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Abstract 

Wind erosion is a land degradation process in arid, semi-arid and agricultural regions 

of Australia. The loss of soil as a result of this process affects human health, 

environment and the economy. Climate variables such as rainfall and temperature play 

a major role in wind erosion activity. In particular, the quantity and distribution of 

rainfall influences the growth of vegetation cover which protects the soil surface from 

erosion (both wind and water erosion). Hence, climate variability is of great concern 

due to the pressure on agricultural land to produce more food for a growing population 

and the subsequent pressure to grow crops on drier more marginal lands that are more 

susceptible to wind erosion.  

This research investigates the historic relationship between climatic conditions and 

recorded dust storm events based on more than 16 decades of collated dust storm event 

data from a wide number of sources (e.g. personal experiences, diaries, book excerpts, 

newspaper clippings, journal articles, reports and others). The 587 dust storm event 

records have been collated into a Historical Dust Event Database (HDED). The HDED 

indicated an increased number of dust storm events occurred in the 1900s, 1940s, 

1960s and 2000s. This is due to the close link of rainfall and temperature to the ENSO 

cycle which directly impacts on the vegetation cover, a key factor driving the 

frequency, intensity and spatial distribution of dust events.  

Broad scale estimation of spatial changes in vegetation cover would be useful in a wide 

range of applications and is of particular interest and value in areas of environmental, 

ecological and land-use modelling. Currently, broadly applicable modelling methods 

or indices are not available to realistically estimate vegetation cover levels for periods 

before the early 1990s when satellite remote sensing first became readily available. 

This includes any historical or future forecasting periods. As wind erosion/dust events 

are strongly dependent on vegetation cover, to analyse past or future dust events a 

means of estimating broad scale cover across Australia is required.  

The newly developed Climate Aridity Vegetation Index (CAVI) is a simple broad scale 

vegetation index across Australia, based on rainfall and temperature data. The CAVI is 

calculated using 12 months weighted rainfall and temperature data to produce 
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vegetation cover maps without modelling individual vegetation type responses, 

seasonality and land-use. The CAVI produced particularly good estimation of 

vegetation cover during the Spring - Summer season but can over emphasise the 

relationship between rainfall, temperature and vegetation/green cover when increased 

rainfall occurs close to the month of interest. Nevertheless, the index produces good 

representative estimates and spatial maps of vegetation cover levels during the spring 

– summer seasons in Australia. 

Wind erosion modelling occurs at a variety of spatial and temporal scales to determine 

the extent and severity of wind erosion across Australia. With the development of 

CAVI, historical and future wind erosion rates can be modelled, dust source areas can 

be estimated and identified, and the severity of these early dust storm events can be 

compared to modern events before land management changes were adopted. This has 

previously never been possible since reliable satellite derived photosynthetically active 

fractional vegetation cover (fPV) data is not available prior to February 2000. To test 

the validity of such models, CAVI estimates of vegetation cover have been tested as a 

surrogate for remote sensed fPV in the Computational Environmental Management 

System (CEMSYS) for two large scale dust storm events in September 2009 and 

October 2002. The CEMSYS estimated daily dust loads based on CAVI and fPV were 

compared in regards to the spatial patterns of the eroded areas and the dust load 

intensity of the modelled wind erosion days. The use of CAVI as a surrogate for fPV in 

September 2009 and October 2002 CEMSYS modelling results were encouraging. 

Similar spatial erosion characteristics were observed in the simulations but the dust 

concentration based the CAVI was on occasions lower than based on fPV data. The 

CAVI was also applied to model the historical dust storm periods in November 1965. 

The modelling results from the study indicates that there is potential for CAVI to be 

used as a surrogate for fPV and gives us for the first time some estimates of the extent 

and severity of historical dust storm events.  
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 Introduction and Literature Review 

Wind erosion is a common cause of land degradation in arid and semi-arid Australia, 

a process that can also lead to desertification. An estimated 110 Mt of dust is eroded 

by wind from the Australian continent each year, most originating from the arid and 

semi-arid rangelands (Chappell et al. 2013; Aubault et al. 2015). Climate factors, 

including rainfall, temperature, and wind play an important role in the wind erosion 

process (Figure 1.1). In particular, the quantity and distribution of rainfall influences 

vegetation cover. Reduced vegetation cover together with decreased soil moisture is a 

direct result of drought conditions. These drought conditions increase the risk of wind 

erosion under the right atmospheric conditions. Farming practices such as the clearing 

of native vegetation for farming and grazing, can also accelerate wind erosion rates 

above natural levels by reducing vegetation cover and soil surface stability.  

At the same time, the increased dust load in the atmosphere from wind erosion events 

has the potential to alter the climate system and hydrological cycle through their 

radiative and cloud condensation nuclei effects (Choobari, Zawar-Reza & Sturman 

2014). Considering this, understanding wind erosion is particularly important as it 

provides a foundation for developing appropriate and effective land management and 

erosion control processes and also in the forecasting of future climate. The landscape 

factors outlined above will be discussed further in Sections 1.2.1, 1.2.2 and 1.2.3. 
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Figure 1.1: Both climate and landscape factors affect the susceptibility of soil to wind erosion 

and dust events. 

 

1.1 Climate factors influencing dust in Australia 

Climate is defined as the measurement of the long term average and variability of: 

precipitation, temperature, wind velocity and other weather variables in a particular 

region over a specific time scale (ranging from months to thousands or millions of 

years). The  World Meteorological Organization (2015) has defined the “long term 

average climate” as reference points used by climatologists to compare current 

climatological trends to that of the past or what is considered “normal”. A Normal is 

defined as the arithmetic average of a climate variable over a 30-year period. A 30 year 
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period is deemed long enough to filter out any interannual variation or anomalies, but 

also short enough to be able to show longer climatic trends. The Australian climate is 

characterised by extreme year-to-year rainfall variability compared to other major 

countries as illustrated in Figure 1.2 (Nicholls & Wong 1990; Love 2005; Bureau of 

Meteorology & CSIRO 2014).  

 

Figure 1.2: The coefficient of variation of national annual rainfall for Australia and 10 other 

countries for the period 1950 – 2000 (Love 2005). 

 

Important key climate drivers in Australia include the El Niño-Southern Oscillation 

(ENSO), the Australian monsoon, the Madden-Julian Oscillation, the Southern 

Annular Mode (Risbey et al. 2009), and to a certain degree the Indian Ocean Dipole 

(IOD) (Allan et al. 2001; Compo & Sardeshmukh 2010; Frauen & Dommenget 2012; 

Zhao & Nigam 2015). Up to 50% of rainfall variability in northern and eastern parts 

of Australia is explained by ENSO variations (Allan, Lindesay & Parker 1996; Power 

et al. 2006; Risbey et al. 2009; Williams & Stone 2009). The ENSO phenomenon has 

a profound influence on climate variability and is predictable on interannual time 

scales (Frauen & Dommenget 2012). The origin of the ENSO lies in the interactions 

of the tropical atmosphere and the tropical Indo-Pacific Ocean, but the influence of 

ENSO reaches far beyond the tropical Pacific region. During different ENSO phases 

the areas of equatorial convection and subsidence are shifted, resulting in a change to 

the atmospheric circulation/rainfall patterns. ENSO fluctuates on a two to seven year 

time scale and alternates between its two phases: El Niño and La Niña (Allan, Lindesay 

& Parker 1996). El Niño events are associated with the warming of the surface layer 
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in the ocean in the eastern and central equatorial Pacific, a large scale weakening of 

the trade winds, and a reduction in rainfall in eastern and northern Australia that often 

results in drought conditions (Power & Smith 2007). La Niña events are associated 

with a cooling of the ocean in the eastern and central equatorial Pacific with above 

average rainfall over much of Australia often leading to flooding, similar to that 

observed in January 2011. The influence on amplitude and frequency of ENSO reach 

far beyond the tropical Pacific Ocean (Frauen & Dommenget 2012). Studies by Reason 

et al. (2000), Allan et al. (2001), Dommenget, Semenov and Latif (2006), Compo and 

Sardeshmukh (2010), Frauen and Dommenget (2012) and Zhao and Nigam (2015) 

suggest that the IOD is a manifestation of the ENSO in the Indian Ocean with a one 

season lag (Reason et al. 2000).  

The Southern Oscillation Index (SOI) is a standardised index based on the observed 

sea level pressure difference between Tahiti and Darwin. The SOI is one measure of 

the large-scale fluctuations in air pressure occurring between the western and eastern 

tropical Pacific during El Niño and La Niña. A positive SOI generally indicates La 

Niña conditions, while a negative SOI generally indicates El Niño conditions.  

Depending on the ENSO state, Australia experiences a higher frequency of drought, 

bushfires, and dust storms during an El Niño event, or a higher frequency of floods 

and an increased number of tropical cyclones during a La Niña event (Nicholls 1985; 

Evans & Allan 1992; Stone, Hammer & Marcussen 1996; Gallant, Hennessy & Risbey 

2007; Risbey et al. 2011). The 2000s experienced extreme drought conditions with an 

increase in large dust storms and other wind erosion activity. Two extreme dust storms 

occurred in eastern Australia in October 2002 and September 2009 during the 

‘Millennium Drought’ which lasted from 2001 – 2010. Through 2002 – 2003 Australia 

was under the influence of a weak to moderate El Niño which had a very strong impact 

on the continent. In the six months leading up to the October 2002 dust storm event, 

severe drought conditions in eastern Australia, plus above average maximum 

temperatures resulted in reduced vegetation cover (McTainsh et al. 2005). The 2009 – 

2010 El Niño produced exceptionally dry conditions over much of the continent. They 

were the precursor conditions which, together with a passage of pre frontal northerlies 

with sufficiently strong winds, culminated in the very severe “Red Dawn” dust storm 

occurring in September 2009. South-eastern Australia had been experiencing drought 

conditions for several years and large parts of the country received below average 
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rainfall for the previous three and 36 months (Leys et al. 2011b). The influence of the 

El Niños explained approximately two thirds of the rainfall deficit that occurred in 

eastern Australia (van Dijk et al. 2013). The decline in rainfall and runoff contributed 

to widespread crop failures, livestock losses, dust storms, and bushfires. For example, 

the contribution of agricultural production to the Australian economy fell from 2.9% 

(financial years ending 1997 – 2002) to 2.4% of GDP (2003 – 2009) (Australian 

Bureau of Statistics 2011). The impact of bushfires to the Australian economy is 

estimated to average around $337 million per year and is predicted to increase by 2.2% 

annually (Deloitte Access Economics 2014). 

Current studies (IPCC 2014) predict the Earth will continue to warm under the 

‘business-as-usual’ scenarios for future greenhouse gas emissions. This global 

warming will likely cause widespread changes in the climate system and may affect 

climatic drivers, like ENSO, which will in-turn influence future climate variability. 

The degree to which these changes will impact on the future climate in Australia, and 

in particular the extreme dust storm events is uncertain (Timmermann et al. 1999; 

IPCC 2001; Trenberth et al. 2002; McTainsh et al. 2005; Gergis & Fowler 2009; Power 

2014).  

 

1.2 Landscape factors influencing dust  

Wind erosion is a land degradation process which occurs in arid and semi-arid areas 

of the world. Australia is the driest inhabited continent (Peel, Finlayson & McMahon 

2007) with 78% of its land area (Figure 1.3) classified as arid and semi-arid (Wilson 

& Graetz 1979). It is estimated that these arid to semi-arid areas receive, at the most, 

400 mm rainfall annually (McTainsh & Pitbaldo 1987). Wind erosion is a natural 

process in the Australian landscape but has been accelerated due to human activities 

in rangelands and marginal cultivated lands. The loss of valuable fertile topsoil through 

erosion is a major threat to the Australian soil assets (Leys et al. 2009). 
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Figure 1.3: Arid and semi-arid zones in Australia (Desert Knowledge CRC 2006). 

 

1.2.1 Soil properties 

Australian soils are among the most ancient and fragile in the world and are a finite, 

non-renewable resource. The removal of valuable top soil adversely impacts on rural 

communities, biodiversity, carbon stores, and our ability to produce food & fibre. 

Increasing pressure on agricultural land to produce more food for a growing 

population, will lead to continued and increasing pressure to grow crops on drier more 

marginal lands, that are more vulnerable to wind erosion (Leys et al. 2009). At the 

same time, areas affected by moderate or severe wind erosion are likely to expand due 

to increased climate variability and associated droughts (Australian Government Land 

and Coasts 2010). Under the ‘business-as-usual’ climate scenarios, the frequency of 

major dust storms, such as those experienced in eastern Australia in September 2009, 

are likely to increase (NSW Government Office of Environment and Heritage 2014). 

Wind erosion occurs when three environmental conditions coincide: i) the wind is 

strong enough to mobilise soil particles from the land surface; ii) the characteristics of 

the soil make it susceptible to wind erosion (soil texture, organic matter and moisture 

content); and iii) the surface is mostly devoid of vegetation cover, stones or snow cover 

(Bagnold 1941; Shao 2008; Borrelli et al. 2014). Recently burned areas would have 

minimal or no vegetation cover and therefore are more susceptible to wind erosion. 
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Sandy and loamy textured soils in low rainfall areas are most susceptible to wind 

erosion. Both biological and physical surface crusts (Strong 2007) are important in 

stabilising the soils surface in arid and semi-arid zones. The disturbance of these crusts 

drastically decreases soil surface resistance to wind erosion (Belnap & Gillette 1998). 

To maintain sediment control a crust cover of at least 20% is required (Eldridge 2003). 

Entrainment, transportation and deposition are three components of the wind erosion 

processes. The entrainment process represents an input into the aeolian (wind erosion) 

system, transport represents a throughput within the system and deposition an output 

from the system (McTainsh 1985). Kok et al. (2012) and Pye (1987) separated the 

transport of soil particles by wind into four physical regimes (Figure 1.4): long-term 

suspension (particles less than 20 μm diameter), short-term suspension (particles 

between 20 – 70 μm); saltation (particles between 70 – 500 μm), and surface creep 

(greater than 500 μm). Surface creep occurs when heavier larger particles (greater than 

500 μm) are rolled across the soil surface (Shao 2008). This causes them to collide 

with, and dislodge, other particles. These large particles move only a few metres. 

Saltation is the bouncing motion of sand size particles (70 – 500 μm) across the 

surface. Such particles are light enough to lift off the surface but are too heavy to 

become suspended, and can travel a few kilometres (Raupach & Lu 2004). Suspended 

particles (less than 70 μm) can be moved into the air by saltation and may travel 

thousands of kilometres depending on size and are eventually delivered back to the 

surface through dry and wet deposition (precipitation) processes. Through these 

processes, Australian soil has been transported as far as the Tasman Sea, Great 

Southern Ocean, New Zealand, New Caledonia and Antarctica (McGowan & Clark 

2008).  

Wind erosion is the consequence of: 1) the aerodynamic forces and impacts that tend 

to remove particles from the surface; and 2) forces, such as gravity and inter-particle 

cohesion that resist the removal of particles (Shao 2008). Aerodynamic forces can be 

quantified by the friction velocity, which is a measure of wind shear at the surface and 

depends on vegetation cover which modifies surface roughness. Gravity and inter-

particle cohesion forces can be quantified by the threshold friction velocity, which 

defines the minimum friction velocity required for wind erosion to occur. It is 

dependent on the particle size of the soil surface, atmospheric conditions and surface 
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conditions such as soil moisture, surface chemistry of the soil particle (Shao 2008), 

vegetation cover and soil type.  

 

Figure 1.4: The three main modes of aeolian transport: surface creep, saltation and suspension 

of fine material. Modified from Pye (1987) and Kok et al. (2012). 

 

Wind erosion rates vary spatially and temporally in relation to climatic and landscape 

factors. The impact of wind erosion can be measured, monitored and modelled but 

these approaches can be complicated by the physically complex nature of wind erosion 

processes, and the large spatial and temporal variability in erosion processes. Wind 

erosion can be measured over a set period of time but that approach is only suitable on 

a plot scale since it is not time or cost effective due to the large number of replications 

required to cope with field variability (Leys, McTainsh & Shao 1999). Monitoring 

wind erosion is a method used to quantify changes in erosion through time and can 

occur continuously on a plot, field or regional scale over days to years. With advances 

in modelling and computing power it is possible to calculate wind erosion at various 

scales and time intervals. Measuring, monitoring and modelling methods are discussed 

in more detail in Section 1.4.  

The economic costs of wind erosion are substantial. The impact of a single severe dust 

storm event on the 23rd September 2009 is estimated to have cost $299 million to the 

NSW economy alone (Tozer & Leys 2013). Research by Williams and Young (1999) 
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estimated that the annual off-site cost of wind erosion was approximately $23 million 

for South Australia. Six prime cost centres were identified by the Williams and Young 

(1999) study: individual households, power supply, road safety, road maintenance, 

cost of air travel, and human health. The impact of wind erosion is very costly to the 

economy, human health and environment. Research into the impact of climate 

variability on wind erosion is needed to better understand future potential costs 

associated with the different climate change scenarios. 

The interaction of dust aerosols with other components of the Earth System produces 

a wide range of both on-site and off-site impacts on the ecosystems, weather and 

climate, the hydrological cycle, agriculture, and human health (Kok et al. 2012).  

On-site impacts include (Rutherford et al. 2003; McTainsh & Strong 2007; Leys et al. 

2008; Shao 2008): 

 loss of nutrient rich topsoil which reduces soil fertility;  

 reduced soil water storage capacity;  

 decreased ability of soils to sustain vegetation and livestock;  

 decreased agricultural and pastoral productivity;  

 spread of herbicides and pesticides off–farm; 

 burying of farm infrastructure; and 

 undermining infrastructure.  

 

Off-site impacts are related to the transport & deposition of mineral dust and include 

(Webb 2008; Marx, McGowan & Kamber 2009; Zhao et al. 2011; Downs, Butler & 

Parisi 2016): 

 reduced air quality which can lead to increased respiratory health risk; 

 alters the radiation balance of the atmosphere through scattering and absorption 

of radiation with a potential to increase and decrease global air temperatures 

through radiative forcing;  

 acts as a source of iron (Fe) that may be a limiting nutrient for phytoplankton 

and influencing nitrogen chemistry of the ocean; and  

 acts as an effective vector for the transport of pathogens and pollutants. 
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1.2.2 Vegetation cover 

The arid and semi-arid areas of inland Australia are defined by the presence of desert 

vegetation and landforms, and receive less than 400 mm of rainfall annually. The 

climate is characterised by highly erratic rainfall, extremes of long dry periods and 

occasional flooding. The Köppen-Geiger Climate Classification System is the most 

widely used system for classifying the world's climates (Peel, Finlayson & McMahon 

2007). Its categories are based on the annual and monthly averages of temperature and 

precipitation.  

The Köppen-Geiger system recognises five major climatic zones; each type is 

designated by a capital letter. The Australian continent is distinguished by three major 

climate zones (A – Tropical, B – Arid/Semi-Arid, C – Temperate) as shown in Figure 

1.5 (Peel, Finlayson & McMahon 2007). The A climate zone (8.3% of Australia’s land 

area) is located in the northern part of the continent and subdivided into three tropical 

climate zones. The arid and semi-arid B zone (77.8% of the continent) is the dominant 

climate type by land area and is described as a zone where precipitation is less than 

potential evapotranspiration. The temperate C type climate (13.9% in Australia) is the 

second largest climate type by land area and is described as having warm and humid 

summers with mild winters.  The majority of Australia is categorised as arid and semi-

arid B zone and this has direct implications for the type of vegetation cover (species) 

possible, the density and extent in ‘good’ and ‘bad’ years. A more detailed list 

explaining the individual criterion for each group can be found in Peel, Finlayson and 

McMahon (2007) and Figure 1.5. 
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Figure 1.5: Köppen-Geiger climate type map of Australia. Modified from Peel, Finlayson and 

McMahon (2007). 

 

The Australian arid and semi-arid ecosystems can be divided into herbaceous and 

woody vegetation comprising grasses and trees (or shrubs) respectively (Macinnis-Ng 

& Eamus 2007). The mix of these vegetation growth forms depends on interactions 

between climatic variables (amount of rainfall, temperature), soil factors (texture, 

depth, fertility and run-off) and disturbance regimes (fire regime, grazing by livestock 

and browsing by native animals).  

Legend 
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The arid and semi-arid regions are dominated by species of acacia, casuarinaceae, 

chenopods and grasses. Acacia shrublands are widespread in southern areas where 

annual rainfall is less than 250 mm and occurs predominantly in winter. In northern 

regions, acacia communities predominate in areas receiving less than 350 mm 

annually. Within the central and western arid zone, particularly in the northwest and 

in the drier desert areas, acacia distribution is sparse and hummock grassland is the 

dominant vegetation cover (Johnson & Burrows 1994; Mott & Groves 1994). 

Chenopod shrubs, samphire shrubs and forblands occur extensively throughout 

southern Australia in both the semi-arid and arid zones where winter rainfall is reliable 

(Martin 2006).  

Australian perennial grasses have adapted to the harsh conditions and can be classified 

as either C3 or C4 plants. The terms relate to the number of carbons and the different 

pathways that plants use to capture carbon dioxide during photosynthesis. Figure 1.6 

illustrates the distribution of C4 grass relative to C3 grass and seasonality of rainfall 

(Lopes dos Aantos et al. 2013). C3 plants prefer cool seasonal regions in either wet or 

dry environments, are more tolerant to frost and are more dominant in the southern 

part of the continent, whereas C4 plants are more adapted to warm or hot seasonal 

conditions under moist or dry environments with a predominant distribution in the 

northern part of Australia. It is not uncommon to find both C3 and C4 species in one 

paddock. For example, C3 species are often more abundant in the shade of trees and 

on southerly aspects, while C4 species prefer full-sun conditions and northerly aspects 

(NSW Department of Primary Industries 2013). The ratio of C4 to C3 changes towards 

the higher latitudes as illustrated in Figure 1.6.  This coexistence of both C3 and C4 

species in one area has advantages in providing greater groundcover across a range of 

conditions and therefore a food source for both grazing and native animals. 
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Figure 1.6: Map of Australia illustrating the distribution of C4 grass relative to C3 grass and 

seasonality of precipitation. Modified from Hattersley (1983). 

 

1.2.3 Land management and usage  

Soil and land degradation has been a major environmental, social and economic 

concern in Australia for over a century. Soil erosion by wind and the rate at which it 

occurs is dependent upon a number of factors, including geology, climate, soil type, 

and density of vegetation cover (Thompson 2014) as discussed in Section 1.2.1 and 

Section 1.2.2. Human activities, such as the clearing and burning of vegetation, 

cultivation practices, stocking (both domestic and feral) and overgrazing can disrupt 

the soil surface, remove vegetation cover and increase its susceptibility to erosion. The 

overall influence of climate can be exacerbated or mitigated by primary production 

methods and practices. Land management practices can have a major impact on ground 

cover in areas where inappropriate pastoral and cropping practices are used. Farming 

practices and land management are keys for sustainable agriculture. Effective land 

management practices maintain adequate ground cover to protect the soil from the 

erosive forces of wind and water (Leys 2003).  

C4 Vegetation 
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Increasing pressures on dryland environments from land use change and climate 

variability may increase the vulnerability of these areas to wind erosion. Climate 

change projections suggest that wind erosion will increase in Australia over the next 

30 years due to increased droughts and increased climate variability (NSW 

Government Office of Environment and Heritage 2014). The hotter and drier 

conditions projected under these climate scenarios will impact on plant productivity 

and increase the risk of severe wind erosion events. Maintaining adequate vegetation 

cover is the most critical factor, not only in the protection of soils from wind erosion 

but also in maintaining pasture productivity and soil health. The relationship between 

percentage of ground cover and wind erosion is demonstrated in Figure 1.7. Threshold 

levels are indicated as green for low risk, orange for medium risk and red for high risk 

of soil erosion. The impact of wind erosion can be minimised by retaining a vegetation 

cover of more than 50% (Leys 2003). To further reduce the risk of erosion a minimum 

ground cover of 30% is required (Bowman & Scott 2009).  

 

 

Figure 1.7: Relationship between wind erosion and percentage ground cover. Threshold levels 

are indicated as green for low risk (> 50%), orange for medium risk (> 30%) and red for high 

risk of soil erosion (Barson & Leys 2009). 

 

1.3 Wind erosion in Australia 

Australia is the driest continent on Earth (excluding Antarctica) and the largest source 

of atmospheric dust in the Southern Hemisphere (Pye 1987; Prospero, Ginoux & 

Torres 2002; Tanaka & Chiba 2006). Dust storms, which are defined as visibility less 
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than 1000 m according to the World Meteorological Organization (1995), are a 

common feature of the arid and semi-arid areas of Australia. This research focuses on 

the 20th and 21st century. The 1940s, 1960s and 2000s were very ‘dusty’ periods in 

Australia (O'Loingsigh et al. 2015). During 1941, 1942 and 1944 visibility of less than 

1 km was recorded at Sydney Airport and less than 0.4 km on the 23rd September 2009 

(Leys et al. 2011b).  

In Australia large dust storms are often related to the passage of cold fronts across the 

continent. The strong pressure gradients creating wind strong enough to exceed the 

threshold friction velocity required to mobilise the sediments. The track of these fronts 

are seasonal with varying intensity. 

Australian dust is transported offshore via two main dust pathways to the southeast 

and northwest (Bowler 1976) as illustrated in Figure 1.8. Three main dust transporting 

wind systems feed into these dust pathways and are associated with the passage of 

weather systems from west to east across the continent – prefrontal northerlies, frontal 

westerlies and postfrontal south easterlies (Sprigg 1982; Strong et al. 2011). The first 

type of wind system involves hot northerlies which blow out of Central Australia 

before the passage of a cold front, the second type involves the westerlies associated 

with the passing of the cold front. Finally, postfrontal south easterlies result in dust 

transport along the northwest corridor. The occurrence and effects of frontal systems 

are most prominent in the southern part of Australia, with the prefrontal northerlies 

being responsible for significant dust entrainment within the Lower Lake Eyre and 

Murray-Darling Basins (McTainsh 1989). Research by McGowan and Clark (2008) 

which was based on air parcel trajectory, identified a number of possible dust pathways 

from Australia over to the Tasman Sea and Southern Ocean. The core of the southeast 

dust transport pathway (Figure 1.8) extends 10º further south than previously assumed 

by Hesse and McTainsh (2003). Dust and associated aerosols from Lake Eyre and 

eastern Australia have the potential to impact most of the Southern Pacific, affecting 

marine productivity over a vast region. Dust from Lake Eyre Basin can also be 

transported to Antarctic from March to November, and has been identified in ice cores 

(Revelrolland et al. 2006; De Deckker et al. 2010). The dust from Lake Eyre Basin is 

iron rich and when deposited into ocean environments off the Australian coast, has the 

potential to stimulate cyanobacterial blooms, which are strongly iron or phosphorus 
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limited nutrients in oceans off the Australian coast (Mills, Ridame & Davey 2004; 

Pulido-Villena, Rerolle & Guieu 2010; Cropp et al. 2013). 

The northwest dust path (Figure 1.8) may be subdivided into a northwest trajectories 

frequently passing over southern Philippines, Indonesia including the tropical 

rainforests of Borneo, New Guinea and the Indonesian archipelago, and the coral reefs 

of northern Australia including the Great Barrier Reef, and Broome, Western 

Australia, and north trajectories passing over the Gulf of Carpentaria (McGowan & 

Clark 2008). 

Wind erosion activity is linked to a seasonal pattern in Australia (McTainsh & 

Boughton 1993; McTainsh, Lynch & Tews 1998). The eastern part of Australia (east 

of  longitude 138º E) can be divided into two wind erosion regions, with north-eastern 

Australia (north of latitude 33º S) recording a high frequency of dust storms from 

September – December and in south-eastern Australia (south of latitude 33º S) from 

December – April. The seasonality has been linked to rainfall and the penetration of 

cold fronts deeply over the Australian continent (McTainsh, Lynch & Tews 1998; 

Reeder & Smith 1998) which influences the source area in terms of erodibility 

(vegetation cover, soil surface moisture, soil surface roughness and soil–inherent wind 

erodibility) and wind erosivity (rain, wind speed and surface runoff). 
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Figure 1.8: Location map showing Lake Eyre Basin, Channel Country and Mallee region and 

the general location of the Northwest and Southeast Dust Pathways (Bowler 1976; Fujioka & 

Chappell 2010). 

 

Large dust storms are a common phenomenon in Australia with diary records dating 

back to the 1900’s (Liversidge 1902; Chapman & Grayson 1903). Historical accounts 

of land degradation in Australia show that wind erosion was very active during the 

drought periods of the 1890s, 1901 – 1903, 1920s, 1930s, 1940s (McTainsh et al. 

2011), 1960s (Ekström, McTainsh & Chappell 2004), 1980s (McTainsh et al. 2007) 

and 2000s (McTainsh et al. 2011). The first spatial study of dust storm occurrence over 

Australia by Middleton (1984) indicated that the highest frequency of dust events have 

occurred in the centre of Australia (Alice Springs), where there was a mean of 10.8 

and a maximum of 65 events per year. Research by McTainsh and Pitbaldo (1987) 

supported these findings by demonstrating that the regions of maximum dust storm 

occurrence are in central Australia and in coastal Western Australia. Anecdotal reports 

describe dramatic images of huge dust storms engulfing rural towns but it has never 

been unequivocally established whether the 1940s “dusty years” were due to extreme 

drought and/or poor land management (McTainsh et al. 2011). In the 2000s, Australia 

was in a grip of the Millennium drought with extreme drought conditions and an 

increase in large dust storms and other wind erosion activity. Two extreme dust storms 
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impacted eastern Australian cities on 23rd October 2002 and 22nd – 23rd September 

2009. These events have raised questions as to whether this recent period of wind 

erosion is more or less active than the 1940s and 1960s. 

A study by Lamb et al. (2009) based on surface dust observations between the months 

of September – February during 1959 – 2006 has shown that a multidecadal oscillation 

of dust frequency occurred in central eastern Australia since the late 1950s. From 1959 

to 1973, there was a distinct and consistent dust maximum, followed by a sharp decline 

with a less active period from 1977 – 2006. The 1940s and 1960s were part of the dust 

maximum period whereas 2002 fell within the less active period. The 2009 events were 

outside the Lamb et al. (2009) study period. The transition between dust maximum 

and a much more dust-free period coincided with a La Niña period between 1973 – 

1976 with well above average rainfall for most of the Australian continent (Allan 

1983). A time series of surface and 925 hPa winds showed that the dust oscillation was 

linked to strengthening and then weakening of the southerly component of the low 

level surface and tropospheric wind over the dust-prone central eastern Australian 

region (Lamb et al. 2009). The results of this research indicate that the 1940s and 1960s 

were affected by severe droughts and therefore experienced more dust storm events 

than in the 2000s.    

Australian dust emissions via the two dust pathways (Figure 1.8) impacts in the 

Southern Hemisphere due to the potential for dust plumes to travel thousands of 

kilometres (Zhou et al. 2007). Dust from the centre of Australia may travel far beyond 

the continent, to the southeast over New Zealand (Raupach, McTainsh & Leys 1994; 

Knight, McTainsh & Simpson 1995) into the Southern Ocean (McGowan et al. 2000; 

Boyd et al. 2004), to the northwest over the Indian Ocean (McTainsh 1989) and 

accumulate in east Antarctica (Revelrolland et al. 2006; De Deckker et al. 2010). The 

possible future increase of extreme dust storm events in Australia as a result of 

anthropogenic activities and climate change, will impact upon the environment, 

including radiative forcing, and biogeochemical cycling and will have global 

implications (Goudie 2009).  

An example of an extreme dust event experienced in Australia during a dry El Niño 

phase occurred on 22nd and 23rd September 2009 and is colloquially known as the “Red 

Dawn” dust storm. The “Red Dawn” event was the largest to pass over the east coast 
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of Australia since the 1940s (Leys et al. 2011b; Cork et al. 2012; Reynolds et al. 2014). 

This extreme event was the result of extended drought conditions in north-western 

New South Wales, north-eastern South Australia and western Queensland. The dust 

storm was associated with a deep low pressure system of 980 – 990 hPa and a cold 

front that produced average 24 h wind speed of 11 m s-1 in the Sydney region on 23rd 

September 2009 (Aryal et al. 2012). The visibility was reduced to 0.4 km in Sydney 

during this event. O'Loingsigh et al. (2015) estimated that 2.54 Mt of topsoil was 

transported and lost off the eastern coast of Australia during the event.  

Although most dust storms are not as extreme as the ‘Red Dawn’ event, they are 

common in the arid and semi-arid inland of Australia and a natural part of the 

Australian landscape. They can have far reaching ecological, economical, and social 

consequences. With a projected mean temperature increase of 1.0 – 5.0 °C by 2070 

(CSIRO 2011), understanding historical wind erosion periods provides a foundation 

for developing appropriate and effective land management and erosion control 

strategies.  

 

1.4 Dust modelling, satellite remote sensing analyses and wind 

erosion research 

Understanding spatial and temporal patterns in land susceptibility to wind erosion is a 

vital component to developing methods for managing land degradation. As mentioned 

in Section 1.2.1, a mixture of measuring, monitoring and modelling tools have been 

developed and employed to assess the spatial and temporal patterns of wind erosion 

and climate in Australia. To gain an understanding of wind erosion processes, portable 

wind tunnels have been used to measure and assess soil erodibility on a plot scale (Leys 

& Raupach 1991; Leys, McTainsh & Shao 1999; Van Pelt et al. 2010). In contrast, 

wind erosion monitoring methods are used to quantify changes in erosion through time 

and have been undertaken at a field scale to regional scales. Field scale monitoring 

relies on instrumentation such as deposition traps, high volume air samplers (HVS) 

and DustTrak® instruments (Shao et al. 1993; Leys, McTainsh & Shao 1999; Leys et 

al. 2008) which make it possible to monitor the transport and deposition of eroded 

sediments. DustWatch was established to supplement the Australian Bureau of 

Meteorology (ABoM) network by strategically adding a community network of 
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observers and instruments. The instrument sites, called DustWatch Nodes (DWN), 

utilise HVS to collect total suspended sediment (TSS) and/or DustTrak® sensors to 

collect PM10 data (Leys et al. 2008). These methods provide a picture of the extent 

and severity of individual dust storm/wind erosion events through surrogate measures. 

Maps describing the location and extent of areas prone to wind erosion have been 

developed based on field scale surveys of particular regional study areas (Mezösi & 

Szatmári 1998). However, these maps provide only snapshots of the landscape 

condition relevant to the climatic conditions at the time when the survey was 

undertaken. Regional scale long term monitoring tends to focus on the transport phase 

of wind erosion. This method provides information of the dust concentration in the air 

and based on the use of meteorological records of dust events from a large number of 

stations over a wider area and can be used to monitor the intensity of wind erosion, 

over a particular time period. The low spatial resolution of meteorological stations 

particularly in the arid and semi-arid region of Australia (Figure 1.9 & Figure 1.10), 

where wind erosion is the most active, is a weakness of this approach (Leys, McTainsh 

& Shao 1999).  

The earliest meteorological recordings in Australia date back to 1789 (Gergis, Karoly 

& Allan 2009; Gergis, Brohan & Allan 2010; O'Loingsigh et al. 2015) but the temporal 

record has been interrupted by changes to the meteorological recording protocol in 

1959 and 1974. The recording methods, weather code ranking and number of 

observations per day changed through time. The reclassification of dust-related 

weather codes after 1960 introduced an inconsistency in the classification of these 

codes before this year (Ekström, McTainsh & Chappell 2004; O’Loingsigh et al. 

2010). Since 1996, the number of Automated Weather Stations (AWS) has increased 

substantially, and in some areas manned weather stations where staff and volunteers 

collected weather data have been replaced by AWS’s. The increased use of AWS’s 

has both advantages and disadvantages for research into wind erosion at a regional 

scale. The advantages include: 1) increased number of daily measurements, 2) more 

consistent measurements which provide data at a significantly greater frequency in all 

weather conditions and 3) the AWS’s can be installed in sparsely populated areas. 

Some of the disadvantages of using AWS’s include: 1) a reduced number of data 

variables the system can record and 2) a change in methodology from manual 

observations to instrument measurements will introduce different types of errors. 
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AWS’s do not record dust and can only record visibility if fitted with instruments 

designed for that purpose (O’Loingsigh et al. 2010). Hence, dust haze and smoke are 

not recorded. This has added to the subsequent discontinuity in the dust record. In 

summary, measurement and monitoring approaches provide site data for specific 

points across the landscape under observation but it is not possible to get the full 

picture of the magnitude of wind erosion on a spatial and temporal scale (Leys, 

McTainsh & Shao 1999) from these methods alone.  

 

 

Figure 1.9: Meteorological stations locations recording rainfall in Australia. Note the increase 

of density in the south east corner of the continent (Bureau of Meteorology 2015). 
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Figure 1.10: Meteorological stations locations recording temperature in Australia. Note the 

low spatial distribution of stations particularly in the arid and semi-arid region (Bureau of 

Meteorology 2015). 

 

Empirical models relate management and environmental factors directly to soil loss 

and/or sediment yields through statistical relationships. The Wind Erosion Prediction 

System (WEPS) is an integrated semi-empirical model describing the influences 

between environmental and climatic factors on wind erosion (Hagen 1991). WEPS is 

an empirical process-based, daily time-step model that predicts soil erosion by 

simulating weather, field conditions and wind erosion on crop land (Wagner 1996). 

WEPS consists of a number of sub-models and databases which require detailed 

information on soils, hydrology, management, crop type, decomposition rates, erosion 

rates and weather. Obtaining this extensive amount of data and validating the empirical 

relevance for the Australian continent is relatively costly and not always available. 

Burgess, McTainsh and Pitblado (1989) based the development of the climate index 

of effective soil moisture (Em Index) of potential wind erosion in Australia on the 

empirical relationship between soil moisture and wind erosion (Chepil 1965). This 

empirical model describes the spatial extent and severity of wind erosion in Australia. 

The Em Index is calibrated against meteorological data on dust storm frequencies and 

it is used to identify regions where wind erosion rates are increased by local 

environmental factors and/or human activities. In a modified version of the model, 
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wind run was also included in order to describe how wind speed and soil moisture 

interact during different seasons (McTainsh, Lynch & Tews 1998). This technique 

concentrates on the transport phase of the wind erosion process but lacks the ability to 

identify source areas.  

The Dust Storm Index (DSI) utilises meteorological observations of dust phenomena 

to calculate the frequency and intensity of dust events at a range of spatial scales from 

regional to national and at temporal scales from three-hourly to annually covering 48 

years (Yang & Leys 2014). This empirical climatic modelling approach has the 

advantage that access to nationwide long term meteorological data is readily available 

and a distinction between natural and accelerated wind erosion is possible (Leys, 

McTainsh & Shao 1999). On the other hand, disadvantages include low spatial 

resolution of rainfall and temperature meteorological stations in different areas (Figure 

1.9 & Figure 1.10) and the change in measurement criteria used to record visibility has 

meant that results are not directly comparable across years.    

Satellite remote sensing of soils has been demonstrated to have considerable potential 

for the assessment of soil erodibility and soil erosion (Ben-Dor, Irons & Epema 1999). 

Remote sensing can be used to estimate the percentage of ground cover and to measure 

the percentage of eroded ground surface based on changes in the reflectance of the 

mapped surface before and after a wind erosion event. The ground cover information 

can be used to estimate the impact of past events and approximate the potential wind 

erosion risk in the future. Remote sensing can be valuable in approximating dust 

plumes based on the temperature difference between the dust and the ground and to 

estimate an aerosol index of the column of dust in the atmosphere (Yang & Leys 2014). 

Sensors on board satellites detect the radiances of various surfaces of the Earth through 

different spectral channels. Channels are set in correspondence to the atmospheric 

radiation windows and water vapour absorption bands (Shao 2008). Various satellite-

sensed signals are combined to identify and monitor dust storms in real time, to derive 

land-surface and atmospheric parameters for dust modelling, to retrieve dust 

quantities, (such as dust load, optical thickness and particle size), and to derive long-

term dust climatology. The global annual dust emission rate is estimated to be 

~1877 Tg yr-1, of which Australia contributes ~5.6% (Tanaka & Chiba 2006). 

Australian desert dust is rich in iron oxide, hence the reddish colour (Figure 1.11) 

which is characteristic for hematite (Bullard, McTainsh & Pudmenzky 2004, 2007; 
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Radhi et al. 2010), in contrast to the Sahara which is more yellow. Hematite is an iron 

oxide dominant in the clay fraction (Journet, Balkanski & Harrison 2014) and has the 

potential to travel thousands of kilometres in a dust storm. Dust particles rich in iron 

oxide show a prominent depression in single scattering albedo in the blue spectral 

range due to absorption of hematite (Qin & Mitchell 2009). The hematite absorption 

capability is the reason the volume of dust in an Australian dust plume is very often 

underestimated in remote measurements.    

 

 

Figure 1.11: Global distribution of the effective mineral content in soil in percentages for (a) 

quartz, (b) illite, (c) kaolinite, (d) smectite, (e) feldspar, (f) calcite, (g) hematite, (h) gypsum 

and (i) phosphorus. (Nickovic et al. 2012). 

 

The CEMSYS (Computational Environmental Management System) prediction 

system is a physical based model incorporating integrated climate, wind erosion and 

geographical information systems (based on remote sensing data) to predict the 

location and intensity of wind erosion at large spatial and temporal scales. This model 

is applied to analyse the spatial extent and severity of wind erosion from 2000 – 2012 

across Australia (Leys et al. 2011a). This model is applied to Australian conditions 

regularly. To gain a quantitative estimate of wind erosion, input variables like 

atmospheric conditions (rainfall, temperature and wind speed), soil conditions (soil 

moisture and texture) and vegetation cover are incorporated into the model. The 

integrated modelling system (Figure 1.12) couples an atmospheric prediction model, a 
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wind erosion model, a dust transport model, a dust deposition model together with a 

Geographical Information System (GIS) (Shao, Raupach & Leys 1996; Shao & Leslie 

1997). The system has the capability to model wind erosion on a continental and 

regional scale at a very high spatial and temporal resolution. It can also estimate dust 

emission, dust transport and dust deposition rates. One of the limitations of this 

approach is that vegetation cover information is one of the variables required in the 

model which is estimated from the satellite remote sensing data. However, for periods 

where no satellite data are available there is currently no simple, broadly applicable 

method or index to realistically estimate vegetation cover levels. This includes any 

time prior to the early-1990s (prior to satellite remote sensing) and any future 

forecasting. Without remote sensed vegetation cover estimates (Malthus et al. 2013), 

integrated wind erosion modelling systems (Shao et al. 2007) currently cannot 

confidently be used to estimate wind erosion rates. 

 

 

Figure 1.12: The structure of the integrated wind erosion modelling system CEMSYS (Butler 

et al. 2007). Soil texture, soil type, vegetation cover and roughness are part of the GIS Data. 

 

The Australian Grassland and Rangeland Assessment by Spatial Simulation 

(AussieGRASS) is a vegetation modelling tool used to monitor key biophysical 

processes associated with pasture degradation and recovery, and in the assessment of 

drought conditions and is reliant on remotely sensed satellite data. It was developed in 
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1996 and provides a three month grass production forecast across Australia down to a 

5 km grid scale (Carter et al. 2000). The AussieGRASS spatial framework includes 

inputs of key climate variables from the Bureau of Meteorology’s SILO database 

(rainfall, evaporation, temperature, vapour pressure and solar radiation), soil and 

pasture types, remote sensed tree and shrub cover density, domestic livestock and other 

herbivore numbers. Since historical land usage and vegetation cover information is 

difficult to obtain on a broader scale prior to remotely sensed satellite data, the use of 

AussieGRASS is restricted to the period post 1996 and excludes the possibility to 

provide any future projection outside a three month window. 

A range of Aridity Indices have been used as a classification tool to determine the 

climatic conditions of a region (Baltas 2007; Paltineanu et al. 2007). The De Martonne 

Aridity Index is based on mean monthly rainfall and mean temperature data from 

meteorological stations and classifies regions from arid to very humid. The De 

Martonne Aridity Index expresses the ratio of rainfall to temperature and uses 

temperature as a proxy for potential evaporation rate (Maliva & Missimer 2012). This 

classification approach works well in Mediterranean climates where rainfall data is 

consistently available for every month. Australia, on the other hand, with 78% land 

area classified as arid and semi-arid rangelands (Peel, Finlayson & McMahon 2007), 

often experiences extreme dry conditions with no rainfall for a few months for a large 

number of stations. The Aridity Index would be zero for months with no rainfall. 

Hence, it does not convey any history of the length in has been dry. Therefore the use 

of this aridity index without modification is not informative. However, the simplicity 

and reliance on only rainfall and temperature data of the De Martonne Aridity Index 

provided a template for the development of an index appropriate to Australian 

conditions.  

In Australia there has been an increased interest in understanding if periods of wind 

erosion have been more or less active over the past few decades and if changes in land 

management have played a role (Leys et al. 2009). Of particular interest is comparing 

the 1940s drought period with that of 2000 – 2009 (McTainsh et al. 2011). Using one 

or more of the methods described above, historical dust events could be modelled with 

readily available meteorological data. However, most methods are constrained by the 

limited availability of vegetation cover data which restricts modelling to periods where 

remotely sensed satellite information is available.  
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1.5  Potential impacts of climate change 

Climate change and associated climate variability is one of the greatest ecological, 

economic, and social challenges facing civilisation today. Evidence suggests that most 

of the observed global warming since the mid-20th century is due to increases in 

human activities such as the burning of fossil fuels, agriculture and land clearing 

(Bureau of Meteorology & CSIRO 2012). Human activities have influenced ocean 

warming, sea-level rise, rainfall variability and temperature extremes. The extra heat 

in the climate system affects atmospheric and ocean circulation, which influence 

global rainfall and wind patterns. In Australia, daily mean temperature has increased 

by around 0.9 ºC since 1910, and each decade has been warmer than the previous one 

since the 1950s (CSIRO 2011). Australian mean temperatures are projected to rise by 

1.0 – 5.0 °C by 2070 when compared with the climate of recent decades (Bureau of 

Meteorology & CSIRO 2012).  

The Australian continent faces significant environmental and economic impacts from 

climate change and associated variability across a number of sectors, including water 

security, agriculture, coastal communities, infrastructure, increased urban pollution, 

threat to public health (Chan et al. 2005) and an increase in the spread of poverty and 

hunger (Edwards, Gray & Hunter 2008; Smith & Leys 2009). In 2015 Australia was 

under the influence of a very strong El Niño and by December 2015, 86% of 

Queensland was drought declared (Queensland Government Department of 

Agriculture and Fisheries 2015). Projections into the future for Australia indicate that 

heatwaves, fires, floods, and southern Australian droughts are all expected to become 

more frequent and more intense in the coming decades (Bureau of Meteorology & 

CSIRO 2012).  

Recent studies by Nicholls (2006, 2009), and Cai et al. (2010) have shown a decline 

in rainfall over austral autumn (March – May) and winter rainfall (June – August) over 

portions of southern Australia for the past several decades, particularly in southwestern 

Australia. The decline is, in part, attributed to anthropogenic changes in levels of 

greenhouse gases and ozone in the atmosphere (Delworth & Zeng 2014). The 

Millennium Drought, which affected southern Australia in 2001 – 2010, has been 

described as the most severe drought since instrumental records began in the 1900s 

(van Dijk et al. 2013; Cai et al. 2014).  The long lasting drought conditions, which 
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included two severe El Niño events, explained about two thirds of the rainfall deficit 

in eastern Australia. The Coupled Model Intercomparison Project Phase 5 (CMIP5) 

model results by Cai et al. (2014) confirm that the drought over southern Australia is 

at least in part attributable to a recent anthropogenic-induced change in the climate.  

As previously discussed in Section 1.2.1, the impact of climate on wind erosion can 

have numerous effects at regional to global scales (Miller & Tegen 1998; Raupach & 

Lu 2004). Increased temperatures and a decrease in rainfall will influence the soil 

moisture and therefore reduce the amount of vegetation cover to protect the soil surface 

(Figure 1.1). Under these climatic conditions the probability of wind erosion events 

and subsequent dust storm are increased. Dust emission caused by wind erosion can 

have far reaching effects by interacting with physical, chemical and bio-geochemical 

processes between the atmosphere, land and ocean (Harrison et al. 2001; Shao et al. 

2011). On a global scale, each year approximately 2 000 Mt of dust is emitted into the 

atmosphere, of which 1 500 Mt is deposited on land and the remaining 500 Mt in the 

ocean (Shao et al. 2011). Mineral dust particles significantly impact on the climate 

system by changing the global energy balance in areas where dust is entrained in the 

atmosphere (Sokolik & Toon 1999; Wurzler, Reisin & Levin 2000; Rotstayn et al. 

2009). They influence the climate system directly by scattering and absorbing 

shortwave and longwave radiation, semi-directly by changing the atmospheric cloud 

cover through evaporation of cloud droplets, and indirectly by acting as cloud and ice 

condensation nuclei, which changes the optical properties of clouds. The increased 

dust particles in the atmosphere can suppress rainfall by increasing the number of 

cloud condensation nuclei in warm clouds (Hui et al. 2008) and may decrease or 

increase precipitation formation (Choobari, Zawar-Reza & Sturman 2014).  

A reduction of surface wind speed due to radiative cooling may also reduce soil erosion 

(Zhao et al. 2011). Radiative forcing by mineral dust is associated with changes in the 

atmospheric dynamics that may alter the vertical profile of temperature and wind 

speed, through which a feedback loop on dust emission can be established. Changes 

in the radiative energy budget of the Earth induced by dust aerosols could also affect 

the glacial–interglacial climate evolution (Bauer & Ganopolski 2014). The radiative 

forcing impact of mineral dust in the atmosphere is an area of high uncertainty as 

illustrated in Figure 1.13 due to the incomplete understanding concerning the diverse 

nature, the transport and removal processes, and the chemical and physical properties 
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of the particles. Mineral aerosols can have a warming and/or cooling effect on the 

atmosphere.  

 

 

Figure 1.13: Radiative forcing estimates in 2011 relative to 1750 and aggregated uncertainties 

for the main drivers of climate change. Positive (or negative) radiative forcing indicates a 

warming (or cooling) effect on climate. The impact of mineral dust in the atmosphere is an 

area of high uncertainty. Mineral dust can have a cooling and/or warming effect as highlighted 

here (red circles). Modified from IPCC (2013). 

 

1.6  Research objectives 

Given the susceptibility of the Australian landscape to wind erosion and dust storm 

events and the potential for increased frequency and intensity of such events due to 

climate change, the relationships between climate factors and vegetation cover are of 

major interest. Broad-scale estimation of spatial changes in vegetation cover is of value 

in many areas of research and land-use management. For periods before the early 

1990s  (prior to satellite remote sensing) and for any future forecasting, there is 

currently no simple, broadly applicable modelling method or index to realistically 

estimate vegetation cover levels. 

The research presented here, based on historical archived information, firstly aims to 

investigate the historic relationship between climatic conditions and recorded dust 
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events from diaries and other historic information across Australia. Next, the 

relationship between climate variables and vegetation cover is thoroughly explored, in 

particular the potential for using long-term climate information to predict broad scale 

vegetation cover. Without estimates of vegetation cover, integrated wind erosion 

modelling systems, such as Shao et al. (2007), cannot confidently be used to estimate 

historical or future wind erosion rates and dust source areas. This information would 

significantly aid in the decision making processes in regards to land management 

practices under future climate conditions. 

The key objectives of this research are: 

1. To establish a Historical Dust Event Database (HDED) from a wide number of 

sources including personal experiences, diaries, book excerpts, newspaper 

articles, journal articles, and other reports. (Chapter 2) 

2. To compare the HDED to the climatic history of ENSO, rainfall and 

temperature to the historical dust event data, to establish if HDED dust records 

match climate records. (Chapter 3) 

3. To develop a simple, broad scale, Climate Aridity Vegetation Index (CAVI) for 

the arid to semi-arid regions in Australia based solely on rainfall and 

temperature data. Then, investigate if reliable spatial and temporal vegetation 

cover maps can be produced based on the CAVI without modelling individual 

vegetation type responses, seasonality and land-use. (Chapter 4). 

4. To investigate and validate if the CAVI can be used as a surrogate for vegetation 

cover for integrated wind erosion modelling where no satellite remote sensing 

data are available. (Chapter 5). 

5. The results of the research are drawn together in Chapter 6, which discusses 

the usefulness of the CAVI and suggests possible improvements to the 

effectiveness of the index to allow for the modelling and mapping of vegetation 

cover for periods where rainfall and temperature data are available but satellite 

data and fine scale remote sensing data are not.  



31 

 

 Sources of climate and dust storms data and 

their history 

This chapter describes the individual quantitative and qualitative data sources used to 

address four research objectives as outlined in Section 1.6. To address the second 

research objective, quantitative gridded rainfall and temperature data was accessed 

through the Australian Bureau of Meteorology (ABoM), and is discussed in Section 

2.1. Satellite remote sensing vegetation cover data, obtained from the Department of 

Agriculture, Fisheries and Forestry (DAFF) and the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO), has been accessed to address the third 

research objective and will be discussed in Section 2.2. To address the fourth research 

objective, quantitative gridded atmospheric data for the wind erosion modelling were 

accessed through the National Centre for Environmental Prediction and the National 

Center for Atmospheric Research (NCEP/NCAR) and the 20th Century Reanalysis 

website, and are discussed in Section 2.3. In order to address the first research 

objective, a comprehensive, qualitative, anecdotal dust event database was assembled 

from diaries, newspapers and other sources and will be discussed further in Section 

2.4. Section 2.5 provides a qualitative overview of the history of dust events in 

Australia from 1852 – 2010 based on the collection of records from various sources to 

supplement the information to address the first research question. 

The timeline in Figure 2.1 illustrates the temporal availability of the individual data 

sets. The earliest observation uncovered in the literature for this study was found in 

the diaries by Mrs Charles Clacey (1853) and dates back to December 1852. 20th 

Century Reanalysis (20CR) atmospheric data goes back to 1851 at the present time but 

as earlier weather observations are added to the 20CR database, it is hoped that reliable 

atmospheric reanalysis data will go back even further in time. Rainfall and temperature 

grid data became available in 1900 and 1910 respectively but some individual stations 

started recording data earlier but information is not continuous. Reliable satellite 

remotely sensed vegetation cover information for Australia has only became available 

from April 1992 onwards (AusCover 2012). The number of documented dust events 

varies considerable through time whereas atmospheric, rainfall, temperature and 

vegetation cover information has been fairly consistent throughout their respective 

availability time periods. 
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Dust Storm Observations 1852                                                                                    2016 

20CR & NCEP Reanalysis 

Atmospheric Data - gridded 
 1851                                                                                    2016 

Rainfall - gridded      1900                                                                     2016 

Temperature - gridded      1910                                                               2016 

Satellite remote sensing - vegetation       1992                                     2016 

 

Figure 2.1: Timeline showing the data record availability of dust event observations, 

atmospheric data, rainfall, temperature and satellite remotely sensed vegetation cover data. 

 

2.1 Measured climatic data from the Australian Bureau of 

Meteorology 

Climate has been the longest documented and measured natural phenomenon in 

Australia, recorded at different places and observed by many people. The earliest 

written historical weather records date back to 1788 during the European settlement in 

Australia (Gergis, Karoly & Allan 2009).  

For this research gridded ‘daily rainfall’ (1900 – 2014) and ‘maximum daily 

temperature’ data (1910 – 2014) were sourced from the Australian Bureau of 

Meteorology (ABoM - Figure 2.1). Daily rainfall is measured in millimetres (mm) and 

recorded at individual stations throughout Australia at 9.00am local time and is the 

record of total rainfall for the preceding 24 hours. Daily temperature is measured in 

degree Celsius (ºC) in a shaded enclosure at a height of approximately 1.2 m above the 

ground. Maximum daily temperature for the previous 24 hours are recorded at 9.00am 

local time. Both rainfall and maximum temperature are measured at individual weather 

stations and regridded by the ABoM at a 0.025°/2.5 km grid resolution to cover the 

Australian continent. Once sourced from the ABoM the gridded rainfall and 

temperature data were further regridded for this research to a spatial resolution of 5 km 

to match the spatial resolution of other data used for this study. All data had a spatial 

coverage of 110.00 to 155.00o E and -10.00 to -45.00o N. The regridding of the rainfall 

and temperature data were carried out by Dr Harry Butler from the University of 

Southern Queensland based on Shao (2008). The quantitative rainfall and temperature 

data are further discussed in Chapter 3. 
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2.2 Satellite remote sensing data  

Remotely sensed satellite vegetation cover data for Australia became available from 

1992 onwards as illustrated in Figure 2.1. For this study, monthly remote sensed 

fractional ground cover data (Guerschman et al. 2009) for both the photosynthetically 

active (green) fraction (fPV) and the bare soil fraction (fBS) at a 500 m resolution from 

February 2000 (110.00 to 155.00o E and -10.00 to -45.00o N) were sourced from the 

Department of Agriculture, Fisheries and Forestry (DAFF) and the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO). The data were then post 

processed (re-sampled) and re-gridded to a monthly 5 km grid using the nearest-

neighbour method to match the rainfall and temperature grid structure of the ABoM 

data set. The post processing algorithm was written by Dr Harry Butler, University of 

Southern Queensland before the data was re-gridded to a 5 km grid. This procedure 

was similar to that used by Shao (2008) to combine different spatial resolution GIS 

data sets for use in the Computational Environmental Management System 

(CEMSYS) model. 

 

2.3 Atmospheric data used for wind erosion modelling 

Quantitative gridded atmospheric data is required for historical wind erosion 

modelling and presented in Chapter 5. This data was accessed from the National Centre 

for Environmental Prediction and the National Center for Atmospheric Research 

(NCEP/NCAR) and the 20th Century Reanalysis. Air temperature, surface pressure, 

geopotential height, relative humidity, surface height, u-wind, v-wind and sea surface 

temperature are required to calculate atmospheric properties such as wind fields, 

rainfall, radiation and clouds for wind erosion modelling. The NCEP/NCAR 

Reanalysis data has a global grid size of 2.5 x 2.5 degree and is currently available 

from January 1948 and is constantly updated. For wind erosion modelling periods prior 

to 1948, atmospheric data can be accessed from the 20th Century Reanalysis (20CR) 

project website (http://www.esrl.noaa.gov/psd/data/20thC_Rean/). The data has a 

resolution of 2.0 degree global grid size.  

The 20CR project has produced a reanalysis dataset spanning from 1851 – 2012 (and 

is periodically being updated), assimilating only surface observations of synoptic 

http://www.esrl.noaa.gov/psd/data/20thC_Rean/
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pressure, monthly sea surface temperature and sea ice distribution. The observations 

have been assembled through international cooperation and collaboration with the 

Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative from the 

UK Met Office, in which 20CR is a key component. Newly recovered worldwide 

historical weather observations are continuously added to the ACRE database, fed into 

the International Surface Pressure Databank (ISPD) and the International 

Comprehensive Ocean-Atmosphere Data Set (ICOADS), and then assimilated into 

20CR data set.  

Part of this project was also to collect any historical weather data which can be added 

to the ACRE database. Through the ABC Science Citizen Science Award the ‘Weather 

Detective’ project (Allan et al. 2016) was launched and over 8,000 photographed 

images of extracts from historical weather observations recorded in ship logbooks are 

being transcribed by ‘citizen scientists’. These logbooks were collected by Clement 

Wragge, the former Government Meteorologist of Queensland and cover the period 

from 1882 – 1903. Thus, thousands of new weather measurements are being added to 

the ACRE database and processed by the 20CR initiative. The inclusion of additional 

historical weather data increases the capability of climate models to make better 

projections and extending the research applications of 20CR data, to areas like wind 

erosion modelling, possible.  

 

2.4 Observation and records of dust events database 

There are many references in historical records and research literature of dramatic dust 

storm events in Australia. Diary and journal entries from pioneering times, paintings, 

slides, poetry, book excerpts, newspaper clippings, journal articles, reports from the 

Australian Bureau of Meteorology and weather stations, DustWatch and the NSW 

Government of Environment and Heritage, satellite images, online news reports and 

information on multimedia websites are some of the resources available (Table 2.1). 

Records from the 1800’s and the start of 1900’s, when settlers had to brave devastating 

floods, droughts, dust storms, diseases and hardship with limited support, present a 

dramatic picture of early life in Australia. Anecdotal diary entries are often very 

descriptive and paint a vivid image of the conditions. For example, a diary entry by 

O’Shaughnessy (1903) mentioned the loss of the roof of his house during a big dust 
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storm on the 7th October 1898. Three months later he lost the roof again after another 

dust storm. 

A large number of occurrences of dust storms in the 19th and 20th century have been 

reported in newspapers which have been digitised and can be accessed on websites 

such as Trove Digitised Newspapers (http://trove.nla.gov.au/newspaper). Information 

on more recent dust events (2000s onwards) are often not archived in the form of 

newspaper articles, diaries or other material, but have instead been recorded on 

websites. However, websites are often only active for a certain period of time and 

therefore records of these more recent events can be more difficult to obtain. For 

example the ABoM provides live weather observations which are constantly updated, 

but only available free of charge for a short period of time. Getting access to long term 

data can be time consuming and very expensive. 

For this project, an extensive dust storm event list has been collated from 347 different 

sources covering the years from 1852 – 2010 (Table 2.1). The quality of the data is 

further discussed in Chapter 3.  

 

Table 2.1: Historical dust event data sources and number of records used in this study based 

on the time from 1852 – 2010. 

Source of dust event data Number of records 

Books    9 

Diaries 106 

Newspaper articles 122 

Journals, Articles   18 

Picture     1 

Bureau of Meteorology   19 

NASA Satellites     11 

NSW Government of Environment & Heritage - DustWatch   57 

News online    2 

Multimedia Websites    2 

Total                                     347 

 

2.5 Decadal description of dust event records 

The Historical Dust Event Database (HDED) has been compiled from diaries, 

newspapers and other sources starting from 1852. The database does not include any 

observations based on the weather code ranking system used by the ABoM and is 

http://trove.nla.gov.au/newspaper
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purely based on recorded observations by the ‘general public’. McTainsh et al. (2007) 

developed a Dust Storm Index (DSI) which draws upon meteorological observational 

wind erosion data from the ABoM with records dating back to the 1960s. The use of 

the DSI has revealed weaknesses in the data as a result of changes to the ABoM 

definitions of dust event codes and inconsistent observer adherence to the codes 

(O'Loingsigh et al. 2015). The results of this study will be compared to the results 

based on McTainsh’s DSI to verify if similar trends in dust storm activity to that found 

by McTainsh and Tews (2007) can be extracted purely from qualitative historical data 

sources.  

Colonial reports, personal diaries and newspaper articles provide rich accounts about 

past drought, floods and other significant weather events since the first European 

settlement at Sydney Cove, New South Wales in 1788 (Nicholls 1988). One of the 

earliest dust storm reports by Europeans in Australia is by Charles Darwin in the ‘The 

Voyage of the Beagle’ where he describes travelling from Sydney to Bathurst through 

the Blue Mountains, and being enveloped in a dust storm on his way to Bathurst on 

the 20th January 1836 (Darwin 1839):  

“We experienced this day the sirocco-like wind of Australia, which comes from the 

parched deserts of the interior. Clouds of dust were travelling in every direction; 

and the wind felt as if it had passed over a fire.”  

The earliest observation uncovered in the literature for this research was found in the 

diaries of Mrs Charles Clacey (1853) dating back to December 1852 and describing 

life in the gullies around Bendigo. Since then, 585 dust storm events have been found 

in unofficial records over 331 days to the end of 2010. The definition of a ‘dust storm 

event’ as recorded in the diaries and other documents is dependent on what the 

observer deems to be an event, and hence are likely to under estimate the actual number 

(i.e. haze, dust devil etc.). 

Figure 2.2 illustrates the number of observations which have been retrieved from 

various sources from 1852 – 2010 with the number of days when observations have 

been recorded in brackets for the individual decade. It is acknowledged that the list is 

incomplete since the arid and semi-arid area of Australia is and has always been 

sparsely populated, with the highest density of people living along the east coast and 
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in the Perth region of Western Australia. Therefore, it is highly likely that a large 

number of events may have past unnoticed and/or unrecorded.  

 

 

Figure 2.2: 585 dust storm events were documented by the public on 331 days (shown in 

brackets) over 16 decades. 

 

During 1852 – 1899, 100 dust storm events were documented in diaries, newspapers, 

books and journals (Figure 2.2). On occasions more than one event was recorded by 

the public on the same day in a number of locations. This either relates to a large event 

travelling over a vast distance or there were a number of localised events reported on 

the same day. In the following paragraphs a small selection of anecdotal recorded 

events are discussed in more detail.  

The diary by Mrs Charles Clacey (1853) describes the harsh working conditions in the 

goldfields near Bendigo in the summer of 1852/53. Not only had the gold diggers 

survived the night with “murder here—murder there—revolvers cracking—

blunderbusses bombing—rifles going off” but also mother nature “working hard under 

a burning sun, tortured by the mosquito and the little stinging March flies, or feel his 

eyes smart and his throat grow dry and parched, as the hot winds, laden with dust, pass 

over”.  
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Between 1864 – 1866, Victoria (VIC), South Australia (SA), New South Wales 

(NSW), Queensland (QLD) and Western Australia (WA) experienced a severe drought 

(Australian Bureau of Statistics 1988). During the 1866/67 spring/summer season, the 

Adelaide region was affected by numerous dust events which have been mentioned in 

Mary Jacob’s diaries on the 25th May 1866, 6th September 1866, 5th, 16th, 25th & 26th 

December 1866 and 2nd & 26th January 1867 (Durdin 2010). The severity of these early 

dust storm events is unknown. Currently it has not been possible to model these periods 

and compare to modern events before land management changes were adopted.     

From 1880 – 1886, parts of VIC (northern areas and Gippsland), NSW (mainly 

northern wheat belt, northern Tablelands and south coast), QLD (1881 – 1886, the 

south-east, Central Highlands and central interior in 1883 – 1886), and the agricultural 

areas of SA (1884 – 1886) were severely affected by a major drought (Australian 

Bureau of Statistics 1988). The severity of this drought is reflected in the 24 dust storm 

events recorded for the HDED. A newspaper article in ‘The Australasian Sketcher’ 

describes the violent nature of a dust storm sweeping over large areas of VIC on the 

10th January 1882 (Australasian Sketcher 1882).        

“The temperature was very high in Melbourne, and the atmosphere was 

obscured by great clouds of dust all day.”  

The storm was so severe that seven children escaped serious injuries when the wind 

lifted the heavy shingle roof off and tossed it over, burying the children underneath. A 

large number of houses lost their roofs and chimneys were blown over.  

In 1888, VIC (northern areas and Gippsland), southern Tasmania (TAS) (1887 – 

1889), NSW and QLD (1888 – 1889), SA and WA (central agricultural areas) were 

influenced by a short but major drought. A newspaper article in The Sydney Morning 

Herald (1888) described the dust storm on the 5th October 1888 so destructive that a 

large number of houses were damaged. Due to the increased wind speed, ships 

anchored in the harbour had lost their moorings.  

The Federation drought (1895 – 1903) impacted the whole of Australia but most 

persistently the coast of QLD, inland areas of NSW, SA, and central Australia 

(Australian Bureau of Statistics 1988). The agricultural and grazing sectors were 

severely affected. The Barrier Miner (1895) reported on the 6th February 1895 that a 



39 

 

frightful dust storm blew into Melbourne. Two clergymen were blown from Queen’s 

Bridge. On the 10th April 1896, The Argus (1896) reported that Broken Hill 

experienced a “record breaking” dust storm. At 4pm the impact of this dust storm was 

described as being a “total eclipse of the sun”.  

Until 1903, the Australian continent was under the influence of the Federation Drought 

which saw a large number of dust events in the earlier years of the decade. Of the 61 

dust storms events found in records, 48 occurred from 1900 – 1903 (Figure 2.2). The 

Advertiser (1904) reported on the 19th October 1904 that dust storms lasting a few days 

had caused severe damage in parts of SA. Hot blasts of wind whipped up dust and had 

“penetrated the houses” which was “disagreeable” with housewives in Adelaide. The 

damage was more widespread in the regional areas. Large areas of crops were flattened 

and ships anchored in Port Adelaide lost their mooring. Several people died from 

flying debris and others sustained severe injuries. Trees were uprooted, fences blown 

over, houses, sheds and churches lost their roofs which were often carried away for 

some distance. Areas in NSW were also affected. Figure 2.3 illustrates the severity of 

a dust storm approaching Broken Hill in NSW on the 15th December 1907. 

 

 

Figure 2.3: Dust storm approaching Broken Hill, News Souths Wales, 15th December 1907. 

Photo from the Jim Davidson Australian postcard collection, 1880 – 1980. 
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During 1910 – 1919 only 22 minor events were documented (Figure 2.2) in Adelaide 

(Apr 1910), Cobar (Nov 1910), Williamstown (Dec 1910), Melbourne (Nov 1911, Jan 

1916, Dec 1918), Broken Hill (Nov 1912, Dec 1913, Dec 1918, Jan 1919), Brewarrina 

(Dec 1912), Hobart (Nov 1913), Bordertown (Jan 1914), Booleroo and Wilmington 

(Mar 1914), Melrose, Crystal Brook, Quron and Wirrabara (Mar 1914), Wangaratta 

(Dec 1914), Riverina area (Jan 1915), Queanbeyan (Mar 1915), and Narrandera 

(1915). According to the Australian Bureau of Statistics (1988), areas in VIC and TAS 

(1913 – 1915 & 1918 - 1920) and NSW, QLD, Northern Territory (NT), SA and WA 

(1910 – 1914 & 1918 – 1920) were in drought. Figure 2.4 illustrates the approach of a 

dust storm in Narrandera, NSW in 1915. 

 

Figure 2.4: Dust storm approaching Narrandera, New South Wales, 1915. Photo courtesy of 

National Library of Australia. 

 

Throughout the 1920 – 1929 decadal period, 39 dust events have been documented 

(Figure 2.2). On the 4th April 1922 a report in The Argus (1922) describes a “fierce 

dust storm visited Melbourne and the conditions in the city caused great discomfort”. 
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The gusts had reached 54 miles an hour (~ 87 km/h). Railways were interrupted and 

overhead electricity wires were damaged. Galvanised iron sheets came off the wheat 

sheds and fences were blown over. The Barrier Miner (1924) reported that the people 

of Broken Hill were of the opinion that the 27th October 1924 “was a terrible day”. It 

was very hot and from the early morning until late at night the city was enveloped in 

dust. Housewives had to worry about the inside conditions which was most unpleasant. 

Dust had to be tipped out of the bottom of the cups. During mealtime, the teeth 

frequently grated on fine particles of sand but people consoled themselves with the 

thought that the sand might assist digestion. During October 1928, large number dust 

storms occurring for more than a week covering the Desert Channels and southwest 

QLD, and parts of NSW (The Queenslander 1928). The shipping men on the Sydney 

harbour had an anxious time. When the storm reached its maximum severity with wind 

speeds of 142 km/h, the coastal steamer Pulganbar broke away from its moorings and 

dragged her anchors but was safely re-moored.  

Towards the end of the 1930 – 1939 decade, Australia was in the grip of the World 

War II (WWII) drought but only 21 dust storm events were collated in HDED (Figure 

2.2). During the WWII period, newspapers were most likely to have focused on 

reporting about the war and the reporting of dust events might have been of a lesser 

importance and have not been documented to that extent. On the 10th February 1937, 

the ABoM mention for the first time a dust storm which surrounded the wheat belt of 

WA. The drought was most severe in NSW, SA, QLD, WA, VIC, NT and parts of 

TAS due to extremely low rainfall during 1935 – 1936 (Australian Bureau of Statistics 

1988). The Advocate (1937) reported on the 16th October 1937 that aviator Jean 

Batten’s record attempt to fly solo from England to Australia was delayed by a day 

due to a dust storm in Bedourie, QLD.  

Until halfway through 1940 – 1949, Australia was still under the influence of the 

WWII drought which was reflected in the increased number of documented records 

(60) as shown in Figure 2.2. In late spring and summer of 1944/45, a large number of 

dust storms occurred over the southeast of Australia. The number of diary entries by 

Margaret Harris (1956) from Darby’s Falls near Cowra, NSW indicate that the period 

between October 1944 and February 1945 was a very active dust storm period.  The 

Canberra Times (1944) reported on the 15th December 1944 that dust storms 

“enveloped three states”. Meteorologist Mr Mares commented that “one felt as though 
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one was eating dust all day”. Visibility on Sydney Harbour was reduced to a few 

hundred yards and Sydney bound planes had to be diverted. Dust events were also 

reported in QLD, SA and TAS. The dust storm in Broken Hill on the 30th January 1945 

was described as the worst ever experienced (The Advertiser 1945) and the sky turned 

black in the middle of the day. Dust events continued through to the end of the decade. 

In the 1950 – 1959 period records of only five dust events were found (Figure 2.2). 

The Canberra Times (1950) reported the first dust storm for the summer on the 14th 

December 1950. Gusty westerly winds “whipped up soil from bare surface patches in 

local rural areas, and spread a low pall of brown over the city”. Similar conditions 

were reported from Goulburn and Wagga Wagga and aeroplane pilots reported dust 

up to a height of 1,000 feet (~305 m). A news article in the Cairns Post (1951) reported 

that on the 10th November 1951, two new P2V-5 Neptune long-range bombers 

narrowly escaped disaster while landing during a dust storm at Richmond. The two 

planes arrived at Richmond, NSW from California, US after an uneventful flight across 

the Pacific. One of the planes was swept off the airport's main runway, but it landed 

smoothly among piles of heavy equipment used for building a new airstrip. Workmen 

and two press photographers had to jump for their lives as the huge aircraft “bore down 

on them". Flight Lieutenant Boyle said that this was the worst landing he had ever 

experienced. The dust-filled air tore every bit of paint off the propellers. On 20th 

October 1953 (Barrier Miner 1953), a dust storm which swept across Broken Hill was 

described by some residents as a real "old-timer" – the worst since 1944. Visibility 

was reduced to about 50 yards (~ 46 m) and motor vehicles had to move along the 

streets at a snail's pace with headlights on. Lights in shops and offices had to be 

switched on and the insides of buildings were covered with a thick blanket of dust. 

Strong winds during the night gave an indication that the day would be unpleasant. 

Gale force winds which reached a velocity of 48 miles an hour (~ 72 km/h), swept the 

city and by 10am a red hue had descended. The radio communications on the Flying 

Doctor network were disrupted by the storm. The City Council's electricity mains and 

services were also interrupted. Street trees and household gardens took a severe 

battering and branches were torn from trees. Minor damage was caused in most parts 

of the city, fences being flattened and iron blown from roofs. An interesting 

observation was made by Mr. R. Hinchcliffe, of Belmont Station. He commented: "At 

10 o'clock this morning instrument readings at Belmont Station showed that 99.9 per 
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cent of the light which usually reaches the vegetation was being cut off by a dust haze. 

At the rate which dust was falling, Broken Hill should expect about 1500 tons of dust 

to pass over the city." Another dust storm followed on the 19th November 1954 which 

arrived from the west and provided a spectacular sight as it billowed over Broken Hill 

and was followed by 15 points of light rain, according to the Barrier Miner (1954). It 

spread to the north and south, and within minutes the city was shrouded with blinding 

dust in a wind which reached 59 miles an hour (~ 95 km/h) at 6pm. The radio reported 

that the velocity of 59 mph was the highest recorded at the aerodrome for some time. 

Some minor damage was caused in the city and loose sheets of iron were torn from 

fences. In late 1958, a 10 year drought period started to take hold in central Australia, 

with vast areas of QLD, SA, WA, NSW, and northern Australia affected to varying 

intensities (Australian Bureau of Statistics 1988). 

During 1960 – 1969, this 10-year drought period continued until 1967. Severe dust 

storms were so widespread that several events affected a large number of states. 

Overall 44 observations were found (Figure 2.2). In the book ‘Swanton in Australia - 

with MCC 1946–1975’, Ernest  Swanton (1975) reported on the 11th November 1965 

that the “Adelaide Oval was the flattest in Australia, but the Sheffield Shield match 

beforehand had been affected by a dust-storm followed by a sudden 22 degree drop in 

frontal system temperature”. Another severe dust storm event starting on the 23rd – 

27th November 1965 affecting the Lake Eyre region and Strzelecki Lakes in SA, 

western and north west NSW and south west QLD (Jaeger 1988). A newspaper article 

in the The Canberra Times (1965) published on the 26th November 1965 reported that 

a six-mile pall of red dust, which choked 500,000 square miles of QLD, was starting 

to engulf northern cities and towns. The dust “blanket” was creating a nightmare for 

pilots and a curse for housewives. ABoM estimated that 1,000 million tonnes of 

western QLD earth was being blown out to sea during this event.     

In 1970 – 1979, the Australian continent was under the influence of alternating La 

Niña and El Niño events starting in 1970 and resulted in major flooding in 1970, 1971, 

1974 and 1975. A more detailed description of the extreme events is provided in 

Section 3.2. Due to the seesaw pattern between La Niña and El Niño and the increased 

occurrence of rainfall during the decade, only two dust storm were found and 

documented in HDED (Figure 2.2). The Bureau of Meteorology (2015) reported a dust 

storm event on the 4th April 1978. Strong winds and the dry conditions produced 
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extensive dust storms that reduced visibility over a large area of the southwest of WA. 

The deposition of dust on power lines also caused a failure of the electricity 

distribution system. 

From 1980 – 1989, the dust storm activity increased to 17 events due to continued dry 

conditions and a severe drought in south-east Australia (Figure 2.2). On the 8th 

February 1983, Melbourne (Figure 2.5) was enveloped in a thick cloud of dust. At its 

height of the event visibility was reduced to 100 m and the three airports were 

temporarily closed (Dineley 2013). The power to 150,000 homes was cut as winds 

brought down powerlines and dust clogged junction boxes shorting circuits. The cold 

front that carried the dust in brought gusts of 85 km/h, uprooted trees and tore the roofs 

off at least 50 houses. Another intensive dust storm occurred on the 2nd December 1987 

which originated in inland Australia and was recorded in the NT, QLD, NSW, VIC 

and SA. 

 

 

Figure 2.5: Dust storm engulfed Melbourne on the 8th February 1983. Photo courtesy of 

Crystalink. 

 

The 1990 – 1999 period was under the influence of a very long El Niño lasting from 

1991 – 1995 (Allan & D'Arrigo 1999). This extended El Niño was accompanied by a 
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persistent drought over parts of QLD, NSW and other regions of the Australian 

continent. Overall 20 dust storm events were recorded in 1994 (Figure 2.2) in the Lake 

Eyre region, Strzelecki Lakes, Southern Simpson Desert, western QLD, northwest 

NSW and Murrumbidgee District NSW (Bureau of Meteorology 2006).  

During the 2000 – 2010 decade, Australia was influenced by a very persistent and 

strong El Niño associated with above maximum temperatures. This is reflected in the 

194 documented dust storm events for the decade (Figure 2.2). It appears that this 

decade experienced a large increase in dust storm activity but the surge in the number 

of documented events in the HDED is also attributed to the advances in technology, 

easy access to the World Wide Web, the establishment of DustWatch and the 

availability of satellite data. Earlier decades might also have experienced a large 

number of dust storm events but were not documented due to low population density 

in Australia and access to modern technology.   

Between 2001 and 2010 the “Millennium Drought” set in, southeast Australia 

experienced the most persistent rainfall deficit since the start of the 20th century and 

was described as the worst drought on record. Two particular events have received 

news coverage worldwide and research attention. The 23rd October 2002 (Figure 2.6) 

and 22nd – 25th September 2009 (Figures 2.7 and 2.8) events were amongst the largest 

recorded in Australian history. The 23rd October 2002 severe dust storm was a result 

of drought conditions in eastern Australia caused by the 2002 El Nino event. The 

Australian Weather News (2002) reported that the dust storm was at its worst in 

western NSW and QLD, with visibility reduced to 50 m in places as fresh dust was 

whipped up from bone dry soil with reduced vegetation cover. A few years later 

another severe dust storm event took place between the 22nd – 25th September 2009, 

nicknamed 'Red Dawn' by the media and was described as “bigger than Ben Hur!” by 

Dr John Leys in The Australian newspaper (Leys, Heidenreich & Case 2009). Nigel 

Lawrence from Broken Hill commented that “I have never seen or experienced 

anything like it. You have to be 60 years plus to have seen a dust storm as bad as this!”  
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Figure 2.6: Large dust storm blowing across eastern Australia on 23rd October 2002. Photo 

courtesy of the SeaWiFS Project, NASA/Goddard Space Flight Center. 

 

 

Figure 2.7: Dust storm approaching the Fregon Community in the Anangu Pitjantjatjara lands, 

South Australia, 22nd September 2009. Photo courtesy of a Remote Area Nurse. 
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Figure 2.8: Dust storm swept across parts of inland South Australia, Victoria, New South 

Wales and Queensland. By 24th September, the dust plume measured more than 3,450 km from 

the northern edge at Cape York to the southern edge of the plume. NASA image by Jeff 

Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. 

 

In summary, the earliest dust storm events collated for the HDED was in 1852. To the 

end of December 2010, 585 dust storms were documented on 331 days. This list is by 

no means complete, but is continuing to be updated as new documented events are 

being uncovered. Figure 2.2 provides a good overview of the trend of the number of 

dust storms which have occurred over the last 16 decades. An increased number of 

dust storm events can be observed in the 1900s, 1940s, 1960s and 2000s. From 

historical documents it is known that these periods were affected by severe droughts 

which is reflected in the high numbers. But it is very likely that the actually number is 

much higher. Possibly a large number of events were not noticed or were not reported 

due to the sparse population in arid and semi-arid areas. Others might have been 

written down in diaries but have not been archived in museums or libraries.  
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 Decadal summary of quantitative and 

qualitative data of dust events 

This chapter aims to address the second key objective as outlined in Section 1.6 by 

linking the climatic history of ENSO, rainfall and temperature to the HDED to 

establish if HDED dust records reflect climate records. Section 3.1 describes the 

Natural Resource Management regions of Australia and highlights the key wind 

erosion regions which will be used in this study. Section 3.2 links the climatic history 

of ENSO, rainfall and temperature to the HDED to establish and confirm if dust 

records match climate records between 1852 – 2010. The 159 years have been divided 

into decades except for the years from 1852 – 1899 which have been grouped together 

since there were a sparse number of historical dust storm events in the HDED for this 

period.    

3.1 Wind erosion regions of Australia 

The Australian continent has been divided into 65 Natural Resource Management 

(NRM) regions by the Department of Agriculture, Fisheries and Forestry as shown in 

Figure 3.1 and Table 3.1. The analysis in Section 3.2 utilises the NRM regions to 

further explore the HDED records collected for this study (Figure 2.2). Nine NRM 

regions out of the total 65 have been identified as being susceptible to wind erosion 

from long-term data. These nine regions are shown in Figure 3.1 and are listed in bold 

in Table 3.1. These nine regions are located within the arid and semi-arid part of 

Australia and are suspected to be the major source areas of dust storms activity during 

drought periods (Leys et al. 2010). Other NRM regions may have recorded events 

during 1852 – 2010, however these are most likely to be transported dust or deposition 

areas due to their environmental conditions and locations. The analysis of the HDED 

dust storm history of the individual NRM regions through time will show if there have 

been any spatial changes. 
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Figure 3.1: Australia’s 65 NRM regions including the nine regions susceptible to wind 

erosion. 
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Table 3.1: 65 NRM regions including the nine regions susceptible to wind erosion highlighted 

in bold. 

ID NRM Regions  ID NRM Regions 

1 Torres Strait  34 Avon 

2 Cape York  35 Central West 

3 NT - Top End  36 Swan 

4 NT - Melville Island  37 Eyre Peninsula 

5 NT - Darwin  38 Hunter-Central Rivers 

6 NT - Katherine-Douglas  39 Northern & Yorke 

7 Rangelands - Kimberley  40 Lower Murray Darling 

8 NT - Savanna  41 South West 

9 NT - Victoria River  42 Lachlan 

10 Northern Gulf  43 SA Murray Darling Basin 

11 Wet Tropics  44 South Coast 

12 Southern Gulf  45 Hawkesbury-Nepean 

13 NT - Arid Centre - Pastoral  46 Murrumbidgee 

14 NT - Arid Centre - Non Pastoral  47 Mallee 

15 Rangelands - Gascoyne Murchison  48 Southern Rivers 

16 Burdekin  49 Adelaide & Mount Lofty Ranges 

17 Desert Channels  50 Murray 

18 Mackay Whitsunday  51 North Central 

19 Rangelands - Goldfields Nullarbor  52 Kangaroo Island 

20 Fitzroy  53 South East 

21 NT - Arid Centre Simpson  54 Wimmera 

22 Burnett Mary  55 Goulburn Broken 

23 South West Queensland  56 North East 

24 Border Rivers Maranoa - Balonne  57 East Gippsland 

25 South East Queensland  58 Glenelg Hopkins 

26 SA Arid Lands  59 West Gippsland 

27 Alinytjara Wilurara  60 Port Phillip & Westernport 

28 Condamine  61 Corangamite 

29 Northern Agricultural  62 TAS - Flinders 

30 Northern Rivers  63 TAS - North West 

31 Border Rivers-Gwydir  64 TAS - North 

32 Western  65 TAS - South East 

33 Namoi    

     

     

3.2 Decadal rainfall and temperature history 

This section examines the dust storm history in the context of the climatic conditions 

(ENSO, rainfall and temperature). The aim is to investigate if the historical 

documented events in the database reflect meteorological records. The NRM wind 

erosion region maps in Figures 3.2 and Figures 3.4 – 3.14 show the spatial distribution 
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of the dust storm events in each decade. Each Figure shows three parts (with the 

exception of Figure 3.2). The decadal map in part (a) displays the NRM regions with 

the number of reported dust storm sightings. This Figure also includes the number of 

dust events in the NRM dust source areas. Part (b) displays the number of documented 

dust storm events in NRM dust source areas only. Part (c) shows the difference from 

the long-term average rainfall and temperature graphs for the NRM dust source areas.  

The collated HDED results for the 1852 – 1899 years are shown in Figure 3.2 and 

Table 3.2. No rainfall and temperature data is shown here since recording of this 

gridded data Australia wide only started in the 1900s. The Lachlan NRM region (42) 

recorded the highest number of events particularly from 1890 – 1899. Other NRM 

regions in the eastern states and WA had dust storm recordings as well but the major 

dust source areas in the centre of Australia (SA and NT) seemed to have been much 

less active. The reduced number of documented events may also be due to the low 

population density in these areas during 1852 – 1899, whereas Lachlan was in the grip 

of a gold rush with a large number of prospectors in the area (Clacey 1853).  

 
Figure 3.2: Decadal maps (1852 – 1899) showing NRM regions with a) the number of sighted 

dust storm events, b) the number of documented dust storm events in dust source areas. 

 

 

 

 

 

 

b) 
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Table 3.2: NRM wind erosion regions with the number of recorded dust events from 1852 -

1899. 

No NRM Regions 1852-59 1860-69 1870-79 1880-89 1890-99 Total 

17 Desert Channels     1 1 

32 Western    3 11 14 

42 Lachlan    8 37 45 

43 SA Murray Darling Basin 8  1 1 10 

46 Murrumbidgee    1  1 

 

The El Niño and La Niña climate drivers have possibly the strongest influence on year-

to-year climate variability in Australia and are part of a natural ENSO cycle (Section 

1.1). Rainfall and temperature are closely linked to the ENSO. El Niño affects the 

eastern and north-eastern region of Australia most strongly, particularly in winter and 

spring with below average rainfall across northern and eastern Australia, and above 

average temperatures across southern Australia. La Niña is associated with above 

average rainfall in northern and eastern Australia and below average daytime 

temperatures across southern Australia. Consequently, there is strong interannual 

variability in floods and droughts, and associated dust storm events.  

The following HDED analysis is based on all dust storm events recorded from 1900 – 

2010 with a particular focus on the nine NRM dust source regions (Figure 3.1) which 

are most susceptible to wind erosion. Figure 3.3 summaries the ENSO history starting 

in 1900 to 2010. In general, an El Niño, La Niña and Neutral year starts around May 

and goes to April the next year (Personal conversation with Prof. Roger Stone 2015, 

ICACS, University of Southern Queensland). 
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Figure 3.3: Australian ENSO history from 1900 – 2010. 

 

The recording of gridded daily rainfall data dating back to 1900 and gridded daily 

temperature data at a large number of weather stations Australia wide starting in 1910 

and were downloaded from the ABoM website. To determine if particular months had 

above or below average rainfall or temperatures, the difference from the average has 

been calculated. The difference in rainfall for each month is based on the long-term 

average of monthly rainfall calculated over 113 years (1900 – 2012), subtracted from 

the month of interest. Positive values represent above long-term average rainfall and 

negative values below long-term average rainfall on the following graphs. The same 

method was also applied to the temperature data using the average calculated over 103 

years (1910 – 2012). These long periods (113 years – rainfall, 103 years – temperature) 

have been chosen to identify if long-term changes in rainfall and temperature have 

occurred since they have the potential to directly or indirectly impact on the 

environmental, social and economic sector. 
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The collection of documented dust storm events in the HDED between 1900 – 1909 

show 45 events in six NRM regions which are susceptible to wind erosion and are of 

interest. The highest number of events (19) occurred in 1901 (Table 3.3) and of these, 

13 are from the NT - Arid Centre. Lachlan (4), Western (1) and the Mallee (1) regions 

also noted one or more dust storms (Figure 3.4). Other years in this decade were less 

affected by wind erosion activity according to the collated records as shown in 

Table 3.3. According to the records in the HDED no dust storm events were 

documented in the Channel Country in QLD which has been identified as a major dust 

source area. This may be due to the sparse population in western QLD during the early 

1900s.   

The decadal difference rainfall graphs (Figure 3.4) for NT – Arid Centre, Lachlan, SA 

Arid Lands, SA Murray Darling Basin, Western and Mallee reflect the dry conditions 

expected to result in the number of dust event records collated. The negative values on 

the graphs (left hand side) represent the rainfall below the long-term average, whereas 

positive values (right hand side) represent the rainfall above the long-term average. 

The decade started with an El Niño affecting the Australian continent. In particular the 

NT – Arid Centre which recorded the largest number of events (13) in 1901, had well 

below long-term average rainfall until February 1903. Some periods had up to 60 mm 

less than the long-term average. The SA Arid Lands, Western, Lachlan, SA Murray 

Darling Basin and Mallee region also recorded below long-term average rainfall 

(Figure 3.4). The La Niña during August 1906 – January 1907 (Figure 3.3) which 

produced above long-term average rainfall over most of the continent resulting in 

extensive vegetation cover and therefore reducing the potential for wind erosion to 

occur. Overall, the percentage of months receiving below average rainfall from the 

long-term average (113 years) ranged from 58 – 70% for this decade as illustrated in 

Table 3.4 and Figure 3.4. No temperature data is available for this period. These results 

show that the collated records of historical dust storms reflect the quantitative climate 

data for this decade. 
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Table 3.3: NRM wind erosion regions showing recorded dust events 1900 – 1909. 
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Figure 3.4: Decadal maps (1900 – 1909) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) data for the dust source areas. Figure continues over next page. 
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c)     Rainfall difference 

 

 

 

Figure 3.4: Decadal maps (1900 – 1909) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) data for the dust source areas. 
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Table 3.4: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1900 – 1909. 

1900 - 1909 13 26 32 42 43 47 

% of months below average 

Rainfall 
68 70 66 65 58 61 

 

From 1910, long-term gridded temperature data is available from the ABoM. As 

mentioned in the previous section the difference in rainfall for each month is based on 

the long-term average of monthly rainfall calculated over 113 years (1900 – 2012), 

subtracted from the month of interest. The same approach was used to calculate the 

difference in temperature for each month based on the long-term average of monthly 

temperature calculated over 103 years. Negative values on the graphs (left hand side) 

represent below long-term average rainfall (blue) or below long-term average 

temperatures (red) data.  

The collated historical records from 1910 – 1919 show 11 dust storm events occurred 

in the Western (7), Mallee (2) and SA Murray Darling Basin (2) NRM regions (Table 

3.5). The low number of dust events during this decade may be attributed to the 

influence of the La Niña starting in 1909 – 1911 (Figure 3.3).  An El Niño followed in 

1911 – 1912 and another from 1913 – 1915. A second La Niña occurred between    

1916 – 1918, and the decade concluded with an El Niño from 1919 – 1920. This see-

saw pattern of ENSO extremes is reflected in the difference from long-term average 

rainfall and temperature graphs for the Western, SA Murray Darling Basin and Mallee 

graphs in Figure 3.5. In particular the influence of the 1916 – 1918 La Niña is clearly 

displayed in the rainfall and temperature Figure 3.5. Table 3.6 shows the percentage 

of months receiving below average rainfall from the long-term average (113 years) for 

the three NRM regions ranging from 51 – 63% for this decade. The temperatures were 

between 49 – 56% of the time above the long-term average as shown in Table 3.7. The 

Western NRM region experienced below long-term average rainfall for 63% of the 

decade and above long-term average temperatures for 56% of the time (Table 3.6 & 

Table 3.7). This may explain why the largest number of dust storm events occurred in 

this region.  During periods of below average rainfall, temperatures are often higher 

than normal and vice versa. Since these regions received intermittent above average 

rainfall during the decade, green and dead vegetation would have covered a substantial 
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part of the soil surface. The potential for dust storm events to occur was therefore 

reduced.   

Table 3.5: NRM wind erosion regions showing recorded dust events 1910 – 1919. 

 

T
o

ta
l 

7
 

2
 

2
 

1
9

1
9
 

1
   

1
9

1
8
 

1
   

1
9

1
7
 

   

1
9

1
6
 

  1
 

1
9

1
5
 

   

1
9

1
4
 

 1
 

1
 

1
9

1
3
 

2
   

1
9

1
2
 

2
   

1
9

1
1
 

   

1
9

1
0
 

1
  1
 

N
R

M
 R

eg
io

n
 

W
es

te
rn

 

S
A

 M
u

rr
ay

 

D
ar

li
n

g
 B

as
in

 

M
al

le
e 

N
o

 

3
2
 

4
3
 

4
7
 

    

 



59 

 

 

c)     Rainfall difference      Temperature difference  

 

 
Figure 3.5: Decadal maps (1910 – 1919) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 
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Figure 3.5: Decadal maps (1910 – 1919) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 
Table 3.6: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1910 – 1919. 

1910 - 1919 32 43 47 

% of months below average  

Rainfall 
63 56 51 

 

Table 3.7: The percentage of months when temperatures were above the long-term average in 

the NRM dust source regions during 1910 – 1919. 

 

1910 - 1919 32 43 47 

% of months above average 

Temperature 
56 50 49 

    

Analysis of the HDED for the 1920 – 1929 decade show 18 dust storm events in the 

following NRM regions: Desert Channels (5), Western (9), SA Murray Darling Basin 

(3) and Mallee (1) as listed in Table 3.8. This decade was under the influence of two 

La Niña (1924 – 1925 & 1928 – 1930) and one El Niño (1925 – 1926) in between 

(Figure 3.3). The decadal difference from long-term average rainfall and temperature 

graphs (Figure 3.6) for Desert Channels, Western, SA Murray Darling Basin and 

Mallee reflect the mixed climatic conditions for the decade. From mid-1920 – mid-

1921 these regions received above long-term average rainfall and therefore increased 

vegetation cover in the following months. From mid-1921, rainfall was below long-

term average for the majority of the years until the end of the decade. Table 3.9 

illustrates that all four NRM regions (Desert Channels, Western, SA Murray Darling 
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Basin, Mallee) experienced between 62 – 67% below the long-term average rainfall 

and between 44 – 55% above the long-term average temperatures in this decade (Table 

3.10). The below average rainfall coupled with above average temperatures for 

Western may explain the higher number of recorded dust storm events. The 

meteorological conditions for the decade are consistent with the low numbers of 

documented anecdotal dust storm.  

Table 3.8: NRM wind erosion regions showing recorded dust events 1920 – 1929. 
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c)          Rainfall difference   Temperature difference  

 

 

 
Figure 3.6: Decadal maps (1920 – 1929) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) and temperature (ºC) data for the dust source areas. Figure continues 

over next page. 
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Figure 3.6: Decadal maps (1920 – 1929) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas.  

Table 3.9: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1920 – 1929. 

1920 – 1929 17 32 43 47 

% of months below average 

Rainfall 
67 67 63 62 

 
    

Table 3.10: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1920 – 1929. 

1920 – 1929 17 32 43 47 

% of months above average 

Temperature 
49 55 46 44 

     

During the 1930 – 1939 decade only a small number (15) of dust events were 

documented from 1934 onwards in the Desert Channels (1), Western (2), Lachlan (7), 

SA Murray Darling Basin (1), Murrumbidgee (1) and Mallee (3) NRM regions (Table 

3.11, Figure 3.7). The small number of events may be explained when linking it to the 

climatic conditions for this period. During the last three years of the previous decade 

(1928 – 1930) Australia was under the influence of a long La Niña which was then 

followed with an eight year ENSO neutral from 1930 – 1938 (Figure 3.3). The 

oscillation of rainfall and temperatures between above and below long-term average 

resulted in the low count of dust events during this decade (Figure 3.7). The difference 

from the long-term average rainfall and temperature graphs in Figure 3.7, reflect this 

trend. All regions received well above 50 mm of rainfall in some of the months but 

overall between 54 – 63% received below the long-term average for the entire decade 
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(Table 3.12). The temperatures were for most of the decade below the long-term 

average. Only for 37 – 51% of the months it exceeded the long-term average (Table 

3.13). The below average temperatures also influenced soil moisture favourably. The 

increased rainfall and below average temperatures during the first few years of the 

decade had a positive influence on vegetation growth. The extensive vegetation cover, 

which includes green and died off vegetation reduced the occurrence of wind erosion 

events. 

Table 3.11: NRM wind erosion regions showing recorded dust events 1930 – 1939. 
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c)   Rainfall difference   Temperature difference  

 

 

 
Figure 3.7: Decadal maps (1930 – 1939) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) and temperature (ºC) data for the dust source areas. Figure continues 

over next page. 
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Figure 3.7: Decadal maps (1930 – 1939) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.12: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1930 – 1939. 

1930 - 1939 17 32 42 43 46 47 

% of months below average 

Rainfall 
63 63 59 61 54 58 
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Table 3.13: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1930 – 1939. 

1930 - 1939 17 32 42 43 46 47 

% of months above average 

Temperature 
43 42 37 43 39 51 

 

The 1940 – 1949 decade was influenced by two strong El Niños (1940 – 1942, 1946 – 

1947) and one La Niña (1942 – 1943). During 1943 – 1946 ENSO neutral conditions 

influenced the climate in Australia (Figure 3.3). By the beginning of the 1940 decade 

the WWII drought, which started in 1937 had a solid grip on Australia. Nine NRM 

regions reported 50 events collectively over the whole decade (Table 3.14). The HDED 

indicate an active wind erosion season particularly in 1944 and 1945 with 18 and 12 

dust events respectively. Lachlan reported 12 events, Western 3, Mallee 2 and SA Arid 

Lands 1 for 1944 alone (Table 3.14).  

The decadal graphs showing the difference from long-term average rainfall and 

temperature in Figure 3.8, provide a good overview of the climatic condition during 

1940 – 1949. All seven NRM regions received between 63 – 72% of the time below 

the long-term average rainfall for the decade (Table 3.15) and temperatures were 

below the long-term average for 37 – 50% of the months (Table 3.16). From the 

beginning of 1942 to the end of 1945, the seven NRM received very much below the 

long-term average rainfall. The deficiency of rainfall reduced soil moisture, and 

therefore vegetation cover, and increased the risk and impact of wind erosion in these 

regions. In particular Lachlan with 18 dust storm event stands out. Twelve of these 

occurred in 1944. The decadal rainfall graph in Figure 3.8 shows that before 1944 the 

region received well below average rainfall for a number of years which will have 

influenced soil moisture and consequently vegetation cover and explains the increased 

dust storm activity during that period.   
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Table 3.14: NRM wind erosion regions showing recorded dust events 1940 – 1949. 
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Figure 3.8: Decadal maps (1940 – 1949) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) and temperature (ºC) data for the dust source areas. Figure continues 

over next page. 
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c)  Rainfall difference   Temperature difference  

 

 

 

 
Figure 3.8: Decadal maps (1940 – 1949) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) and temperature (ºC) data for the dust source areas. Figure continues 

over next page. 
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Figure 3.8: Decadal maps (1940 – 1949) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.15: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1940 – 1949. 

1940 - 1949 13 17 26 32 42 43 47 

% of months below average 

Rainfall 
71 72 68 68 68 63 64 

 
Table 3.16: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1940 – 1949. 

1940 - 1949 13 17 26 32 42 43 47 

% of months above average 

Temperature 
47 38 40 50 48 37 37 

 

Historical records in the HDED indicate that between 1950 – 1959 only two dust storm 

events were found. Both occurred in the Western NRM region in 1953 and 1954 (Table 

3.17). The reduced number of events may be attributed to the influence ENSO neutral 

conditions from 1952 – 1954 follwed by a long lasting La Niña between 1954 – 1957 

(Figure 3.3). The decadal rainfall and temperature graph of the Western NRM region 

(Figure 3.9) reflects the imapct of the La Niña. In March 1956, rainfall peaked at 131 
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mm above the long-term average but over the decade 55% of the time rainfall was 

below the long-term avarage (Table 3.18). Temperatures were above the long-term 

avarage for 38% of the months in the western NRM region (Table 3.19). The wetter 

conditions were favourable for vegetation growth and therefore reduced the risk of 

dust storm events.   

 

Table 3.17: NRM wind erosion regions showing recorded dust events 1950 – 1959. 
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c)  Rainfall difference   Temperature difference  

 
 

Figure 3.9: Decadal maps (1950 – 1959) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

Table 3.18: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1950 – 1959. 

1950 - 1959 32 

% of months below average 

Rainfall 
55 

 

Table 3.19: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1950 – 1959. 

1950 - 1959 32 

% of months above average 

Temperature 
38 

 

The collected anecdotal dust storm records in the HDED for the 1960 – 1969 decade 

provided additional confirmation that Australia was experiencing a severe drought 

from 1965 – 1968. In particular the year 1965 stands out in the dust storm event list 
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with 21 recordings in five NRM wind erosion regions over five days (Table 3.20). All 

recorded dust events, apart from one (1963), occurred from the 23 – 27 November 

1965. The Desert Channels, NT – Arid Centre, SA Arid Lands and Western recorded 

five events each and one for Murrumbidgee in November 1965. In 1963 one dust storm 

record was found in the NT – Arid Centre.    

The decadal rainfall graphs (Figure 3.10) for the Desert Channels, NT – Arid Centre, 

SA Arid Lands, Western and Murrumbidgee highlight the dry conditions which lead 

to the increased number of recorded severe dust storm events in November 1965. The 

decade started with ENSO neutral conditions from 1958 – 1963 which was followed 

with an El Niño from 1963 – 1964 (Figure 3.3). A short lived La Niña had a modest 

impact on parts of southern and eastern Australia. Long periods of below average falls 

prevailed over NSW and the southern half of QLD as a prelude to the 1965 El Niño 

which took hold in March 1965 as can be seen in the Figure 3.10. The five NRM 

regions received 53 – 72% of the time below the long-term average rainfall (Table 

3.21) and temperatures were between 37 – 50% of the months above the long-term 

average (Table 3.22). The years leading up to November 1965 where very dry and as 

a consequence vegetation cover was reduced leaving the soil surface exposed. 
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Table 3.20: NRM wind erosion regions showing recorded dust events 1960 – 1969. 
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c)  Rainfall difference   Temperature difference 

 

 

 
Figure 3.10: Decadal maps (1960 – 1969) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 
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Figure 3.10: Decadal maps (1960 – 1969) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.21: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1960 – 1969. 

1960 - 1969 13 17 26 32 46 

% of months below average 

Rainfall 
68 72 71 68 53 

 

Table 3.22: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1960 – 1969. 

1960 - 1969 13 17 26 32 46 

% of months above average 

Temperature 
50 48 45 42 37 

 

In the 1970 – 1979 decade one dust event was documented in the HDED, occurring in 

the SA Arid Lands NRM region in 1971 (Table 3.23 & Figure 3.11). The months 

leading up to the event were very dry with rainfall below average in the SA Arid Lands 

region (Figure 3.11). For the decade, 58% of the months experienced below the long-

term average rainfall (Table 3.24) and 47% of the time above the long-term average 
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temperatures (Table 3.25). The decadal long-term average difference rainfall and 

temperature graphs for SA Arid Lands illustrates the impact of the La Niña events, 

particularly from the 1973 – 1976 resulting in above average rainfall which explains 

the low number of dust storm events for this decade.  

The reduced occurrence of dust storm events was due to a number of La Niñas (Figure 

3.3) during this decade with the first one lasting from 1970 – 1972. Drier than average 

conditions followed as the climate began a shift into an El Niño mode in 1972 when 

rainfall totals were very much below the long-term average. Following is relatively 

short intense El Niño, one of the longest La Niña developed in 1973 which lasted to 

1976 (Figure 3.3) with excessive rainfall resulting in widespread floods (Allan 1983). 

As an example, the exceptionally wet spring together with the additional rainfall from 

Cyclone Wanda produced widespread and severe flooding in Brisbane, QLD. In the 

early morning of 25th January 1974, heavy rain began to fall and during a 36-hour 

period the city received 642 mm of rain. Large areas were inundated with flood waters 

and at least 6,700 homes were flooded. Fourteen people lost their lives. The SA Arid 

Lands received 128 mm above the long-term average rainfall in January 1974 (Figure 

3.11) and 92 mm in February 1976. The extensive rain produced abundant vegetation 

growth in central Australia. The 1970 – 1979 decade received well above average falls 

over large areas of the continent, increasing vegetation cover and therefore reducing 

the risk of wind erosion. 
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Table 3.23: NRM wind erosion regions showing recorded dust events 1970 – 1979. 
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Figure 3.11: Decadal maps (1970 – 1979) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the  

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 
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c)  Rainfall difference   Temperature difference 

 

Figure 3.11: Decadal maps (1970 – 1979) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.24: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1970 – 1979. 

1970 - 1979 26 

% of months below average 

Rainfall 
58 

 

Table 3.25: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1970 – 1979. 

1970 - 1979 26 

% of months above average 

Temperature 
47 

 

The long period of above average rainfall in the previous decade had a ‘protective’ 

influence in terms of wind erosion potential for the 1980 – 1989 decade. Overall 11 

dust storm events were documented in the HDED (Table 3.26) with Desert Channels 

(2), SA Arid Lands (2), Western (3) SA Murray Darling Basin (2) Murrumbidgee (1) 

and Mallee (1). 

The decadal rainfall graphs in Figure 3.12 display the rainfall deficiency throughout 

the decade, in particular during the period from early 1980 to late 1982 and mid-1983 

to mid-1986. The difference rainfall and temperature graphs (Figure 3.12) for the six 

NRM regions indicate that the occurrence of dust events were reduced due to increased 

vegetation cover in the previous years following above average rainfall and below 
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average temperatures. Overall, the six NRM regions received 57 – 64% of the months 

below long-term average rainfall (Table 3.27) and 47 – 58% above the long-term 

average temperatures (Table 3.28). The dust storm events in 1983 may be linked to the 

influence of the El Niño in 1982 – 1983 (Figure 3.3), when eastern Australia recorded 

very much below long-term average to lowest on record rainfall totals. The extreme 

dry conditions were replaced by flooding rain in March 1983 affecting central and 

southern Australia for several months. The second El Niño during 1987 – 1988 was 

the trigger for the dust storm events in 1987 and 1988.  

Table 3.26: NRM wind erosion regions showing recorded dust events 1980 – 1989. 
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c)  Rainfall difference   Temperature difference 

 

 
Figure 3.12: Decadal maps (1980 – 1989) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 

 



82 

 

 

 

 

 
Figure 3.12: Decadal maps (1980 – 1989) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 
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Table 3.27: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 1980 – 1989. 

1980 – 1989 17 26 32 43 46 47 

% of months below average 

Rainfall 
64 64 58 58 57 61 

 
 

Table 3.28: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1980 – 1989. 

1980 – 1989 17 26 32 43 46 47 

% of months above average 

Temperature 
56 42 47 53 51 52 

 

The documented dust storm records in the HDED for the 1990 – 1999 decade indicate 

that 1994 was the only active dust storm year with 14 events in six NRM wind erosion 

regions. From the 24 – 25 May 1994, six events were documented and another eight 

between the 6 – 7 November 1994 (Table 3.29, Figure 3.13). SA Arid Lands region 

(4) had the highest number of events with all other regions reporting two each.  

The decadal rainfall graphs for 1990 – 1999 (Figure 3.13) show that a number of NRM 

regions (Desert Channels, Western, Murrumbidgee) received well above long-term 

average rainfall in the first few months of 1990. Overall, rainfall fluctuated between 

above to below average throughout the decade. The temperature of the individual 

NRM regions followed the expected trend; when rainfall is above average, temperature 

is usually below. Over the entire decade, rainfall was below the long-term average 

between 54 – 60% of the months in the six NRM regions (Table 3.30). Temperatures 

varied between 47 – 64% above the long-term average (Table 3.31).     

The sudden intensity of dust storm activity during May and November 1994 may be 

attributed to the El Niño episodes in the years leading up to 1994 (Figure 3.3). The 

first El Niño (1991 – 1992) had a strong influence on QLD and the northern part of 

NSW.  A second longer El Niño followed in 1993 – 1995. Temperatures were for a 

large number of months up to 2 – 3 ºC above the long-term average (Figure 3.13). The 

influence of the consecutive El Niño events which were broken up with very short 

periods of above average rainfall in some areas, may explain the occurrence of dust 

storm events in 1994.  
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Table 3.29: NRM wind erosion regions showing recorded dust events 1990 – 1999. 
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Figure 3.13: Decadal maps (1990 – 1999) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 
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c)          Rainfall difference   Temperature difference 

 

 

 

 

Figure 3.13: Decadal maps (1990 – 1999) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page 
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Figure 3.13: Decadal maps (1990 – 1999) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.30: The percentage of months when rainfall was below the long-term average in the NRM 

dust source regions during 1990 – 1999. 

1990 - 1999 17 26 32 43 46 47 

% of months below average 

Rainfall 
59 57 60 54 55 57 

 
Table 3.31: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 1990 – 1999. 

1990 - 1999 17 26 32 43 46 47 

% of months above average 

Temperature 
64 63 54 54 47 49 

 

The HDED for the 2000 – 2010 decade shows that eight out of the nine NRM regions 

which are susceptible to wind erosion, were experiencing a total of 150 dust storm 

events during the 11 years (Table 3.32, Figure 3.14). Nine events were recorded in 

2002. In 2009 the dust storm season for this decade peaked with 83 additional events 
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followed by another 32 dust events in 2010. The Western (22), SA Arid Lands (19), 

Lower Murray Darling (16) and Desert Channels (10) NRM regions were particularly 

active in 2009 (Table 3.32). A slightly less active season followed in 2010 in SA Arid 

Lands (9), Western (7) and Lower Murray Darling (7).  

The large numbers of dust storms were the result of the long lasting “Millennium 

Drought” starting in mid-1990s and ended mid-2010. The drought had a profound 

impact on southeast Australia with periods of well below long-term average rainfall 

and temperatures reaching between 2 – 4 ºC above the 103 year long-term average for 

many months during this decade. The severe rainfall deficiencies and higher than 

normal temperatures are displayed in Figure 3.14 and were the direct result of a 

number of El Niños in this decade and are briefly summarised here.  

The first El Niño started in March 2002 – January 2003 (Figure 3.3) and virtually 

affected the entire continent. The situation was exacerbated due to several preceding 

years of dry conditions. The extreme dryness coincided with maximum temperatures 

reaching new levels in autumn, winter and spring. The onset of above to very much 

above average falls in February 2003 (Figure 3.14) provided a very short relief until 

the return of another El Niño in May 2006 – January 2007, influencing most parts of 

Australia. The situation improved with a return to more favourable conditions in 

January 2007 – February 2008 with the onset of a La Niña, affecting most areas except 

central to southeastern Australia. This period was followed by a second short La Niña 

in August 2008 – April 2009, with the greatest impact across northern Australia while 

the southeast experienced very much below average rainfall. The May 2009 – March 

2010 El Niño was exceptionally dry over much of the continent resulting in the very 

severe “Red Dawn” dust storm on the 22nd – 25th October 2009 which made world 

headlines.  

The 2000 decade reported temperatures well above the long-term average (Figure 

3.14) and the trend appears to continue into the next decade with recent reports of 

February and March 2016 temperatures exceeding very much above average and 

highest on record mean daily minimum temperatures across all States and Territories 

(Bureau of Meteorology 2016). During 2000 – 2010, the eight NRM regions 

experienced between 51 – 62% of the time rainfall below the long-term average (Table 
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3.33) and between 68 – 79% of the time temperatures were above the long-term 

average (Table 3.34).  

The drought conditions which produced well below average rainfalls and above 

average temperatures for most of the decade resulting in a large dieback of vegetation 

cover and therefore increased the potential for wind erosion activity. The effect is 

particular noticeable in 2009 with 83 reported dust events (Table 3.32). The results 

show that the collated records in the HDED reflect the quantitative climate data for 

this period. 

Table 3.32: NRM wind erosion regions showing recorded dust events 2000 – 2010. 
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c)  Rainfall difference   Temperature difference 

 

 
Figure 3.14: Decadal maps (2000 – 2010) showing NRM regions with a) the number of noted dust 

events, b) the number of documented dust events in dust source areas, and c) the difference from the 

long-term average rainfall (mm) and temperature (ºC) data for the dust source areas. Figure continues 

over next page. 
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Figure 3.14: Decadal maps (2000 – 2010) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. Figure continues over next page. 
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Figure 3.14: Decadal maps (2000 – 2010) showing NRM regions with a) the number of noted 

dust events, b) the number of documented dust events in dust source areas, and c) the 

difference from the long-term average rainfall (mm) and temperature (ºC) data for the dust 

source areas. 

 

Table 3.33: The percentage of months when rainfall was below the long-term average in the 

NRM dust source regions during 2000 – 2010. 

2000 - 2010 13 17 26 32 40 42 46 47 

% of months below average 

Rainfall 
51 62 56 59 55 58 58 58 

 

Table 3.34: The percentage of months when temperatures were above the long-term average 

in the NRM dust source regions during 2000 – 2010. 

2000 - 2010 13 17 26 32 40 42 46 47 

% of months above average 

Temperature 
68 79 78 77 79 76 78 78 

 
The decadal rainfall and temperature history data as outlined in this Section indicates 

that the occurrence of dust storms and wind erosion events are closely linked to 

climatic conditions. In turn climate directly impacts on vegetation cover which is one 

of the key factors driving the frequency, intensity and spatial distribution of dust 
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events. The anecdotal dust event history database (HDED), covering more than 100 

years, describes the spatial and temporal distribution of wind erosion events but the 

data does not provide any information of the degree of vegetation cover which protects 

the soil surface from wind erosion.  
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 Climate Aridity Vegetation Index 

Vegetation cover is a key factor influencing the frequency, intensity and spatial 

distribution of wind erosion events (Shao 2008). In Section 3.2 it was shown that there 

is a strong link between wind erosion activity and climatic conditions. This chapter 

details the development of a new vegetation index as outlined in objectives two and 

three in Section 1.6. Section 4.1 outlines the rationale for the development of the 

Climate Aridity Vegetation Index (CAVI). Section 4.2 focuses on the development of 

a simple broad scale CAVI for Australia, based on rainfall and temperature data. To 

test the accuracy of the index a statistical comparison between CAVI and fractional 

cover data is provided in Section 4.3. The results are discussed in Section 4.4 and 

Section 4.5 investigates if reliable spatial and temporal vegetation cover maps can be 

produced based on the CAVI without modelling individual vegetation type responses, 

seasonality and land-use. 

Vegetation cover information can currently be estimated via satellite remote sensing 

data or vegetation-type modelling methods which also rely, to a large extent, on 

satellite data. The availability of remote sensing information is a fairly recent 

technology. For periods prior to the 1990, when no satellite records are available, there 

is currently no simple, broadly applicable modelling method or index to produce good 

representative estimates and spatial maps of vegetation cover levels during the spring 

– summer seasons in Australia. This includes any historical periods and any future 

forecasting. Vegetation cover information is useful in a wide range of applications and 

is of particular interest and value in areas of environmental, ecological and land-use 

modelling. Without remote sensed vegetation cover estimates (Malthus et al. 2013), 

integrated wind erosion modelling systems (Shao et al. 2007) cannot confidently be 

used to estimate wind erosion rates.  

 

4.1 Rational for the development of the Climate Aridity 

Vegetation Index… 

Satellite remote sensing data captures the combined effect of both climate and land 

management practices and records any alive or dead vegetation cover as viewed 

vertically from above. It can be used to estimate fractional vegetation cover, which 



94 

 

divides cover into three components: green or photosynthetic vegetation (fPV), non-

photosynthetic vegetation or stubble, senescent herbage, leaf litter and wood (fNPV) and 

bare soil/rock (fBS). Areas that have been burnt resulting in ash/blackened soil are 

considered as a bare soil cover type. The relationship between the three components is 

fPV + fNPV + fBS = 1 (Guerschman et al. 2009).  

As mentioned previously (Section 1.4) reliable satellite remote sensing data only 

became available in 1992, whereas the Australian Bureau of Meteorology (ABoM) 

started monitoring meteorological conditions across Australia in 1910. Gridded 

rainfall and temperature data are readily available from this time onwards. Rainfall 

(precipitation) and temperature (evaporation) provide an indication of soil moisture 

potentially available for plant growth. The Climate Aridity Vegetation Index (CAVI) 

developed in this research and discussed in this Chapter, is based on freely available 

rainfall and temperature data, and aims to predict broad-scale spatial variation in 

vegetation cover. Although the performance of the CAVI has been tested Australia 

wide and across all seasons (Pudmenzky, King & Butler 2015), the main area of 

interest and focus is on the performance within the typical wind erosion season through 

Spring and Summer (September to February) in arid to semi-arid areas were the 

landscape is most prone to wind erosion and dust transportation events (McTainsh & 

Boughton 1993; Strong et al. 2011). 

Fractional cover values derived from remote sensing data were used to validate the 

CAVI estimates. Although lateral (standing) vegetation cover would be preferred for 

wind erosion since vegetation height has an influence on the wind velocity profile 

(roughness height), shown in Figure 4.1 (Chepil & Woodruff 1963), currently there is 

no reliable, long-term records of lateral cover available (Chappell 2013). Fractional 

cover data was chosen over the Normalized Difference Vegetation Index (NDVI) 

(which is a measure of the greenness of vegetation and is also derived from 

spectrographic data) as it has been more extensively ground-truthed in Australia. 

Fractional cover data is used in climate and ecological research including regional and 

global carbon modelling, ecological assessment, agricultural monitoring and wind 

erosion research conducted by Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES) (Guerschman et al. 2012), Shao et al. (2007) and 

DustWatch (Gill, Heidenreich & Guerschman 2014).  
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Figure 4.1: Wind velocity profile and roughness height in the absence/presence of vegetation. 

Modified from Chepil and Woodruff (1963).  

 

Monthly remote sensed fractional cover data for both the photosynthetically active 

vegetation (green) fraction (fPV) and the bare soil fraction (fBS) (Guerschman et al. 

2009) were used to validate the performance of the CAVI in this study. The potential 

for wind erosion can be mitigated by total cover (fTC) where fTC = fPV + fNPV = 1 -  fBS. 

Since fPV is more dynamically responsive to changes in rainfall and temperature than 

fNPV, it therefore has the potential to be more strongly related to the CAVI. As the fBS 

indicates a soil surface without any vegetation cover and therefore highly susceptible 

to wind erosion, the fPV and fBS estimates represent the two extremes in the remote 

sensing colour spectrum and were used to help identify the fraction to which the CAVI 

is most closely correlated. 

 

4.2 Climate Aridity Vegetation Index Development  

The development of the CAVI is based on the De Martonne (1926) Aridity Index (AI). 

The AI is defined as a ratio of rainfall (mm) and corrected temperature (°C + 10) for 

temperatures greater than -9.9 °C for the target month. For months where there is no 

rainfall within a given month, this index fails (returns a zero value). As more than 78% 

of the Australian continent is classified as arid to semi-arid (Figure 1.3) many months 
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record zero rainfall and the AI generally performs unsatisfactorily. The AI provides a 

history snapshot but it does not give any details of how severe the dry period is. The 

longer the dry period, the less the cover. However, its simplicity and reliance on only 

rainfall and temperature data provided a template for development of an index 

appropriate to Australian conditions. 

In arid to semi-arid zones vegetation has evolved to survive long periods without 

rainfall. Consequently, vegetation cover is generally influenced by rainfall and 

temperature over several months leading up to the target month, rather than the rainfall 

and temperature of the target month itself (Klein & Roehrig 2006; Donohue, McVicar 

& Roderick 2009). Rainfall of the previous 12 months has an impact on soil moisture 

and vegetation. Therefore, the CAVI for a target month was developed to incorporate 

the preceding 12 months weighted rainfall and temperature to allow for a lag time 

between the occurrence of climatic conditions and an observable vegetation response. 

For example, the CAVI for July 2012 would be based on rainfall and temperature data 

from July 2011 (lowest weighting) to June 2012 (highest weighting). The CAVI is 

defined as follows: 
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where Pi is the total monthly rainfall (mm); Ti is the mean monthly maximum 

temperature (ºC); m is the target month; i is the ith contributing month preceding m; 

and the weighting wi is determined by: 
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where wf  is an additional weighting factor that influences the rate of change wi for each 

contributing month. 

When wf  = 1 the weighting wi decreases by a factor of 12 for each month preceding 

the target month. This acts to reduce the influence of rainfall and temperature in 

months most distant from the target month. When wf  < 1 the weighting wi (i.e. the 

influence of rainfall and temperature) decreases more quickly across the preceding 12 

months.  Initially, the wf  value was set to 1 and the performance of the CAVI assessed. 
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As these results showed potential, alternate values of wf were also investigated. The 

CAVI was calculated based on Equation (1) for all months from February 2000 to 

December 2012, for every grid point across the spatial domain of 110.00 to 155.00º E 

and -10.00 to -45.00º N and a spatial resolution of 5 km. 

 

The CAVI calculated in this way has no natural upper boundary. The maximum CAVI 

value recorded was 8.5. However, comparison of the CAVI values to remote sensed fPV 

showed that a CAVI of 1.5 was indicative of 100% green vegetation cover. Hence, the 

CAVI was restricted as follows: 

 

                                      
,  if   <  1.5, 

1.5,      if   1.5. 

CAVI CAVI
CAVI

CAVI


 


                                    (3) 

 

To enable direct comparison of the CAVI estimates with fPV and fBS percent values, the 

CAVI was then rescaled so that a maximum value of 1 was assumed as equivalent to 

100% green cover. The CAVI, in this simple form, includes no corrections for 

individual vegetation types, seasonality or land use (e.g. clearing, overgrazing). 

 

4.3 Statistical comparison 

A random selection of 1 500 grid points from the spatial domain was extracted from 

the fPV, fBS and CAVI grids. A linear regression analysis was performed to examine the 

relationship between the extracted remote sensed values and the CAVI values. The R2 

(coefficient of determination) was used to estimate the percentage variation in fPV or 

fBS values explained by the CAVI for all months between February 2000 and December 

2012. A strong relationship between CAVI estimates and remote sensed data indicated 

that the CAVI was successfully reproducing remote sensed ground cover. The results 

indicated that there was a stronger relationship between fPV values explained by the 

CAVI than there was for the fBS values (Figure 4.2). The CAVI predictions always 

performed better during the Spring and Summer months (September – February) 

within each year. Two exception to this were January 2002 & February 2003 and are 

marked with red ovals in Figure 4.2. Various reasons for this will be discussed further 

in Section 4.5.4. Based on these results further evaluation of the CAVI performance 

focused on the relationship between green fraction vegetation cover (fPV) and the CAVI 

estimates. The results for three exemplar months (November 2002, November 2005 
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and November 2009) are presented to demonstrate the overall performance. The month 

of November was selected as it falls within the spring-summer seasons when wind 

erosion events are most likely to occur. The three years, 2002, 2005 and 2009 were 

chosen as they provide examples of the CAVI performance under very different 

climatic conditions in the 12 months preceding the target month. The 

underperformance of the CAVI in some of the months within the wind erosion season 

(September – February) was also investigated.   

The percentage of grid points where the absolute difference between fPV and the CAVI 

values,  PVf CAVI , was within 0.1 was calculated (Note: that this is not a 0.1 

interval around the regression line). Points outside this interval were considered 

noteworthy over- or under-estimations of vegetation cover and were further explored. 

A 0.1 interval represents a maximum 10% over- or under-estimation in green fraction 

vegetation cover by the CAVI and was considered to be a tolerable difference.  

 

4.4 Results 

The overall performance of the CAVI as a predictor of vegetation cover was evaluated 

by graphing the R2 value derived from each regression analysis for all months between 

February 2000 and December 2012. The results indicated that 0.9 was the best 

performing weighting factor and will be discussed later in this Section. The plot of R2 

values based on the CAVI estimates using wf = 0.9 and all grid points is shown in 

Figure 4.2. Across the 155 months (February 2000 – December 2012) a similar pattern 

of performance was seen for the CAVI:fPV and the CAVI:fBS comparisons. The CAVI 

predictions always performed better during the Spring to Summer months (September 

– February) within each year, and during these months the CAVI consistently showed 

a stronger relationship with fPV than with fBS. The CAVI:fPV R2 values during the 

summer months were generally greater than 0.7 and as high as 0.81 in 2008 indicating 

that the CAVI explained approximately 70 – 81% of the variability in green vegetation 

cover (fPV) observed across the continent. The greater overall variance in the CAVI:fPV 

relationship (greater range in R2 values) also meant that during periods when the CAVI 

underperformed it tended to have a weaker relationship with fPV than with fBS but this 

only occurred on a few occasions and outside the wind erosion season. As particular 

interest was in the September – February period when wind erosion is most prevalent 
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in arid to semi-arid regions, further results presented here focus on the CAVI:fPV 

relationship. The performance of CAVI during the 2010/2011 extreme flood event is 

also considered. 

 

Figure 4.2: R2 values for fPV (blue ‘*’ symbol and solid line) and fBS (brown ‘x’ symbol 

and dashed line) with CAVI weighting wf  = 0.9 for all months from February 2000 –  

December 2012. (Pudmenzky, King & Butler 2015) 

 

Table 4.1 summarises the effect of changing the CAVI weighting factor (wf) from 1 to 

0.9 on the R2 values and on the percentage of points under- and over-estimating the fPV 

for the three exemplar months within a typical wind erosion season: November 2002, 

November 2005 and November 2009.  

When wf = 1, the R2 values ranged from 0.73 to 0.78 for all grid points and from 0.84 

to 0.90 within the PV  0.1f CAVI   interval. The number of grid points that met the 

PV  0.1f CAVI   interval criterion was promising in November 2002 (78.9%), but 

less promising in November 2005 (45.5%) and 2009 (52.5%). In all exemplar months, 

the percentage of grid points over-estimating vegetation cover far exceeded the 

percentage under-estimating. 

When the wf  = 0.9 weighting was applied, the R2 values for all grid points and for grid 

points within the PV  0.1f CAVI   interval remained similar to those found when 

applying a weighting of wf  = 1. However, the percentage of points falling within the 

0.1 interval increased, ranging from 55.9 – 81.5% (Table 4.1). The percentage of over-
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estimated points decreased notably compared to the wf = 1 results, while the percentage 

of under-estimated points only slightly increased. In November 2005, the worst 

performing exemplar month, the change in the wf resulted in a greater percentage of 

points falling within the 0.1 interval (55.9%) than outside it (44.1%).  

Table 4.1: Summary of results for November exemplar months with wf  = 1 and wf  = 0.9. 

(Pudmenzky, King & Butler 2015) 

Date wf 
N 

Points 

R2 of all 

Points 

Interval:  | fPV – CAVI | ≤ 0.1 

% 

Points 
R2 

% Points  

Over-estimated 

% Points  

Under-estimated 

2002 1.0 1150 0.7463 78.9 0.8417 17.3 3.8 

2002 0.9 1150 0.7381 81.5 0.8400 12.7 5.8 

2005 1.0 1146 0.7768 45.5 0.9040 52.4 2.1 

2005 0.9 1146 0.7705 55.9 0.9117 40.7 3.4 

2009 1.0 1149 0.7293 52.5 0.9008 46.0 1.5 

2009 0.9 1149 0.7344 60.0 0.8959 37.9 2.2 

 

The effect of changing the CAVI weighting factor to wf  values of 0.8 and 0.7 were also 

tested and results are shown in Table 4.2. When the wf  = 0.8 and 0.7 weighting was 

applied, the R2 values for all grid points and for grid points within the 

PV  0.1f CAVI   interval remained similar to those found when applying a 

weighting of wf  = 1 and 0.9. However, the percentage of points falling within the 0.1 

interval increased, ranging from 66.0 – 84.8%. The percentage of over-estimated 

points decreased compared to the wf = 1 and 0.9 results, while the percentage of under-

estimated points increased. Results of the analysis based on alternative wf  values of 

0.8 and 0.7 continued to decrease the number of over-estimating grid points, however 

the number of under-estimating points increased substantially, outweighing any 

advantage. For example, in November 2009, the worst performing exemplar month, 

the change in the wf  resulted in a decrease percentage of over-estimated points from 

30.4 – 4.9% but the number of under-estimating points increased substantially from 

3.7 – 22.0%. Further analysis presented focuses on wf  = 0.9 weighting. 

Table 4.2: Summary of results for November exemplar months with wf  = 0.8 and wf  = 0.7.  

Date wf 
N 

Points 

R2 of all 

Points 

Interval:  | fPV – CAVI | ≤ 0.1 

% 

Points 
R2 

% Points  

Over-estimated 

% Points  

Under-estimated 

2002 0.8 1150 0.7270 83.6 0.8366 8.3 8.1 

2002 0.7 1150 0.7148 84.8 0.8017 10.6 4.6 

2005 0.8 1146 0.7586 66.5 0.9010 27.9 5.6 

2005 0.7 1146 0.7429 71.9 0.8698 9.6 18.5 

2009 0.8 1149 0.7344 66.0 0.8873 30.4 3.7 
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2009 0.7 1149 0.7293 73.0 0.8679 4.9 22.0 

A visual comparison of the CAVI (wf  = 0.9) based vegetation coverage maps and those 

based on satellite remote sensed fPV can be seen in Figure 4.3. These maps indicate 

that the CAVI predictions broadly reflect the same spatial changes in the colour 

spectrum as suggested by the fPV vegetation cover maps. 

 

 

 

Figure 4.3: Comparison between fractional cover fPV maps (a, c, e) and the CAVI (b, d, f) with 

wf  = 0.9 maps. (Pudmenzky, King & Butler 2015). Figure continues over next page.  
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Figure 4.4: Comparison between fractional cover fPV maps (a, c, e) and the CAVI (b, d, f) with 

wf  = 0.9 maps. (Pudmenzky, King & Butler 2015) 

 

Figure 4.4 illustrates the relationship between fPV and the CAVI values for all grid 

points falling under, within and over the 0.1 interval. The slope of the regression lines 

for all grid points in Figures 4.4a, Figure 4.4c and Figure 4.4e ranged from 0.68 – 0.82. 

A slope of 1 would indicate a direct mapping of the CAVI to the fPV. Values of less 

than 1 reflect the general tendency of the CAVI to overestimate vegetation cover when 

compared to fPV estimates. Figures 4.4b, Figure 4.4d and Figure 4.4f display the spatial 

distribution of grid points and highlight that under and over estimations by the CAVI 

mostly occurred in coastal areas or areas outside the arid to semi-arid zone. 
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Figure 4.5: Regression analyses (a, c and e) showing the relationship between fPV and CAVI 

(wf  = 0.9) and corresponding CAVI spatial performance maps (b, d and f). On all figures, points 

within the 0.10 interval are shown with a green ‘o’, grid points over-estimating vegetation 

cover (below the interval) are shown with a red ‘+’ and grid points under-estimating vegetation 

cover (above the interval) are shown with red ‘x’. (Pudmenzky, King & Butler 2015) 
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January 2002 and February 2003 were the only months within the wind erosion session 

(September – February) were the CAVI did not perform as well as expected (Figure 

4.2). These months will be discussed in more detail in Section 4.5.4.  

 

4.5 Seasonal and regional performance of the CAVI 

Between 1997 and 2009 Australia was in the grip of the "Millennium drought", with 

below average rainfall for south-eastern Australia (South Eastern Australian Climate 

Initiative 2011). Areas of north-western NSW, south western QLD and north-eastern 

SA were particularly affected. Similar drought events are not uncommon in Australia 

and have been well documented in historical accounts since early settlement (Nicholls 

1988).  

The overall performance of the CAVI was very promising, particularly in arid to semi-

arid regions during the Spring to Summer wind erosion season. The CAVI estimates 

were used to create vegetation cover maps which accurately reproduced broad scale 

colour/vegetation cover changes seen in fPV maps such as those shown in Figure 4.2. 

However, the CAVI as currently specified was found to exhibit some temporal and 

spatial variability in its performance and utility. Two main factors have been 

considered when interpreting the CAVI performance: the effect of seasonality (time of 

year of the target and/or contributing months) and the effect of regionality (location of 

the target grid point). Both seasonality and regionality directly influence rainfall and 

temperature which in-turn affect vegetation growth and levels of cover.  

The CAVI showed a general tendency to overestimate green vegetation cover (fPV) 

(Table 4.1 and Figure 4.2), particularly in those regions outside the arid to semi-arid 

zone that receive more regular rainfall. The CAVI:fPV relationship was consistently 

stronger (higher R2 values) during the Spring to Summer (September to February) 

seasons when most plant growth occurs, and a consistently weaker (lower R2 values) 

during Autumn and Winter (March to August) seasons (Figure 4.2). 

These results indicate that the inclusion of the preceding 12 months rainfall and 

temperature data for the calculation of any target month the CAVI is, as hoped, 

effectively overcoming the problems encountered by the original AI (De Martonne 

1926) in areas where rainfall is generally low and infrequent i.e. within arid and semi-
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arid zones. However, where the AI had no lower threshold (and incorrectly estimated 

no vegetation cover if there were no rainfall in the single target month), the CAVI is 

currently assuming no upper threshold and is over-emphasising the influence of 

regular rainfall in the preceding 12 months. Over-estimation for many grid points was 

reduced when the weighting factor wf was set to wf  = 0.9 which more quickly reduced 

the contribution of each subsequent contributing month over the preceding 12 months 

(as shown for the three exemplar months in Table 4.1). This blanket approach, in 

effect, reduced the total amount of rainfall included in the calculation of the CAVI 

regardless of the season of the target month or the region of the target grid point. 

However, further reductions in the value of wf led to an undesired counter increase in 

the number of grid-points under–estimating vegetation cover (Table 4.2) and therefore 

this would be an ineffective method of further moderating the influence of rainfall in 

the CAVI calculation. 

Three November months in 2002, 2005 and 2009 were specifically chosen as exemplar 

months based on their differing climatic conditions across the spatial domain during 

the 12 months leading up to the target month. These differences may help to explain 

the current variability in the performance of the CAVI and suggest future work needed 

to improve the index while retaining its minimalist data requirements for calculation 

and broad scale applicability.  

4.5.1 November 2002 

Of the three exemplar months the CAVI generally performed best for November 2002. 

The R2 value between fPV and the CAVI grid points was 0.74 and approximately 82% 

of all grid points were within the 0.1 interval. Only 13% of grid points over-estimated 

and 6% under-estimated vegetation cover (Table 4.1; Figure 4.4a). The promising 

performance of the CAVI in this month may be driven by the low variability in rainfall 

that occurred during the 12 months of data included in the index calculations. 

Throughout 2002 – 2003, a weak to moderate El Niño developed and six months prior 

to November 2002 most of the continent was extremely dry with ‘very much below 

average’ rainfall (as defined by the ABoM) for most of QLD, NSW, VIC, north-eastern 

SA and parts of WA. These conditions occurred directly following several years of dry 

conditions. For a more detailed discussion see Section 3.2. This extreme dryness 

coincided with exceptionally warm conditions with maximum temperatures reaching 
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new records for the Autumn, Winter and Spring season, March – November (Bureau 

of Meteorology 2014). As a consequence, vegetation cover was extremely low in those 

areas that had recorded ‘very much below average’ rainfall (Figure 4.3a & Figure 

4.3b). 

Overall, due to these conditions, November 2002 represented the ‘driest’ of the 

exemplar months. The CAVI performed very well in the arid to semi-arid zones of the 

continent, with the vast majority of grid points falling within the 0.1 interval. The CAVI 

tendency for over-estimation of vegetation cover was confined to coastal areas of 

QLD, NSW, VIC and parts of WA that were less affected by reduced rainfall (Figure 

4.4b). The weighting of rainfall and temperature may, therefore, need to be adjusted 

for particular climatic regions if the CAVI were to be used for continent wide 

vegetation cover estimation. Figure 4.4b shows that the CAVI performed well in the 

primary area of interest, with the majority of grid points falling within the 0.1 interval 

across the arid and semi-arid regions of the continent.  

4.5.2 November 2005 

November 2005 was the worst performing exemplar month. The R2 value between fPV 

and the CAVI grid points was 0.77 and only 56% of all grid points were within the 0.1 

interval. A high percentage of grid points, 41%, over-estimated, while only 3% under-

estimated vegetation cover (Table 4.1; Figure 4.4c). The underperformance of the 

CAVI in some parts of the Australian continent in this month maybe explained by the 

vastly different climatic conditions influencing the index compared to those that 

occurred for November 2002. 

During the 2004 – 2005 period parts of WA, NT, SA and QLD received ‘below 

average’ to ‘very well below average’ rainfall due to a weak El Niño phase (Bureau of 

Meteorology 2014). However, halfway through 2005 ENSO Neutral conditions set in 

and most parts of the NT, NSW, parts of western QLD, SA and WA received ‘very 

much above average’ rainfall for the six months preceding November 2005. The 

‘above average’ rainfall that fell over a significant portion of Australia during this 

Spring season (September – November) included many areas within the arid to semi-

arid zone. The rainfall relieved the dry conditions that had dominated the first half of 

the year (Shein 2006) and led to an increase in actual green vegetation cover (fPV) 

(Figure 4.3c). However, in the CAVI calculation these high levels of rainfall resulted 
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in over-estimation of vegetation cover at a large number of grid points in areas of 

western QLD, NSW, north-eastern SA and along the coastline of WA (Figure 4.4d). 

Some of these regions are within the wind erosion zone and would affect the 

performance of the CAVI. 

These results, along with those related to November 2002, highlight that the CAVI 

performs better in regions of low rainfall and illustrates that problems of over-

estimation extend into arid and semi-arid areas when rainfall in the preceding months 

has been high in those regions. These results contrast those of De Martonne (1926), 

which performed well in regions, and during seasons, of regular rainfall (e.g. in the 

Mediterranean) and failed in areas and seasons of little to no rainfall. Climatic 

conditions like those experienced during the six months prior to November 2005 are 

regular, if not frequent, occurrences in Australia. As these conditions directly impacted 

the regions of primary interest in this study (i.e. arid to semi-arid zones), the sensitivity 

of the CAVI to high rainfall will need to be explored further. However, CAVI still 

provides a reasonable estimation for the purpose of this study in the absence of other 

information. 

4.5.3 November 2009 

In November 2009, the performance of the CAVI was intermediary between that of 

November 2002 and 2005. The R2 value between fPV and the CAVI grid points was 

0.73 and 60% of all grid points were within the 0.1 interval. A high percentage of grid 

points, 38%, over-estimated vegetation cover while only 2% under-estimated cover 

(Table 4.2; Figure 4.4e) for this target month. Although these values are similar to 

those of November 2005, the percentage of grid points for which the CAVI over-

estimated vegetation cover are relatively confined to coastal areas with only slight 

encroachment (few grid points) into arid and semi-arid areas (Figure 4.4f). Over-

estimation of vegetation cover using the CAVI primarily occurred in some parts of 

western QLD, western NSW and VIC, and along the coastline of WA (Figure 4.4f). 

The majority of these regions are either outside the main arid to semi-arid wind erosion 

zone, or are regions that only experience wind erosion in extreme conditions. 

The September 2009 ‘Red Dawn’ dust storm event was associated with a transition 

period between a La Niña and an El Niño event. A La Niña phase was in effect prior 

to mid-2009 which led to ‘very much above average’ to ‘highest on record’ rainfall in 
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areas of northern Australia including the NT, WA and QLD (Bureau of Meteorology 

2014). At the same time much of southern Australia was experiencing very dry 

conditions, with VIC and SA having 94% and 65% of their area recording ‘very much 

below average’ rainfall, respectively. As a result of the strong La Niña in northern 

Australia, sediment rich flood waters from the Cooper Creek, Diamantina and 

Georgina Rivers reached the Lake Eyre Basin in central Australia during May 2009 

(Arthur 2009). These sediment rich flood waters resulted in an increase in newly 

deposited sediments available for mobilisation and increased vegetation cover along 

the flood plains of these rivers across large areas of central Australia and the Lake Eyre 

Basin. However, in mid-2009 an El Niño started to affect Australia by reducing rainfall 

‘below’ to ‘very much below average’ for large areas of QLD, the NT and WA, eastern 

VIC and most parts of NSW. With a lack of follow up rain, vegetation died back and 

actual green vegetation cover was drastically reduced (Figure 4.3e).  

The pattern of rainfall seen in this month was, in part, the reverse of that observed in 

November 2005 which was preceded by six months of dry conditions followed by six 

months of high rainfall directly prior to the target month. In contrast, November 2009 

was preceded by six months of high rainfall in northern Australia followed by six 

months of very dry conditions immediately prior to the target month. As both of these 

exemplar months performed less promisingly than November 2002 this suggests that 

it is the distribution of rainfall across the whole 12 months that is influencing the over-

estimations of the CAVI. However, given that 2009 performed better than 2005 this 

further suggests that the immediately preceding six months may be more influential 

than the earlier six months.  

4.5.4  January 2002 and February 2003 

The Time Series of R2 values for the CAVI:fPV and the CAVI:fBS comparisons shows a 

periodic pattern with an annual cycle for the period from February 2000 to December 

2012 (Figure 4.2). The R2 values for January 2002 and February 2003 for the CAVI:fPV 

(green cover) and the CAVI:fBS (bare soil) are unusually low for a typical wind erosion 

season (September to February) compared to other years in this time series. The 

January 2002 values were fPV = 0.41, fBS = 0.33 and fPV = 0.40, fBS = 0.32 for February 

2003. Whereas the fPV and fBS values two months before and after January 2002 and 

February 2003 were considerably higher (Figure 4.2). A sudden drop occurred in 

January 2002 and February 2003. A visual comparison of the CAVI (wf  = 0.9) based 
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vegetation cover maps and those based on satellite remote sensed fPV can be seen in 

Figure 4.5. This visual comparison indicate that the CAVI broadly predicts similar 

spatial pattern in the colour spectrum as suggested by the fPV vegetation cover maps. 

However, some areas on the CAVI maps show an overestimation of vegetation cover 

which is reflected in the lower R2 values for those months.  

 

 

Figure 4.6: Comparison between fractional cover fPV maps (a, c) and the CAVI (b, d) with      

wf  = 0.9 maps. 

The relationship between fPV and CAVI values for all grid points falling under, within 

and over the 0.1 interval for February 2002 and January 2003 is shown in Figure 4.6. 

The slope of the regression lines for all grid points in Figures 4.6a, and Figure 4.6c are 

0.54 and 0.46 respectively. The spatial distribution of grid points is displayed in 

Figures 4.6b and Figure 4.6d. Points falling within the 0.1 interval are shown with a 

green ‘o’, grid points over-estimating vegetation cover (below the interval) are shown 
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with a red ‘+’ and grid points under-estimating vegetation cover (above the interval) 

are shown with red ‘x’. CAVI over-estimated (red ‘+’) vegetation cover in arid and 

semi-arid areas during January 2002 (Figure 4.6b) whereas in February 2003, CAVI 

under and over-estimated vegetation cover mostly in coastal areas or areas outside the 

arid to semi-arid zone (Figure 4.6d). 

 

 

Figure 4.7: Regression analyses (a and c) showing the relationship between fPV and CAVI  

(wf  = 0.9) and corresponding CAVI spatial performance maps (b and d). On all figures, points 

within the 0.10 interval are shown with a green ‘o’, grid points over-estimating vegetation 

cover (below the interval) are shown with a red ‘+’ and grid points under-estimating vegetation 

cover (above the interval) are shown with red ‘x’. 

 

The overestimation of vegetation cover in January 2002 can be linked in one part to 

the above average rainfall activity in some areas (e. g. the Northern Territory Arid 
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Centre and South Australian Arid Lands NRM regions) a few months before January 

2002 (Section 3.2, Figure 3.14) but also to the fact that in the months leading up to 

January 2002 and February 2003, Australia experienced a long continuous period of 

very much below average rainfall and higher than average temperatures (Section 3.2, 

Figure 3.14). This resulted in an extremely large number of bushfires. The Rapid 

Response fire maps produced from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data captured on board the Terra (launched 1999) and 

Aqua (launched 2002) satellites provide evidence of the scale of bushfires during the 

months prior to January 2002 and February 2003 (Figure 4.7a & Figure 4.7b). MODIS 

has the capability to detect “hotspots” instantly whereas 10-day bushfire products (e.g. 

maps) have been post-processed. (Giglio et al. 2003; Davies, Kumar & Desclorites 

2004). During bushfires any vegetation cover was removed and this effect was 

captured in the fPV and fBS values. The CAVI estimates based only on rainfall and 

temperature data did not incorporate the effects of fires and therefore overestimated 

vegetation cover at these times. This explains the lower values in both green cover and 

bare soil data in January 2002 (fPV = 0.41, fBS = 0.33) and February 2003 (fPV = 0.40, 

fBS = 0.32) and that large areas of the continent were covered with non-photosynthetic 

dead vegetation (fNPV). These land areas affected by bush fires often have been stripped 

of their protective vegetation cover and can potentially become sources of dust (Strong 

et al. 2010). This is a process that is random in nature and difficult to capture. However, 

this issue needs to be further explored. 

 

 

Figure 4.8: Rapid Response Fire maps (a) 27 Nov – 6 Dec 2001 and (b) 7 Nov – 16 Nov 2002. 

(Giglio et al. 2003; Davies, Kumar & Desclorites 2004) 
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4.5.5 January 2011 flood 

The performance of the CAVI was also tested during severe wet conditions. A strong 

La Niña resulting in widespread severe flooding between September 2010 and March 

2011. The continent experienced well above average rainfall and below average 

temperatures during the months leading up to January 2011 (Section 3.2, Figure 3.14). 

During the 2010/2011 flood CAVI showed a strong relationship with fPV and fBS (Figure 

4.2). The January 2011 CAVI:fPV R2 value was 0.72 and 0.65 for CAVI:fBS. A visual 

comparison of the CAVI (wf  = 0.9) based vegetation cover map and satellite remote 

sensed fPV map can be seen in Figure 4.8 and indicates that the CAVI generally 

overestimated vegetation cover in this month during the flooding season. The 

overestimation of vegetation cover can be expected since the CAVI is based on 12 

months weighted rainfall with the months closer to the target month influencing the 

CAVI more due to the intense rainfall leading up to January 2011.  

 

Figure 4.9: Comparison between fractional cover fPV map (a) and the CAVI (b) with  

wf  = 0.9 map. 

 

The overall results of the CAVI indicate that the extension of De Martonne’s Aridity 

Index to include 12 months weighted rainfall and temperature data to model vegetation 

cover on a broad geographical scale has been positive. This particularly applies to the 

arid to semi-arid regions of Australia which have generally lower annual rainfall and 

experience higher temperatures during the Spring - Summer months which coincides 

with the wind erosion season. The CAVI is a particularly good estimation of vegetation 

cover during the Spring - Summer season. The CAVI in the current development stage 
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has the tendency to over emphasise the relationships between rainfall, temperature and 

vegetation/green cover. A limiting or threshold factor that constrains the influence of 

extended periods of rainfall and which is applied with a degree of seasonal and regional 

variability in its moderating effect may be needed to improve overall performance and 

extend the application of the CAVI. The inclusion of a correction for different types of 

vegetation cover across Australia may also improve the overall performance of the 

CAVI. These improvements are considered and are part of further research.  

The prediction of future conditions, using rainfall and temperature data to calculate the 

CAVI, will facilitate the development of seasonal forecasts and providing an additional 

planning tool for environmental, ecological and land-use agencies. The development 

of a workable index allows for the modelling of vegetation cover where rainfall and 

temperature data is available but satellite data is not. Of particular interest is the 1940 

and 1960 period which were active dust storm seasons (Chapter 2, Figure 2.2). The 

CAVI is next tested in the Computational Environmental Management System 

(CEMSYS) wind erosion model which calculates the extent and severity of wind 

erosion across Australia. The index has been used as a surrogate for the Fractional 

Cover vegetation component of the GIS model component of CEMSYS which is 

discussed in Chapter 5.   
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 Wind Erosion Modelling using CAVI 

In Australia, wind erosion monitoring occurs at a variety of spatial and temporal scales 

as discussed in Section 1.4. The Computational Environmental Management System 

(CEMSYS) is an integrated processed-based physical wind erosion model that can be 

used to estimate the extent and severity of wind erosion across the Australian 

continent. This chapter addresses the fourth key research objective as outlined in 

Section 1.6. The aim is to investigate if CAVI estimates of vegetation cover can be 

successfully used as a surrogate for remote sensed vegetation cover in CEMSYS, and 

thus extend the utility of the CEMSYS model to periods where no satellite remote 

sensing data is available. Section 5.1 provides an overview of the individual 

components of the CEMSYS model. In Section 5.2 CEMSYS estimated dust loads 

based on CAVI and photosynthetically active fractional cover (fPV) are compared for 

two dust storm events. The results of this comparison are discussed in Section 5.2.1. 

Section 5.2.2 focuses on the modelling of known historical wind erosion periods using 

CAVI, identified in Chapter 3 where rainfall and temperature data is available but 

satellite based vegetation data is not readily available. 

 

5.1 The Computational Environmental Management System 

model  

The Computational Environmental Management System (CEMSYS) is a physically 

based process model of wind erosion which can be used to quantify the extent of source 

areas, and magnitude of dust storms events as mentioned in Section 1.4. As illustrated 

in Figure 5.1, CEMSYS couples an atmospheric model, a land surface scheme, a wind 

erosion scheme, a transport and deposition scheme, and a Geographic Information 

System (GIS) database, for the modelling of dust storm events. The atmospheric model 

includes the treatments for atmospheric dynamic and physical processes, including 

radiation, clouds, advection, convection, turbulent diffusion, and the atmospheric 

boundary layer (Leslie & Wightwick 1995). The atmospheric model interacts with the 

other three system components. The land surface model simulates energy, momentum, 

and mass exchanges between the atmosphere, soil, and vegetation and produces 

friction velocity and soil moisture as outputs. The wind erosion scheme obtains friction 

velocity from the atmospheric model, soil moisture from the land surface scheme and 
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other spatially distributed parameters such as vegetation and soil texture data from the 

GIS database. To predict dust movement, the transport and deposition scheme obtains 

wind fields, turbulent diffusivities and precipitation from the atmospheric model, and 

dust emission rate and particle size information from the wind erosion scheme. Using 

CEMSYS it is possible to model dust storm events and identify the regions of dust 

emission and deposition, estimate the strengths of the dust sources and sinks, simulate 

dust plume size and transport pathways, and gain a better understanding of the climate 

systems that generate these dust storms (Butler et al. 2007; Leys et al. 2010; Gabric et 

al. 2015). The model produces maps, time series and statistics for the following wind 

erosion variables: 

 Sand flux (erosion rate), 

 Dust flux (dust emission), 

 Deposition, 

 Net soil loss, 

 Dust load, and 

 Dust concentration. 

 

 

Figure 5.1: The structure of the integrated wind erosion modelling system. The system 

consists of an atmospheric model, a land surface scheme, a wind erosion scheme, a transport 

and deposition scheme and a GIS database. 
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5.2 Using CAVI as a surrogate for Fractional Cover in the 

CEMSYS model … 

This section is divided into two parts. Section 5.2.1, the feasibility of using CAVI as a 

surrogate for vegetation cover in the CEMSYS model is tested by running CEMSYS 

with both fPV and CAVI vegetation cover input data and comparing the results. In 

Section 5.2.2, CAVI vegetation cover input data together with historical atmospheric 

data is used to model historical dust event periods. This has previously never been 

possible since satellite derived fPV vegetation cover does not date back past 2000. 

 

5.2.1 Validation of CAVI as a surrogate for fPV in wind erosion modelling 

In this research, CEMSYS has been used to model wind erosion events over the 

Australian continent at 50 km scale resolution in hourly time steps over the domain 

(110.00º to 155.00° E and -10.00º to -45.00° N). The test period of the CAVI is 

restricted from February 2000 – December 2012 since reliable satellite derived 

monthly photosynthetically active fractional vegetation cover (fPV) data only became 

available from the CSIRO from February 2000. A ‘proof of concept’ approach was 

chosen to test if CAVI estimates of vegetation cover can produce similar daily dust 

load maps as fPV. The CEMSYS model was run with fPV and CAVI vegetation cover 

input data for the two large scale dust storm events in this period (September 2009 and 

October 2002). These two months had particularly active wind erosion season which 

were reported by the ABoM, NOAA and other agencies, and have been extensively 

covered and discussed in the literature and media. Every individual day in September 

2009 and October 2002 was modelled in CEMSYS with both vegetation covers. The 

results for the dust storm events on the 22nd – 25th September 2009 and 22nd – 25th 

October 2002 based on CAVI and fPV vegetation covers were compared in regards to 

the areas which were eroded and the amount of dust removed as a result of wind 

erosion. The setup of the modelling runs are shown in Figure 5.2.  
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Figure 5.2: CEMSYS modelling setup to test the performance of CAVI. 

 

The CEMSYS model has been extensively tested with remote sensing data (fPV) and is 

known to perform well (Leys et al. 2011a). In order to establish a base line as a 

comparison for the performance of CAVI, September 2009 was modelled using fPV data 

to represent the vegetation cover in the model together with the September 2009 

atmospheric input data (Figure 5.2). The September 2009 model runs were then 

repeated but fPV was replaced with the September 2009 CAVI estimates of vegetation 

cover information. The same modelling setup was used to test the performance of 

CAVI for October 2002 as outlined in Figure 5.2. All available wind erosion properties 

mentioned in Section 5.1 were calculated but only the average daily dust load results 

are reported here.   

The satellite derived fPV vegetation map for September 2009 (Figure 5.3a) shows the 

severity of the ‘Millennium’ drought. Eastern Australia, in particular the lower Lake 

Eyre Basin, north west NSW, the Channel Country in QLD, parts of the NT and WA 

were severely affected by a long lasting drought with well below average rainfall and 

higher than average temperatures (Leys et al. 2011b). These areas are shaded in light 

to dark brown colours in Figure 5.3a & 5.3b. Between May 2009 – March 2010 (Figure 

3.3), Australia was under the influence of an exceptionally dry El Niño which affected 

much of the continent. During these dry conditions  the very severe ‘Red Dawn’ dust 

storm occurred on the 22 – 25 September 2009 (Leys et al. 2011b). The climatic 

conditions associated with the dust storm event have been discussed in Section 3.2. 

The CAVI based vegetation cover map for the same month (Figure 5.3b) shows a very 

similar spatial distribution of vegetation and broadly reflects the same spatial changes 

as suggested by the fPV vegetation cover map. 
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a) September 2009 fPV fractional cover map b) September 2009 CAVI map 

Figure 5.3: Comparison between fPV map (a) and CAVI map (b) of September 2009. 

 

Starting on 22nd – 23rd September 2009 and 25th September 2009, were some of the 

most severe dust storm events Australia experienced since the 1940s (Leys et al. 

2011b). To compare the dust load estimate of the event, the three days have been 

modelled with fPV and CAVI vegetation cover. The average daily dust load results of 

fPV and CAVI are compared and shown in Figure 5.4a – Figure 5.4f. The difference of 

the maximum daily average dust load produced with CAVI vegetation cover is 

compared to the fPV maximum daily average dust load and listed in Table 5.1.  

 

Figure 5.4a – 5.4f: Spatial distribution of the dust plume across the continent for 22nd – 23rd 

September and 25th September 2009 based on fPV and CAVI, and the difference of the 

maximum daily average dust load produced with CAVI vegetation cover compared to the fPV 

maximum daily average dust load. Figure continues over next page. 
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Figure 5.5a – 5.4f: Spatial distribution of the dust plume across the continent for 22nd – 23rd 

September and 25th September 2009 based on fPV and CAVI, and the difference of the 

maximum daily average dust load produced with CAVI vegetation cover compared to the fPV 

maximum daily average dust load.  

Table 5.1: Maximum daily average dust load comparison between September 2009 fPV and 

September 2009 CAVI, and the percentage of dust produced with CAVI vegetation cover 

compared to the fPV dust load. 

Day 
Sep 2009 

fPV  

Sep 2009 

CAVI  

CAVI dust 

in % to fPV  

22nd 687 mg/m2 401 mg/m2 59% 

23rd   70 mg/m2   45 mg/m2 64% 

25th 399 mg/m2 175 mg/m2 44% 

 

Previous research has identified the red sandplains of western NSW, riverine channels 

and lakes of the lower Lake Eyre Basin and the Channel Country of western QLD as 

the dust source areas for the September 2009 ‘Red Dawn’ event (DustWatch 2011a; 
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Leys et al. 2011b). The dust load maps from the CEMSYS results using fPV shown in 

Figures 5.4a indicate that the dust storm started in the Lake Eyre Basin. The peak of 

the storm occurred on the 22nd September 2009 which was also reflected in the high 

maximum daily average dust load of 682 mg/m2 (Table 5.1). This was followed by a 

less active day on the 23rd September 2009 (Figure 5.4c) with a reduced dust load of 

70 mg/m2 (Table 5.1). An increase in dust storm activity can be observed in Figure 

5.4e when the maximum daily average dust load increased to 399 mg/m2 on the 25th 

September 2009 (Table 5.1). O'Loingsigh et al. (2015) also reported that the peak of 

the ‘Red Dawn’ event occurred in the late afternoon and evening of 22nd September 

2009. The study was based on a time integrated approach and observed data, where 

the dust flux is calculated through a distance perpendicular to the wind direction each 

hour for 24 hrs to calculate the dust concentration. 

The dust load modelling results based on CAVI for 22nd – 23rd September 2009 and 

25th September 2009 are shown in Figure 5.4b, 5.4d, 5.4f and Table 5.1. The estimated 

maximum daily average dust load for the most active day during the ‘Red Dawn’ event 

was calculated to have reached 401 mg/m2 on the 22nd September 2009 (Figure 5.4b). 

This is 58% of the fPV maximum daily average dust load for the same day (Table 5.1). 

On the 23rd September 2009, the dust plume had advanced further eastwards and 

started to move off the coast and the maximum daily average dust load was reduced to 

45 mg/m2, 64% of fPV (Figure 5.4d & Table 5.1). By the 25th September 2009, the dust 

storm had intensified again resulting in an increase in maximum daily average dust 

load to 175 mg/m2 which is 44% of the fPV maximum daily average dust load (Figure 

5.4f & Table 5.1).  

The dust load maps based on CAVI as a replacement of fPV produced similar spatial 

distributions of the dust plume for the active days but was different on the 23rd 

September 2009 (Figure 5.4a – 5.4f). The two models indicate that soil was eroded 

from approximately the same locations (spatial distribution) but at lower concentration 

levels. The difference in dust load concentration is to be expected since both fPV and 

CAVI are not a direct measure of the vegetation cover. The CAVI based dust estimates 

for the three dust storm days in September 2009 ranged between 44 – 64% of the dust 

load predicted when using fPV estimates of vegetation cover (Table 5.1). The 

underestimated dust loads were expected due to the weaker correlation (R2 = 0.45) of 

CAVI with fPV vegetation cover during September 2009 (Figure 4.2). This indicates 
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that CAVI is over-estimating vegetation cover. The CAVI with fPV correlation tends to 

be weaker during the first month of the wind erosion season (September – February). 

In the months leading up to the September dust storm event, Australia experienced 

above average rainfall in some parts of the continent due to a La Niña which finished 

in mid-2009. Since CAVI is based on weighted rainfall and temperatures data the index 

over-estimated vegetation cover. The correlation between CAVI and fPV over the period 

2000 – 2012 has been discussed in detail in Section 4.5.  

The difference in dust load concentration levels can also be the result of a number 

factors. Firstly, the CAVI as currently being defined exhibits some temporal and spatial 

variability in its performance and effectiveness. The index performs particularly well 

in arid to semi-arid regions of Australia which have generally lower rainfall levels all 

year and experience high temperatures during the wind erosion season (Spring – 

Summer) but underperforms in the autumn and winter months. Both seasonality and 

regionality directly influence rainfall and temperature which in-turn affect vegetation 

growth and levels of cover. The CAVI as it has been used in this study does not include 

any corrections for individual vegetation types, seasonality or land use. The CAVI has 

a general tendency to overestimate green vegetation cover (Pudmenzky, King & Butler 

2015), particularly in those regions outside the arid to semi-arid zone that receive more 

regular rainfall.  

The second factor to consider is that satellite derived vegetation indices have certain 

limitations in arid to semi-arid regions due to their low sensitivity to low vegetation 

cover (Wu 2014). The fPV index was first developed by Guerschman et al. (2009) based 

on MODIS satellite reflectance information to monitor the northern tropical savanna 

region in the Northern Territory and was proposed to be used across Australia (Stewart 

et al. 2009). However, the Australian continent encompasses a great diversity of 

climate, soils, and vegetation types other than the northern savanna (Government of 

South Australia 2007; Lawley, Lewis & Ostendorf 2015). It has been established that 

fractional cover data derived from satellite data has a tendency to underestimate non-

photosynthetic vegetation and overestimate bare soil (Guerschman et al. 2012). 

Considering these two facts, it is likely that fPV based CEMSYS results overestimate 

(Leys et al. 2011a) the amount of eroded soil in arid and semi-arid areas and the CAVI 

overestimates vegetation cover in these regions.  
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Thirdly, possible sources of modelling/computational errors also needs to be taken into 

account. Wind erosion models are only approximations to a set of complex processes. 

Even if these processes were accurately represented in the models, model simulations 

may still deviate from reality due to inaccuracies in initial conditions and errors in 

model parameters and forcing data, and the propagation of errors during the modelling 

process. This can occur because the models are non-linear and sensitive to minute 

changes in initial conditions and parameters (Shao 2008). In summary, it is likely that 

errors may arise from modelled and observed data and therefore the results are difficult 

to compare (Steyn & McKendry 1988).  

Considering the three possible ‘errors sources’ mentioned in the paragraphs above it 

can be expected that each approach to ascertain the impact of wind erosion has its own 

weaknesses. The September 2009 results are spatially similar but with a lower 

intensity. The results obtained based on fPV, the CAVI and the CEMSYS model provide 

useful estimates of the wind erosion activity in Australia. However, the intensity levels 

each of these models produce needs to be used with caution. 

Following the encouraging results of September 2009, similar comparison tests of fPV 

versus the CAVI were performed for October 2002, which was in the middle of the 

Millennium drought and also had a severe dust storm event. Between March 2002 – 

January 2003 (Figure 3.3), a strong El Niño affected the entire continent. In the six 

months leading up the event, Australia was under the influence of a severe drought 

with below average rainfall and above maximum temperatures (Figure 3.14). The 

climatic conditions are described in more detail in Section 3.2. The satellite based fPV 

vegetation map for October 2002 (Figure 5.5a) illustrates the impact of the drought in 

QLD, NSW, SA, and parts of VIC and WA. The corresponding CAVI vegetation map 

(Figure 5.5b) based on weighted rainfall and temperature for October 2002 repeats the 

same trend and indicated these areas had minimal vegetation cover. 
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Figure 5.6: Comparison between f
PV

 map (a) and CAVI map (b) of October 2002. 

 

The dust storm in October 2002 covered most parts of eastern Australia and lasted 

from the 22nd – 23rd October 2002 and 25th October 2002. The dust source areas were 

the southern parts of SA, the grazing lands of north-western NSW, the farm lands in 

western NSW, and the Channel Country in western QLD (McTainsh et al. 2005; Shao 

et al. 2007; DustWatch 2011b). The daily average dust load modelling results using 

fPV as vegetation cover information are shown in Figure 5.6a, 5.6c, 5.6e and Table 5.2. 

The peak of the dust storm occurred on the 22nd and 23rd October 2002. The 22nd 

October 2002 saw the onset of the event and the modelling results based on fPV 

vegetation cover estimated a maximum daily average dust load of 160 mg/m2 (Figure 

5.6a & Table 5.2). On the 23rd October 2002 the dust plume had moved in north 

easterly direction and the modelling results showed a small increase in maximum daily 

average dust load to 177 mg/m2 (Figure 5.6c & Table 5.2). The dust storm activity was 

very much reduced on the 24th October 2002 but pick up again on the 25th October 

2002 with a maximum daily average dust load of 98 mg/m2 (Figure 5.6e & Table 5.2). 

The modelling results are comparable to Shao et al. (2007) study. 

The same dust event was modelled with CAVI vegetation cover data as a replacement 

for fPV and results are shown in Figure 5.6b, 5.6d, 5.6f and Table 5.2. The progression 

of the dust plume based on CAVI follows the same trend as the fPV. The image in Figure 

5.6b, based on the CAVI for 22nd October 2002 looks nearly identical to the image 

based on the fPV and also includes a very similar maximum daily average dust 

concentration level of 145 mg/m2 which is 91% of the fPV maximum daily average dust 

load (Table 5.2). On the 23rd October 2002, the maximum daily average dust load 
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increased to 189 mg/m2 which is 108% of the fPV maximum daily average dust load 

(Table 5.2). The same ‘butterfly’ shaped dust plume can be observed in Figure 5.6c 

based on fPV as in Figure 5.6d based on the CAVI but the dust concentration was not as 

high in the left part of the CAVI ‘wing’ over central Australia. The dust activity 

decreased considerably on the 24th October 2002 but intensified again on the 25th 

October 2002 reaching a maximum level of 86 mg/m2 which is 86% of the fPV 

maximum daily average dust load predicted for the day (Figure 5.6f & Table 5.2).  

 

 

 
Figure 5.7: Spatial distribution of the dust plume across the continent for 22nd – 23rd October 

and 25th October 2002 based on fPV and CAVI, and the difference of the maximum daily 

average dust load produced with CAVI vegetation cover compared to the fPV maximum daily 

average dust load. Figure continues over next page. 
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Figure 5.8: Spatial distribution of the dust plume across the continent for 22nd – 23rd October 

and 25th October 2002 based on fPV and CAVI, and the difference of the maximum daily 

average dust load produced with CAVI vegetation cover compared to the fPV maximum daily 

average dust load. 

 

Table 5.2: Maximum daily average dust load comparison between October 2002 fPV and 

October 2002 CAVI, and the percentage of dust produced with CAVI vegetation cover 

compared to the fPV dust load. 

Day 
Oct 2002 

fPV  

Oct 2002 

CAVI  

CAVI dust 

in % to fPV  

22nd 160 mg/m2  145 mg/m2   91% 

23rd 177 mg/m2  189 mg/m2 107% 

25th   98 mg/m2   86 mg/m2   88% 

 

Both the fPV and CAVI based CEMSYS modelling results show similar spatial patterns 

of wind erosion. The October 2002 fPV and CAVI based dust concentrations estimates 

are relatively comparable over the three modelled days (Figure 5.6a – 5.6f). Overall, 

CAVI performed very well in October 2002 with maximum daily average dust load 

estimates ranging from 88 – 107% compared to fPV estimates. The very good 

performance of CAVI in the CEMSYS model is linked to the strong correlation to fPV 

(R2 = 0.72) vegetation cover in October 2002, whereas September 2009 had a weaker 

correlation to fPV. The good performance of the CAVI in this month is related to the 

low variability in rainfall that occurred during the 12 months prior. The correlation 

between CAVI and fPV vegetation cover is discussed in more detail in Section 4.4 and 

shown in Figure 4.2.  

v     
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5.2.2 Applying historical atmospherics together with CAVI to historic dust 

storm periods 

Since the use of CAVI as a surrogate for fPV in September 2009 and October 2002 

CEMSYS modelling results were encouraging (although with some caveats relating to 

the performance of the index) the focus of Section 5.2.2 is to apply historical 

atmospheric conditions together with the CAVI vegetation cover to model historic dust 

storm periods. The experimental setup is shown in in Figure 5.7. 

 

Figure 5.9: Modelling of historical dust storm events in November 1965 with CAVI vegetation 

cover. 

 

Climate is the dominate driver of wind erosion as discussed in Section 1.1, but land 

management can either moderate or accelerate wind erosion rates. The 1940s, 1960s 

and 2000s experienced extreme drought conditions with an increase in wind erosion 

activity and large dust storms. The question remains to whether the 1940s and 1960s 

experienced more or less wind erosion activity than the 2000s, and whether human 

activities, such as the land clearing, cultivation practices, stocking (both domestic and 

feral), overgrazing and the activities during WWII may have played a role. Earlier 

work based on the HDED suggets that since the early 1900s the same source areas 

have been active and that during the 1960s simular areas have been active as noted by 

DustWatch (2011c). With the development of the CAVI it is now possible to model 

any time period of interest including the 1940s and 1960s. From previous reports 

(DustWatch 2011c) and collated records in the HDED (Chapter 2) it was known that 

November 1965 was extremly dry and experienced a number of dust storm events. To 

develop a better understanding whether land management practices have contributed 

to the increase in dust storm activity, November 1965 has been modelled with the use 

of CAVI. Since CAVI assumes current land management practices, the model results 

will provide an idea of what dust events should be like. November 1944 was also a 

month of interest but as mentioned previously in Section 2.4, NCEP/NCAR Reanalysis 

data, which feeds into CEMSYS model, has a global grid size resolution of 2.5 degree 

but only started in 1948. Any years prior to 1948 need to be modelled with a 2.0 degree 
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resolution data set and that requires the modification of some CEMSYS codes which 

was outside the scope of this study but is planned for the near future.  

Beginning in 1958, Australia experienced 10 years of drought, which was extremely 

widespread and severe, covering central Australia and vast areas of adjacent QLD, SA, 

WA, NSW, and northern Australia. Prior to the large dust storm event in November 

1965, Australia was under the influence of an El Niño with very much below average 

rainfall and above average temperatures. The five NRM regions received 53 – 72% of 

the time below the long-term average rainfall (Table 3.21) and temperatures were 

between 37 – 50% of the months above the long-term average (Table 3.22). As a 

consequence vegetation cover was reduced leaving the soil surface exposed. The 

climatic conditions for this period have been discussed in more detail in Setion 3.2. 

The November 1965 CAVI based vegetation cover maps in Figure 5.8 illustrations the 

severity of the drought with large areas of Australia exhibiting minimal vegetation 

cover as a consequence of very much below average rainfall. 

 

                                     Figure 5.10: CAVI map of November 1965. 

 

During November 1965, a number of severe dust storms occurred across Australia but 

until now it has not been possible to model the impact of these events or the areas 

affected. One of these dust storms has been documented in the DustWatch (2011c) 

report, which is based on ABoM visibility data. The dust storm event started on the 

23rd November 1965. Wind speeds associated with the pre frontal northerlies entrained 

dust from the Lake Eyre region, Strzelecki Lakes in SA, and the central NSW and 

transported the dust towards the central coast. As the low and front moved eastward, 
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the post frontal southerlies entrained dust in western QLD, north western NSW and 

NT. The orientation of the cold front also resulted in a strong southerly wind, moving 

the dust northwards towards the Gulf of Carpentaria.  

The days from the 22nd – 25th November 1965 were modelled with CAVI vegetation 

cover and November 1965 atmospheric data and the maximum daily average dust load 

results are summarised in Table 5.3. These days have been selected since the Historical 

Dust Event (HDE) database showed an increased number of dust storm recordings on 

the 22nd – 25th November 1965. The model run on the 22nd November 1965 produced 

a low maximum daily average dust load of 19 mg/m2 (Table 5.3) with minimal erosion. 

On the 23rd November the estimated dust loads reached 57 mg/m2 (Table 5.3). On the 

24th November 1965 the dust storm activity increased which was also reported in 

DustWatch (2011c), reaching a maximum daily average dust load of 145 mg/m2. The 

Lake Eyre Basin in SA, central parts of NSW, the Channel Country in western QLD, 

and areas in the NT and WA were affected (Figure 5.9a & Table 5.3). The same pattern 

has been reported in DustWatch (2011c) which is based on visibility data from the 

ABoM. By the 25th November 1965, the dust plume had moved eastwards (DustWatch 

2011c) and started to move offshore. The modelled maximum daily average dust load 

estimate reached 122 mg/m2 (Table 5.3) and Figure 5.9b confirms the location of the 

dust plume.  

 
Table 5.3: CAVI based modelled maximum daily average dust load estimates for dust storm 

days in November 1965. 

Day 
Nov 1965 

CAVI  

  1st     82 mg/m2 

  9th   103 mg/m2 

10th   103 mg/m2 

11th   199 mg/m2 

16th   124 mg/m2 

17th   132 mg/m2 

22nd    19 mg/m2 

23rd    57 mg/m2 

24th   145 mg/m2 

25th   122 mg/m2 
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Figure 5.11: Spatial distribution and maximum daily average dust load of modelled dust 

storm events based on CAVI during the 24th – 25th November 1965. 

 

The existence of other dust storm events in November 1965 have been identified 

through the HDED and the modelling of each individual day of this month. Previously, 

the occurrence and magnitude of these events were unknown but with the development 

of CAVI it is now possible to estimate historic vegetation cover for use in CEMSYS 

and hence model every day of interest as long as there is rainfall and temperature data 

available. Figure 5.10a – 5.10f illustrates the spatial patterns of the wind erosion 

activity for this period together with the estimated maximum daily average dust load 

in Table 5.3.  

 

Figure 5.12: Spatial distribution and maximum daily average dust load of modelled dust storm 

events based on CAVI on the 1st, 9th – 11th, 16th – 17th November 1965. Figure continues over 

next page. 
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Figure 5.13: Spatial distribution and maximum daily average dust load of modelled dust storm 

events based on CAVI on the 1st, 9th – 11th, 16th – 17th November 1965. 

 

A comparison of the modelled estimated maximum daily average dust load for 

November 1965 indicates that the dust storm on 11th November 1965 was more severe 

than on the 24th November 1965 (Table 5.3). The dust storm event on the 24th 

November seems to have originated from a number of dust source areas and was more 

widespread (Figure 5.9a), whereas the event on the 11th November 1965 was more 

concentrated in QLD, NSW and parts of SA regions (Figure 5.10d). A comparison of 

the CAVI based modelled maximum daily average dust load estimates of November 

1965 (Table 5.3) with the September 2009 (Table 5.1) and October 2002 (Table 5.2) 

indicates that November 1965 and October 2002 were similar in magnitude in dust 

concentrations.  
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Both the HDED and DustWatch (2011d) reported a dust storm event during February 

1983 which also has been modelled with CAVI but the modelled dust storm activity 

was not in the expected location in the CAVI simulation. Further investigation revealed 

that a frontal westerly weather system was present at 135° E but failed to move further 

east and instead was stationary for the entire three day period. Additional investigation 

into the 1983 atmospherics data and comparison of NECP/NCAR to 20th Century 

Reanalysis data revealed that the 1979 – 1992 sea level pressure data the ABoM 

supplied to NCEP/NCAR were incorrect and all other climate variables which are 

calculated based on the pressure data were therefore incorrect as well (Kalnay 1996; 

NOAA Research 2012). This mistake has been rectified but unfortunately the 

NCEP/NCAR reanalysis data set which is used in CEMSYS was not rerun with the 

corrected NCEP/NCAR sea level pressure data. The modified sea pressure data set has 

now been included in the NCEP/DOE Reanalysis II which has a 2.0 degree global 

resolution. The inclusion of finer resolution input data into the current structure of 

CEMSYS requires a modification of the code which was not possible at this point in 

time but is planned for the future.  

The aim of Section 5.2 was to evaluate if it is feasible to substitute satellite based fPV 

vegetation cover data with the CAVI as a surrogate for vegetation cover. The results 

from the study indicate that there is potential for CAVI to be used as a surrogate for 

fPV. Similar spatial erosion characteristics have been observed but occasionally CAVI 

produces poor estimates and therefore it is likely that the dust intensity is 

underestimated. The difference in the modelled results is due to a number of factors as 

discussed in Section 5.2.1. Firstly, the CAVI index performs particularly well in arid 

to semi-arid regions of Australia which have generally lower rainfall levels all year 

and experience high temperatures during the wind erosion season (Spring – Summer) 

but underperforms in the autumn and winter months. The index has a tendency to 

overestimate green vegetation cover, predominantly in regions outside the arid and 

semi-arid zone that receive more regular rainfall. Secondly, satellite derived vegetation 

indices have certain limitation in arid to semi-arid regions due to their low sensitivity 

to low vegetation cover. Satellite data has a tendency to underestimate non-

photosynthetic vegetation and overestimate bare soil. Therefore it is possible that fPV 

based CEMSYS results overestimate the amount of eroded soil in arid and semi-arid 

areas and CAVI can overestimate vegetation cover in these regions. And thirdly, it is 
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likely that errors may arise from modelled and observed data and therefore the results 

are difficult to compare. 
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 Thesis Summary and Future Directions 

6.1 Summary of Research Outcomes 

In this chapter the main findings of each of the preceding chapters is summarised and 

areas of future work and development of these findings are suggested. There is a 

potential for increased frequency and intensity of wind erosion and dust storms causing 

serious land degradation in arid and semi-arid regions of Australia due to climate 

change. In this context the relationships between climate factors and vegetation cover 

are of great interest. Broad-scale estimation of spatial changes in vegetation cover is 

of value in many areas of research and land-use management.  

The aim of this research was to investigate the historic relationship between climatic 

conditions and recorded dust storm events across Australia. This study also explored 

the relationship between climate variables and vegetation cover, in particular the 

potential for using long-term climate information to predict broad scale vegetation 

cover. As part of the research a vegetation cover index was developed and the validity 

of using this index as a surrogate for integrated wind erosion modelling was tested.  

The five research objectives and the outcomes achieved in this research are itemized 

below: 

1. To establish a Historical Dust Event Database (HDED) from a wide number of 

sources including personal experiences, diaries, book excerpts, newspaper 

clippings, journal articles, reports and others.  

 An extensive HDED has been established starting in 1852, spanning over 16 

decades and documenting 587 dust storm events in Australia. The HDED will 

be made available on request. If funding comes available the HDED will be 

published online. 

 The number of documented historical dust storm sightings in the HDED 

indicate that the 1900s, 1940s, 1960s and 2000s were the most active wind 

erosion periods. 

 The actual number of dust storm events is likely to be higher as many may have 

past unnoticed and/or been unrecorded due to the sparse population in arid and 

semi-arid areas. Others might have been written down in diaries, letters etc. but 

have not been archived in museums or libraries (i.e. lost in the annals of time). 
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2. To compare the HDED to the climatic history of ENSO, rainfall and temperature 

to establish if dust event records match climate records.  

 Rainfall and temperature are closely linked to the ENSO cycle and directly 

impact on the vegetation cover which is a key factor driving the frequency, 

intensity and spatial distribution of dust events. 

 The HDED showed that an increased number of dust storm events were 

documented during years of intense droughts (1900s, 1940s, 1960s and 2000s) 

when rainfall was below average and temperatures above average for extended 

periods of time.  

 

3. To develop a simple broad scale Climate Aridity Vegetation Index (CAVI) for the 

arid to semi-arid regions in Australia based solely on rainfall and temperature data. 

Secondly, to investigate if reliable spatial and temporal vegetation cover maps can 

be produced based on the CAVI without modelling individual vegetation type 

responses, seasonality and land-use. 

 The simple broad scale CAVI was developed based on weighted rainfall and 

temperature data.  

 Monthly remote sensed fractional cover data for both the photosynthetically 

active vegetation (green) fraction (fPV) and the bare soil fraction (fBS) were used 

to validate the performance of the CAVI from 2000 – 2012.  

 The index produced particularly good spatial and temporal vegetation cover 

maps across arid and semi-arid regions of Australia during the Spring – 

Summer wind erosion season.  

 The CAVI with fPV correlation tends to be weaker during the first month of the 

wind erosion season (September – February). 

 The CAVI in the current development state has the tendency to over emphasise 

the relationship between rainfall, temperature and vegetation/green cover when 

increased rainfall occurs close to the month of interest and outside the arid and 

semi-arid regions. 
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4. To investigate and validate if the CAVI can be used as a surrogate for vegetation 

cover for integrated wind erosion modelling where no satellite remote sensing data 

is available. 

 The results from the study indicate that there is potential for CAVI to be used 

as a surrogate for fPV or remotely sensed vegetation data.  

 Both the fPV and CAVI based CEMSYS modelling results show similar spatial 

erosion characteristics but occasionally CAVI produces reduced estimates and 

therefore it is likely that the dust intensity is underestimated than results based 

on fPV. 

 CAVI vegetation cover input data together with historical atmospheric data can 

be used to model any historical dust event periods of interest (i.e. 1940s & 

1960s). This has previously never been possible since satellite derived fPV 

vegetation cover data does not go back past 2000. 

 The CAVI performs particularly well in arid and semi-arid regions of Australia 

which have generally lower rainfall levels all year around and experience high 

temperatures during the wind erosion season (Spring – Summer) but 

underperforms in the autumn and winter months. 

 

5. To discusses the usefulness of the CAVI and suggests possible improvements to 

the effectiveness of the index to allow for the modelling and mapping of vegetation 

cover for periods where rainfall and temperature data is available but satellite data 

and fine scale remote sensing data are not.   

 Vegetation cover information has a wide range of applications and is of 

particular interest and value in areas of environmental, ecological and land-use 

modelling.  

 The development of CAVI allows forecasting of vegetation cover into the 

future using modelled precipitation and temperature data. 

 The development of CAVI allows for modelling and mapping of vegetation 

cover where rainfall and temperature data is available but satellite data and fine 

scale environmental data are not. 

 With the development of CAVI it is now possible to model historical dust storm 

periods which has previously never been possible. The CAVI vegetation cover 
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information can be used to estimate the impact of past events and approximate 

the potential wind erosion risk in the future.   

 The overall aim is to develop a CAVI that can be used universally without 

making it too complex. This could be achieved by firstly, including a correction 

factor for different types of vegetation cover across Australia. 

 Secondly, a geographical correction for north – south or east – west across the 

continent might also improve the performance of CAVI.  

 Thirdly, a correction for the different climate and/or vegetation zones in 

Australia may also improve the performance of CAVI. 

 Fourthly, a sensitive analysis into the weighting factor applied to rainfall data 

to calculate the CAVI could improve the performance. 

 Fifthly, a limiting or threshold factor that constrains the influence of extended 

periods of rainfall. 

6.2 Future Research Directions 

Vegetation cover information is valuable in climate and ecological research including 

regional and global carbon modelling, ecological assessment, and agricultural 

monitoring and wind erosion research. But since remote sensing information is a fairly 

recent technology and there is currently no simple, broadly applicable modelling 

method or index to realistically estimate and map vegetation cover levels in Australia, 

the following recommendations may increase the possible application and capability 

of CAVI to predict vegetation cover more accurately:  

 Continue to update the HDED with additional dust storm records as they become 

available. 

 The overall performance of CAVI may be improved by implementing the 

suggestions outlined in Point 5 above. 

 Compare the performance of CAVI and CEMSYS with field data (e.g. DustWatch 

nodes, roadside survey observations etc.). 

 The NCEP/NCAR Reanalysis data, which feeds into CEMSYS model, has a global 

grid size resolution of 2.5 degree but only started in 1948. Any years prior to 1948 

need to be modelled with a 2.0 degree resolution data set and that requires the 

modification of some parts of the CEMSYS wind erosion modelling codes.  
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