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Abstract 82 

Glass Fibre Reinforced Polymer (GFRP) bars are now attracting attention as an alternative 83 

reinforcement in concrete slabs because of their high resistance to corrosion that is a major 84 

problem for steel bars. Recently, hollow concrete slab systems are being used to reduce the 85 

amount of concrete in the slab and to minimise the self-weight, but the internal holes makes 86 

them prone to shear failure and collapse.  A hollow composite reinforcing system (CRS) with 87 

four flanges to improve the bond with concrete has recently been developed to stabilise the 88 
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holes in concrete members. This study investigated the flexural behaviour of concrete slabs 89 

reinforced with GFRP bars and CRS. Four full-scale concrete slabs (solid slab reinforced with 90 

GFRP bars; hollow slab reinforced with  GFRP bars; slab reinforced with GFRP bars and CRS; 91 

and slab reinforced with steel bars and CRS) were prepared and tested under four-point static 92 

bending to understand how this new construction system would perform. CRS is found to 93 

enhance the structural performance of hollow concrete slabs because it is more compatible with 94 

GFRP bars than steel bars due to their similar modulus of elasticity. A simplified Fibre Model 95 

Analysis (FMA) reliably predicted the capacity of hollow concrete slabs.  96 

 97 

Keywords: Flexural behaviour; hollow core concrete slabs; composite reinforcing system; 98 

GFRP bars; Modelling.   99 

 100 

1. Introduction 101 

Reinforced concrete slabs are important structural members in building structures as they carry 102 

loads and transfer them to the beams [1, 2]. Traditionally, steel bars used as internal 103 

reinforcement inevitably corrode, which then affects the integrity of concrete slabs by reducing 104 

their strength and limiting their serviceability. The corrosion of steel bars is practically critical 105 

in structures built close to marine or industrial environments [3]. For example, the million dollar 106 

20-storey Iluka high-rise apartment complex in Surfers Paradise, Australia which was built in 107 

1972 was demolished in 2013 due to corrosion of the steel reinforcement in the concrete slabs 108 

and other structural elements [4]. Moreover, the Australian Corrosion Association (ACA) has 109 

reported that more than AU$10 billion is lost every year due to the corrosion of steel 110 

reinforcement [5]. Therefore, an alternative reinforcing material that will minimise or eliminate 111 

corrosion in concrete structures is deemed necessary.  112 
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Fibre reinforced polymer composites have emerged as a comparatively new 113 

construction material that can address many of the weaknesses of traditional construction 114 

materials [6]. The non-corrosive Glass Fibre Reinforced Polymer (GFRP) bars are an effective 115 

alternative reinforcing solution for concrete structures that has lower maintenance and repair 116 

costs [7]. This alternative reinforcement is lighter, non-magnetic and has higher tensile strength 117 

than steel [8, 9].  Many studies reported that GFRP bars have been used successfully as internal 118 

reinforcement for concrete structures, including beams [10], columns [11], and slabs [12]. Since 119 

slabs are the main structural members in a building that consume the largest amount of concrete 120 

and contributes significantly to the dead load [13], it should be designed to minimise the amount 121 

of materials and to reduce the overall weight. Previous researchers [14, 15] have created holes 122 

inside the slab to reduce the amount of concrete and its overall weight. 123 

A hollow core slab (HCS) is a common structural form used for precast concrete slabs 124 

and wall panels in industrial, commercial and residential applications [16-18]. However, several 125 

researchers found that voids can cause early shear failure and significantly reduce the capacity 126 

of the slab [19, 20]. Meng [21] suggested that CFRP sheets bonded with epoxy resin and 127 

attached inside the voids would increase the shear capacity of HCS. However, this technique is 128 

not cost effective and difficult to implement, especially for small diameter voids. Cuenca and 129 

Serna [22] studied the HCS with and without fibres and they concluded that the shear capacity 130 

and ductility can be improved using fiber reinforcements. There is a need therefore to determine 131 

an efficient technology to improve structural performance of lightweight hollow core slabs. An 132 

FRP system that will create a hollow inside the slab and stabilise the voids, while fully 133 

interacting with the concrete needs to be developed. 134 

A new type of hollow composite reinforcing system (CRS) has recently been designed 135 

and developed to create voids in reinforced concrete slabs. This CRS system has four flanges 136 

that act as shear connectors, similar to the rib shear connector in the FRP decks introduced by 137 
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many researchers to provide a composite action with concrete [23, 24]. This paper investigated 138 

for the first time the flexural behaviour of a one-way concrete slab reinforced with GFRP bars 139 

and CRS. Four concrete slabs (a solid slab reinforced with GFRP, a hollow slab reinforced with 140 

GFRP, a GFRP-reinforced slab with CRS, and a steel-reinforced slab with CRS) were cast and 141 

tested under static four-point bending to evaluate the effectiveness of the hollow CRS inside 142 

the HCS. The capacity of the hollow concrete slab was also predicted theoretically using fibre 143 

model analysis and compared with the experimental results. The results obtained from this study 144 

will aim at advancing the understanding on the behaviour of hollow concrete slabs reinforced 145 

with GFRP bars and hollow composite systems, and providing new lightweight slabs for civil 146 

engineering constructions. 147 

 148 

2. Experimental Program 149 

2.1. Materials 150 

2.1.1. Hollow composite reinforcing system (CRS) 151 

The hollow composite reinforcing system (CRS), as shown in Figure 1, was supplied by 152 

Composite Reinforcement Solutions in Australia. This material was manufactured through the 153 

pultrusion process and composed of glass fibre reinforcements (mostly unidirectional) 154 

embedded with vinylester resin. It also contains additives such as pigments, UV inhibitors, and 155 

fire retardant. The physical and mechanical properties of the CRS were evaluated in accordance 156 

with relevant ISO and ASTM standards listed in Table 1. 157 
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 158 

Figure 1: Details of the composite reinforcing systems (CRS) (a) shape, and (b) dimensions 159 

Table 1. Physical and mechanical properties of CRS including standard deviation (SD). 160 

Properties Test standard Values SD 

Density, kg/m3 ASTM D792 [25] 1926 23.4 

Fibre content by weight, % ASTM D2584 [26] 73 2.5 

Glass transition temperature, oC ASTM E1356 [27] 81 4.2 

Axial compression, MPa ASTM D695 [28] 120 7.1 

Transverse compression, MPa ISO 14125 [29] 8.8 1.1 

Transverse shear strength, MPa ASTM D2344 [30] 7.5 0.7 

Inter-laminar shear strength, MPa ASTM D4475 [31] 22 1.5 

Flexural strength, MPa ASTM D790 [32] 201 28.7 

Flexural modulus, GPa ASTM D790 [32] 42 1.3 

 161 

2.1.2. GFRP bars 162 

The concrete slabs were reinforced with 12 mm diameter high-modulus (Grade III) GFRP bars 163 

[33]. These bars were fabricated through the pultrusion process by impregnating E-type glass 164 

fibres in a thermosetting modified vinyl-ester resin. The external surfaces of the GFRP bars 165 

(a) (b)
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were coated with particles of silica-sand to enhance the bond between the reinforcement and 166 

surrounding concrete. The mechanical properties of these bars are reported by Benmokrane et 167 

al. [34] and summarised in Table 2. 168 

Table 2.  Mechanical properties of GFRP bars [34]. 169 

Properties Test standard Values SD 

Flexural strength, MPa ASTM D4476 [35] 1588 93 

Interlaminar shear strength, MPa ASTM D4475 [31] 53 2.1 

Longitudinal tensile strength, MPa ASTM D7205 [36] 1281 35 

Longitudinal tensile modulus, GPa ACI 440.6M [37] and CSA S807 [33] 61 0.4 

Longitudinal tensile strain at failure, % ACI 440.6M [37] and CSA S807 [33] 2.1 0.1 

     170 

2.1.3. Steel bars 171 

The steel reinforcing bars were standard grade 500N with a nominal diameter of 12 mm. The 172 

characteristic strength and Young’s modulus of the reinforcing steel as supplied by the 173 

manufacturer were 500 MPa and 200 GPa, respectively.  174 

2.1.4. Concrete 175 

The ready mix concrete with a nominal compressive strength of 32 MPa was used. The 176 

maximum size of aggregate was 10 mm and the slump value of the concrete was 100 mm in 177 

accordance with AS1379 specification [38]. A total of 8 cylinders were prepared and tested as 178 

per AS1012 standards [39] at the time of testing the slabs. The average compressive strength of 179 

concrete was 31.8 MPa with a standard deviation of 3.54 MPa while the modulus of elasticity 180 

was measured as 29.9 GPa. 181 

 182 



7 

2.2. Slab details 183 

Four full-scale slabs, 2400 mm long by 750 mm wide by 175 mm thick were prepared. These 184 

dimensions are based on industry practice for precast hollow core slabs. Of these four slabs, 185 

one solid slab reinforced with GFRP bars (S1), one hollow slab reinforced with GFRP bars (S2), 186 

one GFRP reinforced slab with CRS (S3), and one slab was reinforced with steel bars and CRS 187 

(S4). Slabs S1, S2, and S3 were reinforced with 12 mm diameter GFRP bars spaced 200 mm 188 

(both longitudinally and transversely) at the top and bottom, while slab S4 was reinforced with 189 

12 mm diameter steel bars instead of GFRP but maintained the same reinforcement arrangement 190 

for comparison. The reinforcement ratio was  = 0.44% for all slabs that resulted in an over-191 

reinforced section for slabs S1 to S3 (balanced reinforcement ratio, b = 0.25%) and an under-192 

reinforced section for slab S4 (b = 2.1%) as per the CSA S806 [40]. Reinforcement ratio of 193 

0.44% for GFRP-reinforced slabs was adopted from the specification provided in ACI-15 code 194 

by having at least 1.4 as a ratio between the actual reinforcement-to-balanced conditions. The 195 

reinforcement ratio was adopted to achieve a flexural compression failure in concrete and 196 

provide high deformation capacity and less brittle failure rather than tensile rupture of the GFRP 197 

bars. Slab S2 was fabricated with three holes, 70 mm diameter in each and spaced at 300 mm 198 

while slabs S3 and S4 were manufactured with three hollow CRS of equal diameter and spacing. 199 

A 15 mm thick cover of concrete was provided at the top and bottom reinforcements, and a 25 200 

mm thick cover of concrete was provided at the edges of the slabs. The geometric dimensions 201 

and reinforcement arrangements are provided in Table 3. It is noteworthy that one CRS has a 202 

cross-sectional area of 1585 mm2, which is 1.63% of the gross sectional area of the slab. 203 

Therefore, the three CRS is 4.89% of the total gross sectional area of the concrete. However, 204 

the main function of the CRS is to stabilise the holes while the longitudinal GFRP bars provide 205 

the longitudinal reinforcement to carry flexural loads.  206 

  207 
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Table 3. Concrete slab details 208 

Slab  Cross section layout Description 

S1 

 

Solid concrete 

slab reinforced 

with GFRP bars 

S2 

 

Hollow concrete 

slabs reinforced 

with GFRP bars 

S3 

 

Slab reinforced 

with CRS and 

GFRP bars 

S4 

 

Slab reinforced 

with CRS and 

steel bars 

 209 

2.3. Specimen preparation 210 

All the reinforcements were assembled on a work table with patterns drawn to ensure the bars 211 

were spaced properly, and cut sections of CRS were used as spacers between the top and bottom 212 

reinforcement for slabs S1 and S2. Moreover, PVC pipes (70 mm outside diameter by 1mm 213 
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thick wall) were used to create holes inside the concrete in slab S2 as shown in Figure 2(a).  For 214 

slabs S3 and S4, the CRS were spaced equally at 300 mm centres and tied up to the top and 215 

bottom longitudinal reinforcements to prevent movement while casting concrete. Uni-axial 216 

strain gages with a gauge length of 3 mm were attached at the top and bottom reinforcements 217 

at mid-span and at the top surface of the CRS to measure strain during loading, as shown in 218 

Figure 2(b). Moreover, 20 mm uni-axial strain gauges were attached at the top and bottom 219 

concrete surfaces of the slabs. Bent 12 mm diameter steel bars were placed at each corner of 220 

the slabs as lifting hooks to facilitate handing and setting during test. 221 

 222 

Figure 2: Assembly of reinforcement and attachment of strain gauges (a) slab S2 with PVC 223 

pipes before casting and (b) strain gauges attached to the bars and CRS 224 

 225 

2.4. Test set-up and instrumentation 226 

The slabs were tested under four-point static bending with a shear span-to-depth ratio of 5.1, as 227 

shown in Figure 3. The load was applied through a spreader steel I-beam using a 2000 kN 228 

Enerpac hydraulic rams, and measured using a 444 kN load cell. All the specimens were tested 229 

under displacement control mode at a rate of 5 mm/min. Rubber matting was placed under the 230 

loading steel plate to ensure a uniform load distribution to the slab. A laser displacement 231 

transducer was used to measure mid-span deflection at the bottom of the slab. Prior to testing, 232 

gridlines were marked on the front side of the slab to trace the propagation of cracks during 233 

(a) (b)
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loading. The applied loads, deflections and strains were recorded using Vishay System 5000. 234 

All the specimens were tested up to the ultimate failure. 235 

 236 

Figure 3: Test set-up and instrumentation (a) schematic diagram and (b) actual test set up 237 

 238 

3. Test Results and Observation 239 

3.1. Crack propagation and failure behaviour 240 

Table 4 reports the moment at first cracking, stiffness before cracks, maximum bending moment, 241 

stiffness after cracks and the failure mode of the slabs at the ultimate load.  242 

Table 4. Experimental failure modes of reinforced concrete slabs 243 

Slab 

 First crack Maximum 

Failure  Mass Load Moment 

Stiffness 

before cracks 

Load Moment 

Stiffness 

after cracks 

Kg kN kN-m kN/mm kN kN-m kN/mm 

S1 772 27 12.2 6.49 137 62 2.58 Mode I 

S2 713 30 13.5 5.21 145 65 2.43 Mode I 

S3 718 27 12.2 6.91 211 95 4.93 Mode II 

S4 731 24 10.8 8.57 208 94 7.93 Mode III 

Mode I: Flexure-shear crack with concrete crushing under the loading point and buckling of the 244 

bars 245 

(a)
(b)
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Mode II: Concrete crushing at mid span with horizontal cracks 246 

Mode III: Steel yielding followed by concrete crushing at mid span 247 

Figure 4 shows the propagation of cracks in the slabs where the number next to the crack 248 

indicates the corresponding applied load in kN. The first crack occurred at the bottom in 249 

between the loading points at an applied load of 27 kN, 30 kN, 27 kN and 24 kN for slabs S1, 250 

S2, S3, and S4, respectively. The propagation of cracks in slabs S1 and S2 were similar with 251 

the increase of loads, as shown in Figures 4(a) and 4(b). Fine vertical cracks began at the bottom 252 

of the slab near the loading points up to a load of 70 kN, and then the vertical cracks widened 253 

and propagated towards the top of the slab. At a load of 140 kN, the concrete began to be 254 

crushed on the compression side under the loading point. As the load continued, the flexural 255 

vertical cracks inclined under the shear effect towards the top under the loading point. This was 256 

followed by the concrete compression crushing and the compression buckling of top GFRP bars 257 

that caused slabs S1 and S2 to fail completely. More severe concrete crushing through the depth 258 

was observed in slab S2 when comparing with S1, as shown in Figures 5(a) and 5(b). This 259 

indicates the holes in slab S2 collapsed at the time of ultimate failure. No noticeable changes 260 

were observed in the bottom GFRP reinforcements for slabs S1 and S2. 261 

Similar crack propagation occurred in slabs S3 and S4 up to an applied load of 140 kN, 262 

as shown in Figures 4(c) and 4(d), after that the cracks in slab S4 became wider than in slab S3 263 

due to the yielding of steel. With further increase of load, horizontal cracks were developed in 264 

slab S3 started under the loading points and propagated along the length of the CRS (Figure 265 

5c). The final failure occurred due to the concrete crushing at the midspan of slabs S3 and S4 266 

(Figures 5c and 5d). A loud noise was also heard due to the damage of fibres in the bottom 267 

flanges of the CRS as the top and bottom reinforcements did not rupture.  268 
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 269 

Figure 4: Crack propagation (a) slab S1, (b) slab S2, (c) slab S3, and (d) slab S4 270 

 271 

P/2 P/2

Concrete crushing

GFRP buckling

Concrete crushing
GFRP buckling

Concrete crushing

P/2 P/2

P/2 P/2

P/2 P/2 Concrete crushing

Bottom steel yielding

(a)

(b)

(c)

(d)
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 272 

Figure 5: Final failure (a) slab S1, (b) slab S2, (c) slab S3, and (d) slab S4 273 

 274 

3.2 Load-deflection behaviour 275 

Figure 6 shows the load-mid span deflection of the four tested slabs. The initial settlement effect 276 

at the beginning caused by rubber mat was carefully eliminated when plotting load-277 

displacement curve. Every slab exhibited linear load-deflection until the concrete experienced 278 

its first flexural cracking at 25 kN and a deflection of 3 mm. When the concrete cracked, slabs 279 

S1 and S2 experienced a significantly reduced stiffness (60% drop for S1 and 53% drop for S2) 280 

but maintained the similar trend. The deflection increased linearly with the increase of loads up 281 

to around 140 kN and a deflection of 50 mm. Thereafter, both slabs experienced a nonlinear 282 

behaviour as the concrete began to crush and develop flexure-shear cracking at the loading point 283 

(a) (b)

(c) (d)
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(Figures 4a and 4b). Both slabs then failed abruptly with a midspan deflection of around 60 mm 284 

due to flexure-shear failure, as shown in Figures 5(a) and 5(b).  285 

 The slope of the load-deflection curve in slab S3 decreased from 6.91 kN/mm to 4.93 286 

kN/mm (29% drop) after the first crack of concrete. At this stage, the deflection increased 287 

linearly up to around 200 kN load and a deflection of 46 mm. After that the load increased non-288 

linearly and reached up to 211 kN with a deflection of 57 mm. The load cpacity then began to 289 

decrease until the failure at a deflection of 80 mm. Unlike S3, slab S4 showed lower stiffness 290 

drop (7%) after cracking the bottom concrete. Deflection then increased linearly with load up 291 

to around 130 kN. The slope of the load-deflection curve decreased again after this load, and 292 

the behaviour of slab S4 became nonlinear until it reached to a maximum load of  208 kN with 293 

a deflection of 45 mm. There was a slight decrease in the load capacity after the peak and the 294 

slab continued to deflect even without any increase in the load. The ultimate failure of the slab 295 

S4 occurred at a midspan deflection of 76 mm due to the concrete crushing and steel buckling, 296 

as shown in Figure 5(d).  297 

 298 

 299 

Figure 6: The load-deflection relationship of concrete slabs 300 
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To verify the reliability of the experimental results, a nonlinear finite element (FE) analysis for 301 

slab S3 has been conducted using ANSYS Mechanical APDL [41]. Solid 65 three-dimensional 302 

element was used to model concrete that has the capability of capturing nonlinear material 303 

properties, plastic deformation, crushing in compression and cracking in tension. The CRS 304 

profiles were modelled with a Shell 181 element that is suitable for analysing thin to 305 

moderately-thick structural component. A Beam 188 element was used to model FRP bars that 306 

is suitable for analysing slender to moderately thick beam structures while the loading and 307 

support plates were modelled with a Solid 186 element. Mapped meshing with a maximum 308 

element size of 10 mm and approximate aspect ratio of one were used for half slab. The 309 

symmetric plane were subjected to symmetric boundary conditions. The concrete crushing and 310 

cracking stresses of 32 MPa and 2.26 MPa, respectively, and open and closed shear transferred 311 

coefficients of 0.2 and 0.8, respectively were used in the model. Orthotropic properties of CRS 312 

fibre composite profiles and isotropic properties of FRP bars as provided in Table 1 and Table 313 

2 were used. Loads were applied at top nodes of the loading plate while the supports were 314 

restrained in X and Y directions to simulate the experimental testing conditions. Figure 7(a) 315 

shows that the cracking of bottom concrete started at around 24 kN which is to similar the 316 

experimental crack observation at 25 kN. The increase of load gradually increase the 317 

propagation of cracks. The deflection behaviour of the slab at peak load (220 kN) is shown in 318 

Figure 7(b) where it can be seen that the maximum deflection is approximately 40 mm that is 319 

close to the experimental deflection at peak load for S3 specimen. This FE result confirmed that 320 

the experimental data are reliable and valid. 321 
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 322 

Figure 7: FE analysis (a) concrete cracking and crushing plot and (b) deflection at peak load 323 

of S3 specimen 324 

 325 

3.3 Load-strain behaviour 326 

Figure 8 shows the load-strain relationship for top concrete, bottom bars, top bars, and top of 327 

CRS of all four slabs. Figure 8(a) shows that the strain of the top concrete increased linearly up 328 

to 100 microstrains until occuring the first flexural tensile cracks at the bottom of the slabs at a 329 

load of approximately 25 kN. The strain then increased linearly but at a faster rate than before 330 

cracking and continued until the failure of slabs S1, S2 and S3. The maximum strain recorded 331 

in the top concrete was 2100 microstrains, 1995 microstrains, and 2855 microstrains for slabs 332 

S1, S2, and S3, respectively. The lower strain in top concrete in slabs S1 and S2 further 333 

confirmed the observed flexure-shear failure while slab S3 failed in bending. After the bottom 334 

concrete began to crack, strain at the top of the concrete for slab S4 also increased linearly but 335 

at a slower rate than the other three slabs.  However, the strain increased nonlinearly at a load 336 

of 130 kN and strain of 1100 microstrains. It is noted that the top concrete strain gauge stopped 337 

recording data just after the peak load (202 kN) at 1791 microstrains due to the initiation of 338 

concrete crushing caused by steel yielding. 339 

At 19 kN

At 24 kN

At 27 kN

(a) (b)
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Figure 8(b) shows the load-strain relationship of bottom bars for all slabs.  There was no 340 

noticeable changes of strain in the bottom GFRP bars before the concrete tensile cracking at 341 

around 25 kN load while the strain increased rapidly thereafter. The load-strain behaviour in the 342 

tensile GFRP bars for slabs S1 and S2 was found similar, and the strain reached to 13,000 343 

microstrains at failure. The load-strain behaviour in slab S3 was almost linear after the first 344 

flexural tensile crack of the concrete, however,  the rate of increase of strain was slower than 345 

slabs S1 and S2. The nonlinearity started when the load reached to the peak at around 211 kN. 346 

The strain measured at the bottom of GFRP bars when slab S3 finally failed was around 14,000 347 

microstrains, which was almost 70% of the failure strain of the GFRP bars in tension. As 348 

expected, the strain in the bottom steel bars for slab S4 developed at a slower rate than the GFRP 349 

bars in slabs S1 to S3. However, the strain remained constant at around 2700 microstrains from 350 

130 kN to 208 kN, which is the level of yield strain for 500 MPa steel bars. This was followed 351 

by a large increase in strain even without any further increase in the applied load. 352 

Figure 8(c) shows the relationship between load and strain of the compression 353 

reinforcement for slabs S3 and S4. The graph shows that the strain in the compressive GFRP 354 

bars in slab S3 increased linearly with load even after the bottom concrete began to crack. 355 

However, the load-strain behaviour became nonlinear near to the peak at 170 kN. The maximum 356 

strain recorded was around 2400 microstrains. On the other hand, the  load-strain behaviour in 357 

the top steel bars for slab S4 was nonlinear from concrete cracking to the failure. Over 3000 358 

microstrains were recorded in the steel bars in compression at failure. Figure 8(d) shows the 359 

load-strain relationship at the top surface of the CRS for slab S3 and S4. Both slabs showed 360 

very small strain at the top of the CRS up to 150 kN. After that the strain increased nonlinearly 361 

until the slab reached to the peak load and observed that the strain in slab S3 was slightly higher 362 

than slab S4 at the same level of load. The CRS in slab S4 reached almost 7100 microstrains 363 

before it failed whereas the maximum strain recorded in slab S3 was only 2500 microstrains.  364 
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 365 

 366 

 367 

Figure 8: Load-strain behaviour for (a) top concrete, (b) bottom bars (GFRP and steel), (c) top 368 

bars (GFRP or steel), and (d) top of CRS 369 

 370 

4. Discussion 371 

4.1. Influence of the hollow core 372 

The influence of a hollow core in a precast concrete slab reinforced with GFRP bars was 373 

evaluated by comparing the behaviour of slabs S1 and S2. Results indicated that the structural 374 

behaviour of solid and hollow core slabs was similar as both slabs exhibited same cracking 375 

propagation and failed by the concrete crushing and buckling of bars under compression 376 
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followed by a diagonal crack. The diagonal crack observed in slabs S1 and S2 is due to the 377 

flexure and shear effect as the crack started from the bottom and propagated diagonally towards 378 

the top. This can be further confirmed by shear resistance capacity of the slab estimated using 379 

Canadian code [40], Australian code [42], American code [43] and Italian code [44] as 380 

expressed in Eq. (1), Eq. (2), Eq. (3) and Eq. (4), respectively. The estimated shear resistance 381 

of the solid slab (S1) is 84 kN, 80 kN, 100 kN, and 93 kN, while for the hollow slab (S2) is 382 

62kN, 61 kN, 74 kN, and 68 kN based on CSA-S806 [40], AS-3600 [42], ACI-318 [45], and 383 

CNR-DT 203 [44] standards, respectively. These results are close to the experimental shear 384 

force (half the applied load) developed at failure of slab S1 (68.5 kN) and S2 (72.5 kN). This 385 

finding refers to the shear effect in the final failure of S1 and S2. However, the failure of hollow 386 

core slab (S2) was more brittle than the solid slab (S1) due to the catastrophic collapse of the 387 

holes. Cuenca and Serna [22] stated that this type of failure is expected for hollow core concrete 388 

slab because of the reduced width of the web that cannot resist the shear forces.  389 

According to CSA-S806 standard [40], 390 

𝑉𝑐 = 0.05𝜆𝜙𝑐𝑘𝑚𝑘𝑟(𝑓𝑐
′)1/3𝑏𝑣𝑑𝑜   (1) 391 

where, 0.11𝜙𝑐(𝑓𝑐
′)1/2𝑏𝑣𝑑𝑜  ≤  𝑉𝑐  ≤  0.22𝜙𝑐(𝑓𝑐

′)1/2𝑏𝑣𝑑𝑜 392 

According to AS-3600 standard [42], 393 

𝑉𝑐 = 𝛽𝑏𝑣𝑑𝑜𝑓𝑐𝑣(
𝐴𝑓

𝑏𝑣𝑑𝑜
)1/3    (2) 394 

According to ACI-318 code [45], 395 

𝑉𝑐 = 2𝜆√𝑓𝑐
′𝑏𝑣𝑑𝑜    (3) 396 

According to CNR-DT 203 code [44], 397 

𝑉𝑐 = 1.3 (
𝐸𝐹

𝐸𝑆
)

1

2
. 𝜏𝑅𝑑. 𝑘. (1.2 + 40𝜌)𝑏𝑣𝑑𝑜       (4) 398 
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In Eqns. (1 to 3), 𝑉𝑐 is the total shear resistance, 𝛽 = 1.1(1.6 −
𝑑𝑜

1000
), 𝜆 = 1, and 𝜙𝑐 = 0.6 are 399 

factors to account for concrete, 𝑘𝑚 = √
𝑉𝑓𝑑𝑜

𝑀𝑓
≤ 1 and 𝑘𝑟 = 1 + (𝐸𝐹 . 𝜌)1/3 are the moment and 400 

reinforcement coefficients ,respectively, where 𝑀𝑓 and 𝑉𝑓 are the factored moment and shear 401 

forces, respectively, 𝐸𝐹 , 𝐸𝑆  and 𝜌𝐹  are the elastic modulus of the GFRP bars and steel, 402 

respectively, and the longitudinal reinforcement ratio. The 𝜏𝑅𝑑 = (0.15√𝑓𝑐
′) and 𝑘 = 1 are the 403 

design shear stress of the concrete and reinforcement coefficient, respectively. The 𝑓𝑐
′ and 𝐴𝑓 404 

are the concrete strength and area of reinforcement, 𝑏𝑣 and 𝑑𝑜 are the width of the slab and 405 

depth of reinforcement, 𝑓𝑐𝑣 = (𝑓𝑐
′)1/3 ≤ 4 MPa. It is important to note that Eq. (1), Eq. (2) and 406 

Eq. (4) are based on SI unit whereas Eq. (3) is based on FPS unit. 407 

Creating holes in the slab that reduced the gross cross-sectional area by 9% has an effect 408 

on initial bending stiffness, however, it did not affect significantly on the capacity. The stiffness 409 

of the slabs S1 and S2 were measured at 6.49 kN/mm and 5.21 kN/mm while the capacity 410 

obtained were 137 kN and 145 kN, respectively (Table 4). The lower stiffness of S2 than S1 is 411 

due to the reduced width of the slab at the initial location of neutral axis. However, the bottom 412 

concrete started cracking with the increase of loads and the neutral axis gradually shifted 413 

upwards. At a maximum load point, the similar behaviour and capacity of slabs S1 and S2 can 414 

be attributed to the location of neutral axis that is above the top of the hollow core where the 415 

uncracked concrete in compression were behaving same for both slabs. Using the strain 416 

measured at the top concrete in Figure 8(a) and bottom reinforcement in Figure 8(b), the neutral 417 

axis at the loads of 40 kN, 70 kN, 90 kN, 125 kN and 145 kN was calculated to be 18.48 mm, 418 

14.79 mm, 14.36 mm, 13.50 mm and 13.33 mm, respectively, which clearly indicated the 419 

neutral axis was above the holes, as shown in Figure 9.    420 
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 421 

Figure 9: Strain distribution in slab S2 422 

4.2. The effectiveness of CRS as reinforcement 423 

The effect of CRS was investigated by studying the behaviour of slabs S2 and S3. The 424 

incorporation of three pieces of CRS in slab S3 provided 45% higher capacity than slab S2, 425 

indicating that the CRS was acting as internal flexural and shear reinforcement for slab S3. This 426 

finding can be supported by the load-strain behaviour of the bottom GFRP bars (Figure 8b) 427 

where the addition of CRS reduced the strain in the bottom bars for slab S3. CRS also increased 428 

the bending stiffness of hollow concrete slab by 33% (from 5.21 kN/mm to 6.91 kN/mm) while 429 

it reduced the loss of stiffness by 24% (53% loss for S2 and 29% loss for S3) after first crack. 430 

Due to the linear load-deformation behaviour of the GFRP-reinforced slabs, deformability 431 

factor is used as an overall performance indicator suggested by CSA S6 code [46] instead of 432 

ductility factor related to steel-reinforced slab counterparts. Deformability factor is the ratio 433 

between the maximum moment times the corresponding curvature or deflection divided by the 434 

moment value times the corresponding curvature or deflection when concrete records 1000 435 

microstrains, where this ratio is limited to 4 as a least value. Accordingly, providing CRS in 436 

slab S3 significantly increased the deformability factor from 4.09 to 8.86 representing 117% 437 

increase compare to slab S2. Moreover, the CRS changed the failure modes from flexure-shear 438 

in S2 to almost pure flexure observed in S3. The CRS also minimised the propagation of vertical 439 
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flexural cracks and prevented the massive concrete crushing at the final failure. CRS controlled 440 

the direction of cracking and made the crack path longer because they needed to pass through 441 

the CRS flanges, thereby enhancing the serviceability performance of slab S3. The hollowness 442 

of the CRS increased significantly the stiffness and strength of the slab without increasing the 443 

weight. This improvement cannot be achieved with just conventional reinforcement or GFRP 444 

bars without the additional weight due to the increase in amount of reinforcement. The 445 

enhancement of the performance of hollow core slab using CRS was found better than the 446 

carbon fibre reinforced polymer (CFRP) sheets implemented by [21] where the load capacity 447 

only increased by 11%.  This was because the latter method could not prevent the hollow core 448 

from collapsing. It is worth mentioning that no debonding failure was observed in slab S3 as 449 

because the four flanges of the CRS interacted effectively with the concrete. On the other hand, 450 

the debonding failure seen by [21] for externally bonded CFRP sheets could have been 451 

prevented by providing thicker sheets internally and that is how CRS is working. Elgabbas et 452 

al. [47] observed improvement in the load carrying capacity of the hollow core concrete slabs 453 

reinforced internally with thin CFRP sheets but shear failure still occurred due to the debonding 454 

of CFRP sheets from the concrete. More interestingly, the addition of GFRP bars with 455 

equivalent area of CRS could not achieve such enhancement in stiffness and strength without 456 

increasing the cross-sectional area of the slab due to the significant increase in the ratio between 457 

the actual reinforcement-to-balanced condition, wherein El-Nemr et al. [48] indicated that this 458 

condition will result in insufficient improvement in carrying loads. This result also indicates 459 

that a thinner concrete slab with CRS is possible to achieve the same strength and stiffness of 460 

solid and hollow slab resulting in a more lightweight and economical structure. 461 

 462 

4.3. Effect of reinforcing materials 463 
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Finding the influence of using different reinforcing materials in concrete slabs was achieved by 464 

testing slabs S3 and S4. The types of reinforcement had a signficant effect on the overall 465 

stiffness but none on the load capacity of the hollow concrete slabs. After first crack, slab S4 466 

retained almost 93% of its initial and uncracked stiffness while slab S3 retained 71%. Slab S4 467 

was stiffer because the modulus of elasticity of steel used in it was higher than the GFRP bars 468 

in slab S3, as also observed by many researchers [7, 10, 49, 50]. However, the provision of CRS 469 

enabled the GFRP reinforced hollow concrete slab to retain most of its stiffness because it 470 

prevented developing wider flexural cracks. For example, El-Gamal et al. [51] found that the 471 

steel reinforced slab was almost 72% stiffer than the slabs reinforced with GFRP with a similar 472 

reinforcement ratio while in the present study the steel reinforced slab (S4) was only 33% stiffer 473 

than slab S3.  Moreover, the flexural capacity of slab S3 (211 kN) and S4 (208 kN) were almost 474 

same because the failure behaviour of both slabs was governed by compressive crushing of the 475 

top concrete followed by failure of the CRS due to the combination of bending and interlaminar 476 

shear failure. Figure 8 shows that the addition of CRS reduced the amount of strain experienced 477 

by the GFRP bars (slab S3) thus indicating how well it utilises the tensile strength of the bars. 478 

Morever, the GFRP bars and CRS were recorded the highest contribution in the final load. 479 

Notwithstanding this, all of the stress was transferred to the CRS when the tensile reinforcement 480 

in slab S4 yielded at a load of 140 kN. The bottom steel reinforcement stopped recording the 481 

strains while the strain in the CRS increased markedly after the steel bars yielded up to their 482 

maximum load (Figure 8). Slab S4 then continued to carry the load until the CRS failed, and 483 

then the stiffness decreased in the load-deflection behaviour when the steel yields (Figure 6) 484 

showing almost similar stiffness to slab S3 until the maximum load capacity. This result 485 

contradicts the comparison between the stiffness as slab S4 reinforced with steel was stiffer 486 

than S3 from the time the concrete began to crack until the steel yielded. However, a different 487 

trend was observed after yielding as S3 slab showed continuous linear stiffness due to the linear 488 
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elastic behaviour of GFRP bars while in S4 the steel stopped resisting. On the other hand, it can 489 

be noticed that slab S3 shows a slightly higher area under the load-deformation curve (see 490 

Figure 6) compare to slab S4, indicating that the CRS improved the deformability of slab S3 491 

and energy absorption. This suggests that the GFRP bars and CRS combination are more 492 

compatible than steel bars and CRS combination because the stiffness of GFRP and CRS are 493 

almost the same.  494 

The presence of CRS prevented the premature compressive failure of concrete but still 495 

developed horizontal shear cracks at the level of the hollow reinforcing system. However, there 496 

were more and deeper horizontal cracks in slab S3 than in slab S4. Chang and Seo [52] studied 497 

GFRP-reinforced and steel-reinforced one way slabs with similar dimensions and 498 

reinforcement ratio. They observed wider cracks in GFRP-reinforced slab than in the steel-499 

reinforced one because of the low modulus of GFRP bars. The lower stiffness of GFRP bars 500 

than steel bars also explains why the deflection in slab S3 was higher than in slab S4. At the 501 

maximum load, compressive crushing of the concrete began in slab S3 whereas the bottom steel 502 

in slab S4 yielded. 503 

5. Theoretical evaluation of the flexural capacity of CRC slabs 504 

5.1. Fibre model analysis  505 

The behaviour of concrete slabs with hollow composite reinforcing system in flexure was 506 

predicted using a simple Fibre Model Analysis (FMA). This layer-by-layer approach was 507 

successfully implemented by previous researchers [53-55]  in predicting the flexural capacity 508 

of composite structures. In this design approach, the capacity of hollow concrete slabs is based 509 

on the force equilibrium, strain compatibility, and constitutive behaviour of the materials. The 510 

internal force equilibrium principle was applied to determine the flexural capacity based on the 511 

properties of the constituent materials. It was assumed that a perfect bond exists between the 512 

reinforcement and concrete, and the strain in each layer was directly proportional to their 513 



25 

distance from the neutral axis. The sectional equilibrium was maintained by balancing the 514 

internal compressive and tensile resistance of the section, indicating varying locations of neutral 515 

axis with the increase of loads. For simplicity, the four rectangular flanges (Figure 1b) were 516 

converted to an equivalent circular area (Figure 10) for slabs with hollow composite reinforcing 517 

system. The top CRS bars were located at 42.5 mm from the top concrete layer while the bottom 518 

CRS bars were positioned at the same distance from bottom concrete layer. The unit sectional 519 

geometry, strain and stress diagrams are shown in Figure 10. 520 

 521 

Figure 10: Basic assumptions in FMA 522 

In Figure 10, D is the effective depth, c is the depth of any layer from the extreme 523 

compression fibre, dn is the depth of neutral axis while ɛc con, ɛc GFRP, ɛt GFRP, ɛc CRS, and ɛt CRS are 524 

the top concrete strain, top and bottom GFRP strain, and top and bottom CRS strain, 525 

respectively. On the other hand, fc conc, fc GFRP, fc CRS and fc CRS (bars) are the compressive stress of 526 

concrete, GFRP bars, CRS and CRS bars, respectively. While ft CRS, ft CRS (bars) and ft GFRP are 527 

tensile stress of CRS, CRS bars and GFRP bars, respectively. Different assumptions have been 528 

considered in the FMA including or excluding tensile contribution of concrete and CRS flanges. 529 

The GFRP bars and CRS were analysed as linear elastic material in both tension and 530 

compression while the steel was simplified with a bilinear behaviour [56], i.e. linear elastic 531 

before yielding and a constant stress after yield. The constitutive models for concrete, CRS, 532 

GFRP bar and steel bar are shown in Figure 11. 533 



26 

 534 

Figure 11: Constitutive materials model (a) concrete, (b) CRS, (c) GFRP bar and (d) steel bar 535 

The concrete crushing failure criterion (assuming strain at top concrete 0.003) was 536 

considered in FMA. While the slab remains uncracked, all the layers or element i contribute to 537 

the moment capacity of the section. The strain at different levels were calculated using the 538 

concept of similar triangles as given in Eq. (5). The corresponding neutral axis depth (dn) were 539 

adjusted for the strains in the top and bottom which set the force equilibrium principle calculated 540 

using Eq. 6. The stress were then determined from the constitutive material model in Figure 11 541 

based on the strain for each layer. The moment capacities of the hollow core slabs were 542 

predicted using Eq. 7. 543 

 𝜀𝑖 =
𝜀𝑐 𝑐𝑜𝑛×(𝑑𝑛−𝑑𝑖)

𝑑𝑛
                     (5) 544 

∑ 𝑃 = ∑ 𝑓𝑖,𝑐𝑜𝑛𝑐
𝑛
𝑖=1  𝐴𝑖,𝑐𝑜𝑛𝑐 + ∑ 𝑓𝑖,𝐶𝑅𝑆

𝑛
𝑖=1  𝐴𝑖,𝐶𝑅𝑆 + ∑ 𝑓𝑖,𝐺𝐹𝑅𝑃

𝑛
𝑖=1 𝐴𝑖,𝐺𝐹𝑅𝑃 = 0   (6) 545 
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                                                            546 

∑ 𝑀 = ∑ 𝑓𝑖,𝑐𝑜𝑛𝑐
𝑛
𝑖=1  𝐴𝑖,𝑐𝑜𝑛𝑐𝑑𝑖 + ∑ 𝑓𝑖,𝐶𝑅𝑆

𝑛
𝑖=1 𝐴𝑖,𝐶𝑅𝑆 𝑑𝑖 + ∑ 𝑓𝑖,𝐺𝐹𝑅𝑃

𝑛
𝑖=1 𝐴𝑖,𝐺𝐹𝑅𝑃 𝑑𝑖  (7) 547 

In Eqs. (4-6), Ɛc con and Ɛi are the top concrete strain and concrete strain at depth di. Moreover, 548 

P, fi,conc, Ai,conc, fi,GFRP, Ai,GFRP, fi,CRS, Ai,CRS, M and di indicate the load capacity, concrete strength 549 

at layer i, concrete area at layer i, strength of GFRP bar, area of main reinforcement at layer i, 550 

CRS strength at layer i, CRS area at layer i, bending moment capacity, and layer depth from 551 

upper compressive layer. The total number of layers (n) is 175 layers. 552 

 553 

5.2 Predicted failure load and comparison with the experiments 554 

The flexural capacity is calculated for S3 and S4 slabs as they are failed in flexure while the 555 

other two slabs S1 and S2 were failed in flexure-shear, thus, FMA is not an ideal approach to 556 

estimate the failure loads for the latter case. Table 5 presents a summary of the loads predicted 557 

under different criteria and compares them with the results from the experiment. It can be seen 558 

that the closest prediction was obtained when the contribution of the tensile strength of concrete 559 

(Stiffening behaviour) and the flanges of the CRS were accounted. In general, the capacity of 560 

the slab with CRS can be predicted as close as 13.8% to the actual load measured from the 561 

experiments. The small difference between the predicted load and the actual failure load can be 562 

attributed to many reasons including the inherent variability of the compressive strength of 563 

concrete, the contribution of the flanges in keeping more concrete intact, and the partial 564 

consideration of the CRS (the small web portion perpendicular to flanges did not consider) in 565 

the FMA.  566 

Table 5. Predicted and actual failure loads 567 

Considerations 

Capacity of S3 

(kN) 

Difference 

(%) 

Capacity of S4 

(kN) 

Difference 

(%) 

 FMA Exp.  FMA Exp.  
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Ignored tensile strength of 

concrete and CRS flanges 

156 

211 

26.1 146 

208 

29.8 

Ignored tensile strength of 

concrete and accounted 

CRS flanges 

167 20.9 166 20.2 

Accounted tensile strength 

of concrete and ignored 

CRS flanges 

171 19.0 157 24.5 

Accounted tensile strength 

of concrete and CRS flanges 

182 13.7 173 16.8 

 568 

6. Conclusions 569 

This study investigated the flexural behaviour of one-way concrete slabs reinforced with GFRP 570 

bars and hollow composite reinforcing systems. Full-scale concrete slabs were tested under 571 

four-point static bending to observe the propagation of failure, load-deflection, and the load-572 

strain behaviour. The failure load of hollow concrete slabs was also predicted using the 573 

simplified Fibre Model Analysis. Based on the results of this study, the following conclusions 574 

are drawn: 575 

 The hollow core concrete slab reinforced with GFRP bars behaved the same as the solid 576 

slab due to only a 9% reduction in the gross area of the concrete for hollow slab than 577 

the solid slab, and the area of concrete in compression for hollow slab was located above 578 

the hollow core. Slab S2 (hollow) showed a more brittle final failure than slab S1 (solid) 579 

because of the collapse of hollow core. 580 

 The composite reinforcing system helped to enhance the structural performance of 581 

hollow core concrete slabs. The provision of three pieces of composite reinforcing 582 
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system (S3) increased the stiffness of the GFRP reinforced concrete hollow slab by 33%, 583 

reduced the loss of stiffness after concrete cracking by 24%, increased the load carrying 584 

capacity by 45%, and significantly increased the deformability by 117% than S2. The 585 

hollow composite system in slab S3 also prevented vertical flexural cracks starting from 586 

bottom and propagating up to the top layer of concrete, this resulted in ductile flexural 587 

failure.  588 

 The hollow composite reinforcing system was more compatible with GFRP bars than 589 

steel bars due to their similar modulus of elasticity. The slab reinforced with steel (S4) 590 

was stiffer than S3 from the time the concrete began to crack until the steel yielded. 591 

However, the GFRP reinforced slab (S3) was stiffer and retained this constant stiffness 592 

until the load reached its maximum. Moreover, the GFRP bars and the CRS 593 

simultaneously resisted the load up to failure in S3, whereas all the load was transferred 594 

to CRS once the steel yielded in steel reinforced slab (S4). 595 

 The simplified fibre model analysis reliably predicted the maximum flexural strength of 596 

hollow concrete slabs with composite reinforcing system. By incorporating the 597 

stiffening behaviour of concrete under tension and the flanges of the hollow composite 598 

reinforcing system, the predicted failure load was only 13.8% less than the failure load 599 

measured experimentally. This result was further verified with complex finite element 600 

analysis.   601 

The above findings clearly demonstrated the effectiveness of CRS in concrete slabs. This 602 

enhancement in overall behaviour cannot be achieved with just conventional reinforcement or 603 

GFRP bars without the additional weight due to the increase in amount of reinforcement and 604 

the concrete itself. Moreover, a thinner concrete slab with CRS is possible to achieve more 605 

strength and stiffness than solid and hollow slab resulting in a more lightweight and efficient 606 

structural system. Thus, it is suggested that the effectiveness of CRS with different diameters 607 
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are explored in other types of structures to quantify further its benefit and to develop new light-608 

weight and high-strength concrete structures suitable for civil engineering construction.  609 

Acknowledgements 610 

The authors wish to acknowledge the support from the Australian Research Council through 611 

the Discovery scheme (DP180102208). The authors would also like to thank Composite 612 

Reinforcement Solutions Pty. Ltd. for providing the hollow composite reinforcing systems, as 613 

well as the technical staff and postgraduate students at the Centre for Future Materials (CFM) 614 

in the University of Southern Queensland for helping to prepare and testing specimens.   615 

References 616 

[1] Yardim Y, Waleed A, Jaafar MS, Laseima S. AAC-concrete light weight precast composite 617 

floor slab. Construction and Building Materials. 2013;40:405-10. 618 

[2] Taylor R, Maher D, Hayes B. Effect of the arrangement of reinforcement on the behaviour 619 

of reinforced concrete slabs. Magazine of concrete research. 1966;18:85-94. 620 

[3] Smith P. Design and specification of marine concrete structures. Marine Concrete Structures: 621 

Design, Durability and Performance. 2016:65. 622 

[4] Dalton N. Warning to check for 'concrete cancer' in older unit high rise complexes. Australia: 623 

Cairns Post; 2014. 624 

[5] Goldston MW. Behaviour of concrete beams reinforced with GFRP bars under static & 625 

impact loading. Australia: University of Wollongong, 2016. 626 

[6] Ferdous W, Ngo TD, Nguyen KTQ, Ghazlan A, Mendis P, Manalo A. Effect of fire-627 

retardant ceram powder on the properties of phenolic-based GFRP composites. Composites Part 628 

B: Engineering. 2018;155:414-24. 629 

[7] Abdalla H. Evaluation of deflection in concrete members reinforced with fibre reinforced 630 

polymer (FRP) bars. Composite structures. 2002;56:63-71. 631 

[8] Ferdous W, Manalo A, Aravinthan T. Effect of beam orientation on the static behaviour of 632 

phenolic core sandwich composites with different shear span-to-depth ratios. Composite 633 

Structures. 2017;168:292–304. 634 

[9] Manalo AC. Behaviour of fibre composite sandwich structures under short and 635 

asymmetrical beam shear tests. Composite Structures. 2013;99:339–49. 636 

[10] Maranan G, Manalo A, Benmokrane B, Karunasena W, Mendis P. Evaluation of the 637 

flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-638 

reinforced polymer (GFRP) bars. Engineering Structures. 2015;101:529-41. 639 

[11] Maranan G, Manalo A, Benmokrane B, Karunasena W, Mendis P. Behavior of 640 

concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and 641 

transversely with GFRP bars. Engineering Structures. 2016;117:422-36. 642 

[12] Bouguerra K, Ahmed E, El-Gamal S, Benmokrane B. Testing of full-scale concrete bridge 643 

deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Construction and Building 644 

Materials. 2011;25:3956-65. 645 

[13] Sacks R, Eastman CM, Lee G. Parametric 3D modeling in building construction with 646 

examples from precast concrete. Automation in construction. 2004;13:291-312. 647 



31 

[14] de Castilho VC, do Carmo Nicoletti M, El Debs MK. An investigation of the use of three 648 

selection-based genetic algorithm families when minimizing the production cost of hollow core 649 

slabs. Computer methods in applied mechanics and engineering. 2005;194:4651-67. 650 

[15] Pajari M. Web shear failure in prestressed hollow core slabs. Journal of Structural 651 

Engineering. 2009;42:83-104. 652 

[16] Hegger J, Roggendorf T, Kerkeni N. Shear capacity of prestressed hollow core slabs in 653 

slim floor constructions. Engineering Structures. 2009;31:551-9. 654 

[17] Al-Negheimish AI, El-Sayed AK, Khanbari MO, Alhozaimy AM. Structural behavior of 655 

prestressed SCC hollow core slabs. Construction and Building Materials. 2018;182:334-45. 656 

[18] Ferdous W, Bai Y, Ngo TD, Manalo A, Mendis P. New advancements, challenges and 657 

opportunities of multi-storey modular buildings – A state-of-the-art review. Engineering 658 

Structures. 2019;183:883-93. 659 

[19] Azad AK, Hakeem IY. Flexural behavior of hybrid hollow-core slab built with ultra high 660 

performance concrete faces. Materials and Structures. 2016;49:3801-13. 661 

[20] Brunesi E, Bolognini D, Nascimbene R. Evaluation of the shear capacity of precast-662 

prestressed hollow core slabs: numerical and experimental comparisons. Materials and 663 

Structures. 2015;48:1503-21. 664 

[21] Meng X. Shear Strengthening of Prestressed Hollow Core Slabs Using Externally Bonded 665 

Carbon Fiber Reinforced Polymer Sheets: University of Windsor (Canada), 2016. 666 

[22] Cuenca E, Serna P. Failure modes and shear design of prestressed hollow core slabs made 667 

of fiber-reinforced concrete. Composites Part B: Engineering. 2013;45:952-64. 668 

[23] Benayoune A, Samad AA, Trikha D, Ali AA, Ellinna S. Flexural behaviour of pre-cast 669 

concrete sandwich composite panel–experimental and theoretical investigations. Construction 670 

and Building Materials. 2008;22:580-92. 671 

[24] Hall J, Mottram J. Combined FRP reinforcement and permanent formwork for concrete 672 

members. Journal of Composites for Construction. 1998;2:78-86. 673 

[25] ASTM-D792. Standard test methods for density and specific gravity (relative density) of 674 

plastics by displacement. West Conshohocken, PA: ASTM International; 2013. 675 

[26] ASTM-D2584. Standard test method for ignition loss of cured reinforced resins. West 676 

Conshohocken, PA: ASTM International; 2018. 677 

[27] ASTM-E1356. Standard test method for assignment of the glass transition temperatures by 678 

differential scanning calorimetry. West Conshohocken, PA: ASTM International; 2014. 679 

[28] ASTM-D695. Standard test method for compressive properties of rigid plastics. West 680 

Conshohocken, PA: ASTM International; 2015. 681 

[29] ISO-14125. Fibre-reinforced plastic composites -- Determination of flexural properties. 682 

International Organization for Standardization; 1998. 683 

[30] ASTM-D2344. Standard test method for short-beam strength of polymer matrix composite 684 

materials and their laminates. West Conshohocken, PA: ASTM International; 2016. 685 

[31] ASTM-D4475. Standard test method for apparent horizontal shear strength of pultruded 686 

reinforced plastic rods by the short-beam method. West Conshohocken, PA: ASTM 687 

International; 2016. 688 

[32] ASTM-D790. Standard test methods for flexural properties of unreinforced and reinforced 689 

plastics and electrical insulating materials. West Conshohocken, PA: ASTM International; 690 

2017. 691 

[33] CSA-S807. Specification for fibre-reinforced polymers. Canadian Standards Association; 692 

2010. 693 

[34] Benmokrane B, Manalo A, Bouhet J-C, Mohamed K, Robert M. Effects of Diameter on 694 

the Durability of Glass Fiber–Reinforced Polymer Bars Conditioned in Alkaline Solution. 695 

Journal of Composites for Construction. 2017;21:04017040. 696 



32 

[35] ASTM-D4476. Standard test method for flexural properties of fiber reinforced pultruded 697 

plastic rods. West Conshohocken, PA: ASTM International; 2014. 698 

[36] ASTM-D7205. Standard test method for tensile properties of fiber reinforced polymer 699 

matrix composite bars. West Conshohocken, PA: ASTM International; 2016. 700 

[37] ACI-440.6M. Specification for carbon and glass fiber-reinforced polymer bar materials for 701 

concrete reinforcement. USA: ACI; 2008. 702 

[38] Standards Australia. Specification and supply of concrete.  AS1379-2007 Australia SIA 703 

Global; 2007. 704 

[39] Standards Australia. Methods of testing concrete Method 1: Sampling of concrete.  AS 705 

10121-2014 Australia: Standards Australia; 2014. 706 

[40] CSA-S806. Design and construction of building structures with fibre-reinforced polymers. 707 

Canadian Standards Association; 2012. 708 

[41] ANSYS-Inc. ANSYS mechanical APDL introductory tutorials. 15.0 ed. USA2013. 709 

[42] AS-3600. Concrete structures. Sydney, Australia: Standards Australia; 2017. 710 

[43] Nilson A, Darwin D, Dolan C. Design of Concrete Structures. Europe: McGraw-Hill 711 

Education, 2015. 712 

[44] CNR-DT-203. Guide for the design and construction of concrete structures reinforced with 713 

fibre-reinforced polymer bars. Rome, Italy: National Research Council (CNR); 2006. 714 

[45] ACI-318. Building code requirements for structural concrete (ACI 318-08) and 715 

commentary. USA: American Concrete Institute; 2008. 716 

[46] S807-10 CC. Specification for fibre reinforced polymers. Rexdale, Ontario, Canada. 2010. 717 

[47] Elgabbas F, El-Ghandour A, Abdelrahman A, El-Dieb A. Different CFRP strengthening 718 

techniques for prestressed hollow core concrete slabs: Experimental study and analytical 719 

investigation. Composite structures. 2010;92:401-11. 720 

[48] El-Nemr A, Ahmed EA, El-Safty A, Benmokrane B. Evaluation of the flexural strength 721 

and serviceability of concrete beams reinforced with different types of GFRP bars. Engineering 722 

Structures. 2018;173:606-19. 723 

[49] Ali AH, Afifi MZ, Abdulsalam B, Haggag H, El Hashimy A, El-Sayed T, et al. 724 

Performance Evaluation of One-Way Concrete Slabs Reinforced with New Developed GFRP 725 

Bars. Materials Sciences and Applications. 2015;6:420. 726 

[50] Benmokrane B, Chaallal O, Masmoudi R. Glass fibre reinforced plastic (GFRP) rebars for 727 

concrete structures. Construction and Building Materials. 1995;9:353-64. 728 

[51] El-Gamal S, AbdulRahman B, Benmokrane B. Deflection Behaviour of Concrete Beams 729 

Reinforced with Different Types of GFRP Bars.  Advances in FRP Composites in Civil 730 

Engineering: Springer; 2011. p. 279-82. 731 

[52] Kugkwan C, Daewon S. Behavior of one-way concrete slabs reinforced with GFRP bars. 732 

Journal of Asian Architecture and Building Engineering. 2012;11:351-8. 733 

[53] Muttashar M, Manalo A, Karunasena W, Lokuge W. Flexural behaviour of multi-celled 734 

GFRP composite beams with concrete infill: Experiment and theoretical analysis. Composite 735 

Structures. 2017;159:21-33. 736 

[54] Manalo A, Surendar S, Van Erp G, Benmokrane B. Flexural behavior of an FRP sandwich 737 

system with glass-fiber skins and a phenolic core at elevated in-service temperature. Composite 738 

Structures. 2016;152:96-105. 739 

[55] Muttashar M, Manalo A, Karunasena W, Lokuge W. Influence of infill concrete strength 740 

on the flexural behaviour of pultruded GFRP square beams. Composite Structures. 741 

2016;145:58-67. 742 

[56] Wolanski AJ. Flexural behavior of reinforced and prestressed concrete beams using finite 743 

element analysis. USA: Marquette University, 2004. 744 

 745 

 746 


