not capture flow on influences of the

decision through time. This includes impacts on pasture

management and herd structure dynamics. The aim of

this study was to investigate the potential value of

seasonal forecasts and thus a restricted view of prof-

itability based on a single season was used to evaluate

value on decisions at the seasonal scale. A cost penalty

was applied in relation to pasture overutilization to

account for future losses to ensure the model was not

optimized for a single season of production.

The pasture overutilization penalty was an important

cost estimated in the economic model. There were two

methodological steps in determining the penalty. These

were the determination of whether pastures were over-

utilized and the cost penalty associatedwith overutilization.

Both the steps were derived using findings fromO’Reagain

et al. (2011). Different derivation of determining when

pastures were classified as overutilized would influence

the percentage of years classified as overutilized and

might alter forecast value. For example, a 20% threshold

rather than 25% would increase instances of pasture

overutilization, increasing the cost associated with higher

stocking rates, with the forecast likely to have greater

value for more decision environment circumstances.

Similarly, modification to the penalty value would

influence forecast value. For example, a higher cost as-

sociated with pasture overutilization would make lower

stocking rates more profitable. Although the results

were dependent on the determination of these values,

O’Reagain et al. (2011) provided the best available

evidence to set these values due to the experimental

design and proximity to the case study site (within

70 km). However, O’Reagain et al. (2011) did not spe-

cifically design their experiment to determine a cost

penalty associated with pasture overutilization for a

single season. Further research is required to provide

viable alternate options to set these parameter values in

the economic model.

An interesting line of future enquiry would be to set

April prices to be contingent on forecast climate state.

That is, allow April prices to modify in step with dif-

ferent forecast climate conditions. For instance, steer

prices inApril in a dry season could be lower due to higher

selloff of animals earlier (i.e., from October to April) due

to the dry conditions. The non-state-contingent design of

this study was required as insufficient historical price

data were available to evaluate state-based relation-

ships. If April steer prices are related to climate condi-

tions it is likely that the value of SCF is underestimated

in this assessment, in particular for dry forecasts. As

more historical data are accumulated, this prospect

should be evaluated.

The analyses presented here outlined an approach to

evaluate the potential value of seasonal climate fore-

casts to northern Australian beef enterprises. The re-

sults highlight that under a few decision settings there

was value in using forecast information in setting

stocking rates prior to the wet season. The results can be

used to inform annual management planning and also

avenues of future research regarding SCF value to pas-

toral industries. Inclusion of other decisions that may

benefit from forecast information, the level of skill re-

quired to generate sufficient value, the use of other

metrics such as soil moisture and pasture growth, and

other users of forecast information should be considered

in such an analysis.
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